
Study of an APT attack on a
telecommunications
company in Kazakhstan

Doctor Web Head Office

2-12A, 3rd str. Yamskogo polya

Moscow, Russia

125040

Website: www.drweb.com

Phone: +7 (495) 789-45-87

Refer to the official website for regional and international office information.

Study of an APT attack on a telecommunications company in Kazakhstan

3/23/2022

© Doctor Web, Ltd., 2022. All rights reserved.

This document is the property of Doctor Web, Ltd. (hereinafter - Doctor Web). No part of this

document may be reproduced, published or transmitted in any form or by any means for any

purpose without proper attribution.

Doctor Web develops and distributes Dr.Web information security solutions which provide

efficient protection from malicious software and spam.

Doctor Web customers can be found among home users from all over the world and in

government enterprises, small companies and nationwide corporations.

Dr.Web antivirus solutions are well known since 1992 for continuing excellence in malware

detection and compliance with international information security standards. State certificates and

awards received by the Dr.Web solutions, as well as the globally widespread use of our products

are the best evidence of exceptional trust to the company products.

3
3

Table of Contents

4Introduction

5Remote Rover

7Conclusion

8Operating Routine of Discovered Malware Samples

8BackDoor.PlugX.93

18BackDoor.Siggen2.3622

21BackDoor.Whitebird.30

27Trojan.DownLoader43.44599

37Trojan.Loader.891

45Trojan.Loader.896

54Trojan.Uacbypass.21

59Appendix. Indicators of Compromise

4
4

Introduction

In October 2021, one of Kazakhstan’s telecommunication companies contacted Doctor Web,

with suspicion of malware in the corporate network. During the first look, we found backdoors

that were previously only used in targeted attacks. During the investigation, we also found out

that the company’s internal servers had been compromised since 2019. For several years,

Backdoor.PlugX.93 and BackDoor.Whitebird.30, the Fast Reverse Proxy (FRP) utilities, and

RemCom have been the main attackers' tools.

Because of the hackers' mistake, we got a unique opportunity to study the lists of victims and

find out what backdoor management tools were used. Based on the acquired information, we

concluded that the hacker group specialized in compromising the Asian companies’ mail servers

with Microsoft Exchange software installed. That said, we also found victims from other

countries, including:

· Egyptian government agency

· Italian airport

· USA marketing company

· Canadian transport and woodworking companies

The logs collected along with the command and control server included victims infected from

August 2021 to early November of the same year. Yet, in some cases, BackDoor.Whitebird.30

was installed not only on the server running Microsoft Exchange, but on domain controllers, too.

Based on the tools, methods, and infrastructure used, we conclude that the Calypso APT hacker

group is behind the attack.

5
5

Remote Rover

Command and control server for BackDoor.Whitebird.30 calls Remote Rover. It allows hackers

to remotely launch applications, update the backdoor configuration, download and upload files.

Besides that, you can use a command shell via Remote Rover. This is what the control server

interface looks like:

Remote Rover came with a configuration file CFG\default.ini with the following content:

E:\ \ \2021\RR\ \telecom.cfg

OneClock.exe

If you translate the content from Chinese into English, you can get this path:

E:\personal use\Independent research and development
remote\2021\RR\Configuration backup\telecom.cfg

For a detailed description of the malware used and how it works, see the Dr.Web Virus Library.

· BackDoor.Siggen2.3622

· BackDoor.PlugX.93

· BackDoor.Whitebird.30

· Trojan.Loader.891

6
6

· Trojan.Loader.896

· Trojan.Uacbypass.21

· Trojan.DownLoader43.44599

7
7

Conclusion

During the investigation of the targeted attack, Doctor Web virus analysts found and described

several backdoors and trojans. It’s worth noting that the attackers managed to remain

undetected for as long as other targeted attack incidents. A hacker group compromised a

telecommunications company's network more than two years ago.

Doctor Web specialists recommend regularly checking network resources’ efficiency and timely

fixing failures that may indicate the presence of malware on the network. Data compromise is

one of targeted attacks’ main dangers, but the long-term presence of intruders is also a cause

for concern. Such development allows them to control the organization’s work for many years

and gain access to especially sensitive information at the proper time. If you suspect malicious

activity in the corporate network, the best option is to contact the Doctor Web virus laboratory

for qualified help. Dr.Web FixIt! helps you detect malware on servers and workstations. Taking

adequate measures timely will minimize the damage and prevent the serious consequences of

targeted attacks.

8
8

Operating Routine of Discovered Malware Samples

BackDoor.PlugX.93

Added to the Dr.Web virus database: 2021-10-22

Virus description added: 2021-10-30

Packer: absent

Compilation date: 2020-08-13

SHA1 hash: a8bff99e1ea76d3de660ffdbd78ad04f81a8c659

Description

The PlugX backdoor module is written in C. It’s designed to decrypt the shellcode from the

registry that loads the main backdoor into memory.

Operating principle

First, the backdoor receives the address of the VirtualProtect() function by hash. It then

uses this address to change access rights to PAGE_EXECUTE_READWRITE, starting from the

function at 0x10001000 and ending with the entire .text section:

Getting the function’s address by the hash passed as a parameter:

9
9

Script to get a function by hash:

import pefile

ror = lambda val, r_bits, max_bits: \

10
10

 ((val & (2**max_bits-1)) >> r_bits%max_bits) | \

 (val << (max_bits-(r_bits%max_bits)) & (2**max_bits-1))

max_bits = 32

library_path_list = [...] # absolute path dlls

def get_func_addr(hash):

 for library_path in library_path_list:

 library = library_path.split('\\')

 name_dll = library[len(library) - 1].upper() + b'\x00'

 hash_name_dll = 0

 for i in name_dll:

 hash_name_dll = ord(i) + ror(hash_name_dll, 0x0D, max_bits)

 hash_name_dll = 0 + ror(hash_name_dll, 0x0D, max_bits)

 pe = pefile.PE(library_path)

 for exp in pe.DIRECTORY_ENTRY_EXPORT.symbols:

 func_name = exp.name + b'\x00'

 hash_name_func = 0

 for i in func_name:

 hash_name_func = ord(i) + ror(hash_name_func, 0x0D,
max_bits)

 if (hash_name_dll + hash_name_func == hash):

 print '{}-> 0x{:08x} -> {}'.format(name_dll, hash,
exp.name)

 return

Changing the permissions to PAGE_EXECUTE_READWRITE was necessary to decrypt the code

using the XOR operation:

11
11

One version of the backdoor has dynamic XOR encryption. It has decryption at the beginning of

the function:

And with encryption at the end of the function:

12
12

Facilitating the script’s work for IDAPython:

import idaapi

def xor_dec(address, count, key):

 for i in xrange(count):

 idaapi.patch_dword(address, idaapi.get_dword(address) ^ key)

 key += idaapi.get_dword(address)

 address += 4

Before performing malicious actions, the backdoor, as in the case of VirtualProtect(),

receives functions’ addresses that it needs to work

13
13

Received features:

Function name Hash

CloseHandle 0x528796C6

CreateFileA 0x4FDAF6DA

DeleteFileA 0x13DD2ED7

ExitProcess 0x56A2B5F0

GetAdaptersInfo 0x62C9E1BD

GetModuleFileNameA 0xFE61445D

GetSystemDirectoryA 0x60BCDE05

LoadLibraryA 0x726774C

ReadFile 0xBB5F9EAD

14
14

Function name Hash

RegCloseKey 0x81C2AC44

RegDeleteValueA 0x3846A3A8

RegEnumValueA 0x2EC95AA4

RegOpenKeyExA 0x3E9E3F88

RegQueryValueExA 0x8FF0E305

VirtualAlloc 0xE553A458

VirtualFree 0x300F2F0B

VirtualProtect 0xC38AE110

WinExec 0x876F8B31

WriteFile 0x5BAE572D

In addition, the backdoor checks if it is executed in a sandbox:

15
15

After receiving the function addresses and checking for execution in the sandbox,

BackDoor.PlugX.93 removes the updatecfgSetup task from the task scheduler:

The key for shellcode encryption is MD5 from the following registry key values:

16
16

HKLM\Software\Microsoft\Windows NT\CurrentVersion\InstallDate

HKLM\System\ControlSet001\Control\ComputerName\ComputerName

The shellcode is stored in the following registry keys:

HKLM\Software\BINARY

HKCU\Software\BINARY

17
17

Before running the shellcode, it’ll be decrypted in 2 steps: first, using the RC4 algorithm:

then, with XOR:

18
18

BackDoor.Siggen2.3622

Added to the Dr.Web virus database: 2021-11-03

Virus description added: 2021-xx-xx

Packer: UPX

SHA1 hash: be4d8344669f73e9620b9060fd87bc519a05617a

Description

A backdoor written in Go. It’s packed by UPX. Investigated backdoor version V2.5.5 z 2021.7.19.

Operating principle

In the beginning, the malicious code checks if another backdoor copy is running. The trojan

checks for the c:\windows\inf\mdmslbv.inf file. If it exists, the trojan starts reading. You

can use the following script to decrypt:

import sys

with open(sys.argv[1], 'rb') as f:

 d = f.read()

s = bytearray()

for i in range(len(d)):

 s.append(d[i])

for i in range(len(s)-2, 0, -1):

 s[i] = (((s[i + 1] * s[i + 1]) ^ s[i]) & 0xff)

with open(sys.argv[1] + '.dec', 'wb') as f:

 f.write(s)

Encrypted file’s length

The packet’s structure:

19
19

· random string from 10 to 19 characters long

· between the <a>... tags contains the backdoor process’s PID

· between the ... tags is the process’s name

· random string from 10 to 19 characters long

The trojan checks for the existence of a process with the specified parameters. If it finds it, the

trojan terminates its work.

If it doesn’t find a process with the specified parameters or the mdmslbv.inf file itself, the

trojan generates data as shown above. Then, it encrypts and writes to the c:

\windows\inf\mdmslbv.inf.

Communication with the command and control server

The trojan has command and control server: blog[.]globnewsline[.]com.

The trojan sends a GET request to the following URL:

hxxps://blog.globnewsline.com:443/db/db.asp using User-Agent "Mozilla/5.0 (X11;

Windows x86_64; rv:70.0) Gecko/20100101 Firefox/70.0". If the server response contains the

substring Website under construction, then the trojan considers that the control server is

available. If the server is unavailable, the malicious code checks for the presence of a proxy

configuration file c:\windows\inf\bksotw.inf. If that’s present, the trojan reads the

parameters written in the file.

The backdoor uses MAC addresses as the network interface bot ID. For heartbeat requests, the

following POST requests are used:

https://blog.globnewsline.com:443/db/db.asp?m=w&n=~A<macaddr>.t

where <macaddr> is the MAC address string, converted to uppercase with colons removed.

Next, a GET request is sent to get a list of commands:

https://blog.globnewsline.com:443/db/A<macaddr>.c

The server response is encrypted in the same way as the file with the backdoor process’s PID.

The following commands can be executed:

· up

· down

· bg

· bgd

· getinfo

https://blog.globnewsline.com:443/db/A<macaddr>.c

20
20

The command’s result is encrypted the same way as the command itself was encrypted. Then, it’s

sent in the POST request’s body to the following URL:

https://blog.globnewsline.com:443/db/A<macaddr>.c

21
21

BackDoor.Whitebird.30

Added to the Dr.Web virus database: 2021-10-21

Virus description added: 2021-xx-xx

Packer: absent

Compilation date: 2021-29-03

SHA1 hash: abfd737b14413a7c6a21c8757aeb6e151701626a

Description

A multi-functional backdoor trojan for 64-bit and 32-bit Microsoft Windows operating system

family. It’s designed to establish an encrypted connection with the command and control server

and unauthorized control of an infected computer. It has a file manager and Remote Shell’s

functions.

Preparing procedures

At the beginning of the work, the backdoor decrypts the overlay provided by the shellcode. The

first encryption layer is removed by the following algorithm:

k = 0x37

s = bytearray()

for i in range(len(d)):

 c = d[i] ^ k

 s.append(c)

 k = (k + c) & 0xff

The second layer is the XOR operation with the key 0xCC.

This overlay contains:

· configuration of trojan

· module for bypassing UAC

Configuration looks as follows:

struct st_proxy

{

 char proxy_addr[32];

 char proxy_login[64];

 char proxy_password[64];

22
22

 _BYTE pad[2];

};

struct st_config

{

 char cnc_addr[4][34];

 st_proxy proxies[4];

 char home_dir[260];

 char exe_name[50];

 char loader_name[50];

 char shellcode_name[50];

 char software_name[260];

 char startup_argument[50];

 _DWORD reg_hkey;

 char reg_run_key[200];

 char reg_value_name[52];

 char taskname[52];

 _DWORD mstask_mo;

 char svcname[50];

 char svcdisplayname[50];

 char svcdescription[256];

 char reg_uninstall_key[50];

 char inject_target_usr[260];

 char inject_target[260];

 _BYTE byte0[2];

 _BYTE flags;

 _BYTE pad[3];

 _DWORD keepalivetime;

 unsigned __int8 key[16];

};

The flags field displays which autoload methods the trojan should use, and what launch

features are:

23
23

enum em_flags

{

 GOT_ENOUGH_RIGHTS= 0x1,

 UNK_FLAG_2 = 0x2,

 UNK_FLAG_4 = 0x4,

 INSTALL_AS_MSTASK = 0x8,

 INSTALL_AS_SERVICE = 0x10,

 RUN_WITH_ARGUMENT = 0x20,

 INJECT_TO_PROCESS = 0x40,

 RUN_AS_USER = 0x80,

};

If the launch is specified via the task scheduler (INSTALL_AS_MSTASK), then the configuration

flags creates a mutex after decrypting. That prevents restart:

Next, it checks if the trojan has enough rights to launch in the way that was previously specified

in the configuration. If not, it restarts itself to bypass UAC.

Trojan checks for the presence of a file in the path

C:Users\Public\Downloads\clockinstall.tmp, and if it exists, it deletes

clockinstall.tmp.

If the clockinstall.tmp file is missing, it checks if the install file exists in the folder from

which the trojan was launched. If it exists, it removes it.

Then, it installs itself into the system in accordance with the type specified in the configuration.

The backdoor will also try to hide its activity from the user.

If the trojan runs on a 32-bit OS, then the same mechanism for hiding a service from running

ones is valid, as in BackDoor.PlugX.28, deleting that structure from the list of

ServiceDatabase structures. That corresponds to the trojan service.

If the configuration specifies that the trojan should be injected into a process, then it’ll be

injected into the target process. If the RUN_AS_USER flag is specified in the configuration, then

the trojan will wait until at least one authorized user appears. After that, it’ll create its own

process, but on behalf of the user.

https://vms.drweb.ru/virus/?i=21507745

24
24

Regardless of the trojan's autorun type, only one process can communicate with the command

and control server. This creates a mutex:

Before attempting to establish a connection with the command and control server, trojan

determines the proxy server settings. For this purpose:

· The presence of the <process_name>.ini file in the folder from which the trojan process

was launched is checked. Example of the configuration:

[AntiVir]

Cloud=0A0804D2242000
0000000000000000000000000000299CC1003C9CC10098F11900DCF1190062F21900000000
00E02AC300CC004501D8F11900
0001

· Reads a file named <loader_name>.tmp in the trojan folder, where <loader_name> is

the value from the configuration

· Reads proxy settings from registry

[HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings,

keys ProxyEnable and ProxyServer

· Reads proxy settings from Mozilla Firefox settings - %APPDATA%
\Mozilla\Firefox\<profile>\prefs.js

· Checks for stored login:password from the proxy server in Mozilla Firefox and Internet

Explorer

Control server protocol

Establishing a connection to the server mimics the creation of a TLS1.0 connection between the

client and the server. Trojan body contains two buffers:

1. Contains the TLS1.0 Client Hello package:

2. Contains TLS 1.0 Client Key Exchange packets with key length 0x100 bytes, Change Cipher

Spec, Client Handshake Finished:

25
25

When sending a Client Hello packet, the trojan encrypts all bytes of the Client Random field,

starting from the 4th one, using the XOR method with random bytes. It also records the current

time in the first 4. The server's response to this message is accepted, but the data is ignored.

When sending the second packet, the backdoor also encrypts the Client Key Exchange packet’s

public key field using the XOR method with random bytes, and writes its 28-byte key into the

data of the Client Handshake Finished packet. That’ll be used to encrypt and decrypt packets

sent or received from the server. The backdoor encrypts the last 4 bytes of the Client Handshake

Finished packet with random bytes. Then, it sends it to the command and control server. In

response, the server sends its own key. That key is used to initialize the key shared with the client.

After that, the backdoor enters the command processing cycle from the control server. The

traffic between the client and the server is encrypted using the RC4 algorithm.

The list of commands:

opcode Command

0x01 Gathering information regarding the infected device

0x02 Remote shell

0x03 File manager (see below for commands ending in 3)

0x100 Keep-Alive

0x103 Open file for writing

26
26

0x203 Download a file

0x303 Data to be written

0x400 Reconnect to server

0x403 Obtain information about disk or directory listing;

0x500 To finish work

0x503 Move a file

0x600 Delete proxy configuration ini file

0x603 Delete a file

0x703 Run a process

0x700 Execute a command during ShellExecute

0x800 Renew configuration

27
27

Trojan.DownLoader43.44599

Added to the Dr.Web virus database: 2021-10-15

Virus description added: 2021-10-20

Packer: absent

Compilation date: 2020-07-13

SHA1 hash: 1a4b8232237651881750911853cf22d570eada9e

Description

The trojan is written in C++. It’s used for unauthorized control of an infected computer.

Operating principle

In the beginning, the trojan decrypts the C&C server’s IP addresses and ports using the XOR

operation:

import idaapi

address = 0x416200

for i in xrange(0x7c):

 idaapi.patch_byte(address + i, idaapi.get_byte(address + i) ^ 0xEF)

Decryption result:

28
28

C&C server—159.65.157.100:443

Communication with it occurs using sockets:

29
29

Depending on the time, the connection to the required C&C server will be selected:

30
30

The trojan creates file tmp.0 in folder %tmp%, that it use as log.

31
31

Collect information about the system:

32
32

33
33

34
34

Trojan.DownLoader43.44599 pushes each value onto a stack before encrypting and sending the

collected data. The transferred data looks as follows:

struct computer_info {

 string computer_name;

 string user_name;

 uint32_t major_version;

 uint32_t minor_version;

 uint32_t build_number;

 uint32_t computer_bitness;

 string March01;

 uint32_t code_page_id;

 uint32_t oem_code_page_id;

};

To encrypt the information collected about the system, the AES128 algorithm is used in CBC

mode.

The key and initialization vector are embedded inside:

35
35

The decryption method looks as follows:

from Crypto.Cipher import AES

key = '\x95\x2B\x2D\xBF\x09\xC5\x2F\x80\xB4\xBC\x47\x27\x29\xB3\x28\x09'

iv = '\x63\x5F\x72\x2A\xBB\xE3\xE8\x95\xF8\xF9\x32\x87\x53\x6A\x77\xFB'

enc = ...

decipher = AES.new(key, AES.MODE_CBC, iv)

open('dec', 'wb').write(decipher.decrypt(enc))

The command execution cycle received from the C&C server:

36
36

Table of commands compiled from the results of this cycle:

Command ID Command

0x51 Creating cmd.exe process

0x52 Execution command exit in cmd.exe

0x54 Execute commands in the cmd.exe console;

0x60 Creating the flow that reads, writes, and encrypts files.

37
37

Trojan.Loader.891

Added to the Dr.Web virus database: 2021-10-15

Virus description added: 2021-xx-xx

Packer: absent

Compilation date: 2021-09-03 12:04:44

SHA1 hash: 595b5a7f25834df7a4af757a6f1c2838eea09f7b

Description

This trojan is written in C. The program contains several files, and the trojan uses each file

sequentially. The trojan’s main task is to decrypt the shellcode and execute it. The decrypted

shellcode contains BackDoor.Whitebird.30, a module for bypassing UAC and backdoor

configuration.

Operating principle

The trojan folder contains the following files:

· mcupdui.exe — the executable file into which the malicious library is loaded using

Hijacking DLL has a valid McAfee signature:
4F638B91E12390598F037E533C0AEA529AD1A371: CN=McAfee, Inc., OU=IIS,
OU=Digital ID Class 3 - Microsoft Software Validation v2,
O=McAfee, Inc., L=Santa Clara, S=California, C=US

· McUiCfg.dll — downloader

· mscuicfg.dat — encrypted shellcode

· mcupdui.ini — configuration of trojan

To move to the main malicious functionality, the trojan modifies the process memory:

The instruction following the malicious library’s download library is modified:

38
38

Trojan.Loader.891 finds all the functions it needs by hashes using the PEB (Process Environment

Block) structure.

At the same time, the names of libraries and functions are hashed differently: library names are

hashed as Unicode strings converted to upper case. Function names are hashed as ASCII strings

without changing the case. The resulting two hashes are added together and then compared

with the desired one.

ror = lambda val, r_bits, max_bits: \

 ((val & (2 ** max_bits - 1)) >> r_bits % max_bits) | \

 (val << (max_bits - (r_bits % max_bits)) & (2 ** max_bits - 1))

def hash_lib_whitebird(name: bytes) -> int:

 a = name.upper() + b'\x00'

 c = 0

 for i in range(0, len(a)):

 c = (a[i] + ror(c, 13, 32)) & 0xffffffff

 # library name is a unicode string

 c = (0 + ror(c, 13, 32))

 return c

39
39

def hash_func_whitebird(name: bytes) -> int:

 a = name + b'\x00'

 c = 0

 for i in range(0, len(a)):

 c = (a[i] + ror(c, 13, 32)) & 0xffffffff

 return c

Trojan’s main functions are encrypted. When the function is called, it decrypts its code, and when

it exits, it encrypts it back.

Main function:

Trojan.Loader.891 obtains the MAC addresses of all network interfaces on the computer. The

trojan then reads data from the mscuicfg.dat file. If the last 6 bytes are zero, then it writes the

first MAC address from the list into them and encrypts this file with the RC4 algorithm. In this

40
40

case, the key is equal to the MAC address written to the file, so the encrypted data is saved to

the file mscuicfg.dat.

After that, in any way, the trojan reads the file again, sorting through each of the received MAC

addresses until it finds the right one. The decryption’s correctness is checked by matching the

last 6 decrypted bytes with the encryption key. Upon successful decryption, the trojan cuts them

off and decrypts the file again using the RC4 algorithm, but takes the string mscuicfg.dat as

the key. The received data is a shellcode with a configuration and a payload.

Shellcode

The shellcode is obfuscated with a lot of JMP instructions and each value is computed with a lot

of SUB, ADD, and XOR operations:

The shellcode’s principle is to decrypt the payload and load it into memory for execution.

The last DWORD of the shellcode contains the OFFSET before the start of the payload.

Encrypted data at this stage:

41
41

42
42

For decryption, XOR with a dynamic key is used:

k = 0x37

s = bytearray()

for i in range(len(d)):

 c = d[i] ^ k

 s.append(c)

 k = (k + c) & 0xff

The decrypted data contains an MZPE file with signatures replaced:

43
43

The decoded module is BackDoor.Whitebird.30. In addition, the module overlay contains an

encrypted configuration and a module for bypassing UAC:

44
44

45
45

Trojan.Loader.896

Added to the Dr.Web virus database: 2021-11-03

Virus description added: 2021-11-17

Packer: absent

Compilation date: 2020-14-10

SHA1 hash: ff82dcadb969307f93d73bbed1b1f46233da762f

Description

The backdoors downloader, PlugX, is written in C.

Operating principle

After loading from the main module (msrers.exe) using the LoadLibraryW function, the

trojan loads the kernel32.dll library using the LoadLibraryA. Then, it gets the address of

the exported function GetModuleFileNameA:

It then obtains the name of the main module using the previously obtained function

GetModuleFileNameA. It checks if the name contains the substring "ers." (msrers.exe):

46
46

From the hash, 0xEF64A41E gets the function VirtualProtect to change the memory

access rights to PAGE_EXECUTE_READWRITE at 0x416362 (msrers.exe):

The following fragment will modify the code at 0x416362 (msrers.exe):

47
47

push 0xFFFFFFFF

push 0x100010B0 ; func_addr

ret

Place in the main module to be modified:

Next, a function is called that receives the base kernel32.dll, and the addresses of the

functions by hashes.

Script to get a function by hash:

48
48

import pefile

ror = lambda val, r_bits, max_bits: \

 ((val & (2**max_bits-1)) >> r_bits%max_bits) | \

 (val << (max_bits-(r_bits%max_bits)) & (2**max_bits-1))

max_bits = 32

library_path_list = [...] # absolute path dlls

def get_func_addr(hash):

 for i in xrange(len(library_path_list)):

 library = library_path_list[i].split('\\')

 name_dll = library[len(library) - 1]

 pe = pefile.PE(library_path_list[i])

 for exp in pe.DIRECTORY_ENTRY_EXPORT.symbols:

 func_name = exp.name

 hash_name_func = 0

 for j in func_name:

 hash_name_func = ord(j) + ror(hash_name_func, 0x07,
max_bits)

 if (hash_name_func == hash):

 print '0x{:08x} -> {} -> {}'.format(hash, name_dll,
exp.name)

 return

Received features:

Function name Hash

VirtualProtect 0xEF64A41E

GetLastError 0x12F461BB

CloseHandle 0xFF0D6657

49
49

Function name Hash

ReadFile 0x130F36B2

VirtualAlloc 0x1EDE5967

GetFileSize 0xAC0A138E

CreateFileA 0x94E43293

lstrcat 0x3E8F97C3

GetModuleFileNameA 0xB4FFAFED

In the following, the below structure is used to call these functions:

struct api_addr {

 DWORD (__stdcall *GetModuleFileNameA)(HMODULE, LPSTR, DWORD);

 LPSTR (__stdcall *lstrcat)(LPSTR, LPCSTR);

 HANDLE (__stdcall *CreateFileA)(LPCSTR, DWORD, DWORD,
LPSECURITY_ATTRIBUTES, DWORD, DWORD, HANDLE);

 DWORD (__stdcall *GetFileSize)(HANDLE, LPDWORD);

 LPVOID (__stdcall *VirtualAlloc)(LPVOID, SIZE_T, DWORD, DWORD);

 BOOL (__stdcall *ReadFile)(HANDLE, LPVOID, DWORD, LPDWORD,
LPOVERLAPPED);

 BOOL (__stdcall *CloseHandle)(HANDLE);

 DWORD (__stdcall *GetLastError)();

};

Trojan takes the name dll (TmDbgLog.dll) and adds the ".TSC" extension to it. Next, it

opens the file TmDbgLog.dll.TSC for reading and decrypts its contents, which turns out to be

a shellcode.

After decrypting the shellcode (TmDbgLog.dll), the trojan starts executing it:

50
50

The below is how the script for decrypting the shellcode looks like:

enc = bytearray(open('TmDbgLog.dll.TSC', 'rb').read())

dec = bytearray()

for i in xrange(len(enc)):

 dec.append(((enc[i] ^ 0xbb) - 1) & 0xff)

open('TmDbgLog.dll.TSC.dec', 'wb').write(dec)

Before decrypting and running the payload, the shellcode assembles the following structure:

struct st_mw {

 DWORD magic;

 DWORD *shell_base;

 DWORD shell_size;

 DWORD *enc_payload;

 DWORD enc_payload_size;

 DWORD *enc_config;

 DWORD enc_config_size;

 DWORD *payload_entry;

};

This is what the encrypted config looks like:

51
51

The config’s decryption will be done directly in the payload:

import struct

enc = open('enc_cfg', 'rb').read()
key, = struct.unpack('I', enc[0:4])

key1 = key
key2 = key
key3 = key

dec = bytearray()

for i in xrange(len(enc)):
 key = (key + (key >> 3) - 0x11111111) & 0xFFFFFFFF
 key1 = (key1 + (key1 >> 5) - 0x22222222) & 0xFFFFFFFF
 key2 = (key2 + 0x33333333 - (key2 << 7)) & 0xFFFFFFFF
 key3 = (key3 + 0x44444444 - (key3 << 9)) & 0xFFFFFFFF
 dec.append(ord(enc[i]) ^ (key + key1 + key2 + key3) & 0xFF)

open('dec_cfg', 'wb').write(dec)

And it’ll look like this:

52
52

Encrypted payload:

Script to decrypt the payload:

import struct

import ctypes

enc = open('enc_payload', 'rb').read()

key, = struct.unpack('I', enc[0:4])

key1 = key

key2 = key

53
53

key3 = key

dec = bytearray()

for i in xrange(len(enc)):

 key = (key + (key >> 3) + 0x55555556) & 0xFFFFFFFF

 key1 = (key1 + (key1 >> 5) + 0x44444445) & 0xFFFFFFFF

 key2 = (key2 + 0xCCCCCCCC - (key2 << 7)) & 0xFFFFFFFF

 key3 = (key3 + 0xDDDDDDDD - (key3 << 9)) & 0xFFFFFFFF

 dec.append(ord(enc[i]) ^ (key + key1 + key2 + key3) & 0xFF)

d = bytes(dec)

uncompress_size, = struct.unpack('I', d[8:12])

buf_decompressed = ctypes.create_string_buffer(uncompress_size)

final_size = ctypes.c_ulong(0)

ctypes.windll.ntdll.RtlDecompressBuffer(2, buf_decompressed,
ctypes.sizeof(buf_decompressed), ctypes.c_char_p(d[0x10:]), len(d),
ctypes.byref(final_size))

open('dec_payload', 'wb').write(buf_decompressed)

After decrypting the payload, the shellcode transfers control to the trojan, with the previously

assembled structure st_mw acting as one of the parameters:

Further, the trojan works in the same way as the backdoor BackDoor.PlugX.28.

https://vms.drweb.com/virus/?lng=en&i=21507745

54
54

Trojan.Uacbypass.21

Added to the Dr.Web virus database: 2021-10-22

Virus description added: 2021-10-22

Packer: absent

Compilation date: 2019-09-29

SHA1 hash: 7412b13e27433db64b610f40232eb4f0bf2c8487

Description

This trojan is written in C. It elevates backdoor privileges. It also disguises itself as a legitimate

process and uses a COM object to bypass User Account Control (UAC). In this way, it elevates

the executable process’s privileges.

Operating principle

The trojan disguises as a legitimate process C:\Windows\explorer.exe via PEB (Process

Environment Block). That’s how it fools the IFileOperation COM object into thinking it’s

being called from a Windows Explorer shell.

55
55

56
56

The trojan obtains a COM object to implement UAC bypass via privilege elevation

(https://github.com/cnsimo/BypassUAC/blob/master/BypassUAC_Dll/dllmain

.cpp):

It allows Trojan.Uacbypass.21 to run the file that was passed to it as an argument as a legitimate

Windows process:

57
57

58
58

59
59

Appendix. Indicators of Compromise

SHA1 hashes

Trojan.Loader.889

f783fc5d3fc3f923c2b99ef3a15a38a015e2735a: McUiCfg.dll

Trojan.Loader.890

65f64cc7aaff29d4e62520afa83b621465a79823: SRVCON.OCX

8b9e60735344f91146627213bd13c967c975a783: CLNTCON.OCX

84d5f015d8b095d24738e45d2e541989e6221786: sti.dll

3d8a3fcfa2584c8b598836efb08e0c749d4c4aab: iviewers.dll

Trojan.Loader.891

595b5a7f25834df7a4af757a6f1c2838eea09f7b: McUiCfg.dll

Trojan.Loader.893

46e999d88b76cae484455e568c2d39ad7c99e79f: McUiCfg.dll

Trojan.Loader.894

b1041acbe71d46891381f3834c387049cbbb0806: iviewers.dll

Trojan.Loader.895

635e3cf8fc165a3595bb9e25030875f94affe40f: McUiCfg.dll

Trojan.Loader.896

ff82dcadb969307f93d73bbed1b1f46233da762f: TmDbgLog.dll

Trojan.Loader.898

429357f91dfa514380f06ca014d3801e3175894d: CLNTCON.OCX

60
60

Trojan.Loader.899

cc5bce8c91331f198bb080d364aed1d3301bfb0c: LDVPTASK.OCX

BackDoor.PlugX.93

a8bff99e1ea76d3de660ffdbd78ad04f81a8c659: CLNTCON.OCX

BackDoor.PlugX.94

5a171b55b644188d81218d3f469cf0500f966bac

BackDoor.PlugX.95

b3ecb0ac5bebc87a3e31adc82fb6b8cc4fb66d63: netcfg.dll

BackDoor.PlugX.96

a3347d3dc5e7c3502d3832ce3a7dd0fc72e6ea49

BackDoor.PlugX.97

36624dc9cd88540c67826d10b34bf09f46809da7

BackDoor.PlugX.100

16728655e5e91a46b16c3fe126d4d18054a570a1

BackDoor.Whitebird.30

abfd737b14413a7c6a21c8757aeb6e151701626a

a5829ed81f59bebf35ffde10928c4bc54cadc93b

Trojan.Siggen12.35113

4f0ea31a363cfe0d2bbb4a0b4c5d558a87d8683e: rapi.dll

Trojan.Uacbypass.21

20ad53e4bc4826dadb0da7d6fb86dd38f1d13255

61
61

Program.RemoteAdmin.877

23873bf2670cf64c2440058130548d4e4da412dd: AkavMiqo.exe

Tool.Frp

a6e9f5d8295d67ff0a5608bb45b8ba45a671d84c: firefox.exe

39c5459c920e7c0a325e053116713bfd8bc5ddaf: firefox.exe

Network indicators

Domains

webmail.surfanny.com

www.sultris.com

mail.sultris.com

pop3.wordmoss.com

zmail.wordmoss.com

youtubemail.club

clark.l8t.net

blog.globnewsline.com

mail.globnewsline.com

IPs

45.144.242.216

45.147.228.131

46.105.227.110

5.183.178.181

5.188.228.53

103.30.17.44

103.93.252.150

103.230.15.41

103.251.94.93

104.233.163.136

159.65.157.100

180.149.241.88

185.105.1.226

62
62

192.236.177.250

209.250.241.35

	Table of Contents
	Introduction
	Remote Rover
	Conclusion
	Operating Routine of Discovered Malware Samples
	BackDoor.PlugX.93
	BackDoor.Siggen2.3622
	BackDoor.Whitebird.30
	Trojan.DownLoader43.44599
	Trojan.Loader.891
	Trojan.Loader.896
	Trojan.Uacbypass.21

	Appendix. Indicators of Compromise

