White Paper @ MCAfee®

An Intel Company

Know Your Digital Enemy
Anatomy of a GhOst RAT

By Michael G. Spohn
Principal Consultant, Incident Response & Digital Forensic Practice
McAfee® Foundstone® Professional Services

Table of Contents
Background
GhOst RAT Overview
GhOst RAT Capabilities
GhOst RAT Operation
GhOst RAT Components
RESSDT.SYS
SVCHOST.DLL
INSTALL.EXE
GHOST.EXE
Function ResetSSDT()
GhOst RAT Encryption
GhOst RAT Network Communication
GhOst RAT Source Code
GhOst RAT Defenses
Summary
About the Author

About McAfee Foundstone Professional Services

Know Your Digital Enemy

22
23
29
34
36
36
36

Background

On March 29, 2009, the Information Warfare Monitor' (IWM) published a document titled Tracking
GhOstNet—Investigation of a Cyber Espionage Network. This document details the extensive
investigative research surrounding the attack and compromise of computer systems owned by the
Private Office of the Dalai Lama, the Tibetan Government-in-Exile, and several other Tibetan enterprises.
After 10 months of exhaustive investigative work, this team of talented cyber investigators identified the
tool used to compromise victim systems—a sophisticated piece of malware named GhOst RAT (Remote
Access Terminal).

On May 25, 2011, cyber investigator, forensic tool writer, and author Harlan Carvey, published a blog
post listing some of his favorite forensic tools. In this post, Harlan referred to an interesting, yet dated,
website that described, in detail, the capabilities of the GhOst RAT malware. This site, “xpl0it Analysis,”
even includes links to download a beta version (3.6) of the GhOst RAT source code.

As soon as | navigated to the stale “xplOit Analysis” website and read the details of the GhOst RAT
malware, | became very interested in learning more about it. Even though the links to the GhOst
Beta source code on the xplOit Analysis site were removed long ago, | was able to find a copy of it
somewhere on the Internet and decided to analyze it.

Examination of the GhOst RAT source code revealed that it is a derivative of the same code used to create
the RAT binaries described in the IWM research paper and the xplOit Analysis website. Unfortunately, the
code base would not compile due to numerous coding bugs and missing dependencies.

After many weeks of work, | was able to correct hundreds of bugs in the source code which allowed me
to build a working version of GhOst RAT Beta 3.6. Although | converted the resource text labels from
Chinese to English, the base source code was left intact.

This document describes what | learned during my analysis of the GhOst RAT source code. | describe in
great detail how the multiple binaries work together, the extensive capabilities of the malware, and the
structure of the source code tree. | also explore how the malware compromises a host, its obfuscation
and encryption methods, and how it communicates. Finally, | provide some tips on how to identify a host
compromised by the RAT and how to defend against it.

Even though this GhOst RAT contains source code dating back to 2001, the lessons we can learn from
it are very relevant today. In early 2011, McAfee Foundstone and McAfee researchers identified a GhOst
RAT, very similar to the one described in this paper, that was used to attack large corporations in the oil
and gas industry. This investigation, known as Night Dragon, is described in a separate white paper.

The use of RAT tools by cybercriminals continues because they are very efficient and powerful. They are
lightweight and provide complete remote control access to a compromised host. The command and
control (C2) component can manage thousands of compromised hosts. Understanding how these tools
work is critical if we want to understand the threat and put in place countermeasures to defend against
their use.

GhOst RAT Overview

If you are not familiar with the technical capabilities of a GhOst RAT, in this section | show the actual
operation of a RAT using screen shots. There are two main components of a GhOst RAT system: the
client and the server.

The server is a small Microsoft Windows DLL that runs on a compromised host. It runs as a Windows
service and starts up when the system starts. Upon startup, it connects and “checks in” to a C2 client
and awaits further instructions.

Know Your Digital Enemy

http://www.infowar-monitor.net/research/
http://www.infowar-monitor.net/research/
http://windowsir.blogspot.com/2011/05/tools.html
http://windowsir.blogspot.com/2011/05/tools.html
http://xanalysis.blogspot.com/2009/04/gh0st-rat.html
http://xanalysis.blogspot.com/2009/04/gh0st-rat.html
http://www.mcafee.com/us/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf

The client component is a standard Windows application. It provides a graphical view, using a grid, to list
all of the RAT servers that have checked in. It has a dropdown menu with a list of operations to perform
on a remote server. Figure 1 below shows a running C2 client. Notice that there are two checked-in RAT
servers. A right-click on a server entry displays a menu that provides complete control of the remote host.

‘e Foundstone Friendly GhOst RATV.3.7

1 AN LAN Caomputer/Note | 0S ¢ CPU Ping |‘WebCam

k File Manager
Screen Control
Kevlogger

Remote Terminal
Syskem Management
video Yiew

Waice Monitaring

Session Management #
Other Features 4
Change Motes
Disconnect

'}1 192.168.1.100 192.166.1.100 eepc

1662MHz ¥4 Yes

Select Al
Deselect

Al | ¥
Connections { Settinas 3, Build

192.168.1,249

|51 0,02 kbjs R: 0,32 kbjs I El'i‘ort: a0 " |[Connections: 2 A

Figure 1. GhOst RAT client (C2).

Figures 2 to 9 show screen shots of the popular and more useful features from the C2 client.

¥ 11192.168.1.100 - File Manager

Local]C:\
(od -] J - J -
23 Apps Data DELL Documents Intel MS0Cache
and Settings :
o [[R Els
Program Files RECYCLER vslystenl'u Temp WINDOWS AUTOEXEC... boat.ini
‘olume ...

_Hemote iC:'\ | [’} . D_J % @ | asl - G
0 P B B O o

Diocuments Intel M50Cache Program Files RECYCLER Spztem
and Settings Walume |

g U B E B B

Temp WINDOWS 1000HE.ROM AUTOEXEC... boat.ini COMFIG.5YS fog.log

4 L

JRemate Drive: CiY S — - y

Figure 2. File Manager.

Know Your Digital Enemy

T W FZ TR0, 100 1024 * 600 Coumt; 5481

Pl
M

O Mucmcs

Bk Srean
CICEE LEre
S St
it Chphoard
Tt Oipcawd
® fom Blgorh
Ooff Bkt

Figure 3. Screen Control.

£ \4192.168.1.100 - Keystroke Logger (Online)

[07/10/2011 04:58:40] (Untitled - Notepad)
| am in notepad on a c[Backspacelhost compromised by Ghidst!

Figure 4. Keylogger.

Know Your Digital Enemy

\192.168.1.100 - Remote Shell

Microzoft Windows RP [Uersion 5.1.26881
¢C» Copyright 1985-2801 Microsoft Corp.

CanUINDOWS~system32 >

Figure 5. Remote Terminal.

100 - System Manageme

Processes ‘Windows | Dialup Users

Name PID |35

IMEs. BXE 412 \SpstemB oothSystem32hemss. exe

Calss.exe 472 SPMCAWINDOWShapstemn32hoerss exe

winlogon, exe 716 SPMCAWINDDWS epstem32hwinlogon. exe

zervices. exe TEO CAwWINDOW S hapstem32hservices. exe

lzass. exe Tre CAwWIMD O Shapsten32izass. exe

svchost.exe 944 CAwWIMDOWS hapstemn32havehost exe

svchost.exe 996 C:AwIMDOWS haystem32havehost exe

svchost.exe 1104 CAwWINDOWS S petemn32hevchost. exe

svchost.exe 1224 C:AwIND 0SS hapsten32havehost exe

svchost.exe 13z CAwWIMDOWS hapstem32havehost exe

spoolsv.exe 1596 C:AwWIND OWS hapstem32hspoolsy. exe

explorer. exe 1676 C:WwIMD O SAE mplorer EXE

svchost.exe B C:AwIMDOWS hapsten32havehost exe

FOGService. exe 404 C:\Program Files\FOGAWFOGService. exe

igfutray. exe 496 C:AwIMD 0SS hapsten32hightray. exe

hkcmd. exe A04 CAwIMD O S hapsten32vhkomd. exe

AsTray.exe R3E C:\Program Files\EeePCAACPWAsTray. exe

igfszsrve. exe had C:AwWIND OWS hapstem32higfusrve. exe

AsbopiSvrexe hag C:\Program Filesh\EeePCAWACP \AsAcpiS v exe

AsEPCMon exe E04 C:\Program Filesh\E eePCAWACFNASEPCMon. exe

igfuext. exe E5E C:AwIMD O S hapstern32highuest exe

ETDCHlexe 930 C:\Program Files\Elantech\ETDChl exe

RTHDCPL.EXE 1076 CAWINDOWSARTHDCPLEXE

iviFeghar.exe 1176 C:\Program Files\Common FileghInteryideo\ReghkariviR eghdgr. exe
clfmon. exe 1256 C:wIMDOMWS hapsten32hetimon, exe

SeaPort.exe 1348 C:\Program Files'\MicrosofthSearch Enhancement Packh\SeaPorthSeaPort exe
zvchost.exe 1456 C:AwIMDOWS hapstem32havehost exe

BT Tray.exe 1696 C:\Program FilesSw/IDCOMBEluetooth Software BT Trap.exe
FOGTray.exe 1804 C:\Program Files\FOGAWFOGTray. exe

SuperHybridEngin... 1832 C:\Program Filesa5154EeePChSuper Hybrid EnginehSuperHybridE ngine. exe
btwdinz. exe 124 C:\Program Filestw/|DCOMBEluetooth Softwarebintbtwdin. exe
alg.exe 2408 CAWIND 0SS petemn324alg. exe

wuauch exe 3292 C:AwIMD 0SS hapstemn32wuauch. exe

WIMIprvse, exe 2028 CAwIMDOWS hapstem32wbembwmipryze. exe

notepad. exe 3920 C:AwINDOWS hapstem32\notepad. exe

Figure 6. System Management—processes.

Know Your Digital Enemy

U WTRZ B 1100 - Syviem Managemeni

Frocaies | Windown || Disiig Uzen

 Phone #
435551002

Figure 7. System Management—Dialup Users.

%' N\192.168.1.224 Packets: 112

Ml:wt
Sze
Minsmize

Maximize

Close Alt+F4
Compress

Capbure Screen
Capture Yideo

176 * 144
352 * 258

Figure 8. Live video feed.

192.168.1.100 - Audio Capture

Device

e

FE&

Remote sound is listering
Microsoft G5 6.10 Audio CODEC

[Send local voice to the rerote

Recerve 14 KBytes

Figure 9. Live audio capture.

Know Your Digital Enemy

After reviewing these screen shots, the threat of this tool is frighteningly clear. Let there be no doubt a
host compromised by a GhOst RAT is completely and totally owned. Also, don’t overlook the danger the
Remote Terminal (Figure 5) presents. An attacker can use this tool to move laterally across your network.

| also want to emphasize the video and audio feeds the server provides really do work. On a relatively
fast network, the video and audio are crystal clear. This tool demands respect and attention from those
of you responsible for protecting your corporate assets.

In the next section, we look at the capabilities of the GhOst RAT in more detail.
GhOst RAT Capabilities

The GhOst RAT Beta 3.6 code base builds a completely functional RAT with amazing capabilities. A list of
its capabilities is shown below in Table 1.

Table 1: GhOst RAT Capabilities

GhOst RAT Capabilities

Existing Rootkit Removal

Clears System Service Descriptor Table SSDT of all existing hooks.

File Manager

Complete file explorer capabilities for local and remote hosts.

Screen Control

Complete control of remote screen.

Process Explorer

Complete listing of all active processes and all open windows.

Keystroke Logger

Real-time and offline remote keystroke logging.

Remote Terminal

Fully functional remote shell.

Web Cam Eavesdropping

Live video feed of remote web camera, if available.

Voice Monitoring

Live remote listening using installed microphone, if available.

Dial-Up Profile Cracking

Listing of Dial-Up profiles, including cracked passwords.

Remote Screen Blanking

Blanks compromised host screen, making computer unusable.

Remote Input Blocking

Disables compromised host mouse and keyboard.

Session Management

Remote shutdown and reboot of host.

Remote File Downloads

Ability to download binaries from the Internet to remote host.

Custom GhOst Server Creation

Configurable server settings placed into custom binary.

There are four binary components that make up the GhOst suite. The first is a very small device driver
that performs a single task: resetting the Windows System Service Dispatch Table (SSDT). This is the only
kernel level binary in the toolset. It runs at system startup on the compromised host and removes all

hooks in the SSDT.

The second binary is a Windows DLL that gets installed on a compromised host as a Windows service.

This service is the server component of the GhOst toolkit. It checks in to the GhOst C2 controller (client)
on startup and awaits instructions. It is this binary that contains the capabilities described in Table 1.

The third binary is the GhOst install program. This is commonly called “the dropper.” It contains the two
above described binaries and performs all of the work necessary to install the GhOst server on a host and
startup the GhOst service.

The final binary is the C2 controller, known as the GhOst client. This is a typical Windows application
that is used to track and manage GhOst servers on remote compromised hosts. This is the tool the
cybercriminals use to exfiltrate information from your networks.

Know Your Digital Enemy

GhOst RAT Operation
The operation of the RAT tool is very straightforward. Upon startup, the client component presents a

tabbed window that allows remote operation of compromised hosts. The main window of an online RAT

client is shown below in Figure 10.

"+ Foundstona Friendly Ghist AT V.27
WA LA Congaderibiote |08] g

2 188,124 17 5 IR 03
i PRz i68.1.100 198,164, 108 g WP S (B DEOM)

4
N o W T
193, 188.1 . 248 % 007 s B 0 b Pl B Corwmyters: T I

Figure 10. GhOst RAT client (C2).

Notice there are three tabs at the bottom of the main frame: Connections, Settings, and Build. The
Connections tab lists all of the compromised hosts that have checked in and are awaiting further
instructions. This view contains columns including a unique ID for each host, WAN and LAN addresses,
hostname, installed OS, CPU speed, ping speed, and whether the host has a webcam installed. You can
see in Figure 10 that there are two hosts that have checked in.

The status bar contains four panes. On the far left is the IP address of the client computer. The second
pane displays the TX/RX communication rate in KB/S for each remote host. The third pane shows the
port the C2 client is listening on. Finally, the fourth pane shows the number of checked in hosts.

The Settings tab is where you provide configuration settings for the C2 client. You provide the
information in this form that will be baked into the server application on the Build tab. This tab is shown

below in Figure 11.

f+ Foundstone Friendly GhOst RAT V.3.7

— Syztem Configuration

Listering Port [80 | MaxConnestions 2000 ™ Mo Limit | Apply [Disable Ballaon Tips

— Oreline signature
DomanfP | 1921681.248 | Pot | 80 | | Test | [DefautSetting

Prow | | Pat [1080 | [~ Use SOCKSS ‘

Uszer Password I~ Werify Test =

AbdAganvab p? 2uvbGzpgmnrS8=Aans, |

Keyp String |

~Meszage:
‘ Unable ta locate file: QW Dat ‘

% Connections) Settinas 4 Build /
192.165.1.249 15: 0,02 kbjs R: 0.31 kbfs |Part: 80 |Connections: i /d

Figure 11. GhOst Settings tab

Know Your Digital Enemy

10

You can see that | have set my listening port to 80 and that I limit the maximum number of client
connections to 8,000. You can set this value to unlimited by checking the No Limit checkbox. You also
have the option to disable tooltips if desired.

The On-line signature group of controls is used to create a unique Key String that a server must use to
find a C2 client. Here you provide the IP or URL and port you want the server to use when checking in.
You can also provide proxy settings and credentials if a proxy is in use.

You will notice in Figure 11 that the Key String value is delimited by AAAA. The data between the AAAA
delimiters is the encoded data in the On-line signature fields.

The Key String value in Figure 11 is the encoded string 192.168.1.249:80. The encoding algorithm is
Base64 and then each byte is obfuscated further using addition and XOR. This signature is appended to
the end of the server binary when you build a server component.

The Build tab is used to create a custom server application using the unique key string created on the
Settings tab. This is shown in Figure 12.

*e' Foundstone Friendly GhOst RAT V.3.7

Server to Generate -
HTTF Setting | it o badurl 2z2/ip.jpa I Enabled
ey String Zquaxva'B.'ll ﬁ?.Equ.G.zpqmnr.E'BM
Dizplay Hame :l-'-ounc.l.st.one Frienﬂl}l GhDs.t- Diezcription :ﬁghtiﬁg evil one CDI‘I‘ID[‘J‘E‘B[a-t“a tii‘ne
Generate . Mate: The zame domain name or key string same can niot be installed on a host!!

---- Foundstone Incident Response Team -

hittp: /Ay foundstone. com

Connections }‘ Settina= }lBuild
192,168.1.249 |5: 0,02 kbyjs R 0,31 kbys Part: &0 \Connections: 2

Figure 12. GhOst Build tab.

You have two choices in how you provide the key string to the server. First, you can provide a URL and
file name. To do so, check the Enabled box and enter a valid URL and filename. The contents of the file,
hosted somewhere on the Internet, must contain the Key String for the C2 client.

For example, if the enabled checkbox is checked, and the URL http://www.badurl.zzz/ip.jpg was entered,
this URL will be encoded in the Key String value and placed at the end of the server binary file. When
the server is installed on a compromised host, the server will connect to the URL provided and download
the file ip.jpg. The contents of this file must contain the Key String of the C2 client. Using this method of
providing a Key String to a RAT allows the C2 operators to move the C2 client whenever needed.

If you want to bake the Key String into the server binary and not use a URL, uncheck the Enabled
checkbox and paste your key string in the Key String field. In Figure 12, you can see | copied and pasted
the Server Key from the Settings tab since | want to use the same computer the C2 client is currently
running on.

Know Your Digital Enemy

The Display Name and Description fields are placed in the compromised host registry and will display

in the Services.msc management console service name and description fields. | suggest that you make
these fields appear as legitimate services. Also remember, the Display Name must be unique on the host
or the creation of the RAT service will fail.

When you are satisfied with your settings, click on the Generate button. You will be asked where you
want to save the server binary and what you want to name it (default Server.exe). The GhOst client will
extract the Server.exe binary from the Resource section of its own binary and save it to disk.

The Key String and the encrypted display name and description fields are appended to the end of the
binary. You can see this in a hex dump of the binary shown in Figure 13.

[Off==tih) 00 01 02 03 04 O5 06 07 OB 02 Ok 0B

QDOLFr9D0 &7 65 73 JE QD DA 20 20 20 20 3C 2F ges>.. </ secu
ODD1FPED 72 69 74 79 3E OD DA 20 20 3C ZF 74 city>.. </crusc
DODD1FIFD 49 6E 66 6F 3E OD DA ZD ZO JC 64 65 Info>.. <depend
DODD1FADD &5 BE 63 79 3E OD DA 20 20 20 20 3C ency>r.. <depe
DDD1FAlID &E 54 65 6E 74 41 73 73 &5 6D 62 6&C ndentAssenbly>. .
OOOL1FAZD 20 20 20 20 20 20 3C 61 73 73 &5 6D <asaemblyl

DDD1FA3ID 64 65 6E 74 69 74 79 20 74 79 70 &5
ODDLIFA40 SE 33 32 22 20 SE E1 6D &5 3D 22 4D
DOO1FASO 73 6F 66 74 2E 56 43 39 30 2E 43 52
0ODO1FASD 65 72 73 49 &F SE 3D 22 39 2F 10 2E
0DO1FATO 232 2E 38 22 20 70 T2 6F 63 65 T3 73

denticy cype="ui
niz" nome="Hicro
20fc . VCI0.CRT"™ ¥
ersion="9.0.2102
2.8" processorkr

DDO1FABOD &3 58 69 74 65 63 74 75 72 &5 3D 22 chitecture="x85"
ODOLFASO 20 70 75 62 &C 69 63 4B &5 79 54 €F publicKeyToken=
OOOL1FARD 22 31 66 63 38 62 33 62 39 61 31 &5 "licEbJibFalelbe]
DDO1FABD &2 22 3E 3C IF 61 73 73 &5 6D 62 &C b"></assenblylde
ODOLFACO &E 74 62 74 792 3E OD OA 20 2D 20 20 OLiTy>.. </de
DDD1FADD 70 65 6E 64 65 6E 74 41 73 7) 65 6D pendent Assemb 1>

ODO1FAED OD OA 20 20 3C 2F &4 65 M0 65 6E 64 65 6E 63 79 .. </dependency
QOOD1FAFO 2JE OD OA 3C 2F 61 73 73 65 6D 62 &C 79 3E 50 91 >..<fassembly>Pi
OOO1FEOO 50 41 44 49 42 4E 47 58 58 50 41 4% 44 42 4E 47 PADDINGAIPADDING
ODO1FB10 50 491 44 49 49 49E 47 58 58 50 41 44 44 49 49E 47 FADDINGEXPADDING
OOOLFBI0 50 41 44 49 49 4E 47 58 58 50 41 494 44 49 4E 47 PADDINGEXPADDING
ODDD1FB3I0 50 491 449 49 49 4E 47 58 58 50 41 449 49 49 4E 47 PADDINGEXPADDING
ODO1FB40 50 41 44 49 49 4E 47 58 50 41 44 49 49 4E 47 FPADDINGXXPADDING
D0O01FBSO SO 41 44 44 49 4E 47 58 ED 41 44 44 49 4F 47 PADDINGXXPADDING
0001FBE0 SO 41 44 44 49 4E 47 50 41 44 91 49 4E 47 FPADDINGEIPADDING
ODD1FB70 S0 491 44 49 49 4E 47 50 41 44 4% 49 4E 47 FADDINGEXIFADDING
ODD1FBE0 S0 491 44 44 49 4E 47 5D 41 44 4% 49 4E 47 FPAIDINGEIPADDING
DDO1FB80 50 41 44 44 49 4E 47 5D 41 44 44 49 4E 47 PADDINGEEZPADDING
OOCLFBAD 50 41 44 449 49 4E 47 58 50 41 449 44 49 4E 47 FADDINGEIFADDING
QDO1FBEED S0 41 44 44 42 4E 47 58 E0 41 44 44 42 4E 47 PFPADDINGEZPADDING
ODOLFBCO 50 41 44 44 49 4E 47 58 50 41 44 44 49 4E 47 PFPADDINGXIPADDING
DDDLFBDO S0 41 44 44 49 4E 47 58 50 41 44 44 49 4E 47 PADDINGEXPADDING
DODD1FBED 5D 41 44 44 49 4E 47 58 50 41 44 44 49 4E 47 PADDINGXEPADDING
OODDLFBFD 50 41 44 44 49 4E 47 58 50 41 44 44 49 4E 47 PADDINGEIFPADD ING
ODOD1rCOo0 43 493 43 43 43 %3 35 66 T2 2F 51 50 TT 38 2F CCCCCCSTey/QPwe/
DODD1FC10 7TA 39 41 72 ZF 6C 38 66 43 2F 51 50 37 35 72 =9Ax/I1BLYC/QPTSC
ODOLFCZD 2ZF 6B 39 36 2ZF 77 38 35 b ¢ 32 76 TA 39 39 [5G /wB5B=|2veSs
OOD1FCI0 76 50 38 38 66 43 2F 34 2F TA 38 75 75 50 2B 41 wPEAIC/S/rBuuP+l
00D0O1FC40 37 2F 51 41 76 468 31 39 67 41 43 76 2B 44 38 2B 7/QhkvHI9gLCv+DE+
ODO1FCSO 75 2F 38 2F 51 4C 39 38 2F 43 66 00 41 41 41 41 uw/6/QLSS/CE.AARL
0DO1FCE0 41 41 72 71 61 78 76 61 36 31 70 37 32 75 76 62 Alrgaxvasipi2uvb
ODDIFCT0 47 7A 7D 71 6D BE 72 35 38 3D DO GEpoEnESS=.

£8488

GEFEE8888800888

Figure 13. Encrypted Server Key in SERVER.EXE.

| describe the encryption algorithm and SERVER.EXE in greater detail later in this report.

Know Your Digital Enemy

11

12

GhOst RAT Components
In this section we dive deeper into the structure of the GhOst RAT components. Figure 14 below shows
how all of the components fit together.

Figure 14. GhOst RAT components.

Know Your Digital Enemy

The binaries that make up the GhOst toolset are described below in Table 2.

Table 2: GhOst RAT Components

GhO0st RAT Components

RESSDT.SYS Device driver that clears the SSDT of all existing hooks.

SVCHOST.DLL Windows service DLL that runs on a compromised host (server).
INSTALL.EXE Dropper application used to install SVCHOST.DLL.

SERVER.EXE INSTALL.EXE binary with encrypted configuration info appended to end.
GHOST.EXE C2 server management tool and custom INSTALL.EXE creator (client).

The GhOst architecture takes advantage of the ability to create custom Windows resources in a Windows
binary. This mechanism is used quite often by malware authors. The process involves the creation of a
custom resource and then hiding another binary executable in this custom resource section of the executable.
In other words, you can hide an executable within an executable.

If you refer back to Figure 14, you can see that GhOst makes extensive use of this capability. Notice the binary
RESSDT.SYS is placed in the resource section of SVCHOST.DLL. This means SVCHOST.DLL is carrying a device
driver payload in its resource section that can reset the SSDT of a Windows host.

Likewise, you can see that INSTALL.EXE contains SVCHOST.DLL in its resource section. This means that
INSTALL.EXE has a payload in its resource section that contains two binaries: RESSDT.SYS and SVCHOST.DLL.

Finally, you can see the GHOST.EXE binary contains INSTALL.EXE within its resource section. This means
that the GHOST.EXE binary contains all of the components of the GhOst RAT infrastructure.

The GhOst RAT source code base contains Microsoft Visual Studio (MSVS) project files that create
the four binaries. When the projects are compiled, the required binaries are placed with the resource
sections. Below is a list that describes how all these pieces work together.

1. The Windows Driver Kit (WDK) is used to compile the RESSDT.C code and create RESSDT.SYS binary.

2. The MSVS project SVCHOST compiles/creates the SVCHOST.DLL binary. The RESSDT.SYS binary is
placed in its resource section.

3. The MSVS project INSTALL compiles/creates the INSTALL.EXE binary. The SVCHOST.DLL binary is
placed in its resource section.

4. The MSVS project GHOST compiles/creates the GHOST.EXE binary. The INSTALL.EXE binary is placed in
its resource section.

5. The GHOST.EXE application is used to configure a custom GhOst server binary (See GhOst RAT
Operation section). When the Generate button on the Build tab is clicked, the INSTALL.EXE binary is
extracted from its own resource section and saved to disk (default name is SERVER.EXE).

6. The encrypted configuration information from the Build tab is appended to the SERVER.EXE binary.
You can see this in Figure 13.

7. The SERVER.EXE binary is placed on a host that is about to be compromised and executed.

8. SERVER.EXE extracts the SVCHOST.DLL binary from its resource section and places it in the %Temp%
folder with a random file name. Next, the RESSDT.SYS binary is extracted from the SVCHOST.DLL and
also placed in the % TEMP% folder.

9. SERVER.EXE resets the SSDT using the RESSDT.SYS device driver. It then does all its magic
compromising the host by changing security settings, creating the GhOst server service, making
registry changes, and more. It then completes its work by starting the GhOst server service.

10. When the compromised host starts up and the GhOst server service starts, the RESSDT.SYS binary
is extracted from the SVCHOST.DLL and placed in the %TEMP% folder with a random file name.
The device driver is loaded and used to reset the SSDT. The device driver is then unloaded and the
temporary file is deleted.

11. The GhOst server service seeks out its C2 controller, checks in, and awaits further instructions.

Know Your Digital Enemy

14

RESSDT.SYS

The first GhOst RAT component we will examine is a device driver named RESDST.SYS. As the name
suggests, this small driver performs only one function: it resets the SSDT in the Windows kernel. This
device driver gets loaded during the GhOst server install on a compromised host and every time the
GhOst server service starts at Windows boot time.

Why would the GhOst authors go to the trouble to write a device driver that removes all hooks in the
SSDT? | suggest that there are two reasons for this. First, resetting the SSDT to boot-time condition
disables any other rootkits or other malware that may already have hooks in place. Second, this act will
also remove any SSDT hooks put there by security tools such as host intrusion prevention systems (HIPS)
or antivirus engines. | know, for example, the Cisco Security Agent (CSA) hooks every entry in the SSDT
so it can keep a close eye on kernel activity. These hooks will get removed by this device driver.

The device driver code is very compact and quite elegant. It uses the DevicelOControl infrastructure of
a Windows device driver to receive 10 Request Packets (IRP) from a user-land application. There are four
functions defined in the driver shown below in Table 3.

Table 3: RESSDT.SYS Function Declarations

RESSDT.SYS Function Declarations

NTSTATUS DriverEntry(IN PDRIVER_OBJECT theDriverObject, IN PUNICODE_STRING theRegistryPath)

NTSTATUS DisPatchCreateClose(PDEVICE_OBJECT pDriverObj,PIRP plrp);

NTSTATUS DispatchDeviceControl(IN PDEVICE_OBJECT DeviceObiject,IN PIRP plrp);

void DriverUnload(PDRIVER_OBJECT pDriverObj);

The DriverEntry() function has a predefined argument list and is required by Windows. This function is
where a driver places all its setup code. Our driver performs the following tasks within this function.

Sets all IRP_MJ_MAXIMUM_FUNCTION table entries to point to function DisPatchCreateClose().
Sets the IRP_MJ_DEVICE_CONTROL table entry to point to function DispatchDeviceControl().
Sets theDriverObject->DriverUnload pointer to point to function DriverUnload().

Creates an I0Device object with the name \\Device\RESSDT.

Creates a symbolic link to the I0Device object with the name \?2\RESSDTDOS.

[NV SR

The driver sets up its function call table by pointing all table entries to function DisPatchCreateClose()
except for the I0Control function which points to DispatchDeviceControl(). In short, the only operation
this driver is interested in is I0OControlRequests. This is pretty standard stuff. Forensic investigators should
take note of the device driver names. These names should always raise suspicion because it is pretty rare
to have a device driver that resets the SSDT.

« The DisPatchCreateClose() function does nothing but return STATUS_SUCCESS. It is an empty function.
* The DriverUnload() function deletes the IODevice symbolic link and then deletes the I0Device object.
This leaves only the function DispatchDeviceControl() for us to examine. In short, this function is
designed to receive an IRP from Windows whenever a user-land application makes a DevicelOControl
call to this driver. As | will show later on, the user-land application calls the DevicelOControl function and

passes it two pieces of information: a SSDT table index number and a pointer to a function. The device
driver simply places the passed-in function pointer in the SSDT table at the passed in index.

Know Your Digital Enemy

Below is a list of actions the DispatchDeviceControl() function performs for those of you interested in
the details:

1. Calls loGetCurrentlrpStackLocation(plrp) to obtain a pointer to the user-land stack.
2. Sets up variables to hold the I0ControlCode, pointers to the user-land input and output buffers
passed via the stack pointer location, and the sizes of these buffers.
3. Enters a switch() statement that only triggers on the value IOCTL_SETPROC.
a. Verifies that the pointers to the input and output buffers are valid.
b. Reads the SSDT index variable from the user-land input buffer.
c. Verifies that the index variable value is <= the maximum number of SSDT entries.
d. Sets up a pointer to the base of the kernel SSDT.
e. Uses the register CRO trick to gain write access to the SSDT.
f. Sets the requested SSDT entry to the requested SSDT function pointer.
g. Uses the register CRO trick to reset read-only access to the SSDT.
4. Returns STATUS_SUCCESS.

In short, a user-land application makes a DevicelOControl() function call to the device driver, passing it
an index into the SSDT and a function pointer that the driver is to place in that index. The driver obtains
a pointer to the base of the SSDT from the kernel, abuses register CRO by changing the SSDT memory
pages to write mode, and then makes the required change to the SSDT. The driver then switches the
SSDT memory pages back to read-mode and returns a success code to the user-land application.

The register CRO hack was first widely published by Greg Hoglund and James Butler in their book
Rootkits—Subverting the Windows Kernel.? You can see in the code snippet in Figure 15 how this works.

114 pBase = FaServiceDescriprorTable->puSSDTERase:

21 __axm
= {
118 eli
118 mov eax, crl
120 and eax,.~

121 mov ord, eax

1da }

123 *| pBase + ulndex)="((PULONG)pOucputBuffer) ;
AEm

mov eax,crl

125 - {

13 or sax,
128 mov erd,eax

Fi- 5Tl

3 1

132 status=STATUS SUCCESS;

Figure 15. CRO hack code snippet.

On line 114, a pointer is set to point to the base of the SSDT. Then, in-line assembly code changes CRO
to allow writes to protected kernel memory. On line 123, the SSDT pointer is incremented to point to
the correct table entry requested by the caller and a function pointer is placed in that table entry. Finally,
the CRO register is set back to read-only.

If it is not clear to you how all this works, the important thing to remember is that RESDDT.SYS is a small
device driver whose only purpose in life it to reset the Windows kernel SSDT to the state it was in when
the system booted. The bottom line is all existing hooks/hacks to the SSDT are removed.

Know Your Digital Enemy

15

16

SVCHOST.DLL

The second GhOst RAT component we will examine is the DLL that gets installed as a service on a
compromised host and provides the GhOst RAT server functions. The setup and installation of this DLL as
a service is done by the install program (Dropper) SERVER.EXE. | will cover the details of the installation
and configuration of the RAT service in the INSTALL.EXE section of this document.

Below is the list of tasks the service DLL performs from startup until it checks in with its C2 controller.

1.

9.

Calls function FindConfigString(). This function searches the DLL's own binary image for the
configuration string delimiter AAAAAA, starting from the end. If this string is not found, the DLL will
exit and the service fails to start. If the string is found, the configuration string is loaded into memory.
This configuration string will have either an IP address and a port, or a URL with a file name.

. Sets a Windows station, first by saving the current station by calling GetProcessWindowStation).

Then it creates a new Windows station named winsta0 by calling OpenWindowStation(). Since | was
not familiar with these calls, | queried MSDN. Here is what | discovered:

“Windows provides three main categories of objects: user interface, graphics device interface
(GDI), and kernel. Kernel objects are securable, while user objects and GDI objects are not.
Therefore, to provide additional security, user interface objects are managed using window
stations and desktops, which themselves are securable objects.”?

Checks to see if a global instance variable is not NULL. If it has a value other than NULL, it means an
instance of the service is already running. If this is the case, a series of function calls occur that resets
the SSDT and restarts the service.

Calls getLoginInfo(). This function decrypts the configuration string found in Step 1. If the
configuration string contains a URL, this function will open an Internet connection to the URL and
download the configuration string and decrypt it. If it does not contain a URL, the string is simply
decrypted and parsed. This function populates the following variables with the relative data:

a. lpszHost
b. dwPort
C. lpszProxyHost
d. dwProxyPort
e. IpszProxyUser
f. lpszProxyPass
(Note: These variable values will be seen in a memory dump so be prepared to look for them.)
If the above proxy-related variables are populated, the connection socket used to connect to the C2
client is configured to use the PROXY_SOCKS_VER5 configuration.
Calls and saves the return value of GetTickCount(). This is used to determine how long the server is
connected to the client.
Calls sendLoginInfo(). This function collects the column values shown by the client C2 grid columns
and then attempts to report in to the C2 client.

. Creates an instance of the class CKernelManager setting the socket, service name, event, hostname,

and port variables. It then sets the socketClient object callback function to the new CKernelManager
instance. In short, this means any socket communication received from the C2 client is processed by
the CKernelManager.

Enters a do/while loop waiting for an instruction from the C2 client.

(Note: if the server cannot connect to the C2 client, it will sit in a loop and attempt to reconnect every
1 minute.)

Know Your Digital Enemy

http://msdn.microsoft.com/en-us/library/ms724485%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms725486%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms724291%28v=VS.85%29.aspx

INSTALL.EXE

The third GhOst RAT component we will examine is the Dropper INSTALL.EXE. This is a stand-alone
Windows application that contains all required code to prepare a compromised host for the installation
of the GhOst RAT server service and the launching of that service.

Below is the list of tasks the INSTALL.EXE application performs from startup until it starts the
server service.

1.

7.

8.

The first action is a series of interesting function calls. First, the Win32 API GetlnputState() function
is called. This function returns TRUE if there are mouse button or keyboard messages in the calling
thread’s message queue. Next is a call to PostThreadMessage() with a NULL message type. Finally,
GetMessage() is called. It is very interesting that none of the return values of these functions are
examined. It appears the application just wants to prime its Windows message pump.

. Next is a call to FindConfigString(hlnstance, “AAAAAA"). This function calls the Win32 API

GetmoduleFilename() to determine its own filename. It then calls CreateFile() to open its own binary
in read mode. It then seeks (to the byte) 1024 bytes from the end of its own binary and searches
for the string AAAAAA. You may recall this is a delimiter used to encode the server KeyString. If

it finds the delimiter string, it returns a string pointer to the beginning of the configuration string.
The AAAAAA delimiter points to the beginning of the C2 hostname:port or the URL containing the
ServerKey string.

. The application makes a second call to FindConfigString(hlnstance, CCCCCC). This time the function

is asked to return a string pointer to the CCCCCC delimiter of the encrypted configuration string
in its own binary. The CCCCCC delimiter points to the beginning of the server service name and
description strings. If the configuration string is not found, the program exits.

. The two previously located encrypted configuration strings are decrypted with two calls to the

MyDecode() function. The encryption details of the GhOst RAT are discussed in the “Encryption”
section of this report.

. Calls GetCommandLine() and searches for a command line string GhOst Update. If it does not find

this command line argument, it creates a Mutex using the encrypted configuration string as its name.
If this Mutex name already exists, the program exits. Otherwise it releases and closes the Mutex. This
action ensures that two instances of the install program will not run at the same time.

. Calls SetAccessRights(). This function performs the following actions:

a. Calls Win32 API GetSystemDirectory() to determine where the \Windows\System32 folder is.
b. Calls Win32 API GetUserName() to determine what user account it is running under.

c. Calls the Win32 API AddAccessRights() function passing in the current user name and
requesting GENERIC_ALL access rights to the Windows\System32 and \Windows\System32\
Drivers folder.

d. Calls the Win32 API NetGetLocalGroups() to obtain a list of groups the current user belongs to.
e. Calls the Win32 API AddAccessRights() function passing in the current user name and
requesting GENERIC_ALL access rights to all of the groups the current user belongs to
(identified in step d).
Calls local function ResetSSDT(). A description of this function can be found in the “ResetSSDT
Function” section of this document.
Calls local function InstallService(). This function performs the following steps:
a. The prototype for this function is:
char* InstallService(LPCSTR IpServiceDisplayName,
LPCST IpServiceDescription,
LPCSTR IpConfigureString);

As you can see, the unencrypted service display name string, service description string, and the
encrypted ServerKey string are passed into this function.

b. All of the following actions are taken within one huge Try{ and }Catch block. So, the installation
of the server is an all or nothing proposition.

Know Your Digital Enemy

17

c. Calls Win32 API RegOpenKeyEx() function to open the registry key SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Svchost.

d. Queries the above key for the value “netsvcs.” This value is of type REG_MULTI_SZ. On my
Windows XP test system, this registry value contains 46 strings. The first 26 of these values are
shown in Figure 6. These strings are the names of Windows services that may be running on
your system. Just because a service is listed under this key does not mean that service is installed
and running on your system.

AppMgmt
AudiaScv
Ercwaer
CryptSvc
MServer

DHCP

ERSvc
EventSysten
FastUserSwitchingCompatibility
HidServ

Ias

Iprip

Irmon
LanmanServer
LammanWorkstation
Mamsanger
Hatman

Hla

Hrmsave
HWCHerkstation
HNusapagent
Famauto

Famsman
Remoteaccess
Schedule
Seclogon

o o U b G RE |

B e ped

R I TR - T

ST

pi e e b
1

bi i C3 MDD

B B3 B RS R R B s

M oA s A

Figure 16. “netsvcs” Registry value (partial).

e. Obtains a HANDLE to the Service Control Manager by calling the Win32 API call
OpenSCManager().

f. Calls Win32 API call GetSystemDirectory() to determine where the \Windows\System32 is.

g. Loops through each string in the netsvcs Registry value and queries the Registry key MACHINE\W
SYSTEM\CurrentControlSet\Services to determine if the service is installed on the system. For
example, the first query from my list in Figure 16 would look for the value MACHINEWSYSTEM\\
CurrentControlSet\Services\AppMgmt.

h. When a netsvcs value is found that is not installed (that is, not used) as a service on the host,
this netsvcs value will be used as the GhOst RAT service.

i. Calls local function AddsvchostService(). This function appends a string to the Registry value
SOFTWAREWMIicrosoft\Windows NT\CurrentVersion\Svchost\netsvcs queried in step d above.
The appended string will be in the form netsvs_0xN, where N is a number starting with 0 (that
is, netscvs_0x0). If the string netsvs_0x0 already exists in the key value, it will add the string
netsvs_Ox1 and so on. Once a value has been added, the function returns a string with the
service name it added to this Registry key value. This entry is used to keep track of the location
of the INSTALL.EXE program location.

Know Your Digital Enemy

j. Calls Win32 API call CreateService(). The details of this function call parameters are shown in

Figure 17.
I /¢ Create the service
Ti | srhflarvice = Creatslervice | hocm, ff BECHEasager OdaTabasE
2t | pEE, { name 0f SEtViCe
s M| lpServicelioplayiames, i service pame to display
L] l FERVICE_ALL ACTEEE, ff dnmiced acoass
¥ | SERVICE_VINII_SHARE FROCESS,
| FERVICE _AUTO START, i/ stect Typs
| SEFVICE_ERRCE_HORRAL, {f #ttas comtial Lype
: i, ff secwice's binmcy
TR | ML, f! ma load erder ing group
| HULL, i mn teg (dentif iEr
vl | MULL, ff BE HEpERiahsied
- | BMLL, #f LooelSyetes account
| MULL) & I zis passened
54 |
ff If it worked - we ars dons
LT 1f [schSsrvics 1= NULL)
7 ! Braaki

Figure 17. CreateService() API call.

This function creates an entry in the SCM database for the new service. The ptr parameter
contains the name of the unused service string identified in step g above. More information
about this function call can be located here on MSDN.

k. If the CreateService() function call fails, it gets called again. This second call changes the
SERVICE_WIN32_SHARE_PROCESS parameter to SERVICE_WIN32_OWN_PROCESS. The bet is
that one of these two functions calls will succeed.

|. Now that the new service has been added to the SCM database, service details are written to
the SYSTEM\CurrentControlSet\Services key. You can see these values in Figures 18 through 20.

& 0 e e T bats
L meam SShrefsd) REG_ST {vsham ot oot
= 2 lman Weurption BEG S Futng rberemt s
H F"F."""“ _ﬂﬂ— BT Feardistors Tast Bt
@ Secsty e 00000t {1}
& B 15kiSaurch Wiuoniath REG_DFAD ST yibee oot | Sriten Kl echodd aue -b netives
2 maone e BE5_5 Laatrtem
T e BEG_[AWORT: EhSODO00CT (2)
& [b v BEG_DWORD OUO0000Y 20 (268)
O et
F Il g -
‘ ¥ & *
[y Computn {NEY_LOCA_MACHINE|SYSTEM CartrolS et {Serveesilon

Figure 18. GhOst RAT Service Registry Key.

Regiwiry [diler

-
i » £

REG ST
BEG_EPAND ST

[vahos mo sed}
TR Tt 12 restnes

Hm;mmmwm-m

Figure 19. GhOst RAT Service Registry Parameters Key.

Know Your Digital Enemy

http://msdn.microsoft.com/en-us/library/ms682450%28v=VS.85%29.aspx

. Regluiry Dditer
Fie Cdt ew Feeories el

[R R Teim ke
= e [Cefmilt) REG X! [ot ek)

j:m" Uty RIS NN 07 00 14 50 90 00 00 00 R 00 00 00 14 0000 00 37 0y
W ATEES

|

&) APISemn

&] sapng

g

b] bacer

e o el -
(] » € »
My Compalar WEY LOCAL MACHINEYSYSTEMyCanbrelbatD0 || Sarvices| rmoni Securly

Figure 20. GhOst RAT Service Registry Security Key.

Notice in Figure 20 the REG_BINARY Security value under the security key. This data value
contains the encrypted Server Key value.

m. Calls local function ReleaseResource(). The GhOst RAT server binary is now extracted from the
INSTALL.EXE's own resource section. (The name of this resource is “BIN"). Once the binary is
extracted, it is writtent to the \Windows\System32 folder with the name of the installed service
appended with ex.dll. For example, on my test system the name of the hijacked (unused) service
used by INSTALL.EXE is Irmon. The name of the RAT binary is Irmonex.dll. This binary also has
the Hidden attribute set.

9. Creates a Registry key “SYSTEM\CurrentControlSet\Services\netsvc_OxN. This key name will be
the same name created back in step i. A subkey is created named InstallModule with a sting value
containing the full path of the INSTALL.EXE application (Figure 21). This registry key is used by the
GhOst server service to find and delete the program that installed it.

Fis EX Vs Fasortsl Felp

0 MDPvoy A e Trpa bl

i MRS EIEH‘-JI BEG ST | i T,)

: :: m{] Lt Ml REG_ S @\ Ferglaerver mae

& Ll Nt thain

() Mstieeer

m o] Petean

s =

€ . = ¥ & ¥
My Compear \PUEV LOCAL 'wmmmmu_ﬂ-ﬂ

Figure 21. netsvcs_Oxn Registry Key.

10. Calls local function StartService(). This function calls the Win32 API function OpenSCManager().
It next calls the Win32 API OpenService() passing it the name of the newly created GhOst service.
Finally, it calls StartService() to begin the fun. It closes all open SCM handles and returns. The GhOst
service starts and looks for its C2 client.

11. At this point everything is in place, so the INSTALL.EXE kills itself by calling the Win32 API call
ExitProcess().

So there you have it. The complete picture of what the INSTALL.EXE application does to compromise a
host and install the GhOst service. | am sure you will agree that somebody went to a lot of trouble to
implement this very innovative process. Obviously, the authors of this tool have a deep understanding of
the Windows operating system.

Know Your Digital Enemy

GHOST.EXE

The final GhOst RAT component we will examine is the C2 client GHOST.EXE. From a code perspective,
this is the largest component in the toolset. It contains all of the C&C capabilities of the RAT system. The
two main functions this module serves is the management and control of GhOst servers and the ability
to create customized server install programs.

Most of the capabilities of the GHOST.EXE binary were covered in the “GhOst Rat Overview” and “GhOst
Rat Operations” sections of this report, so | won't repeat them here. The process of building a custom
GhOst server application is very simple. The INSTALL.EXE binary containing both the SYCHOST.DLL and
RESSDT.SYS binaries are hidden in the GHOST.EXE binary Resource section. When the Build command

is used, GHOST.EXE simply extracts the INSTALL.EXE from its resource section and saves it to disk. It

then appends the encrypted ServerKey, Service Name, and Service Description strings to the end of the
extracted file.

Function ResetSSDT()

I think it is important to explore a very interesting function that resets the SSDT of the compromised
host. As you recall from the “GhOst Rat Components” section, there is a device driver named RESSDT.
SYS that implements the device driver IOControl capabilities to receive requests from a user-land
application. This driver accepts an SSDT index number and a function pointer from the user-land
application. It places the function pointer in the requested SSDT table index. Let's take a look at how the
user-land application uses this device driver.

In this case, the two user-land applications that call this function are INSTALL.EXE and SVCHOST.DLL.
INSTALL.EXE (SERVER.EXE) calls this function during the compromise/install process of the GhOst server

Below is a list detailing what the ResetSSDT() function does.

1. Calls the local function RestoreSSDT(), which performs the following actions:

a. Calls local function LoadDriver(). This function essentially completely hijacks the Windows beep.sys
device driver. It does this by opening the SCM and stopping the Beep service if it is running and
does the following:

i. Calls the Win32 API function SetFileAttributes() to change the beep.sys device driver file
to FILE_ATTRIBUTE_NORMAL.

ii. Loads the beep.sys into a memory-mapped file.

iii. Extracts the RESSDT.SYS binary from the resource section of the SVCHOST.DLL binary.
iv. Replaces the beep.sys code in the memory-mapped file with the RESSDT.SYS binary.
v. Saves the new beep.sys code back to \Windows\System32\Drivers folder.

vi. Starts the Beep service using the SCM API.

vii. Calls the Win32 API function CreateFileA() and opens a file named \W\RRESSDTDOS,
which you may recall is the symbolic link name of the RESSDT.SYS device driver.
viii. Returns a HANDLE to the RESSDT.SYS device driver.
b. Calls local function ReSSDT(). This function accepts the above handle to the RESSDT.SYS device
driver and performs the following actions.
i. Calls Win32 API function GetProcAddress(GetModuleHandle(” ntdll.dll”),
“NtQuerySystemInformation”) to obtain a function pointer.

ii. Calls Win32 API function NtQuerySystemInformation() using the undocumented SYSTEM_
MODULE_INFORMATION parameter to obtain a pointer to a MODULES structure. This
structure is used to identify the image name of the windows kernel.

iii. Calls Win32 API function LoadLibraryEx() to obtain a handle to the Windows kernel.

iv. Calls Win32 API function GetProcAddress(”KeServiceDescriptorTable”) to obtain a pointer
to the SSDT.

v. Walks the Windows kernel image to obtain pointers to each service loaded into the SSDT.

Know Your Digital Enemy

21

22

vi. For each service found in the kernel, the SSDT index and function pointer is passed to the
RESSDT.SYS device driver using an IOControl call.
¢. Calls local function UnloadDriver() to stop the RESSDT.SYS device driver running under the
Beep service.

This is pretty impressive code. The GhOst authors went to a lot of trouble to include this capability of
resetting the SSDT to remove existing rootkits and security software hooks.

GhOst RAT Encryption

In this section we take a look at the method the GhOst tools use for encryption. There are three levels
of encryption/obfuscation used in the system: Base64 encoding, a custom encoding scheme, and
compression of network traffic streams using the standard zip compression algorithm.

The Base64 encoding is done by the function base64_encode(). Comparing the code in this function
with published public domain Base64 algorithms confirms this is legitimate Base64 encoding scheme.

The custom encoding scheme is provided by the function MyEncode(). The contents of this simple
function is shown in Figure 22.

I char* ByEncode (char ¥scr)
i

q 1Lt i, len:
char *s, Ydata:
lap = mstrlen(stc) + 1:
1 2 = [char ")malloc(len):
mPERCpY (3, sctr, len)?
for (1 = 0; 1 < len} 1i++)

b {
=[1] = Ox18:
s[1i] += OxB6é:

hﬂ!tﬁﬂ_tnﬂﬂﬁtlﬂf len, cdara);
frae (=)
recurn daca;

Figure 22. GhOst RAT MyEncode() function.

This function accepts a char pointer as the lone parameter and returns a char pointer containing the
encoded string passed in. The function determines the length of the input string and allocates a memory
buffer of that size plus one byte. The imput string is copied into this memory buffer and each character
in the buffer is modified by two operations. First, the char is exclusive ORed with 0x19 (25). Then the
char value is incremented by 0x86 (134). Once this is done, the encoded string is passed to the base64_
encode() function.

The ultimate outcome of this function is an encryted string that would be nearly impossible to decode
without knowing the algorithms used. As shown in Figure 23 the MyDecode() function simply reverses
the encoding.

Know Your Digital Enemy

char*® HyDecode (char *atc)
i
int i, lem:
chat *data = NULL:
len = bass€q_decode (atc, (data);

for (i = 0: 1 < len: 144}
i
data[i] -= OxB8&;
data[i] "= Ox19:
i

ceturn datar

Figure 23. GhOst RAT MyDecode() function.

GhOst RAT Network Communication
The network communication between the GhOst RAT C2 client and a compromised host (server) is very
simple. A data packet consists of four fields:

1. A five-byte packet header. This header contains the characters GhOst.

2. A four-byte integer that contains the size in bytes of the entire packet.

3. A four-byte integer that containes the size in bytes of the entire packet when uncompressed.
4

. A variable-sized packet that contains the packet payload. The client sends small requests that contain
commands, and the server responds to those commands with the requested data.

The header, 13 bytes in length, is sent in the clear. This means you can clearly see the the GhOstheader
text on the wire. | was surprised by this discovery and doubt newer versions of Gh0Ost RATs do this. It is
too easy to detect.

The packet payload is compressed using the open source zlib compression library. There is no obfuscation
or other encyption used. | confirmed this in my research by capturing network data using WireShark and
unencrypting the packet payloads with a Python script using the zlib module unencrypt() function.

After the header, the first byte of the packet payload contains an operation code. There are three types
of codes: Commands, Tokens, and Modes. In the source code, these codes are contained in a large
enum in a header file.

Command codes are sent by the client (C2) instructing the server what to do. If you study the list of
commands in Table 4, you can see the command codes correspond very closely to the menu items that
appear when you right-click a server in the client connections grid.

Table 4. GhOst RAT Command Codes

Command Code Value
COMMAND_ACTIVED 0x00
COMMAND_LIST_DRIVE 0x01
COMMAND_LIST_FILES 0x02
COMMAND_DOWN_FILES 0x03
COMMAND_FILE_SIZE 0x04
COMMAND_FILE_DATA 0x05
COMMAND_EXCEPTION 0x06
COMMAND_CONTINUE 0x07

Know Your Digital Enemy

23

24

Command Code Value
COMMAND_STOP 0x08
COMMAND_DELETE_FILE 0x09
COMMAND_DELETE_DIRECTORY 0x10
COMMAND_SET_TRANSFER_MODE 0x11
COMMAND_CREATE_FOLDER 0x12
COMMAND_RENAME_FILE 0x13
COMMAND_OPEN_FILE_SHOW 0x14
COMMAND_OPEN_FILE_HIDE 0x15
COMMAND_SCREEN_SPY 0x16
COMMAND_SCREEN_RESET 0x17
COMMAND_ALGORITHM_RESET 0x18
COMMAND_SCREEN_CTRL_ALT_DEL 0x19
COMMAND_SCREEN_CONTROL 0x20
COMMAND_SCREEN_BLOCK_INPUT 0x21
COMMAND_SCREEN_BLANK 0x22
COMMAND_SCREEN_CAPTURE_LAYER 0x23
COMMAND_SCREEN_GET_CLIPBOARD 0x24
COMMAND_SCREEN_SET_CLIPBOARD 0x25
COMMAND_WEBCAM 0x26
COMMAND_WEBCAM_ENABLECOMPRESS 0x27
COMMAND_WEBCAM_DISABLECOMPRESS 0x28
COMMAND_WEBCAM_RESIZE 0x29
COMMAND_NEXT 0x30
COMMAND_KEYBOARD 0x31
COMMAND_KEYBOARD_OFFLINE 0x32
COMMAND_KEYBOARD_CLEAR 0x33
COMMAND_AUDIO 0x34
COMMAND_SYSTEM 0x35
COMMAND_PSLIST 0x36
COMMAND_WSLIST 0x37
COMMAND_DIALUPASS 0x38
COMMAND_KILLPROCESS 0x39
COMMAND_SHELL 0x40
COMMAND_SESSION 0x41
COMMAND_REMOVE 0x42
COMMAND_DOWN_EXEC 0x43

Know Your Digital Enemy

Command Code Value
COMMAND_UPDATE_SERVER 0x44
COMMAND_CLEAN_EVENT 0x45
COMMAND_OPEN_URL_HIDE 0x46
COMMAND_OPEN_URL_SHOW 0x47
COMMAND_RENAME_REMARK 0x48
COMMAND_REPLAY_HEARTBEAT 0x49

The Token codes are used by the server to identify the payload types is returns to the client. You can see

these codes in Table 5.

Table 5: GhOst RAT Token Codes

Token Code Value
TOKEN_AUTH 100
TOKEN_HEARTBEAT 101
TOKEN_LOGIN 102
TOKEN_DRIVE_LIST 103
TOKEN_FILE_LIST 104
TOKEN_FILE_SIZE 105
TOKEN_FILE_DATA 106
TOKEN_TRANSFER_FINISH 107
TOKEN_DELETE_FINISH 108
TOKEN_GET_TRANSFER_MODE 109
TOKEN_GET_FILEDATA 110
TOKEN_CREATEFOLDER_FINISH 1M1
TOKEN_DATA_CONTINUE 112
TOKEN_RENAME_FINISH 113
TOKEN_EXCEPTION 114
TOKEN_BITMAPINFO 115
TOKEN_FIRSTSCREEN 116
TOKEN_NEXTSCREEN 17
TOKEN_CLIPBOARD_TEXT 118
TOKEN_WEBCAM_BITMAPINFO 119
TOKEN_WEBCAM_DIB 120
TOKEN_AUDIO_START 121
TOKEN_AUDIO_DATA 122
TOKEN_KEYBOARD_START 123
TOKEN_KEYBOARD_DATA 124

Know Your Digital Enemy

25

Token Code Value

TOKEN_PSLIST 125
TOKEN_WSLIST 126
TOKEN_DIALUPASS 127
TOKEN_SHELL_START 128

The Mode codes are used by both the client and the server to request/respond to specific action setting.
You can see these codes in Table 6.

Table 6. GhOst RAT Mode Codes

Mode Code Value
TRANSFER_MODE_NORMAL 0x00
TRANSFER_MODE_ADDITION 0x01
TRANSFER_MODE_ADDITION_ALL 0x02
TRANSFER_MODE_OVERWRITE 0x03
TRANSFER_MODE_OVERWRITE_ALL 0x04
TRANSFER_MODE_JUMP 0x05
TRANSFER_MODE_JUMP_ALL 0x06
TRANSFER_MODE_CANCEL 0x07

To illustrate a packet exchange, let’s first explore what a server Check-in packet looks like. This is the first
communication between the server and the client. The GhOst RAT network communications relies on
data structures to constuct payloads. The Check-in or Login packet data is encapsulated in a structure
named LOGININFO (Figure 24).

Lypedef sCouct

|
BYTE bToken;
OFVERSIOHINFOEX (oVerInfoEx:
Lmrt CPUClockMhz;
IN _ADDE IPAddress;
char HoatName[50] ;
baol bIsWebh am;
DUCRD duipsed;

= 1 LOGININFOg

Figure 24. GhOst RAT LOGININFO structure.

The LOGININFO field content is described below:

« bToken contains the TOKEN value TOKEN_LOGIN (102). See Figure 25.

» OsVerInfoEx is a Win32 API structure that contains much information about the host operating system.
You can learn more about this structure on MSDN. This structure is populated by the server with a call
to the Win32 API function GetVersionEx().

 The CPUClockMhz value is populated by querying the Registry key “HARDWARE\DESCRIPTION\System\
CentralProcesson\O\~Mhz" key value

* The IPAddress field is populated by querying an open socket structure

Know Your Digital Enemy

http://msdn.microsoft.com/en-us/library/ms724833%28v=vs.85%29.aspx

« The HostName string is populated by a call to the Win32 API function gethostname()

« The blsWebCam value is populated by a call to the Win32 API function capGetDriverDescription(). This
function returns TRUE is a capture driver is present or FALSE otherwise.

 The dwSpeed value always appears to be 0

Once the LOGININFO is populated, the structure is passed to the zlib compress() function. A packet
header is constructed with the GhOst signature, the compressed length of the entire packet, and the
uncompressed length of the entire packet. The header and payload are combined and sent down the
wire to the C2 client.

| captured a Login exchange between a server and client using Wireshark. The Login packet sent by the
server is shown in Figure 28.

Mo, Source Destanation Protocel Info
57 102.168.1.224 192.168,1. 249 we mxxrlogin > hrtp [S¥N] Seqe0 win=65535 L
58 192.168.1,249 192.168.1.224 TCP http > mxxrlogin [SYN, ACK] Seq=0 ack=1
59 192.168.1,224 192.168,1.24%9 TeP mxxrlogin = http [ACK] Seg=l Ack=1 Win=2
60 192.168.1.224 192.168.1. 249 HTTP cContinuation or non-HTTP traffic
i Frame 60: 224 bytes on wire (1792 birs), 224 bytres captured (1792 birs)
Ethernet II, Src: AsustekC_96:44:56 (00:24:8c:96:44:56), Dst: Dell_aB:11:30 (00:1c:23:a8:1]
i# Internet Protocol, Src: 192.168.1.224 (192.168.1.224), Dst: 192.168.1.249 (192.168.1.243)
 Transmission Control Protocol, Src Port: mixrlogin (1035), Dst Port: http (80), Seq: 1, Ach
t Hyperiext Transter Protocol

23 a8 11 30 00
ﬂlDiil-OQlDBﬂDﬁ
37

Figure 25. GhOst RAT Server Login packet.

In this packet capture, you can see the server (192.168.1.224) exchange the SYN, SYN-ACK, ACK
packets with the client (192.168.1.249) to establish a TCP session on Port 80. Once the TCP session is
established, the server sends the Login packet. The contents of the login packet are highlighted in blue
in Figure 25.

Notice you can clearly see the GhOst header signature highlighted in yellow in Figure 26. The four-
byte header value highlighted in green is the size of the entire packet compressed, which is 158 bytes
(Little-endian 0x9e). The magenta header value is the size of the entire packet uncompressed which is
224 bytes (Little-endian 0xe0).

0000 00 1c 23 a8 11 30 00 24 Bc 96 44 56 08 00 45 00 ..#..0.5 ..DV..E.

0010 00 d2 00 1a 40 00 B0 06 74 e2 cD a8 01 e0 cO a8 N T

0020 01 f9 04 Ob 00 50 37 60 7e d2 35 26 d0 8f B0 18P7 ~.5&....

0030 80 00 ad 5f 00 00 01 O1 08 0a 00 00 04 9¢ 00 00 ... _.... c.......
ge 00 00 00

0040 00 00 47 68 30 73 74 78 - GhOs TR x
0050 9c 4b 63 98 50 33 87 81 Bl Bl 15 B8 19 81 58 83 .KC.P3..X.
0060 8b B1 Bl 09 48 07 a7 16 95 &5 26 a7 2a 04 24 26 vesaHoo. B&.%, 54
0070 67 2b 18 03 05 1a 7e d6 3b 74 4b 32 cB 30 58 B0 g+....~. ;TK2.0X.

0080 e5 2b 58 18 18 76 00 71 5c 3c 03 1c 30 B2 4d 80 M. V. q <. 0,M,
0090 B0 3b e2 10 35 32 7c 20 9e 4b 6a 72 7e 4a 6a 40 «3ee32] JKir-2jR
00a0 7e 66 Se 49 6a 11 83 43 dc 35 46 a0 19 01 09 ba ~FAIj..C .5F.....
00b0 ad 2c 2e 40 d9 07 B5 62 10 07 00 41 33 50 Be 41 cee@®..b L. ATPA
00cQO 81 81 81 19 c4 61 66 64 aB 63 63 60 38 b0 B2 f1 eenwcafd o8B
00d0 81 6b 6a 6a B0 33 03 29 00 e2 16 00 93 7c 1d cf KIJ3e) cnnen l-.

Figure 26. GhOst RAT Login packet header.

Know Your Digital Enemy

27

28

I used a Python script to uncompress the data payload of the Login packet. A hex dump of the
unencrypted payload is shown in Figure 27.

Qffsex(d) 00 01 02 03 04 05 06 O7 OB 09 10 II 12 13 14 15
00000000 @& 00 50 7C 9C 00 00 00 05 00 0D 00 01 00 00 00 E..l®isssscassss

00000016 28 OD OAR 00 Q0 O2 OO0 OO OO0 53 65 72 76 69 63 65 (..usss..52rvice
Q0000032 20 50 61 €3 6B 20 33 00 00 OO0 B0 F2 7F 40 6B 19 Pack 3...€0.8¢,
D0DO0O048 OO0 1C 00 32 00D 02 00 00D OO 78 O4% OO 0D B8 D4 00 ...B.vess Xivw,on
00000064 OO0 SE SF 00 OO0 OO0 OO0 OO OO0 OO0 0D OO0 0D 01 00 01 .7 _sssssasssnass
O0000O0BD OO OD OO 0D OD OO0 OO OD OO DC 17 DD 0D 7B D9 00 .ccuscces 0...x..
00000096 OO0 1C OE 00 0D 00 00 49 65 63 6F 64 65 50 6F 69 DecodePol

00000112 6E 74 65 72 00 40 S5E D6 D1 D2 00 00 50 60 2D B5 nter.@8°0....P"-.
00000128 ©O% 44 00 00 OO0 EO 71 16 00 OO0 05 00 00 00 00 00 .D..oBQecsssssss
00000144 OO0 83 SE D6 01 00 20 00 0D Q3 00 00 00 00 03 01 .F"0.: sceevvivsas

00000160 00 TE 06 00 00 CO A2 01 Eo NSO .-...A .
55952176 00 00700 00700700 00700 0000 00 00°00 00 00 00 Ea

00000208 00 00 00 00 (IENEEERENEE. ...

00000224 OO al |

L

Figure 27. GhOst RAT uncompressed Login packet.

The first byte of the payload contains the Token code. You can see this value, highlighted in yellow, is
0x66 (102) which is the TOKEN_LOGIN value shown in Table 4. The data immediately following the
Token code is the binary OSVERSIONINFOEX structure followed by the CPUClockMhz value and the
binary IP address. Highlighted in green is the HostName field, which you can clearly see is EeePC. The
field highlighted in magenta is the Boolean bls\WWebCam value. In this case it is a 0x01, which means this
host has a webcam onboard.

Once the client receives the Login packet, it is uncompressed and parsed. A new row is added to the
Connections tab grid of the client and the details of the server host are populated in the appropriate
fields. The number of active connections displayed on the Connections tab grid status bar is incremented
by 1.

Once a server has logged it to the client (C2), it waits for commands. When a user of the C2 client
wants to perform an action on a server, a Command packet is created and sent. To illustrate what a
command packet looks like refer to Figure 28.

Offmec(d) 00 01 02 O3 O4 O5 06 07 08 09 10 11 12 13 14 15

00000000 47 68 30 73 74 HENOONOOROOHEINGONGENEEN = oc 53 Ghost PEEEIIMExeS

00000016 06 00 0D 24 DO Zil ___5‘55'_!

Figure 28. GhOst RAT Command packet.

Here again we see the GhOst header signature and see the compressed size of the packet is 0x16 (22)
and the uncompressed size is 0x01 (1). This is a case where compressing the packet works against you.
You can see in Figure 29, the uncompressed payload data is one byte with a value of 0x23 (35). Looking
at Table 4, you see the command is COMMAND_SYSTEM, which is a request for a remote command
shell (Terminal).

Know Your Digital Enemy

Offaec(d) 00 01 02 03 04 05 06 07 02 09 10 11 12 13 14 15
oooooonD 28 |

Figure 29. GhOst RAT unencrypted Command payload.

It should be clear from the above discussion that the GhOst RAT client and server communicate using

a series of pre-defined Commands, Tokens, and Modes. A network packet contains a 13-byte header
with the string GhOst clearly visible. The data payload of a RAT network packet is compressed using the
standard open-source zlib compression library. No encryption is used.

The communication process is very simple. A GhOst RAT server connects to a client and sends a Login
packet containing information about the compromised host. The client adds the server to its connection
grid and displays the details of the host. From this point on, the client sends Command request packets
to the server. The server processes the request and sends back to the client the requested data, whether
it is remote screen data, voice, video, or more.

GhOst RAT Source Code

The GhOst RAT Beta 3.6 source code was contained in a ZIP file containing 258 files. | found it at a
suspicious looking site on the Internet. There was no way for me to determine the original source or the
contents of the file. | downloaded it to a Linux box and examined the contents. Initial review identified
the structure of the ZIP file contents contained a Microsoft Visual Studio (MSVS) development project.

The MSVC workspace file identifies it was created with MSVS Version 6.0. Figure 30 below shows the
structure of the workspace.

*. ghOst - Microsofl Visual Studio
Fle Edt View Project Buid Debug Tools Window Help
J'J'Jua = I TP A I, WAL WO N C O o RN ST S
TR T 1 T N T
Solution Explorer e

L 4 |
o Solution ‘ghist’ (3 prajects)

® O ghost

B instal

@ G svehost

Figure 30. GhOst Visual Studio workspace.

The structure of the solution fits perfectly within the GhOst framework. RESSDT.sys gets compiled into
SVCHOST.DLL, in the svchost project, the server workhorse of the GhOst suite. The SVCHOST.DLL gets
compiled into INSTALL.EXE created by the install project. Finally, the INSTALL.EXE is compiled into the
GHOST.EXE client produced by the ghOst project.

The svchost project has many source files since this is where most of the GhOst functionality resides.
Figures 31 and 32 below show the file composition of the svchost project. Notice at the bottom of the
figure the RESSDT.SYS is included in this project because it is added to the projects resource section.

Know Your Digital Enemy

29

30

€ RegEdREx.crp

-] Scrsenlanager.cpp
€4 SersentSoy,cpp

£ shelManager.cop
€] svehest o

i swchestre

€] SystemManager.cop
] uticpp

&) VideoCan.cop

€] VideoManager cpp
FeadMa bk

RESSDT .5vs

Figure 31. Svchost project header files.

The install project is much simpler than the svchost project. As you can see in Figure 33 below, the
svchost project has one implementation file: install.cpp. The svchost.dll binary is included in this project

because it is placed in the resource section.

Remember, the only role of the INSTALL.EXE program is to provide a dropper mechanism to compromise

a host.

Figure 33. Install project files.

Know Your Digital Enemy

Figure 32. Svchost project implementation files.

Of the three projects, the GhOst project has the most source files. This is due to the fact the GhOst
application is a Win32 graphical user interface (GUI) project. Most of the source files in this project drive

the GUI components of the GhOst client.

A listing of the project files are shown in Figures 34 and 35 below.

[Soure Fiss
) rstal em
[z PoadMe.txt
* nstal
* swchost

Figure 34. GhOst project header files.

[Header Files
Ll Besource Fles
2 Source Fies
BAuda.oop
Audolig.op
& BrpTodw.cpp
BErST.cpp
€] Buffer.cpp
&) Buffer.cpp
Bl o
Cpulkage. cpp
€44 CustomTabtrlcpp
FlsManagerDig.opp

il Tranaher ModeDig cop

ghist.cop
B ghost.re
& ghisthor.cpp
e ghistview oo
£+ HoverEdit. cpp
InéFda cpp

Figure 35. GhOst project implementation files.

Know Your Digital Enemy

31

32

As discussed in previous sections, once the GhOst project is successfully compiled, there are four binary
files that make up the suite of malware tools: RESSDT.SYS, SVCHOST.DLL, INSTALL.EXE, and GHOST.EXE.

Figure 36 below shows the resource section of the SVCHOST.DLL. The resource BIN with an ID of 102
contains the RESSDT.SYS binary.

Ul R oo =

s

[Y]
o |

Figure 36. SVCHOST.DLL resource section.

Figure 37 shows the resource section of INSTALL.EXE. The resource BIN with an ID of 101 contains the
SVCHOST.DLL binary.

Figure 37. INSTALL.EXE resource section.

Know Your Digital Enemy

Finally, Figure 38 shows the resource section of GHOST.EXE. It is contained in the resource named BSS
with an ID of 173. This resource contains the INSTALL.EXE binary.

Figure 38. GHOST.EXE resource section.

The above figures clearly illustrate the power and convenience of hijacking resource sections of a PE
file to embed other PE files. This is very common with all types of malware. Good forensic investigators
should always check suspicious binaries for embedded PE files.

It should be noted the GhOst solution has three external dependencies. First, the svchost and

GhOst projects link in code from the zlib project’s static library. This makes sense since the network
communication stream between the client and server is compressed using the standard zlib compression
algorithm. You can find out more about the zlib project here: http:/zlib.net/.

The second dependency is in the GhOst project. It statically links with a Microsoft Foundation Classes
(MFC) library named CJ60. Research on the web revealed this is an older freeware library of Windows
GUI helper classes. This includes fancy buttons, toolbars, and list boxes. The below text is from the class
library main header file. It shows the code library was created between 1998 and 1999 by Kirk Stowell.

“// CJ60Lib.h : header file

//

// Copyright 1998-99 Kirk Stowell

// mailto:kstowell@codejockeys.com

// http://www.codejockeys.com/kstowell/
//

// This source code may be used in compiled form in any way you desire.

// Source file(s) may be redistributed unmodified by any means PROVIDING

// they are not sold for profit without the authors expressed written consent,
// and providing that this notice and the author’s name and all copyright

// notices remain intact. If the source code is used in any commercial

// applications then a statement along the lines of:

//

// *“Portions Copyright 1998-99 Kirk Stowell” must be included in the

// startup banner, “About” box or printed documentation. An email letting

Know Your Digital Enemy

33

http://zlib.net/

34

// me know that you are using it would be nice as well. That’s not much to ask
// considering the amount of work that went into this.

//

// This software is provided “as is” without express or implied warranty. Use

// it at your own risk! The author accepts no liability for any damage/loss of
// business that this product may cause.”

Since the CJ60 code library uses Microsoft's MFC framework, the third dependency of the GhOst project
is the static Microsoft MFC library file nafxcw.lib. Statically linking the MCF library makes the GhOst binary
slightly larger, but it removes the requirement of having the right MFC DLL on a compromised host system.

A couple of final notes about the GhOst solution source code. First, based on the style of the source
code, it appears that there were several code writers involved in this project. The coding style is different
across the source files. Some source files have many comments, while others have none. Unfortunately,
all of the comments are illegible in the source code due to failure of accurate code set translation from
Chinese to English.

Second, there is almost a complete lack of error and/or exception handling in the entire code base. It
appears that the coders did not want to invest the time into building robust code. In almost all of the
code, if a serious error occurs, the application simply exits. If non-fatal errors occur, the code simply
ignores the error and moves on.

GhOst RAT Defenses

If you spent time studying this document, you now have a detailed understanding of how sophisticated
the GhOst RAT malware is. Even though the sources for this particular RAT are a few years old, this type
of malware is in wide use within certain hacking undergrounds. Current variants of the GhOst RATs use a
more sophisticated network communication protocol.

So how do you defend against a GhOst RAT? It is certainly not easy—but fundamental security practices
and knowing what to look for go a long way in defending your infrastructure. | suggest there are six
things you can do to identify GhOst RATs in your enterprise:

Put eyes on the wire.

Perform regular internal port scans.
Monitor your DNS servers.

Closely monitor end-node services.
Closely monitor end-node event logs.

o vk W=

Increase end-user security awareness training.

1. Put eyes on the wire.

I do a great deal of emergency incident response work and am constantly amazed at how many
organizations lack the ability to closely monitor network traffic at the packet level. IDS/IPS systems

or solutions that provide deep packet inspection monitoring are a critical component of a competent
security arsenal. You simply must know what is moving across your networks.

If you have these technologies in place, detecting the GhOst RAT examined in this white paper would be
trivial due the use of the GhOst handshake in the packet headers. A simple IDS signature is all you would
need. Today’s GhOst RATs are much more sophisticated and harder to find on the wire.

Some things to look for with your IDS/IPS or network monitoring solutions include:

 Outbound port 80 (HTTP) and 443 (HTTPS) traffic to IP addresses and URLs in the Far East*
« Outbound port 80 (HTTP) traffic connecting to remote server without sending user-agent information

« Create IDS signatures to detect the unique data content at the end of the dropper application (for
example, AAAAAA or CCCCCQ)

« Create IDS signatures to detect embedded PE files within PE files

Know Your Digital Enemy

Remember, the modern GhOst RATs are going to be using a lot more sophisticated network
communications then what is in GhOst RAT Beta 3.6.

2. Perform regular internal port scans.

One of the interesting things about GhOst RATs, is that they tend to establish persistent connections to
a client. This means the compromised host will have open TCP ports that cannot be explained. Routinely
scanning your internal network for suspicious open ports on systems, particularly workstations, can help
you find GhOst RATs.

3. Monitor your DNS servers.

Every time | suggest to a client that they should be logging DNS requests, | also get that look followed

by “You have got to be kidding.” Logging DNS is painful, but it can be invaluable when hunting down
GhOst RATs. Most modern malware uses dynamic DNS to allow the cybercriminals the most flexibility in
moving their RAT clients.

At the very least, you should configure your DNS servers to log or alert on any requests to dynamic DNS
locations. You should also consider logging all DNS requests to sites in the Far East. There are plenty of
resources available to provide you IP address ranges based on geography as well as list of popular and/or
malicious dynamic DNS hosting providers.

4. Closely monitor end-node services.

In the last few years, there has been a lot of discussion about the increasing use of rootkits by
cybercriminals. For the purposes of this discussion, | consider a rootkit as malware designed to run in
Ring 0 alongside the kernel. In general, | am talking about device drivers.

In my experience, most malware today still runs in user-land (Ring 3). Writing device drivers is tedious
and error-prone. There are also a lot fewer programmers who can write them. Instead, most malware
authors write code that abuses the Windows services infrastructure to survive reboot. The result? Most
malware runs as a service—hiding in plain sight.

Whenever | am analyzing a host for indicators of compromise, | focus like a laser on installed services.
You should too. One of my colleagues recently wrote a tool that scans a network of Windows hosts
looking for suspicious services. This tool is very effective at sniffing out malware. | encourage you to
implement techniques to monitor what services are running on your systems.

5. Closely monitor end-node event logs.

As long as you are monitoring services on end nodes, you should also be centrally logging and
monitoring Windows event logs. Everybody dislikes dealing with event logs, but as a forensic
investigator, there is gold in that data. | encourage you to turn on auditing and enable logging for
both successful and failed logins.

I also recommend you pay particularly close attention to the security event log entries 528 and 540
(successful logins). Drill down and look for logon types 3 (SMB shares) and 10 (RDP). Finally, identify the
logon account.

Almost all intruders will move laterally across you network, remotely logging onto workstations and
servers using elevated privileged accounts. They will either connect to another machine via SMB admin
shares (C$, IPC$, or ADMIN$) or using remote desktop. Either way, you should be monitoring event logs
for this activity.

6. Increase end-user security awareness training.

If | were given just one option to improve an organization’s security posture, it would be an easy choice:
end-user security awareness training. Why? Because end users are going to be the ones who let the bad
guys in by falling victim to phishing attacks or URL redirection. They also are going to be the ones to
alert you when something is wrong.

Know Your Digital Enemy

35

W McAfee

An Intel Company

2821 Mission College Boulevard
Santa Clara, CA 95054

888 847 8766
www.mcafee.com

In my experience, most serious security incidents are identified in one of three ways: end-user complaints
to the help desk, alert network security personnel who sense that something is amiss, and notifications
that a system has been compromised by a third party.

If you invest in end-user training, you are enabling every single employee to learn what security threats
exist and how not to fall prey to them. You are also increasing their sensitivity to report suspicious
computer behavior.

For example, if an end-user understands the capabilities of GhOst RAT, they are much less likely to ignore
mouse cursor movements when they are not at the keyboard. They will also find it very suspicious their
webcam light is on when they have no video application open.

Security awareness training is one of the best investments you can make to reduce your risk of compromise.

Summary

If you made it this far, then you obviously have some interest in understanding the deep internal workings
of a GhOst RAT. In this paper, you learned how capable, and dangerous, this genre of malware is. The
threat this malware brings to your organization is two-fold. First, once installed on a compromised host, it
provides the remote cybercriminal complete remote control of the system. It also evades antivirus and HIPS
detection because it does nothing suspicious once the service is installed. It simply starts up at boot time,
connects to a remote client on port 80 or 443 and awaits further instructions.

Identifying outbound network traffic from a GhOst RAT is also problematic. Since most RATs use HTTP or
HTTPS communications channels with encrypted payloads, it is very difficult to identify the presence of a
RAT on the wire.

My goal in writing this paper is to increase the awareness of these RAT tools, particularly in
environments that are subject to advanced persistent threat (APT) attacks. As always, the best defense
against these tools is to focus on good old security fundamentals.

About the Author

Michael Spohn is a principal security consultant at McAfee Foundstone, where he provides incident
response (IR) and digital forensic services to clients. His duties include creating IR management programs,
analyzing and testing existing IR plans, conducting forensic investigations, and providing IR and forensic
training. He is also a member of the McAfee Foundstone Emergency IR Team, which provides emergency
services to clients when an elevated security breach occurs.

About McAfee Foundstone Professional Services

McAfee Foundstone Professional Services, a division of McAfee, offers expert services and education to
help organizations continuously and measurably protect their most important assets from the most critical
threats. Through a strategic approach to security, McAfee Foundstone identifies and implements the right
balance of technology, people, and process to manage digital risk and leverage security investments more
effectively. The company’s professional services team consists of recognized security experts and authors
with broad security experience with multinational corporations, the public sector, and the US military.

! Kehrer, Paul. “Trustwave’s SpiderLabs Security Advisory TWSL2011-007,” July 2011. https://www.trustwave.com/spiderlabs/advisories/TWSL2011-007.txt
2 Apple. “About the security content of iOS 4.3.5 Software Update for iPhone,” July 2011. http:/support.apple.com/kb/HT4824

3 Apple. “About the security content of iOS 4.2.10 Software Update for iPhone,” July 2011. http:/support.apple.com/kb/HT4825

4 Percoco, Nicholas and Paul Kehrer. “Getting SSLizzard,” August 2011. http://defcon.org/html/defcon-19/dc-19-speakers.html#Percoco

McAfee, the McAfee logo, and McAfee Foundstone are registered trademarks or trademarks of McAfee, Inc. or its subsidiaries in the

United States and other countries. Other marks and brands may be claimed as the property of others. The product plans, specifications and
descriptions herein are provided for information only and subject to change without notice, and are provided without warranty of any kind,
express or implied. Copyright © 2012 McAfee, Inc.

43100wp_ghost-rat_0312_ETMG

https://www.trustwave.com/spiderlabs/advisories/TWSL2011-007.txt
http://support.apple.com/kb/HT4824
http://support.apple.com/kb/HT4825
http://defcon.org/html/defcon-19/dc-19-speakers.html#Percoco

	Background
	Gh0st RAT Overview
	Gh0st RAT Capabilities
	Gh0st RAT Operation
	Gh0st RAT Components
	RESSDT.SYS
	SVCHOST.DLL
	INSTALL.EXE
	GH0ST.EXE
	Function ResetSSDT()

	Gh0st RAT Encryption
	Gh0st RAT Network Communication
	Gh0st RAT Source Code
	Gh0st RAT Defenses
	Summary
	About the Author
	About McAfee Foundstone Professional Services

