5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

HiddenWasp Malware Stings Targeted Linux Systems

I::" intezer.com/blog-hiddenwasp-malware-targeting-linux-systems

May 29, 2019

Overview

* Intezer has discovered a new, sophisticated malware that we have named
“‘HiddenWasp”, targeting Linux systems.

* The malware is still active and has a zero-detection rate in all major anti-virus systems.

+ Unlike common Linux malware, HiddenWasp is not focused on crypto-mining or DDoS
activity. It is a trojan purely used for targeted remote control.

+ Evidence shows in high probability that the malware is used in targeted attacks for
victims who are already under the attacker’s control, or have gone through a heavy
reconnaissance.

+ HiddenWasp authors have adopted a large amount of code from various publicly
available open-source malware, such as Mirai and the Azazel rootkit. In addition, there
are some similarities between this malware and other Chinese malware families,
however the attribution is made with low confidence.

* We have detailed our recommendations for preventing and responding to this
threat.

1. Introduction

Although the Linux threat ecosystem is crowded with IoT DDoS botnets and crypto-
mining malware, it is not very common to spot trojans or backdoors in the wild.

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 1/28

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

Unlike Windows malware, Linux malware authors do not seem to invest too much effort
writing their implants. In an open-source ecosystem there is a high ratio of publicly
available code that can be copied and adapted by attackers.

In addition, Anti-Virus solutions for Linux tend to not be as resilient as in other platforms.
Therefore, threat actors targeting Linux systems are less concerned about implementing
excessive evasion techniques since even when reusing extensive amounts of code,
threats can relatively manage to stay under the radar.

Nevertheless, malware with strong evasion techniques do exist for the Linux platform.
There is also a high ratio of publicly available open-source malware that utilize strong
evasion technigues and can be easily adapted by attackers.

We believe this fact is alarming for the security community since many implants today
have very low detection rates, making these threats difficult to detect and respond to.

We have discovered further undetected Linux malware that appear to be enforcing
advanced evasion techniques with the use of rootkits to leverage trojan-based implants.

In this blog we will present a technical analysis of each of the different components that
this new malware, HiddenWasp, is composed of. We will also highlight interesting code-
reuse connections that we have observed to several open-source malware.

The following images are screenshots from VirusTotal of the newer undetected malware
samples discovered:

Q No engines detected this file C = = ¥ x
Ofel248ecab199bee383cef69f2de77d33b26 718.49 KB 2019-04-04 16:34:01 UTC AC
9ad1664127h366a4e745b1199¢8 = o S
Size 1 month ago ELF
Iprivateftmp/libselinux
B4bits elf
Community
Score
& No engines detected this file C 52 = < E

d66bbbced19587e67632585d0ac944e34edd5fa2

16.3 KB 2019-04-04 16:37:42 UTC I."k,(}
b9f3bb3f900f517c7bbf518h . L s
Size 1 month ago ELF
libselinux.so
G4bits el shared-lib

Community
Score

2. Technical Analysis

When we came across these samples we noticed that the majority of their code was
unique:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 2/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

Similar to the recent Winnti Linux variants reported by Chronicle, the infrastructure of this
malware is composed of a user-mode rootkit, a trojan and an initial deployment script.
We will cover each of the three components in this post, analyzing them and their
interactions with one another.

2.1 Initial Deployment Script:

When we spotted these undetected files in VirusTotal it seemed that among the
uploaded artifacts there was a bash script along with a trojan implant binary.

EI @ () Shared (0) @

2ea291aeb0905c31716fe 9ff 724
E 830d2bfa77c1b3656fc0
+
BEOoMN Sy o) K
p N D)
Basic Properties > @ L L M
R O
N
Shell script @
253 B ‘®|,__,|7_
2019-04-04 16:32:30 g "I
e .
9-04-04 16:32:3] _ i
2018-04-04 16:32:30 ,@ ﬁ'fp@ef‘tmp/llbse‘llnux
" @)
/home/wys/shenzhouwangyu Lﬂ

We observed that these files were uploaded to VirusTotal using a path containing the
name of a Chinese-based forensics company known as Shen Zhou Wang_Yun
Information Technology Co., Ltd.

Furthermore, the malware implants seem to be hosted in servers from a physical server
hosting company known as ThinkDream located in Hong Kong.

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 3/28

https://analyze.intezer.com/#/analyses/2d35f5f3-5be7-4df8-b125-c08b76d17616
https://analyze.intezer.com/#/analyses/3379a0d7-2fd9-46b0-90f8-86200a67c0fd
https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a
http://www.china-forensic.com/ccfc/en/

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

P 103.206.122.245 ihinkdream.com

Country Hong Kong

Organization ThinkDream Technology Limited

ISP Kwai Cheong Rd Kwai Chung Nt Hongkong
Last Update 2019-05-22T13:40:34.750297

Hostnames thinkdream.com

ASN AS135026

@103.206.123.13 tinkdream.con

Country Hong Kong

Organization ThinkDream Technology Limited

ISP Kwai Cheong Rd Kwai Chung Nt Hongkong
Last Update 2019-05-21T22:54:34.512302

Hostnames thinkdream.com

ASN AS135026

Among the uploaded files, we observed that one of the files was a bash script meant to
deploy the malware itself into a given compromised system, although it appears to be for

testing purposes:
o

8914fd1ctfade5059e626he90118972ec963bbed75101c7ibf4 319 KB 2019-04-04 16:37:41 UTC
aBBabda2bc671b D

Size 1 month ago

Q No engines detected this file e &

33

ssh
shell

Community
Score

Thanks to this file we were able to download further artifacts not present in VirusTotal

related to this campaign. This script will start by defining a set of variables that would be
used throughout the script.

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 4/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

FONE HISTORY HISTLOG

Among these variables we can spot the credentials of a user named ‘sftp’, including its
hardcoded password. This user seems to be created as a means to provide initial
persistence to the compromised system:

Furthermore, after the system’s user account has been created, the script proceeds to
clean the system as a means to update older variants if the system was already
compromised:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 5/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

) $KVER
rm -rf $PIDFILE
= JFTLE

The script will then proceed to download a tar compressed archive from a download
server according to the architecture of the compromised system. This tarball will contain
all of the components from the malware, containing the rootkit, the trojan and an initial
deployment script:

$
$TROFILE

After malware components have been installed, the script will then proceed to execute
the trojan:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 6/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

$TROFILE I_AM_HIDDEN

2@ unset I_AM_HIDDEN

We can see that the main trojan binary is executed, the rootkit is added to
LD_PRELOAD path and another series of environment variables are set such as the
‘I_AM_HIDDEN’. We will cover throughout this post what the role of this environment
variable is. To finalize, the script attempts to install reboot persistence for the trojan
binary by adding it to /etc/rc.local.

Within this script we were able to observe that the main implants were downloaded in the
form of tarballs. As previously mentioned, each tarball contains the main trojan, the
rootkit and a deployment script for x86 and x86_64 builds accordingly.

ulexec intezer _ ~ » Documents > .. > ThreatIntel > China > HiddenWasp %

ThreatIntel > China > HiddenWasp $

ThreatIntel » China > HiddenWasp $

The deployment script has interesting insights of further features that the malware
implements, such as the introduction of a new environment variable
‘HIDE_THIS_SHELL:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 7/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

We found some of the environment variables used in a open-source rootkit known as

Azazel.
#define HIDE_TERM VAR "''' + xor("HIDE_THIS_SHELL=please") + ""'"
#define HIDE_TERM_STR "''' + xor("HIDE_THIS_SHELL") + '''"

It seems that this actor changed the default environment variable from Azazel, that one
being HIDE_THIS_SHELL for I_AM_HIDDEN. We have based this conclusion on the
fact that the environment variable HIDE_THIS_SHELL was not used throughout the rest
of the components of the malware and it seems to be residual remains from Azazel
original code.

The majority of the code from the rootkit implants involved in this malware infrastructure
are noticeably different from the original Azazel project. Winnti Linux variants are also
known to have reused code from this open-source project.

2.2 The Rootkit:
The rootkit is a user-space based rootkit enforced via LD_PRELOAD linux mechanism.
It is delivered in the form of an ET_DYN stripped ELF binary.

This shared object has an DT_INIT dynamic entry. The value held by this entry is an
address that will be executed once the shared object gets loaded by a given process:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 8/28

https://github.com/chokepoint/azazel/search?q=HIDE_THIS_SHELL&unscoped_q=HIDE_THIS_SHELL

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

Within this function we can see that eventually control flow falls into a function in charge
to resolve a set of dynamic imports, which are the functions it will later hook, alongside
with decoding a series of strings needed for the rootkit operations.

_ L J
Ll =]
mov cs:dword 283828, 1
mow esi, 8
lea rdi, alUzblUuaw ; "uzB UuAW"
call copyalloc
mowv rdi, rax
mowv esi, &
call dechf
mov [rbp+name], rax
mov rsi, [rbp+name] ; name
mow r‘di, B::::::::::::::::h ; haﬂdlE
call _dlsym
Mo cs:_ fxstat ptr, rax
mov rdi, [rbptname] ; ptr
call _free
mowv esi, BAh
lea rdi, aWtlWsgu 3 wEL]WSEUAx1e\x17"
call copyalloc
mowv rdi, rax
mow esi, B@ah
call decbf
mov [rbptvar 98], rax
J: mow rsi, [rbptvar 98] ; name
mow rdi, BFFFFFFFFFFFFFFFFh ; handle
call _dlsym
mowv cs:_ fxstated ptr, rax
mov rdi, [rbp+var_98] ; ptr
call _free
mowv esi, &
lea rdi, aUzhUuaw 3 MuzH _UuAW"
call copyalloc
mow rdi, rax
] mow esi, 8

We can see that for each string it allocates a new dynamic buffer, it copies the string to it
to then decode it.

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

9/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

It seems that the implementation for dynamic import resolution slightly varies in
comparison to the one used in Azazel rootkit.

When we wrote the script to simulate the cipher that implements the string decoding
function we observed the following algorithm:

We recognized that a similar
algorithm to the one above was
used in the past by Mirai, implying
that authors behind this rootkit may
have ported and modified some
code from Mirai.

" static char *deobf{char *str, int *len)
1
int i;
char *cpy;
*len = util strlen(str});
cpy = malloc{*len + 1);
util _memcpy(cpy, str, *len + 1);
for (1 =0; 1 < *len; i++)
{
cpy[i] "= @xDE;
cpy[i] %= Oxab;
cpy[i] "= @xBE;
cpy[i] "= OxEF;
¥
return cpy;
by

After the rootkit main object has been loaded into the address space of a given process
and has decrypted its strings, it will export the functions that are intended to be hooked.
We can see these exports to be the following:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 10/28

https://github.com/chokepoint/azazel/blob/master/config.py
https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/bot/scanner.c#L963

5/30/2019

Intezer - HiddenWasp Malware Stings Targeted Linux Systems

xrefs to is_rootkit_environment_vanable_is_set

= up
B

For every given export, the rootkit will hook and implement a specific operation
accordingly, although they all have a similar layout. Before the original hooked function is
called, it is checked whether the environment variable ‘I_AM_HIDDEN’ is set:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

..

Elu
D...
=D
D...
D...

T T T T T T O T T T T T T T T T 1T =

Directio Ty| Address

access+H-
fopen+10
fopen&g4+10
readdir +C
readdira4+C

_ fustat+12
_ fustatca+12
__lustat+13
__|wstate4+13
_ xstat+13

_ xstated4+13
fetat+F
fetatag+F
lstat+10
lstate4+10
stat+34
stato4+10
unlink+C
unlinkat+12

Text

call

call

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_js_set
is_rootkit_environment_variable_is_set
iz_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set

is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_js_set
is_rootkit_environment_variable_is_set
iz_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_is_set
is_rootkit_environment_variable_js_set

11/28

5/30/2019

Intezer - HiddenWasp Malware Stings Targeted Linux Systems

;5 _ inte4 _ cdecl is_rootkit_environment_wariable_ is_set(int)
is_rootkit_environment_variable_is_ set proc near

var_l4= dword ptr -14h
var_8= qword ptr -8

3 _ unwind {

push rbp

mov rbp, rsp

sub rsp, 2@h

mav eax, c¢s:is_I_AM_HIDDEN_set
cmp eax, @BFFFFFFFFh

jz short loc_2@1E

M

il i 5

loc_2@1E:
mov edi, 1
call return_rootkit_string by index
mov rdi, rax ; I_AM HIDDEN
call _getenv
mov [rbp+var_8], rax
cmp [rbp+var_8], @
jz short loc_2@847
bl = FEE
mav cs:is_I_AM HIDDEN_set, @FFFFFFFFh
jmp short loc_2851 loc_2e47:
mov cs:is_I AM_HIDDEN_set, @

mow
mow

jmp

eax, cs:is_I_AM HIDDEN set

bl s =]
eax, cs:is_ I AM_HIDDEN_set
[rbp+var_14], eax loc_2851:
short loc_285A mov
mov [rbp+var_14], eax
]
loc_285A:
mov eax, [rbp+var_14]
leave
retn

; Y // starts at 20e@8

is_rootkit_environment_wariable_is_set endp

We can see an example of how the rootkit hooks the function fopen in the following

screenshot:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

12/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

public fopen
fopen proc mear
war_l8= gword ptr -18h
wvar_lé= gword ptr -18h
war_8= gqword ptr -8
; __unwind {
push rbp
moy rbp, rsp
sub rsp, 28h
mov [rbp+var_8], rdi
mow [rbptvar_18], rsi
call is_rootkit_envirenment_variable_is_set
test eax, eax
jnz short loc 2491
Y
FIPIE
maw rdi, [rbps+var_B]
call hide_rootkit_artifacts_check_if_rootkit_still_hidden
test eax, eax
jz short loc_2471
loc_2471:
mov rdi, [rbp+var_g8]
call is_sccesing proc_net_tcp
test eax, eax
jz short loc_2491
\B
h J h J vy
call __errno_location mov rsi, [rbptvar_18]
mow dword ptr [rex], 2 mov rdi, [rbpivar_8]
mow [rbp+var_18], @FFFFFFFFFFFFFFFFh] [call hide_cnc_connection) [mov edi, B
jmp short loc_24B1 mow [rbp#var_18], rax call return_function_by_ordinal
jmp short loc_24B1 mow rdx, rax
mow rsi, [rbpivar_1@)
mow rdi, [rbp#var_B]
oy cax, @
call rdx ; calling original fopen function
mow [rbp+var_18], rax
|
e
I 1

We have observed that after checking whether the ‘I_AM_HIDDEN’ environment variable
is set, it then runs a function to hide all the rootkits’ and trojans’ artifacts. In addition,
specifically to the fopen function it will also check whether the file to open is
‘lproc/net/tcp’ and if it is it will attempt to hide the malware’s connection to the cnc by
scanning every entry for the destination or source ports used to communicate with the
cnc, in this case 61061. This is also the default port in Azazel rootkit.

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 13/28

https://github.com/chokepoint/azazel/blob/master/config.py

5/30/2019

Intezer - HiddenWasp Malware Stings Targeted Linux Systems

LS [rsp+@CEBh+var_CAB], rax
lea rax, [rbptvar_B83@]
[[rsp+@CEBh+var CEB8], rax
lea rax, [rbpitvar_ B28]
L5 [rsp+@CEBh+var CB8], rax
lea rax, [rbptvar_B85@]
LS [rsp+@CEBh+var_CCB], rax
lea rax, [rbptvar_ B18]
Lo [rsp+@CEBh+var _CC8], rax
lea rax, [rbptvar_820]
Lo [rsp+@CEBh+var_CDa], rax
lea rax, [rbptvar_B48]
Y [rsp+@CEBh+var _CD8], rax
lea rax, [rbp+local tep port]
Lo [rsp+@CEBh+var CE@], rax
Lo r9, rdx
Lo r8, rex
ro rex, rdi
LY rdx, rl@
oY rdi, rll I
L=l eax, @
call _sscanf
M eax; [rbp+local tcp port]
cmp eax; G1BEl
iz short loc 23EB
T E—
v
"™IE |
mow eax, [rbptremote_tcp port]
cmp eax, G1B61
3] jz short loc_23EB
R2E2
e
\ J
P |
; stream mow rsi, [rbptstresm] ; stream
lea rdi, [rbp+s] i s
call _fputs
|
I
mow rdi, [rbp+fd] ; stream
call
E1. @l lmoe Irhndztreaml : stream

The rootkit primarily implements artifact hiding mechanisms as well as tcp connection
hiding as previously mentioned. Overall functionality of the rootkit can be illustrated in
the following diagram:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

14/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

Per-process

F - O O O O O A A
' 1
: Decrypt strings and _ :
; resglive dynamic On load time '
. imports |
1 1
' 1
I i i i i il i, i e e
1 1
' On export call :
'

1 1
' 1
' 1

. : Execute some

1 1
! enﬁr?ﬁrtrfgm SN Coct !
! ariableset > relevantforthe |1
' export called :
'

1 1
1 1
i 1
1 1
i 1
' 1
i 1
' 1
i 1
: Execute original < J :
. function i
1 1
' 1

2.3 The Trojan:

The trojan comes in the form of a statically linked ELF binary linked with stdlibc++. We
noticed that the trojan has code connections with ChinaZ’s Elknot implant in regards to
some common MD5 implementation in one of the statically linked libraries it was linked
with:

HiddenWasp Elknot

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 15/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems
In addition, we also see a high rate of shared strings with other known ChinaZ malware,

reinforcing the possibility that actors behind HiddenWasp may have integrated and
modified some MD5 implementation from Elknot that could have been shared in Chinese

hacking forums:

Generic Malware

BillGates

18 Strings

ChaChaBaot

CoimMiner

Linigue

When we analyze the main we noticed that the first action the trojan takes is to retrieve
its configuration:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 16/28

5/30/2019

Intezer - HiddenWasp Malware Stings Targeted Linux Systems

cdecl main(int arge,
> main

const char **argv,

1] ; this

; Jso

n::ValueType

1ENS_2ValueTypeE

; Til

epath

e s] ; value

on3ValueE GetOptions

Z10 RN4J=

EisNul

The malware configuration is appended at the end of the file and has the following

structure:

The malware will try to load itself from the disk and parse this blob to then retrieve the
static encrypted configuration.

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

rdi, + 1] :; this

1Ew

const char **envp)

17/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

Filensams

sStream
whenoe

; stream
vt

t abuill

netlong

stream
ptr
n

sSixe

t aNull

Once encryption configuration has been successfully retrieved the configuration will be
decoded and then parsed as json.

The cipher used to encode and decode the configuration is the following:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 18/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

) A ord(simplep

This cipher seems to be an RC4 alike algorithm with an already computed PRGA
generated key-stream. It is important to note that this same cipher is used later on in the
network communication protocol between trojan clients and their CNCs.

After the configuration is decoded the following json will be retrieved:

"Master": {
"Domain”:"",
"IP":"103)
"Port":61061

IR

"Standby": {
"Domain™:
"IP":"103).
"Port":61061

Moreover, if the file is running as root, the malware will attempt to change the default
location of the dynamic linker’s LD_PRELOAD path. This location is usually at
/etc/ld.so.preload, however there is always a possibility to patch the dynamic linker
binary to change this path:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 19/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

call _EZNE4JsonSValuetisNullEwv
test al al
jz . loc_ 413387

loc_41333A

Patch_lId function will scan for any existent /lib paths. The scanned paths are the
following:

. aLlibX86 64Linux
. aLibI386LinuxGn

. aLib32
t aLibx32
. aLib&4

The malware will attempt to find the dynamic linker binary within these paths. The
dynamic linker filename is usually prefixed with Id-<version number>.

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 20/28

5/30/2019

Intezer - HiddenWasp Malware Stings Targeted Linux Systems

loc_41FBR7T:

mew

call

mov rcx,
repe cmpsb
setnbe dl

loc_41FBCO:
add [rbp

Once the dynamic linker is located, the malware will find the offset where the
/etc/ld.so.preload string is located within the binary and will overwrite it with the path of
the new target preload path, that one being /sbin/.ifup-local.

; char *NEW_PRELOAD
NEW_PRELOAD dq offset aSbin_ifupLoc_0

; woid *LIB_PRELOAD
LIE_PRELOAD dg offset aLibLibselinu_0

_data ends

To achieve this patching it will execute the following formatted string by using the xxd
hex editor utility by previously having encoded the path of the rootkit in hex:

i char aHexdumpVel
aHexdumpVell 2x db

Once it has changed the default LD_PRELOAD path from the dynamic linker it will
deploy a thread to enforce that the rootkit is successfully installed using the new
LD_PRELOAD path. In addition, the trojan will communicate with the rootkit via the
environment variable ‘I_AM_HIDDEN’ to serialize the trojan’s session for the rootkit to
apply evasion mechanisms on any other sessions.

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

21/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

eThread (void *arg)

I E—)

After seeing the rootkit’s functionality, we can understand that the rootkit and trojan work
together in order to help each other to remain persistent in the system, having the rootkit
attempting to hide the trojan and the trojan enforcing the rootkit to remain operational.
The following diagram illustrates this relationship:

Deployment Script
.- - .
Trojan ' Communication 2 Rootkit
' Channel -
P i
i L]
P i
writes ' |_AM_HIDDEN | reads
AssUres custom i en:gg;g::nt ' Checks it environment
LD _PRELOAD to enforce ' : variable is not set in current
- - . -
rootkit installation and X ' session to carry out
serializes Trojan session Sttt e s e hooking activities to hide
by setting environment Trojan in foreign sessions

variahble

Continuing with the execution flow of the trojan, a series of functions are executed to
enforce evasion of some artifacts:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

22/28

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

loc 413BDE:
call hljlnﬁ init

hljlnq maercnt

aProcHjggkfp db

;+ char aPrccHldeD[]
aProcHideD db

; char aPrccUnhldeD[]
aProcUnhideD db

; char aPrchullprlvs[]
aProcFullprivs db '/

; char aPrccUnlnsfall[]
aProcUninstall

By performing some OSINT regarding these artifact names, we found that they belong to
a Chinese open-source rootkit for Linux known as Adore-ng hosted in GitHub:

int adore_makercot(adore_t *a) /* make visible again */
{ int adore_unhideproc(adore_t *a, pid_t pid)
W already handled by adore_init() */ {
clo:o[0|Jen[APREFIx“gfuunngs“ O0_RDWR|O_CREAT, @)); char buf[10824];
unlink (APREFIX"/Tullprivs");
if (geteuid() !'= @) if (pid == @)
return -1; return -1;
return @; sprintf(buf, APREFIX"/unhide-%d", pid);
} close(open(buf, O_ROWR|O_CREAT, 0));
int adore_hideproc{adore_t *a, pid_t pid) unlink(buf);
return 0;
{
char buf[1024]; b
int adore_uninstall{adore_t *a)
if (pid == @) {
return -1; close({open{APREFIX"/uninstall", O_RDWR|O_CREAT, @));
return 0;
sprintf(buf, APREFIX"/hide-%d", pid); 1
close({open{buf, O_RDWR|O_CREAT, 0});
unlink(buf);
return 0;
1

The fact that these artifacts are being searched for suggests that potentially targeted
Linux systems by these implants may have already been compromised with some
variant of this open-source rootkit as an additional artifact in this malware’s

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

23/28

https://github.com/yaoyumeng/adore-ng

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

infrastructure. Although those paths are being searched for in order to hide their
presence in the system, it is important to note that none of the analyzed artifacts related
to this malware are installed in such paths.

This finding may imply that the target systems this malware is aiming to intrude may be
already known compromised targets by the same group or a third party that may be
collaborating with the same end goal of this particular campaign.

Moreover, the trojan communicated with a simple network protocol over TCP. We can
see that when connection is established to the Master or Stand-By servers there is a
handshake mechanism involved in order to identify the client.

; this

; evt

; timeocut
entEji

[rbp+this] ; this
Worker3HandshakeEv

EEE

With the help of this function we where able to understand the structure of the
communication protocol employed. We can illustrate the structure of this communication
protocol by looking at a pcap of the initial handshake between the server and client:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 24/28

5/30/2019

00000000
pooeeesd
0ee0ee14
alsloelals

[le]elolale ele]
beeceeearT
peeeeenB
geeceee1B
0e0e082B
00800838
beeeee4B
600OOESE
beeeeet6B
6oReEeTE
BeeeeesB
eleleolal el
Be0e00AB
elele[olale o)
seeeeacB
6oBooeDE
Be0eeeERB
0eeeReFB
geeceel1eB
00080118
geeeel12s
00080138
Beeeel14B
6eeee1sB
60000168

Intezer - HiddenWasp Malware Stings Targeted Linux Systems

g _8f]

BS cb
ed 13
7d 6cC
e? 12
BP0 5T
d2 ad
64 06
b bf
42 Ba
63 84
cf 4f
6d 7b
df e5
5b 40
ab d4
79 Ba
d4 fe
46 T2
3d 93
5c 36
3a cb
al de

aph de

b8
3c
83
B4
81
el
id
d9
7d
fe
56
99
16
60
eb
4c
a9
79
ef
B3
e6
5
e

Encrypted
Payload

dc
ic
T4
23
b3
58
27
6
ee
1
69
b6
87

93 :

b5
77
82
87
a7
67
7
76
8b

81]a

5 63 65 73
B4 ec 56 c5 B85 eb Bb Bb 69 Oe 3T Ge Y . R I, |
G da fa 1a Of 28 14 33 2a 86 bc b d8 fd| B

24 2 Qa8 Bd G2 A3 2

75 63 65 73 '@

ef 11
75 6d
Ba cb
02 33
cf T9
0d 45
83 fc
ir 77
2e d9
ed 1f
31 b2
89 ae
1a 17
al d2
7a 21
ch b8
21 3r
61 9e
al 4de
4f 83
ad bl
84 5b
ed fe

Magic

2f
ch
2L}
d3
ad
6a
di
Ba
ed
09
9c
ST
22
ba
44
d2
33
ba
4ad
b3
5b
85
bf

ch
5a

ba
2f
82
23
fe
Ba
ce
56
72
b5
4b
85
2a
e5
48
ad
a7
ds
b6
52

d4 ca] /B."z....
68 5e ..<<Xum. ... Z[hA
ag dd9] }l...... E&TP. ...
72 15 R % P r.
ba T2 rrsocon comd oo
e6 5e sotddd] cooazec A
St d9] d..'.... ...:#.7.
93 a4] W. [7......
af 73] Bj}.%... ...M.5_s
86 91| c....... 'We>. ...
le 53 OVL.?R.V+.5
ad a1l m{..... *&VTr. ..
5d Te S e 1/~
gc al] [B « WKE..
b6 59 S WS Y
21 de| yjlw.... ...4*. !,
ar ad] 173 Alt.....
10 2d| Fry.oa.. ...QHj.-
de e6] =..... NM }.K.....
gc 82] \6.9.0..Ga..
f7 81 H [rnpN. ...
01 37 sochtaalle ceonaoe [
86 cB| KN~-..... ..64R1..

Method —— Cipher Table
Offset

We noticed while analyzing this protocol that the Reserved and Method fields are always
constant, those being 0 and 1 accordingly. The cipher table offset represents the offset in
the hardcoded key-stream that the encrypted payload was encoded with. The following
is the fixed keystream this field makes reference to:

After decrypting the traffic and analyzing some of the network related functions of the
trojan, we noticed that the communication protocol is also implemented in json format. To
show this, the following image is the decrypted handshake packets between the CNC
and the trojan:

After the handshake is completed, the trojan will proceed to handle CNC requests:

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

25/28

5/30/2019

Intezer - HiddenWasp Malware Stings Targeted Linux Systems

[HandleRequest

] et 5=

Depending on the given requests the malware will perform different operations

accordingly. An overview of the trojan’s functionalities performed by request handling are
shown below:

_ZN12F
_ZN12F
ZN12File

onl2ShowFile
onl&Bre t
tionl3Mo yDIirES

Oprationl60rdinary nloadEN4|son5ValueEjRS5Param

ation
ration15File2

_ZTWiCommand
_ZMN7Commandl6E

_ZN7Commandllinp
_ZTI7Command
_ZMN7Commandé&handleEFKc

ZTS7Command

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 26/28

5/30/2019

Intezer - HiddenWasp Malware Stings Targeted Linux Systems

2.3. Prevention and Response
Prevention: Block Command-and-Control IP addresses detailed in the IOCs section.

Response: We have provided a YARA rule intended to be run against in-memory
artifacts in order to be able to detect these implants.

In addition, in order to check if your system is infected, you can search for “Id.so” files —
if any of the files do not contain the string ‘/etc/ld.so.preload’, your system may be
compromised. This is because the trojan implant will attempt to patch instances of Id.so
in order to enforce the LD_PRELOAD mechanism from arbitrary locations.

4. Summary

We analyzed every component of HiddenWasp explaining how the rootkit and trojan
implants work in parallel with each other in order to enforce persistence in the system.

We have also covered how the different components of HiddenWasp have adapted
pieces of code from various open-source projects. Nevertheless, these implants
managed to remain undetected.

Linux malware may introduce new challenges for the security community that we have
not yet seen in other platforms. The fact that this malware manages to stay under the
radar should be a wake up call for the security industry to allocate greater efforts or
resources to detect these threats.

Linux malware will continue to become more complex over time and currently even
common threats do not have high detection rates, while more sophisticated threats have
even lower visibility.

I0Cs

103.206.123[.]13

103.206.122[.]1245

http://103.206.123[.]13:8080/system.tar.gz
http://103.206.123[.]13:8080/configUpdate.tar.gz
http://103.206.123[.]13:8080/configUpdate-32.tar.gz
e9e2e84ed423bfc8e82eb434cede5c9568ab44e7af410a85e5d5eb24b1e622e3
f321685342fa373¢c33eb9479176a086a1c56c90a1826a0aef3450809ffc01e5d
d66bbbccd19587e67632585d0ac944e34e4d5fa2b9f3bb3f900f517¢c7bbf518b
0fe1248ecab199bee383cef69f2de77d33b269ad1664127b366a4e745b1199¢8
2ea291aeb0905c31716fe5e39ff111724a3¢461e3029830d2bfa77¢c1b3656fc0
d596acc70426a16760a2b2cc78ca2cc65¢5a23bb79316627c0b2e16489bf86¢0
609bbf4ccc2cb0fcbe0d5891eea7d97a05a0b29431c468bf3badd83fc4414578
8e3b92e49447a67ed32b3afadbc24c51975ff22acbd0cf8090b078c0a4a7b53d
f38ab11c28e944536e00ca14954df5f4d08c1222811fef49baded5009bbbc9a2
8914fd1cfade5059e626be90f18972ec963bbed75101c7fbf4a88a6da2bc671b

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

27/28

https://github.com/intezer/yara-rules/blob/master/HiddenWasp.yar

5/30/2019 Intezer - HiddenWasp Malware Stings Targeted Linux Systems

By Ignacio Sanmillan

Nacho is a security researcher specializing in reverse engineering and malware analysis.
Nacho plays a key role in Intezer's malware hunting and investigation operations,
analyzing and documenting new undetected threats. Some of his latest research
involves detecting new Linux malware and finding links between different threat actors.
Nacho is an adept ELF researcher, having written numerous papers and conducting
projects implementing state-of-the-art obfuscation and anti-analysis techniques in the
ELF file format.

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/ 28/28

