11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

Threat Spotlight: MenuPass/QuasarRAT Backdoor

£2: blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

Introduction

During the latter half of 2018, BlackBerry Cylance threat researchers tracked a campaign targeting
companies from several verticals across the EMEA region. The campaign seemed to be related to the
MenuPass (a.k.a. APT10/Stone Panda/Red Apollo) threat actor, and utilized an open-source backdoor
named QuasarRAT to achieve persistence within an organization. We identified several distinct loader
variants tailored to specific targets by leveraging machine learning (ML) to analyse our malware
corpus. We have not observed new QuasarRAT samples in the wild since late 2018, roughly coinciding
with when the FBI indicted several members of the MenuPass group.

QuasarRAT is a lightweight remote administration tool written in C#. It can collect system
information, download and execute applications, upload files, log keystrokes, grab screenshots/camera
captures, retrieve system passwords and run shell commands. The remote access Trojan (RAT) is
loaded by a bespoke loader (a.k.a. DILLWEED). The encrypted QuasarRAT payload is stored in the
Microsoft.NET directory, decrypted into memory, and instantiated using a CLR host application. In
later variants an additional component is also used to install the RAT as a service (a.k.a DILLJUICE).

The following technical analysis focuses on the bespoke QuasarRAT loader developed by MenuPass
and modifications made to the QuasarRAT backdoor.

Introducing the QuasarRAT Loader

Overview

The QuasarRAT loader typically arrives as a 64-bit service DLL. Its primary purpose is to decrypt, load
and invoke an embedded .NET assembly in-memory using the CppHostCLR technique. This technique
is based on code snippets from Microsoft DevCentre examples. The assembly, obfuscated with
ConfuserEx, is subsequently responsible for finding, decrypting, and executing a separate malicious
.NET module. The encrypted module is stored in the %WINDOWS%\Microsoft.NET directory.

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor 1/18

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

During our investigation we encountered several variants of the loader which indicated a development
path lasting over a year; we were also able to locate some (but not all) of the encrypted payload files
belonging to these loader variants. After decryption, we discovered that the payloads are backdoors
based on the open-source code of QuasarRAT!, version 2.0.0.0 and 1.3.0.0.

Features

e Several layers of obfuscation

* Payload and its immediate loader are .NET assemblies

« Initial loader uses the CppHostCLR? technique to inject and execute the .NET loader assembly
¢ Payload encrypted and stored under Microsoft. NET directory

¢ Known to load QuasarRAT, but may work with any other .NET payload

Initial Loader and AntiLib

The initial loader binary is a 64-bit PE DLL, intended to run as a service. The DlIMain function is
empty, while the malicious code is contained in the ServiceMain export. Some variants include an
additional randomly named export that creates the malicious service. In newer versions this
functionality was shifted to a standalone module.

The malware starts by deobfuscating an embedded next-stage executable. In the earliest variant, this is
performed using simple XOR with a hardcoded 8-byte key composed of random letters. Later variants
use a slightly more advanced XOR based algorithm that requires two single-byte keys. It’s possible that
this approach was implemented to thwart XOR bruteforcing attempts:

.text:p0BO0BO1800010DA mov rl@d, cs:key 2

.text:00000001800010E1 mov eax, cs:key 1

.text:00000001800010E7 mov edi, 236532

.text:B0800001800010EC mov rad, edi ; size

.text:00B00001800010EF lea r8, second_stage ; DLL injection code + Antilib DLL

.text:00000001800010F6

.text:00000001800010F6 decrypt loop: CODE XREF: decrypt_run_2nd_stage+4Cl]j

¥
.text:00000001800010F6 lea ecx, [rax+rl@] ; key = key_ 1 + key_ 2
.text:p0BBERE1800010FA mov eax, 80808081h ; compiler optimization for div by @xFF
.text:00000001800010FF mul ecx s -
.text:po00000180001101 mov eax, rled 3 ---—- key 1 = key 2
.text:0000000180001104 shr edx, 7 s -
.text:0000000180001167 imul edx, @FFh s -
.text:p0B0000180001168D sub ecx, edx ; ---- key = key % 255
.text:0000000183000110F xor [r8], cl
.text:0000000180001112 inc rg
.text:0000000180001115 dec ro
.text:p0BGERA180001118 movzx riled, cl ; key_ 2 = key
.text:p0B0EBA18000111C jnz short decrypt_loop

Figure 1: Second stage decryption loop

Starting with variant 3, the .NET injection mechanism is implemented inside a second stage DLL,
which according to debugging strings seems to be part of a project called “AntiLib”:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

2/18

https://github.com/quasar/QuasarRAT
https://code.msdn.microsoft.com/windowsdesktop/CppHostCLR-e6581ee0

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

&
&5

rdata:0000... 0000001C AntiLib\\enableDebugPriv.cpp
.rdata:0000... 00000014 C (1. ntdil.dll

.rdata:0000.. 00000013 C RtlAdjustPrivilege

rdata:0000.. 0000004C C (1. Get RtlAdjustPrivilege address failed
rdata:0000... 0000002C C (1.. WirtualAllocEx failed

rdata:0000.. 00000017 C AntiLib\\injectcode.cpp
.rdata:0000... 00000040 C (1. Write Code to TargetProc Failed
.rdata:0000... 00000014 C RtlCreatelUserThread

.rdata:0000... 0000000C C (1. ntdll

rdata:0000.. 0000004E C (1. GetRtlCreateUserThread address Failed
rdata:0000... 0000003A C (1. Create Remote Thread Failed!
rdata:0000.. 00000026 C (1... The Thread success

rdata:0000... 0000002C C (1... Porcess32First failed

rdata:0000.. 00000040 C (1. CreateToolhelp325napshot failed
.rdata:0000... 00000018 C (1. C:\\ods.log

2) @

i

i

i

71 E

i

Figure 2: Debugging strings from variant 3

This DLL is reflectively loaded into memory by an obfuscated shellcode-like routine and invoked by
executing an export bearing the unambiguous name: “FuckYouAnti”. Older samples do not contain this
second stage library, and the .NET loading functionality is implemented directly in the initial loader:

.data:f080E00183000F932 mav [rsp+298h+export_name], "kcuF’
.data:200080018000F93A mov [rsp+298h+export_name+4], "AuocY'
.data:208080013000F942 mov [rsp+298h+export_name+8], "itn'

.rdata:0000008180015D80 ; Export Ordinals Table for SwvcD1l.d1l1

.rdata:0000000180015D80 ;

.rdata:0000000180015D80 word_180015D80 dw @ ; DATA XREF: .rdata:0000000180015D74t0
.rdata:0000000180015D82 aSvcdll dll db "SwvcD11.d11°,@ ; DATA XREF: .rdata:0800000188015D5Ct0
.rdata:0000000180015D8D aFuckyouanti db "FuckYoufinti',® ; DATA XREF: .rdata:off 18@015D7Cto

Figure 3: FuckYouAnti string in the code and in 2" stage DLL export table

Once executed, the "FuckYouAnti" function will decrypt the .NET loader binary using the same XOR
based algorithm with a different pair of hardcoded keys.

To load the assembly directly into memory, the malware makes use of a technique called
"CppHostCLR" which is described in detail in Microsoft DevCentre. The code looks like the example
code provided by Microsoft. It invokes the loader entry point using hardcoded class and method
names, that are random and differ for each sample:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

3/18

11/19/2020

.text

PEREREO1800A201F
PEVEPEO180RA201F
PEPERE180RE2023
0EVEPEE180PE2028
PEPERE1800A202D
0EVEPEE1800E2031
PEPERE180PA2036
/e0EPEO18000203B
PEVEPEO1B0RA203F
0e0EPEO180002044
0EVEPEE180PA2049
/e0EPEO180002050

:PB0BERR18000201F loc_18PB0201F :
ctext: i
Jtext:
Jtext:
Jtext:
Jtext:
Jtext:
Jtext:
Stext:
Jtext:
Stext:
Jtext:
Stext:

. try 4
2 Y

Threat Spotlight: MenuPass/QuasarRAT Backdoor

; DATA XREF: .rdata:©0000001800158A4l0
lea r8, [rbp+5Fh+class]
cmp [rbp+5Fh+var_28], 8
cmovnb r8, [rbp+5Fh+class] ; odoXVkaPicZTVPMOyzxv . ZxMzoJKqqNKLYvkeTfrf
lea rdx, [rbp+5Fh+method_name]
cmp [rbp+5Fh+var_50], 8
cmovnb rdx, [rbp+5Fh+method_name] ; gXGNBFxiQmoACTfcYgbP
lea rcx, [rbp+SFh+version_string]
cmp [rbp+5Fh+var_78], 8
cmovnb rex, [rbp+SFh+version_string] ; v4.8.38319
lea r9, NET_loader_binary

call CppHostCLR

Figure 4: Use of CppHostCLR technique

Ltext

Ltext:
Ltext:
Jtext:
Jtext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:

0B0EEBO180001DAS
000000e180001DAS
00000e180001DAS
06000000180001DAB
000EREY180001DAF
200e0e180001DB4
P60e0e180001DBY
P60e0e180001DBD
feeeERe186001DC2
Qoe0eee180001DC5
0606pe180001DCB
060epe180001DCE
060epe180001DCE
000eReY180001DCE
P60REReA180001DCE
060eBe180001DD4
0BPEBRY180BA1DD6
deeeere1860010D8
00000001500010DA
06000e180001DEL

loc_180001DAS8:

; load assembly and invoke its entry point

:0P0PORO180001DA8 // Invoke the specified method from the Type interface.
Ltext:
Ltext:
text:
text:
Jtext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:

; CODE XREF: CppHostCLR+3CBTj

mov rax, [rcx]

lea rdx, [rbp+78h+spAppDomainThunk]

mov [rsp+158h+vtLengthRet], rdx

mov [rsp+158h+psaStaticMethodArgs], rl5 ; ® = no arguments
lea rdx, [rbp+78h+var A8]

mov [rsp+15@h+vtEmpty], rdx

xor rad, rod 3 NULL

mov r8d, 118h ; BindingFlags

mov rdx, [rdi] ; bstrStaticMethodName

call qword ptr [rax+1C8h] ; spType->InvokeMember_3(bstrStaticMethodName, /
; static_cast<BindingFlags>(BindingFlags_InvokeMethod /

;| BindingFlags Static | BindingFlags Public), /
; MULL, vtEmpty, psaStaticMethodArgs, &vtlengthRet);

mov ebx, eax

test eax, eax

jns short print_result_stop_endp

lea rcx, aFailedToInvoke ; "Failed to invoke GetStringlength w/hr 8"...
jmp print_error_goto_cleanup

Figure 5: Invoking .NET assembly loader

String Encryption

Hardcoded .NET version strings and several persistence related strings (in earlier variants) are

encrypted using a custom algorithm. This algorithm is based on a single unit T-box implementation of
AES-256, combined with 16-byte XOR. Both keys are hardcoded and differ for each sample, except for

the oldest variant. The oldest variant set keys to “1234567890ABCDEF1234567890ABCDEF” and
“1234567890ABCDEF” respectively and did not change between samples:

Jtext:
.text:
Ltext:
Jtext:
Ltext:
Jtext:
Ltext:
Jtext:
Ltext:
Jtext:
Ltext:
Ltext:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

PBOREV1800Q1AAS
0B00000180001AAA
P0000e01800@1AAD
P000REV180001ABO
P0000e0180001AB3
P000REV180001ABS
P0000e01800@1ABD
P000REV180001ACA
P0000e0180001ACE
P0000e0180001ACD
P0000e0180001AD2
P0000e0180001ADT

lea r8, [rsp+48h+decoded_string] ; buffer for decoded string
not rcx

lea edx, [rcx-1]

mov rcx, r9 ; encrypted string, base6d encoded
call basebd_decode

mov rcx, [rsp+48h+decoded_string] ; Src

lea r9, AES_key ; "uofFQ8beQafYu3wgftLxlkfyvzVWFIBuU”
mov edx, eax ; Size

lea rax, XOR_key ; "uofFQ8bseQafyYu3lwg”

lea r8, [rsp+48h+decrypted_string] ; Dest

mov [rsp+48h+var_28], rax ; _ inte4

call aes_xor_decrypt

4/18

11/19/2020

Threat Spotlight: MenuPass/QuasarRAT Backdoor

Figure 6: Example AES and XOR decryption keys

Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Jtext:
Jtext:
Ltext:
Jtext:
Jtext:
Ltext:
Ltext:
Jtext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
Jtext:
Ltext:
Ltext:
Jtext:
Jtext:
Ltext:

PoeeeeR18eRe15D8
Poeeeen18eRe15D8
Poeeeen18eRe15DC
PooeeeY18eRe15ER
P0000e0180R@15ES
P0000eV180R@15ES
PAEREV180RA15EA
PA0EREV180RA15EE
peoobeR180R@15FE
P0EREV180RA15F3
ooeebea180B@15F7
PB000EV180R@15FB
000ebEO180BO15FF
0eeebEA180B01602
Doeoooolsoeelond
ooeebea186B01604
Doeoooolsoeelond
Doeoooolsoeeloes
oDoeoecolseeeloac
ooeoecolsecelole
ooeoecolseeelols
ooeoecolseeelole
Doeooee18000161A
Doeooeol8ee0161E
PBEEEER18ERR1622
Doeooeel8eeR1627
PBEERLEY18ERE162B
PBEEEA18ERR162E
Poeeeen18eRe1633
PBEERLER18ERE1633
PoeeeeR18eRe1633
PBEERER180RA1636
PoeeeeY18eRe1638
PoeeeeY180Re163B
PBEEeER180RO163E
vooeoeolseeelode
PooeeeolseRel644
POeeRER180RO1648
Pooeoeo1800@164B
PB0o0eR180R@16AF
POeRER180RA1653
ooeebea180B@1657
00000E0180B0165A

init loop:

decrypt_loop:

xor_loop:

lea
lea
call
dec
jnz
mov
xor
mov
mov
mov
mov
test
Jjz

mov
lea
lea
mov
mov
mov
mov
mov
call
lea
sub
mov

mov
xor
inc
dec
jnz
lea
add
mov
mov
mov
mov
cmp

Figure 7: String decryption routine

Digital Certificates

; CODE XREF: aes_xor_decrypt+9@l]j
rdx, [rbp+4Fh+var_C@]
rcx, [rbp+dFh+aes_key]
aes_init key
riib
short init_loop
rcx, [rbp+4Fh+xor_key_ptr]
esi, esi
rax, [rcx]
[rbp+4Fh+xor_key], rax
rax, [rcx+8]
[rbp+4Fh+xor_key+8], rax
rbx, rbx ; data sirze
short endp_

; CODE XREF: aes_xor_decrypt+1821j
rax, [r13+8] ; encrypted data
rcx, [rbp+dFh+aes_key_scheduled]
rdi, [rsi+rax]
rdx, rdi
rax, [rdi]
[rbp+4Fh+qword_1], rax
rax, [rdi+8]
[rbp+4Fh+qword_2], rax
aes decrypt
rdx, [rbp+4Fh+xor key]
rdx, rdi
ecx, 1@h

; 16 bytes block of data

; CODE XREF: aes xor decrypt+E6lj
al, [rdx+rdi]
[rdi], al
rdi
rcx
short xor_loop
rcx, [rbp+4Fh+qword_1]
rsi, 10h
rax, [rcx] ; update XOR key
[rbp+AFh+xor_key], rax
rax, [rcx+8]
[rbp+4Fh+xor_key+8], rax
rsi, rbx ; data size
short decrypt_loop

Samples belonging to variant 3 of the loader present a valid digital signature from CONVENTION
DIGITAL LTD (serial number 52 25 B8 E2 2D 3B BC 97 3F DD 24 2F 2C 2E 70 0C) countersigned by

Symantec:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

5/18

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

Pt X

Details | Certification Path | "General Details | Certification Path |
Show: |<AII> j
?; Certificate Information
Fie_ld | Value | -
This certificate is intended for the following purpose(s): ‘_| Version V3
* Ensures software came from software publisher __]Serial number 5225b8e22d 3bbc97 3fdd ...
* Protects software from alteration after publication j| Signature algorithm sha256RSA |
___| Signature hash algorithm sha256
‘_| Issuer Symantec Class 3 Extended V...
3 Valid from 15 November 2017 00:00:00
*Refer to the certification authority’s statement for details. E |valid to 15 November 2018 23:59:59
=] subject CONVENTION DIGITAL LTD, IT... |

Issued to: CONVENTION DIGITAL LTD

Revocation Status : OK. Effective Date < 10 February 2019 15:34:27>

Next Update < 17 Feb 2019 15:34:27 >
Issued by: Symantec Class 3 Extended Validation Code ext Upda ebruary

Signing CA - G2

valid from 15/ 11/ 2017 to 15/ 11 2018

Install Certificate... | Issuer Statement | edit Properties,., | CopytoFie... |

Learn more about certificates Learn more about certificate details

o |

Figure 8: Digital certificate from variant 3

The .NET loader

Once executed, the malicious assembly will iterate through all files under
%WINDOWS%\Microsoft. NET and attempt to decrypt files matching a specified size. It uses an
implementation of RijndaelManaged algorithm in CBC mode:

uint num = 476121837u;
for (53)

:

d

uint num2;
itch ((num2 = (num *~ 495166

Figure 9: Finding encrypted payload

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor 6/18

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

¢ 326 326 ¢ y (rijndaelManaged, CipherMode.
num3 = (num2 * 1929454275u * 2786211111u);
ntinue;
2u:
num3 = (num2 * 2642935841u ~ 3984994927u);
H
ETH

22E(rijndaelManaged, ljNdwEDascAOX1AyLWBC.

2E(rfc2898DeriveBytes, 1jNdwEDascAOx1Ay
2 2E(rijndaelManaged) / 8));
= (num2 * 6277@5017u ~ 1246780582u);
H

= (num2 * 1872841487u 2247412591u);

"3

2E(rijndaelManaged, ljNdwEDascAQ
(rfc2898DeriveBytes, 1jNdwEDascAOx1AyLWBc.
12E(rijndaelManaged) / 8));
(num2 * S@566@@86u ~ 2362535059u);
i

-eam cryptoStream = 1jNdwEDascAOxLAyLHBc .)
: (memoryStream, 1jNdwEDascAOXLA

e
.;jc-"yptos.trean, nj, 9, A70
{cryptoStream);
Figure 10: Final payload decryption

If the decryption succeeds, the malware will attempt to load the decrypted assembly and invoke the
specified method:

(Array A_O, A 1, Array A 2, A_3, A_4)

Array. (Ae, A1, A2, A3, A 4);

Assembly
[] A®)

return Assembly.Load(A_O);

(Assembly A @)

A_O.

Figure 11. Invoking backdoor payload

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

The final payload assembly is stored as an encrypted file somewhere under the Microsoft. NET
Framework directory. The framework version is hardcoded in the loader binary in an encrypted form,
and in most samples set to “v4.0.30319”. The location is different per sample and the file name imitates
one of other the legitimate files found in the same directory. Example paths:

e %WINDOWS%\Microsoft. NET\Framework\v4.0.30319\WPF\ Fonts\GlobalSerif.CompositeFont.rsp
* %WINDOWS%\Microsoft. NET \ Framework\v4.0.30319\Microsoft.Build. Engine.dll.uninstall

The payload is decrypted and loaded in-memory as "Client". We have encountered two versions of the
Client: 2.0.0.0 and 1.3.0.0. They are similar, both having a version string in their configuration section
set to “2.0.0.0™:

Modules

Process All

Optimized Dynamic InMemory Order Version Timestamp

Yes MNo No 0 3 2.0 built by: NET472REL1 018 9:09:37 PM
Mo Yes 13.49.9.78 / PM
Mo No 2 2.0 built by: NET472REL1 26/2013 9:05:09 PM
Mo 3 4.7 2.0 built by:
Mo Yes 4 2.0.0.0 f15/2018 :07PM
Mo 4.7.3062.0 built by: NET472REL1 3/26/)5:27 PM
Mo G -7 2.0 built by: NET472REL1

Figure 12. Backdoor assembly in memory (version 2.0.0.0)

Modules
Process All 2 Search

Name Optimized Dynamic InMemory Order Version Timestamp
No No 0 4.6.1590.0 built by: NETFXREL2 7/14/2016 8:55:07 PM
No Yes 6 L 0

No No 2 4.6.159(ilt by: NETFXREL2 7/14/2

No 3 4 90.0 built by: NETFXREL2 7/14/2016 8:5
\[s} Yes 4 1.30. 5/30/2018 11:56:19 AM

No > 4.6.1590.0 built by: NETFXREL2 7/14, 5 8:57:44 PM
6 4.6.1590.0 built by: NETFXREL2 7/14/2016 8:57:52 PM
4.6.1590.0 built by: NETFXREL2 8
.6.1590.0 built by: NETFXREL2

Figure 13. Backdoor assembly in memory (version 1.3.0.0)

QuasarRAT Backdoor

QuasarRAT is an open-source project that proclaims to be designed for legitimate system

administration and employee monitoring. Its code, together with documentation, can be found on
GitHub.

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor 8/18

11/19/2020

Threat Spotlight: MenuPass/QuasarRAT Backdoor

Features:

Quasar

@build passing | downloads 61k total w

Free, Open-Source Remote Administration Tool for Windows

Quasar is a fast and light-weight remote administration tool coded in C#. The usage ranges from user support through day-to-
day administrative work to employee monitoring. Providing high stability and an easy-to-use user interface, Quasar is the

perfect remote administration solution for you.

Features

Figure 14. README.md from Quasar GitHub repository

TCP netwaork stream (IPv4 & IPv6 support)

Fast netwaork serialization (Protocol Buffers)
Compressed (QuickLZ) & Encrypted (TLS) communication
Multi-Threaded

UPnP Support

No-Ip.com Support

Visit Website (hidden & visible)

Show Messagebox

Task Manager

File Manager

Startup Manager

Remote Desktop

Remaote Shell

Download & Execute

Upload & Execute

System Information

Computer Commands (Restart, Shutdown, Standby)
Keylogger (Unicode Support)

Reverse Proxy (SOCKS5)

Password Recovery (Common Browsers and FTP Clients)

Registry Editor

Behaviour

The .NET payload is a heavily obfuscated backdoor based on an open-source remote administration
tool called QuasarRAT!3! The configuration is stored in a class called Settings, with sensitive string
values encrypted with AES-128 in CBF mode and base64 encoded. The string’s decryption key is
derived from the ENCRYPTIONKEY value inside Settings and is the same for all strings:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

9/18

https://github.com/quasar/QuasarRAT

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

Figure 15. Partially encrypted config (after deobfuscation)

The threat actor modified the original backdoor, adding their own field in the configuration, and code
for checking the Internet connectivity. If a valid URL address is specified in the last value of config, the
malware will try to download the content of that URL. It will proceed with connecting to the command
and control (C2) server only once the download is successful:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor 10/18

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

t_connect

none" 3

"none™)
ane)

WebClient

new Random I' :I . Next {

Figure 16: Custom connectivity check

The backdoor communicates with the C2 server whose IP address is provided in the HOSTS value of
the configuration. All communication is encrypted with AES-128 in CBF mode using KEY and
AUTHKEY values from configuration:

M Value
b @
4 @ x_UF2FEW_UEFFCIE_ull

-

-

;l
V)
y
ai
aﬁ
a&

Figure 17. C2 IP address decrypted in memory

Decrypted configuration examples:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor 11/18

11/19/2020

Additional Observations

Loader Variant Differences

Threat Spotlight: MenuPass/QuasarRAT Backdoor

2.0.0.0
195.54.163.74:443;
53824

[redacted)]

[redacted]
%APPDATA%

SubDir

Client.exe

FALSE

FALSE
9s11UBvnvFDb76ggOFFmMnhIK
Quasar Client Startup
FALSE

FALSE
sf9VkP5iAf80k5M289)n
[redacted]

Logs

FALSE

FALSE

none

Features common for all variants:

e Most of the samples we collected seem to be compiled with VisualStudio 2010 RTM build 30319,

2.0.0.0
185.158.[redacted]:443;
5523043

[redacted]

[redacted]

%APPDATA%

SubDir

Client.exe

FALSE

FALSE
ERveMB6XRx2pmYdoKjMnoN1f
Quasar Client Startup
FALSE

FALSE
HYLaOVz0dt5019LBcVHO
[redacted)]

Logs

FALSE

FALSE

none

with the exception of variant 4, which uses a different/unknown compiler signature

* Some strings are encrypted with an algorithm based on a custom implementation of AES256

combined with XOR

e The .NET loader is always injected using the Microsoft CPPHostCLR method; its entry point
class/method names are random and differ for each sample

e The .NET loader is obfuscated with ConfuserEx v1.0.0

Features common for variants 2 and newer:

e The .NET loader size is 65,536 bytes
e The .NET loader internal name imitates a random valid file name from the .NET runtime

directory

e The second stage is encrypted using an XOR-based algorithm with two hardcoded 1-byte keys,

differing for each sample

¢ AES and XOR keys for string decryption are stored hardcoded as randomly generated strings,

differing for each sample

Variant 1:

¢ Assumed development timeline: June 2017 — December 2017

e Size of the initial loader binary: ~150 KB

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

12/18

11/19/2020

Threat Spotlight: MenuPass/QuasarRAT Backdoor

.NET loader size: 56,832 bytes
.NET loader internal name: loader.dat/loader2.dat
Contains only one layer of obfuscation
Second stage encrypted with simple XOR, using a hardcoded key composed of 8 random
upper/lowercase letters
Contains a randomly named export that creates a service as persistence mechanism
Hardcoded string decryption keys
o AES = 1234567890ABCDEF1234567890ABCDEF
o XOR =1234567890ABCDEF

Variant 2:

Assumed development timeline: January 2018
Size of the initial loader binary: 163 - 169 KB

Variant 3:

Assumed development timeline: February 2018
Size of the initial loader binary: 262 KB
A second layer of obfuscation has been added
A function inside ServiceMain decrypts the second stage DLL (SveDIlL.dll) and shellcode-like
routine that injects this DLL into memory and calls the "FuckYouAnti" export
2nd stage + loader size: 163,840 bytes
Some samples of this version contain debugging strings
Some samples of this version are signed with a valid certificate from CONVENTION DIGITAL
LTD issued by Symantec
Serial number 52 25 B8 E2 2D 3B BC 97 3F DD 24 2F 2C 2E 70 0C

Variant 4:

Assumed development timeline: April 2018

Size of the initial loader: 439 KB

2nd stage + loader size: 236,532 bytes; there is additional ~72kb of static buffers comparing to
previous versions

Setting persistence mechanism has now been shifted to a standalone module (DILLJUICE)/#/
This version uses a different/unknown compiler

Variant 5:

Assumed development timeline: April — May 2018

Size of the initial loader: 291 — 293 KB

2nd stage + loader size: 236,532 bytes

Second stage decryption functionality moved to separate subroutine

Added printing of a random base64 string of a random length between 2,000 and 5,000 bytes,
possibly as a simple polymorphic measure (only version 5)

In several later samples from that variant the FuckYouAnti function from AntiLib creates an
additional mutex "ABCDEFGHIGKLMNOPQRSTUVWXYZ”

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

13/18

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

Variant 6:

Assumed development timeline: July — August 2018
Size of the initial loader: 341 — 394 KB
e 2nd stage + loader size: 236,532 bytes
Second stage decryption moved back to ServiceMain

Variants:
SHA256 Vari- Size File Names
ant
e24156ed330e37b0d52d362eeb66¢c148d09¢c25721b1259900c¢1- 1 153600 prints.dll
da5e16f70230a
9bbc5b8ad7fb4ce7044a2ced4433bf83b4ccc624a74f8bafb1c5932¢c76511308 1 153600 EntApp.dll
fe65e5c089f8a09c8a526ae5582aef6530e1139d4a995eb471349de16e76ec71 1 153600 LSMsvc.dll
cf08dec0Ob2d1e3badde626dbbc042bc507733e2454ae9a0a7aa256e04af0788d 1 155136 useracc.dll
239e9bc49de3e8087dc5e8b0ce74944d- 2 166912 Se-
abce974de220b0b04583dec5cd4af3ses zInsrsve.dll
cf981bda89f5319a4a30d78e2a767c54dc8075dd2a499ddf79b25f12ec6edd64 2 166912 wlytkans-
ve.dll
41081e93880cc7eaacd24d5846ae15016eb599d745809e805deed- 2 166912 Whbyfzios-
b0b2f7d0859 rve.dll
1ddb533be5fa167c9abfcebd1777690f26f015fcf4bd82efebd0c5c0b1e135f2 2 167728 tk.dll
26866d6dcb229bf6142ddfdbf59bc8709343f18b372f3270d01849253f1caafb 3 268872 Mpnr-
rdim.dll
7f7fc0db3eal3545f114ed41853e4dc3764addfa352c28b1f6643d3fdaf7076c5 3 268872 Wit-
waservce.dll
c8c707575b- 3 268872 lIcy-
b87¢c17ec17c4517¢c99229a993f80a76261191b2b89d3cb88e24aea owsvcex-
t.dll

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

14/18

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

6037b5ce5e7edab8972¢c7d6dfe723968bea7b40ac05b0f8c779a1f1d542b4aed

cc02561e5632a2c8b509761ee7a23a75e3899441f9¢c77d778d1a770f0f82a9b7

c8f2cc7c4fdf8a748cb45f6¢fb21dd97655b49dd1e13dd8cc59a5eab69cc7017

0eff243e1253e7b360402b75d7cb5bd2d3b608405daece432954379a56e27 bff

31f0ff80534007c054dcdbaf25f2449ee7856aceac2962f4d8463f89f61bb3b0

e8f00263b47b8564da9bc2029a18a0fec745377372f6f65a21aa2762fc626d4c

56f727b3ced15e9952014fc449b496bfcf3714d46899b4bb289d285b08170138

721caf6de3086cbab5a3a468b21b039545022¢39dc5de1d0f438c701ecc8e9df

f8a7e8a52de57866c6c01e9137a283¢c35cd934f2f92c5ace489b0b31e62eebe?

f1c5a9ad5235958236b1a56a5aa26b06d0129476220c30baf0e1c57038e8cddb

0aa3d394712452bba79d7a524a54aa871856b4d340daae5bf833547-
da0f1d844

Summary:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

N/A[1]

N/A4

268872

297984

297984

403948

399280

400947

358867

349810

377236

79360

73728

Upgmn-
nphost.dll

Pnniorpau-
to.dll,
Svchost-
Sve.dll

Usyaer-
DataAc-
cessRes.dll

11-
Private-
Batch.dll

Wostqrk-
folder-
ssve.dll

11-
Private-
Batch.dll

daoris.dll

updgwn-
phost.dll

USHBEER-
DATAAC-
CESS-
RES.DLL,
10-
FileCopy.dll

ZpNxNa-
Q.dll,
Svchost-
Sve.dll

Svchost-
Svc.dll

15/18

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

In testing, CylancePROTECT® detects and prevents QuasaRAT and its variants. In fact, our Al-driven
security agents demonstrated a predictive advantage!5! of over three years against the majority of

current QuasarRAT samples.

Indicators of compromise (IOCs):

Indicator

Type

CONVENTION DIGITAL LTD

Certificate

52 25 B8 E2 2D 3B BC 97 3F DD 24 2F 2C 2E 70 0C

Certificate serial

FuckYouAnti DLL Export
195.54.163.74 Cc21IpP
9s1IUBvnvFDb76ggOFFmnhIK Mutex
ERveMB6XRx2pmYdoKjMnoN1f Mutex
ABCDEFGHIGKLMNOPQRSTUVWXYZ Mutex
AntiLib\injectcode.cpp PDB path
AntiLib\enableDebugPriv.cpp PDB path
C:\ods.log Filename
YARA

The following YARA rule can be used to identify QuasarRAT loaders:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

16/18

https://threatvector.cylance.com/en_us/home/cylance-vs-future-threats-the-predictive-advantage.html

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

import "pe"
rule QuasarRAT _Loader
{ meta:
description = "MenuPass/APT10 QuasarRAT Loader"
strings:

$rdatal = " \"#$%&'()*+,-
10123456789::<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[*_*ABCDE-
FGHIJKLMNOPQRSTUVWXYZ{|}~" ascii

$rdata2 = "CONOUTS$" wide

condition:
/l Has MZ header?
uint16(0) == 0x5a4d and
/I File size less than 600KB
filesize < 600KB and
/l'ls a DLL?
pe.characteristics & pe.DLL and
I/l Contains the following sections (in order)
pe.section_index(".text") == 0 and
pe.section_index(".rdata") == 1 and
pe.section_index(".data") == 2 and
pe.section_index(".pdata") == 3 and
pe.section_index(".rsrc") == 4 and
pe.section_index(".reloc") == 5 and
/l Has the following export
pe.exports("ServiceMain") and
/I Does not have the following export
not pe.exports("WUServiceMain") and
/l Has the following imports
pe.imports("advapi32.dil", "RegisterServiceCtrIHandlerW") and
// Contains the following strings in .rdata
for all of ($rdata*) : ($ in
(pe.sections[pe.section_index(".rdata")].raw_data_offset..pe.sections[pe.section_index
(".rdata")].raw_data_offset+pe.sections[pe.section_index(".rdata")].raw_data_size))

}

The following YARA rule can be useful for detecting possible high-entropy payloads stored within
the %3WINDOWS% \Microsoft. NET\Framework folder (these files typically have a double file
extension):

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor

17/18

11/19/2020 Threat Spotlight: MenuPass/QuasarRAT Backdoor

import "pe"
import "math"
rule Possible_QuasarRAT_Payload
{
meta:
description = "Possible encrypted QuasarRAT payload"
condition:
uint16(0) != 0x5A4D and
uint16(0) != 0x5449 and
uint16(0) != 0x4947 and
math.entropy(0, filesize) > 7.5
}
Citations:

https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor 18/18

