4/23/2019 Reversing malware in a custom format: Hidden Bee elements - Malwarebytes Labs | Malwarebytes Labs

Reversing malware in a custom format: Hidden Bee elements

blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements

Posted: August 30, 2018 by hasherezade August 30, 2018

Malware can be made of many components. Often, we encounter macros and scripts that work as
malicious downloaders. Some functionalities can also be achieved by position-independent code —so-
called shellcode. But when it comes to more complex elements or core modules, we almost take it for
granted that it will be a PE file that is a native Windows executable format.

The reason for this is simple: It is much easier to provide complex functionality within a PE file than within a
shellcode. PE format has a well-defined structure, allowing for much more flexibility. We have certain
headers that define what imports should be loaded and where, as well as how the relocations should be
applied. This is a default format generated when we compile applications for Windows, and its structure is
then used by Windows Loader to load and execute our application. Even when the malware authors write
custom loaders, they are mostly for the PE format.

However, sometimes we find exceptions. Last time, when we analyzed payloads related to Hidden Bee
(dropped by the Underminer exploit kit), we noticed something unusual. There were two payloads dropped
that didn’t follow the PE format. Yet, their structure looked well organized and more complex than we
usually encounter dealing with pieces of shellcode. We decided to take a closer look and discovered that
the authors of this malware actually created their own executable format, following a consistent structure.

Overview

The first payload: b3eb576e02849218867caefaa0412ccd (with .wasm extension, imitating Web Assembly)
is a loader, downloading and unpacking a Cabinet file:

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/ 1/8

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/
https://blog.malwarebytes.com/threat-analysis/2018/07/hidden-bee-miner-delivered-via-improved-drive-by-download-toolkit/
https://www.virustotal.com/#/file/76b70f1dfd64958fca7ab3e18fffe6d551474c2b25aaa9515181dec6ae112895/details

4/23/2019 Reversing malware in a custom format: Hidden Bee elements - Malwarebytes Labs | Malwarebytes Labs

& 52he3kf2g2rib1551 as2u0198k.wasm

Offsetc(h) 00 01 02 03 04 05 O6 O7 08 09 0& OB OC OD OE OF

00000000 01 03 00 10 18 00 61 OO0 TA OE Q00 00 58 1E OO0 OO0 |Aueueuey Ui SR Sy
00000010 8 01 00 00 90 1C 00 00 05 00 6E T4 64 6C 6C 2F |l ntdll.
00000020 |4 &C &C 00 1B OO0 4B 45 52 4E 45 4C 33 32 ZE 64 .. .KERNEL32Z.

Q0000030 |BC &C 00 04 00 41 44 S6 41 S50 49 33 32 2E 64 60 SRSty syl
000G0040, |BC 00 04 00 43 61 62 69 6E 65 T4 2E 64 6C &C 00 pRSe) bty i
g0pooosa 103 00 4D 53 56 43 52 54 2E 64 6C &C 00 00 00 O0 |[cEctie gy, i Ry
0o0000e0 00 FS 58 Bé 04 SE 96 83 1C 8D BB 93 1C CA 96 53 . 4¥g." -".f»"_.E-"
00a0o0070 1C 80 75 82 OD FB FO BF 5F 56 F2 3% Dé B3 BO DE . .u, .adz vasdz°T

The second payload: 11310b509f8bf86daa5577758e9d1eb5, unpacked from the Cabinet:

i coresdb

Offsec(h) 00 01 02 03 04 05 O6 OT7 08 0% 0& OB OC OD QOE OF

00000000 18 00 &0 00 &2 23 00 00 5C 50 00 oo ARG “.b*..aP..
00000010 78 s, . .xM....ntdll.
00000020 07 H11. . .MSVCRT.d1]
80000030 45 ...EKERNEL32.d11.
00000040 32 ..WS2_32.d11...4
00000050 &1 phlpapi.dll.....

00000060 81 74 22 OD S5E 96 93 1C CA 96 93 1C D1 FE FO EF .t,.~-“.E-".Ngdd
0QQo000T0 4F 5B A8 63 8D BE 93 1C A2 TO 20 50 2C 66 48 2ZE O cte™. p.F,fH.

We can see at first that in contrast to most shellcodes, it does not start from a code, but from some
headers. Comparing both modules, we can see that the header has the same structure in both cases.

Headers

We took a closer look to decipher the meaning of particular fields in the header.

E coresdb

Cffsec(h) 00 01 02 O3 04 05 06 07 OB 0% O& OB OC OD OE OF

00000000 P01 03 00 10 18 00 60 00 62 2B 00 00 9C 50 00 Oq
00000010 24 03 00 00 78 4D 00 Dﬂ 13 00 6E 74 &4 &C aC ZE
00000020 &4 &C oC 00 O7 00 4D 53 56 43 52 54 Z2E 64 &C eC dll...M5SVCET.dll
00000030 00 1E 00 4B 45 52 4E 45 4C 33 32 2E 64 &C &C 00 ...EFEENEL3Z.dll.
00000040 OC 00 57 53 32 5F 33 32 ZE €4 eC &C 00 01 00 &% ..W32 32.d11...1
00000050 70 €8 oC TO &1 TO 6% ZE €4 oC &C 00 00 00 00 00 phlpapi.dll.....
00000060 81 74 82 OD S5E 96 93 1C CA 96 93 1C D1 FE FO EF .t,."-".E-".Htdd
Q00000070 4F 5B A8 63 8D BE 93 1C 48 70 90 50 2C 66 48 2E O[cte™. p.P,fH.
00000080 F8 5C EF 6E 72 3C 94 7C OB OF BS A5 D6 94 93 1C Fdnr<”|..pad~™.
gooooo80 7T E2 E1 F9 85 L5F BT 29 8D AF D2 7D FS 26 BD 6B wiéﬁh_-}iiﬁ}ﬁ&“k

The first DWORD: 0x10000301 is the same in both. We didn’t find this number corresponding to any of the
pieces within the module. So, we assume it is a magic number that makes an identifier of this format.

Next, two WORDs are offsets to elements related to loading the imports. The first one (0x18) points to the
list of DLLs. The second block (0x60) looks more mysterious at first. Its meaning can be understood when
we load the module in IDA. We can see the cross-references to those fields:

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/

2/8

https://www.virustotal.com/#/file/c1a6df241239359731c671203925a8265cf82a0c8c20c94d57a6a1ed09dec289/details

4/23/2019 Reversing malware in a custom format: Hidden Bee elements - Malwarebytes Labs | Malwarebytes Labs

gaaeanay dd B

880888868 dword 608 dd B8D827481h ; DATA XREF: sub 3F7F+A9Lr
00000060 5 s—ae—=——ns—
d000086Y xrefs to dword_60

d00ooo6e

AAOEEEAGE Direction Typ Address Text

doaaaayo r sub 3F7F+AD ds:dword_60

600808078 I Do.. r sub_3FTF+BD call ds:dword_60

28000074 Do.. r sub 3F7F+D1 call ds:dwerd_60

gggggg;ﬁ Do.. r sub 3F7F+17F call dsdword 60

6960608 6 Do.. r sub_3F7F+1B& call dsidword 60

AEeeABEY Do.. r sub 3F7F+314 call ds:dword_60

We see that they are used as IAT —they are supposed to be filled with the addresses to the imported
functions:

a0884 838 push ebx

A8a64 839 push 3Fh ; *%°
008684838 push edi

Ba8aLa3c call ds:dword 68
AaaaLAL2 add esp, BCh
AAafALALS mou [ebp+var_18], eax
a0aa4 048 test eax, eax
(s1s]slsLys ity jnz cshort loc_ L@SC
a0as4aLuc push ebx

0008484D push 23h ; '#°
o0884BYF push edi

B000405 0 call d5:hwnrd_ﬁﬁ

The next value is a DWORD (0x2A62). If we follow it in IDA, we see that it leads to the beginning of a new
function:

THHUMZAGY [T T T T
:8aae2n62 push ebp

:080802A63 mou ebp, esp

- A8882A65% sub esp, 22Ch

:0a8e2A6e call sub_2986

-Aaae2a7a test al, al

:B8082a72 jnz short loc_ 247D

:0@8882a7Y call sub_29a3

-aaa2nyo test eax, eax

A00e2a7e jz short loc_ 2A8YL

:8aa|z2avn

:8a8e2a7D loc_2A7D: ; CODE XREF: seg0p0:080002a72Tj
- aaa82as7D ®0r eax, eax

08802A7F jmp locret_ ZBBC

This function is not referenced by any other functions so we can suspect that it is the program’s Entry Point.

The meaning of the next value (0x509C) is easy to guess because it is the same as the size of the full
module.

Then, we have the last two DWORDs of the header. The second DWORD (0x4D78) leads to the structure
that is very similar to the PE’s relocations. We can guess that it must be a relocation table of the module,
and the previous DWORD specifies its size.

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/ 3/8

4/23/2019

00004070
00004080
00004030
00004DA0
00004DB0
00004DCO
00004000
00004DED
00004DF0

This is how we were able to reconstruct the full header:

typedef struct {
DWORD magic;

WORD d11_list;
WORD iat;
DWORD ep;
DWORD mod_size;

DWORD relocs_size;

DWORD relocs;
} t_bee_hdr;

Imports

As we know from the header, the list of the DLLs starts at the offset 0x18. We can see that each of the

DLL’s names are prepended with a number:

Offsec(h) 00 01 02 03 04 05 O& 07 08 0% 04 OB OC OD OE

Q00000000 ©O1 03 00 10 18 00 60 00 €2 2Z2A 00 00 9C 50 00
00000010 T8 2 2
00000020 |
00000030
00000040
00000050 E
00000060 81 T4 82 0D SE 96 93 1C CA 98 93 1C D1 FE FO

The numbers are not corresponding with a DLL name: In two different modules, the same DLL had different

Reversing malware in a custom format: Hidden Bee elements - Malwarebytes Labs | Malwarebytes Labs

s | .

e (.. Y)

5 WD T o3 TS SO
) B RE TR
Be,, %, Dr. O*..
Ox. . 8%, .d*...+4

=4 M+,]+ L0t
S S S S = ¥ S
+..d+. .k, ..D, ..

...... “.b¥*. .8P..
£...xM..|. .ncdll.
dll...MSVCRET.dll
.. .BEERNEL32.d11.
. .W32 32.d11...1

Lt o=" L E-" Nedd

numbers assigned. But if we sum up all the numbers, we find that their total sum is the same as the number

of DWORDs in the IAT. So, we can make an educated guess that those numbers are specifying how many

functions will be imported from a particular DLL.

We can describe it as the following structure (where the name’s length is not specified):

typedef struct {
WORD func_count;
char name;

} t_d11_name;

Then, the IAT comes as a list of DWORDSs:

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/

4/8

4/23/2019 Reversing malware in a custom format: Hidden Bee elements - Malwarebytes Labs | Malwarebytes Labs

Qoo00050 TO 68 6C TO 61 7O 69 ZE 64 oC &C 00 OO0 00 OO0 00 phlpaEi.dll

000000ED LT, . =" . E— . .Htdd
00000070 o[cts™. p.PB, £fH.
000000DED Fhdnr<”|..pad"".
00000090 waans: -)TZHld&e"K
000000DRD iz~.u,.0,,.e=t

0000D0ORO FEFdesFIo. &6=.9.
000000CO +d-|0U.." Aa.:~HH
00000000 XC.gy .1 HT. 56"
000000ED —r.0w~3—. ,8.DZf
000000FO K?.Z.»10.—. %...9
00000100 1511 «AllabXG ' uTH
00000110 L1 *x&zN[I+ti&zH
00000120 C-gz i~ "L.Ep8
00000130 T@A~. [LIzrém!ua4. T
00000140 C(alN1?; Y6, 2L
00000150 = | K5 X8, Z20Qws .
00000160 100/ “®@+Jwd . Sc-4
00000170 L.=IU< &< E.SV38W%

It is common in malware that when the function’s names are not given as an explicit string, they are
imported by checksum. The same is done in this case. Guessing the appropriate function that was used for
calculating the checksum can be more difficult. Fortunately, we found it in the loader component:

DWORD checksum(char xfunc_name)
{
DWORD result = 0x1505;
while (xfunc_name)
result = xfunc_name++ + 33 * result;
return result;

Knowing that we paired appropriate checksums with the function’s names:

Once the address of the function is retrieved, it is stored
wsz_32.411

in the IAT in place of the checksum. 6128c683
3b3fbede
£32d5%e0
494ch184
7c949%e2
583h354hb
559f15%a

HEAStartup
WSAGetLastError
HEARecw
closesocket
hind

WSAloctl
WSASocketA

£f2a7751 : htons

3849547 gethosthyname
blaehd2f inet_add»
f?a??4a : htonl
£f32de?%a : WSASend

1 = dphlpapi.dll
he?58fch : GetAdaptersInfo

Relocations

Creating a relocation table is simple. It consists of the list of DWORDs that are identifying the offsets of the
places in the code to which we should add the base where the module has been loaded. Without
relocations applied, the module will crash (so, it is not position-independent like a typical shellcode).

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/ 5/8

4/23/2019 Reversing malware in a custom format: Hidden Bee elements - Malwarebytes Labs | Malwarebytes Labs

Comparison to PE format

While the PE format is complex, with a variety of headers, this one contains only essentials. Most of the
information that is usually stored in a PE header is completely omitted here.

You can see a PE format visualized by Ange Albertini here.

Compare it with the visualization of the currently analyzed format:

Offsec(h) 00 01 02 03 04 05 06 OT7 08 0% OA OB OC OD QE OF

Q0000000 01 03 00 10|18 OON&1 OQON7A OE OO CICIISS 1E 00 OCII 2.Z...%..
00000010 JC8 01 00 0090 1C 00 00 Covennnn HEADERS

05 00 6E 74 64 6C 6C 2E ..ntdll.
45 52 4E 45 4C 33 32 2E 64 dil...RErmeL3z.d [JLLS

00000020 64 6C &C 00 1B 00 4B
4 56 41 50 4% 33 32 ZE 64 6C 11...RDVRAPI3Z.dl
2
2

4
Q0000030 6C 6C 00 04 00 41 4
]

Q00000040 6C 00 04 00 43 61 69 6E &5 74 2E 64 6C 6C 00 1...Cabinet.dll. {functions_count,

00000050 03 00 4D 53 56 43 52 54 2E 64 6C 6C 00 00 00 00 ..MSVCRT.d1l.... dil_name]
00 .

00000060 F9 S8 B6 04 SE 96 93 1C 9D BB 93 1C CA 96 93 GXI.~—".t»"“.E-"

00000070 AC 90 75 82 0D FB FO BF SF 56 F2 39 D B3 B0 DE ..u,.0dz Vasdz T

00000100 B6 87 FO 96 7C 3D AD 32 0D C7 OE E0 3D 64 Al 30 9#d-|=.9.C.#=d"0

00000110 00 00 00 C3 55 8B EC 83 EC 14 56 88 75 08 57 33AU«E.5.Veu.W3 CODE

00000120 FF 57 57 57 57 68 50 1h 00 00 89 70 FC FF 56 04 WWWWRE...%}id V.

sawm Entry Point = OxE7TA

Q00001CE80 00 OO0 OO0 OO OO0 OO0 OO0 OO0 OO0 OO0 00 00 00 00 00 00 ..vvevvnernmnnns

00001C20 26 01 00 00 3F 01 00 00 CF 01 00 00 D& 01 00 00 &...%...D...0...
00001CAD 1F 02 00 00 26 02 OO0 OO0 %2 02 OO0 00 A8 02 00 00&...7...7

 RELOCATIONS

00001E40 43 14 00 00 49 14 00 00 4F 14 00 00 55 14 00 00 C...L...0...T...
00001ES0 5B 14 00 00 61 14 00 00 - Size = 0x1CE

Static analysis

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/ 6/8

https://raw.githubusercontent.com/corkami/pics/master/binary/PE101.png
https://blog.malwarebytes.com/wp-content/uploads/2018/08/format.png

4/23/2019 Reversing malware in a custom format: Hidden Bee elements - Malwarebytes Labs | Malwarebytes Labs

We can load this code into IDA as a blob of raw code. However, we will be missing important information.
Due to the fact that the file doesn’t follow a PE structure, and its import table is non-standard, we will have
a hard time understanding which API calls are being made at which offset. To solve this problem, | made a
tool that resolves hashes into function names and generates a TAG file to mark the offsets where each
function’s address is going to be filled.

Those tags can be loaded into IDA using an IEL plugin:

[=] core sdb tag B9 |

1 Eﬂ;memﬂhr
2 64;strconp
3 6Bratropy
7 6c:tolower
5 T70; snwprintf
6 T4r:strlen
7 T8 ZwlpenFile
8 TerZwClose
g 80; snprintf
10 84ratoi
seghpl:aeaenecd dword 6@ dd eDa27481h ; DATA XREF: sub 3F7F+A%ir
seglod: eaaaa6e ; sub 3F7F+BD4r
segled: BEaaeREe ; memchr
seglod: Baeee64 dword B4 dd 1C93965Eh ; DATA XREF: sub_ 4758lr
seghiae: aaaaaand 3 stromp
seglod: eaeee6E dword BB dd 1C9396CAh ; DATA XREF: sub_4752lr
Segaes : eapaeans ;3 strcpy
segled:eaaserst dword 6C dd BEFF@FEDLh ; DATA XREF: sub_385F:loc_369Eir
sSeglla : Beeaaasc ; tolower
seghll:aeaeae78 dword 70 dd 63A85B4Fh ; DATA XREF: sub_38CF+25ir
segled: eeaaea7e ; sub_33804254r
seglod: aaaea7e 3 _snwprintf
segBod: Baaeea74 dword 74 dd 1C93BBADCh ; DATA XREF: sub_474Clr
segBon: Bepaea74 3 strlen
seglon: eeeeea7s dword 7B dd 5@3878A8h ; DATA XREF: sub_ 20C24+49ir
S eglbe : BReBaE T ; ZwOpenFile

Having all the API functions tagged, it is much easier to understand which actions are performed by the
module. Here, for example, we can see that it will be establishing the connection with the C2 server:

BBBRBA2ER arg_B= dword ptr 4
PBBRBA2ER arg_ 4= dword ptr B8
aaea42ER

@pae42E6 push esi

@paa42E7 push [esp+idtarg_ @]

eaaed2ER

Bpae42EE loc_ 42EB: 3 inet_addr
BREA42EE call ds:dword_164

BBBBA2FL mov esi, [esp+Hi+arg_4]

aaeed42Fs cmp eax, @BFFFFFFFFh

PBBRBA2FE mov [esi+4], eax

\BERA2FE jnz short loc_4328

M=

aees42rD push [esp+i+arg_8)
eeae4301 call ds:dword_16@ ; gethostbyname
BEEa4387 test eax, eax

Dynamic analysis

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/

7/8

https://github.com/hasherezade/bee_parser
https://github.com/hasherezade/ida_ifl

4/23/2019 Reversing malware in a custom format: Hidden Bee elements - Malwarebytes Labs | Malwarebytes Labs

This format is custom, so it is not supported by the typical tools for analysis. However, after understanding
it, we can write our own tools, such as the parser for the headers and loader that will help to run this format
and analyze it dynamically.

In contrast to PE, the module doesn’t have any sections. So, we need to load it in a continuous memory
region with RWX (read-write-execute) access. Walking through the relocations list, we will add the value of
the base at which the module was loaded to the listed addresses. Then, we have to resolve the imported
functions by their hashes and fill the addresses in the thunks. After preparing the stage, it just needs to
jump at the Entry Point of the module. We will load the prepared loader under the debugger and follow to
the entry point of the loaded module.

Simple but rare

The elements described here are pretty simple—they serve as a first stage of the full malware package,
downloading other pieces and injecting them into processes. However, what makes them interesting is the
fact that their authors have shown some creativity and decided to invent a custom format that is less
complex than a full-fledged PE, but goes a step further than a typical piece of shellcode.

Such module, in contrast to independent shellcode, is not self-sufficient and cannot be loaded in a trivial
way, but must be parsed first. Given the fact that the format is custom, it is not supported by existing tools.
This is where programming skills come in handy for a malware analyst.

Fortunately, fully custom formats are rather uncommon in the malware world; usually, authors rely heavily
on existing formats, from time to time corrupting or customizing selected parts of PE headers.

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/ 8/8

