

G Data
Red Paper 2014

Uroburos
Highly complex espionage
software with Russian roots
G Data discovers alleged intelligence agency software

G Data SecurityLabs
Contact:
intelligence@gdata.de

Re
d

Pa
p

er
_F

eb
ru

ar
y-

20
14

G Data Red Paper February 2014: Uroburos

Contents

Executive Summary ... 2

What is Uroburos? .. 2

Technical complexity suggests connections to intelligence agencies .. 2

Relation to Russian attack against U.S. suspected .. 2

Probably undiscovered for at least three years .. 3

Infection vector still unknown .. 3

Analysis ... 4

Uroburos’ name ... 4

Rootkit framework .. 5

Hiding malicious activities with the help of hooks ... 5

Virtual file systems .. 6

The NTFS file system .. 6

Third party tools .. 7

Injected libraries - controlling the activities .. 8

Network capabilities .. 9

Victims and attribution .. 10

Conclusion .. 11

Technical details ... 11

Copyright © 2014 G Data Software AG 1

G Data Red Paper February 2014: Uroburos

Executive Summary
G Data Security experts have analyzed a very complex and sophisticated piece of malware, designed
to steal confidential data. G Data refers to it as Uroburos, in correspondence with a string found in
the malware's code and following an ancient symbol depicting a serpent or dragon eating its own
tail.

What is Uroburos?
Uroburos is a rootkit, composed of two files, a driver and an encrypted virtual file system. The rootkit
is able to take control of an infected machine, execute arbitrary commands and hide system
activities. It can steal information (most notably: files) and it is also able to capture network traffic. Its
modular structure allows extending it with new features easily, which makes it not only highly
sophisticated but also highly flexible and dangerous. Uroburos' driver part is extremely complex and
is designed to be very discrete and very difficult to identify.

Technical complexity suggests connections to intelligence agencies
The development of a framework like Uroburos is a huge investment. The development team
behind this malware obviously comprises highly skilled computer experts, as you can infer from the
structure and the advanced design of the rootkit. We believe that the team behind Uroburos has
continued working on even more advanced variants, which are still to be discovered.

Uroburos is designed to work in peer-to-peer mode, meaning that infected machines communicate
among each other, commanded by the remote attackers. By commanding one infected machine
that has Internet connection, the malware is able to infect further machines within the network,
even the ones without Internet connection. It can spy on each and every infected machine and
manages to send the exfiltrated information back to the attackers, by relaying this exfiltrated data
through infected machines to one machine with Internet connection. This malware behavior is
typical for propagation in networks of huge companies or public authorities. The attackers expect
that their target does have computers cut off from the Internet and uses this technique as a kind of
workaround to achieve their goal.

Uroburos supports 32-bit and 64-bit Microsoft Windows systems. Due to the complexity of this
malware and the supposed spying techniques used by it, we assume that this rootkit targets
governments, research institutes, or/and big companies.

Relation to Russian attack against U.S. suspected
Due to many technical details (file name, encryption keys, behavior and more details mentioned in
this report), we assume that the group behind Uroburos is the same group that performed a
cyberattack against the United States of America in 2008 with a malware called Agent.BTZ. Uroburos
checks for the presence of Agent.BTZ and remains inactive if it is installed. It appears that the
authors of Uroburos speak Russian (the language appears in a sample), which corroborates the
relation to Agent.BTZ. Furthermore, according to public newspaper articles, this fact, the usage of
Russian, also applied for the authors of Agent.BTZ.

According to all indications we gathered from the malware analyses and the research, we are sure of
the fact that attacks carried out with Uroburos are not targeting John Doe but high profile
enterprises, nation states, intelligence agencies and similar targets.

Copyright © 2014 G Data Software AG 2

G Data Red Paper February 2014: Uroburos

Probably undiscovered for at least three years
The Uroburos rootkit is one of the most advanced rootkits we have ever analyzed in this
environment. The oldest driver we identified was compiled in 2011, which means that the campaign
remained undiscovered for at least three years.

Infection vector still unknown
At the current stage of the investigations it is unknown how Uroburos initially infiltrates high profile
networks. Many infection vectors are conceivable. E.g. spear phishing, drive-by-infections, USB
sticks, or social engineering attacks.

Copyright © 2014 G Data Software AG 3

G Data Red Paper February 2014: Uroburos

Analysis
The G Data SecurityLabs discovered the rootkit dubbed Uroburos during 2013. We decided to
investigate in depth soon after we identified the following three interesting aspects:

 the usage of virtual file systems
 the complexity of the framework
 the advanced network capabilities

Uroburos’ name
Uroburos is a direct reference to the Greek word Ouroboros (Οὐροβόρος). The Ouroboros is an
ancient symbol depicting a serpent or dragon eating its own tail. The name of this rootkit is inspired
by a plain text string available in several driver files: Ur0bUr()sGotyOu#

Furthermore, we identified other references to the ancient serpent/dragon symbol within the
rootkit’s code, for example the following strings:

 inj_snake_Win32.dll
 inj_snake_Win64.dll
 snake_alloc
 snake_free
 snake_modules_command

Another interesting notion: The exact spelling,
Uroburos, can even be found in a webcomic called
Homestuck. In this interactive webcomic, the
reader/player needs two codes to receive virtual
magic objects (called juju). Those two codes are in
fact uROBuROS and UrobUros. We can notice that
the uppercase and lowercase character order
matches the string found within the malware
code.

Figure 1: Uroburos name string within the driver’s code

Figure 2: Homestuck webcomic
http://www.mspaintadventures.com/?s=6

Copyright © 2014 G Data Software AG 4

G Data Red Paper February 2014: Uroburos

Rootkit framework
The rootkit is basically composed of two files:

 a driver (.sys file);
 a virtual file system (.dat file).

We identified several file names for the driver, for example: Ultra3.sys, msw32.sys, vstor32.sys. We
have encountered 32-bit and 64-bit driver versions. The two binaries may be installed
simultaneously on one system.
The file containing the virtual file system has a random name, followed by the extension .dat.
Furthermore, this file is located in the same directory as the driver file. The installation directory does
change, but we were able to identify the following pattern:

 %SYSTEMROOT%\$Ntuninstall[Random_ID]$

The malware’s persistence is established by the creation of a service which automatically executes
during each startup of the system. The service is located in

 HKLM\System\CurrentControlSet\Services\Ultra3

The driver is needed to

 decrypt the virtual file systems
 create several hooks to hide its activities
 inject libraries in the users land
 establish and manage some communication channels

Hiding malicious activities with the help of hooks
A rootkit naturally tries to hide its activities from the user and so does Uroburos. The driver uses
inline patching to perform the hooks, which is a common way to perform this task. Inline patching is
carried out by modifying the beginning of a targeted system’s function in order to redirect the
execution flow to a custom code before jumping back to the original function.

In the current case, the inline patching
adds a new interrupt instruction (int 0xc3)
at the beginning of the hooked function.
Doing this, the malware adds malicious
behavior to legitimate functions.

Figure 3: Hook function is called and calls, in turn, the
legitimate function

Copyright © 2014 G Data Software AG 5

G Data Red Paper February 2014: Uroburos

The main hooked functions are:

 ZwQueryKey(), ZwEnumerateKey(),
ZwCreateKey() and ZwSaveKey()
their purpose is to hide the persistence keys
 in the registry

 ZwReadFile()
its purpose is to hide the driver and file
system files

 ZwQuerySystemInformation()
its purpose is to hide rootkit handles

 ZwTerminateProcess()
its purpose is to terminate cleanly the rootkit
during the shutdown of the operating system

 ObOpenObjectByName()
its purpose is to hide the rootkit’s virtual file systems

Virtual file systems
The Uroburos rootkit uses two virtual file systems – one NTFS file system and one FAT file system.
They are stored locally, on the infected machine. This means that the victim’s computer contains an
encrypted file, which, in reality, hosts another file system.

The virtual file systems are used as a work space by the attackers. They can store third party tools,
post-exploitation tools, temporary files and binary output. The virtual file systems can be accessed
through the devices \Device\RawDisk1 and \Device\RawDisk2 and the volume \\.\Hd1 and \\.\Hd2.

The NTFS file system
The encryption used for the file systems is CAST-1281. The respective encryption key is hardcoded
within the driver file. Once decrypted, the virtual file system is a classic NTFS volume, which can be
simply accessed through the standard Microsoft file system APIs. During our analysis, we identified
several files the file systems contained:

 .bat scripts used by the attackers
 .log files with the output of the execution of the .bat files
 third party tools
 queue files

The .bat scripts contain some net use commands to map a remote file server, netstat commands to
have network information, system info commands to get a complete view of the system
configuration.

1 http://en.wikipedia.org/wiki/CAST-128

Figure 4: ZwQueryKey() hook creation

Figure 5: Example of one of the .bat scripts

Copyright © 2014 G Data Software AG 6

G Data Red Paper February 2014: Uroburos

The queue file is the most interesting and complex part of the virtual file system. Each message in
the queue contains a unique ID, a type, a timestamp and content. The content is also encrypted
using the CAST-128 algorithm and the respective key is stored in a message, too. The messages can
contain the following information:

 a key to decrypt other messages
 a configuration
 a file (or library injected in user land)
 …

Third party tools
We found classic post-exploitation tools, used by a lot of different APT actors. The following list
provides an overview of the tools found in the virtual file system:

 Dumper for NTLM (hash of a user’s password). This information can be used to perform “pass
the hash”2 attacks, to compromise new systems within the infrastructure

 information gathering tools, to get information on the infected system
 RAR tools, to create archives of stolen documents
 Microsoft Office document stealer
 …

2 http://en.wikipedia.org/wiki/Pass_the_hash

Figure 6: Information gathering example

Copyright © 2014 G Data Software AG 7

G Data Red Paper February 2014: Uroburos

Injected libraries - controlling the activities
The driver injects several libraries into user land. These libraries are stored in encrypted form in the
queue file. These files are used to create a kind of “proxy” between the kernel land and the user land.
The driver injects two noteworthy libraries:

 inj_services_Win32.dll
 inj_snake_Win32.dll

If the infected system is a 64-bit system, Win32 is replaced by Win64. The libraries are very huge
(more than 150 functions) and contain a lot of features. They are able to manipulate the queue file
from the user land. Following, a list of functions dedicated to the queue management (qm):

 qm_create()
 qm_enum()
 qm_find_first()
 qm_free()
 qm_move()
 qm_pop()
 qm_push()
 qm_read()

 qm_read_hdr()
 qm_reset_len()
 qm_rm()
 qm_rm_list()
 qm_set_dates()
 qm_set_parem()
 qm_write()

The libraries have the capability to create and manage a pcap3 capture. The purpose of this feature is
to generate a snapshot of the network traffic.

The libraries are furthermore used to exfiltrate data to the outside world, namely the attackers. We
identified several protocols to perform this task: generally, the configuration needed for each
protocol is stored in the queue file and not within the library itself.

 HTTP protocol
the attackers can choose to use a website to exfiltrate data. The rootkit supports GET and
POST requests and proxy authentication, too. The default URI is http://%s/default.asp but it
is configurable. The media type of the request is chosen from the following list:

• application/vnd.ms-powerpoint

• application/vnd.ms-excel

• application/msword

• image/gif

• image/x-bitmap

• image/jpeg

• image/pjpeg

• application/x-shockwave-flash

• or */*

3 http://en.wikipedia.org/wiki/Pcap

Copyright © 2014 G Data Software AG 8

G Data Red Paper February 2014: Uroburos

 ICMP protocol
the attackers can choose to use ICMP (ping) to exfiltrate data

 SMTP protocol
the attackers can send exfiltrated data by email

 Named pipe
the attackers can use Microsoft’s named pipe to communicate to another infected machine.
This case will be described in the next chapter

The design chosen by the developers is truly efficient: to add a new protocol and a new capability,
the attackers do not need to recompile (or reinstall) the entire rootkit. They simply need to adjust
the library and replace the library in the queue file with the adjusted one. The library usage results in
modularity well thought out.

Network capabilities
Thanks to the protocol described previously, the attacker can even target victims not directly
connected to the Internet. The following figure shows an example of a network scheme we
discovered in 2013:

The targeted machine (A) is a machine with access to sensitive data, e.g. a server. The rootkit
installed on the system opens a Microsoft named pipe and waits for an incoming connection. This
machine can be named “spied-on node”.

Figure 8: Uroburos‘ communication capabilities

Figure 7: HTTP media type list

Copyright © 2014 G Data Software AG 9

G Data Red Paper February 2014: Uroburos

The second machine (B) is an office machine with the capability to connect to the Internet. The
rootkit is configured to connect to system (A), with the help of the named pipe, and administrate the
machine remotely. Finally, machine (B) is able to pass on all data received from machine (A) to the
Internet. This machine (B) could be named “proxy node”.

This peer-to-peer design is really efficient, scalable and resilient. In case a “proxy node” is not
available/detected, the attackers can use another infected one. The advantage for the attackers:
even if a security specialist finds one “spied-on node”, he cannot easily find the “proxy node”, due to
the fact that this node is a passive node. Furthermore, the analyst does not automatically have the
command and control URL. In case of incident response, this design is complicated to apprehend
and it is hard to contain the infection.

Victims and attribution
Due to the complexity of the Uroburos rootkit, we estimate that it was designed to target
government institutions, research institutions or companies dealing with sensitive information as
well as similar high-profile targets.
Concerning the attribution, we found some technical information which allows us to link the
Uroburos rootkit to a cyber-attack against the United States of America, carried out in 20084 and,
particularly, to the worm used by the attackers, called Agent.BTZ. During this 2008 campaign, a USB
stick was deliberately "lost" in the parking lot of the United States Department of Defense. This USB
stick contained malicious code and infected the military’s network.

The following leads make us link what we discovered during our analysis with the cyber-attack
carried out in 2008:

 the usage of the same obfuscation key in Uroburos and Agent.BTZ
(1dM3uu4j7Fw4sjnbcwlDqet4m5Imnxl1pzxI6as80cbLnmz54cs5Ldn4ri3do5L6gs923HL34x2f
5cvd0fk6c1a0s)

 the usage of the same file name to store logs: winview.ocx
 Uroburos actually checks whether Agent.BTZ is already present on the attacked system,

before its installation. In case Agent.BTZ is installed, Uroburos will not be installed on the
system.

 the usage of Russian language in both codes

In an article published by Reuters, in 2011, the journalist mentioned that “U.S. government strongly
suspects that the original attack was crafted by Russian Intelligence.”5 We found Uroburos samples
with a resource in Russian language:

In case someone from the audience of this report notices an infection caused by the Uroburos
rootkit and needs help, would like to receive further technical information or would like to
contribute any information about this case, please feel free to contact us by email using the
following mailbox: intelligence@gdata.de

4 http://en.wikipedia.org/wiki/2008_cyberattack_on_United_States
5 http://www.reuters.com/article/2011/06/17/us-usa-cybersecurity-worm-idUSTRE75F5TB20110617

Figure 9: Resource with Russian language

Copyright © 2014 G Data Software AG 10

mailto:intelligence@gdata.de

G Data Red Paper February 2014: Uroburos

Conclusion
The Uroburos rootkit is one of the most advanced rootkits we have ever analyzed. The oldest driver
we identified was compiled in 2011, which means that the campaign remained undiscovered for at
least three years.

The investment to develop a complete framework such as Uroburos is extremely high. The
developer team behind the development and the design of such an enhanced framework is really
skilled. We believe that, until today, the team behind Uroburos has developed an even more
sophisticated framework, which still remains undiscovered.

The design is highly professional; the fact the attackers use a driver and a virtual file system in two
separate files which can only work in combination, makes the analysis really complicated. One needs
to have the two components to correctly analyze the framework. The driver contains all of the
necessary functionality and the file system alone simply cannot be decrypted.

The network design is extraordinarily efficient, too; for an incident response team, it is always
complicated to deal with peer-to-peer infrastructure. It is also hard to handle passive nodes, because
one cannot quickly identify the link between the different infected machines.

This kind of data stealing software is too expensive to be used as common spyware. We assume that
the attackers reserve the Uroburos framework for dedicated and critical targets. This is the main
reason why the rootkit was only detected many years after the suspected first infection.
Furthermore, we assume that the framework is designed to perform cyber espionage within
governments and high profile enterprises but, due to its modularity, it can be easily extended to
gain new features and perform further attacks as long as it remains undetected within its target.

There are some strong indications which suggest that the group behind Uroburos is the same as the
one behind Agent.BTZ, which allegedly was part of an intelligence agency cyberattack targeting US
military bases in 2008. Notable hints include the usage of the exact same encryption key then and
now, as well as the presence of Russian language in both cases.

Technical details
SHA256: BF1CFC65B78F5222D35DC3BD2F0A87C9798BCE5A48348649DD271CE395656341

MD5: 320F4E6EE421C1616BD058E73CFEA282

Filesize: 210944

For further information contact intelligence@gdata.de

Copyright © 2014 G Data Software AG 11

mailto:intelligence@gdata.de

	Executive Summary
	What is Uroburos?
	Technical complexity suggests connections to intelligence agencies
	Relation to Russian attack against U.S. suspected
	Probably undiscovered for at least three years
	Infection vector still unknown
	Analysis
	Uroburos’ name
	Rootkit framework
	Hiding malicious activities with the help of hooks
	Virtual file systems
	The NTFS file system
	Third party tools
	Injected libraries - controlling the activities
	Network capabilities
	Victims and attribution
	Conclusion
	Technical details

