5/8/2019 ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

ATMitch: New Evidence Spotted In The Wild

blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild

ZLAB-YOROI May 7, 2019

Introduction

In the first days of April, our threat monitoring operations spotted a new interesting malware sample
possibly active in the wild since 2017. Its initial triage suggests it may be part of an advanced attacker
arsenal targeting the Banking sector, possibly related to the same APT group Kaspersky Lab tracked two
years ago after the compromise of a Russian bank, where a particular malware tool dubbed ATMitch has
been unveiled. In the past, this piece of malware was manually installed on the victim ATM after a wide
enterprise network intrusion, enabling the cyber-criminals to manipulate the cash-withdrawal process on

the machine.

The recent, unattended discovery of such kind of sample within the Info-Sec community led us to a deep
dive into this particular malware tool, spearhead of a sophisticated cyber arsenal.

Technical Analysis
The executable sample is a PE32 x86 file named “tester.exe”. It seems to be custom loader for the real
malicious payload able to take control of the target machine.

Sha256 bfoc35d8f33e2651d619fe22a2d55372dedd0855451d32f952ecfc73fa824092

Threat ATMitch ATM malware

Brief description ATMitch initial loader

Ssdeep 1536:sPNdY/P/r6aqTzN7gqJT/0vniPJiz3yUrvGkc+uyIR:sPiz657gqJT/06xiT/vaVyl

Table 1: Information about Dropper/Loader of ATMitch

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/ 1/10

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/
https://securelist.com/atmitch-remote-administration-of-atms/77918/

5/8/2019 ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

The static data about this sample reveal the sample has been compiled on 8th Oct 2017, months later than
the Kaspersky disclosure of the ATMitch attack operation. This element is not enough to date the sample
with 100% accuracy due to possible tampering, anyway the other static details suggest the date could be
genuine due to the absence of scrambled artifacts.

=8 CE| chusers\admin'desktop\bfac: type name offset signature standard size (62294 bytes) file-ratio (63.37 %) md5
)| T [[T N BEEALFIGOF 4345057 FO2FCAAEZSOFE

----- p3 virustotal (47/72 - 25.04.20
----- 0 dos-stub (!This program ¢
----- O file-header (Oct.2017)
----- O optional-header (Console)
----- O directories (3)
----- O sections (95.83%)
----- O libraries (@)

= | imports (37/107)
..... = exports (n/ a]

String-table 1 0x00017408 String-table 0.06 % 757175BDABT6384D6A820133E6B75A96
Version 1 0x000080F0 Version b 792 0.81 % BCE39DDOFEGEC58719F30B8BB292553B

..... =0 tls-callba

Figure 1: Payload as resource of the Loader

When started, the executable creates a new folder on “C:\intel’ and then starts inspecting all the running
processes. It looks for a really particular one: “fiwmain32.exe”. This lookup reveals how deeply
environmental aware is this implant. In fact, the “fwmain32’ process is part of the software services
produced by Wincor Nixdorf International GmbH, one of the major vendors providing retail and banking
hardware such as ATMs.

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/ 2/10

5/8/2019 ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

4038 11:23:5913..
4039 11:23:5913..
4040 11:23:59.13..
4041 11:23:59.13..
4042 11:23:59.13..
4043 11:23:59.13..
4044 11:23:5913..
4045 11:23:5913..
4046 11:23:59.13..
4047 11:23:59.13..
4048 11:23:59.13..
4049 11:23:59.13..
4050 11:23:5913..
4051 11:23:5913..
4052 11:23:59.13..
4053 11:23:59.13..
4054 11:23:59.13..
4055 11:23:59.13..
4056 11:23:59.13..

bf9c35d8f33eZ.. _stricmp
bf9c35d8f33eZ.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33ed.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33eZ.. _stricmp
bf9c35d8f33eZ.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33el.. _stricmp
bf9c35d8f33eZ.. _stricmp
bf9c35d8f33eZ.. _stricmp
bf9c35d8f33eZ.. _stricmp
bf9c35d8f33e2.. _stricmp

"[System Process]”, "fwmain32.exe")
"‘System”, "fwmain3Z.exe")

"'smiss.exe”, "fwmain32.exe")

"rerss.exe”, "fwmain3Z.exe")

wininit.exe”, "fwmain32.exe")

services.exe”, "fwmain32.exe")
"lsass.exe”, "fwmain32.exe")
"lsm.exe”, "fwmain3Z.exe")
"svchost.exe”, "fwmain32.exe")
"VBoxService.exe", "fwmain32.exe")

svchost.exe”, "fwmain32.exe

)
svchost.exe", "fwmain32.exe")
'svchost.exe”, "fwmain3Z.exe
'svchost.exe”, "fwmain3Z.exe

"svchost.exe”, "fwmain32.exe"

"'swchost.exe”, "fwmain32.exe

bf9c35d8f33e2.. _stricmp ("
bf9c35d8f33e2.. _stricmp

spoolsv.exe”, "fwmain3Z.exe

svchost.exe", "fwmain32.exe

4057 11:23:59.13.. bf9c35d8f33el... "sychost.exe”, "fwmain32.exe"
4058 11:23:59.13.. bf9c35d8f33e2.. "svchost.exe”, "fwmain32.exe"
4059 11:23:5913.. bf9c35d8f33e2.. _stricmp ["KM5-QAD.exe", "fwmain32.exe")

4060 11:23:59.13..
4001 11:23:59.13..
4062 11:23:59.13..
4063 11:23:5913..
4064 11:23:5913..
4065 11:23:59.13..
4066 11:23:59.13..
4067 11:23:59.13..
4008 11:23:59.13..
4069 11:23:5913..

bf9c35d8f33e2.. _stricmp
bf9c35d8f33ed.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33eZ.. _stricmp
bf9c35d8f33eZ.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33e2.. _stricmp
bf9c35d8f33el.. _stricmp
bf9c35d8f33eZ.. _stricmp

"Searchlndexer.exe”, "fwmain32.exe")

wmpnetwk.exe", "fwmain32.exe")
"swchost.exe”, "fwmain32.exe")
"svchost.exe”, "fwmain32.exe")
"csrss.exe”, "fwmainlZ.exe")
"winlogon.exe", "fwmain3Z.exe")
"taskhost.exe”, "fwmain32.exe")
"dwm.exe", "fwmain32.exe")

explorer.exe”, "fwmain32.exe")

L T T e T S T T e T T e T T T e T e e T e T e T T e e e Y

(

(

(

(

(

(

(

(

(

(

(

(

()

()

()

()
bf9c35d8f33e2.. _stricmp ["svchost.exe”, "fwmain32.exe")

()

()

()

()

(

(

(

(

(

(

(

(

(

(

(

"WBoxTray.exe”, "fwmain3Z.exe")

Figure 2: Research of “fwmain32.exe” process by malware

Once the “fwmain32.exe” process is found, the loader injects the actual payload in its own memory,
infecting it. The payload DLL, initially stored into the loader resources section, will be implanted into the
target process using the “SetThreadContext” injection technique (Thread Hijacking).

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/ 3/10

http://www.rohitab.com/discuss/topic/40579-dll-injection-via-thread-hijacking/

5/8/2019 ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

xtFlags], 180a7h

short loc_462043

Pl

loc_487043:
push offset aAllocatingdemo ; "\nAllocating memory in target process.”
call ebp : printf

1
esp, 4
hoaen
h 3e0eh
h

a
u:
u:
u: 16007
0

pus
pus
pus
P

_20208D

Figure 3: Complete Thread Hijacking flow

The figure above shows the sample calls on the OpenThread and the SuspendThread functions to pause
the current execution. After allocating the right memory amount in the target process, it writes the shellcode
target memory space using the WriteProcessMemory function and sets up the new process context with
SetThreadContext. Finally, using the ResumeThread function the payload is able to start its malicious
execution.

When the loader succeeded to inject the payload into the “fwmain” process, it also shows a popup window
reporting the outcome of the injection phases.

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/ 4/10

5/8/2019

ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

| C:\Users\admin\Desktop\bf9c35d8f33e2651 d619fe22a2d55372dedd0855451 d32f952ecfc73fa824092.exe | = | = |[widm]

Founded 1 precesses.
Finding a thread to hijack.

Target thread found. TID: 648

Opening target thread handle.

Suspending the target thread.

Getting thread context.

Allocating memory in target process.

Writing the shellcode, LoadLibraryfA address and DLL path into target process.

Setting thread context.

Figure 4: Prompt window reporting the log of the injection phase

ATMitch Payload

Sha256
Threat
Brief description

Ssdeep

e372631f96face11e803e812d9a77a25d0a81fa41edac362dc8aee5c8a021000
ATMitch ATM malware
ATMitch payload

768:N/qZvnFW5PJizM5qy1ucRM7YNNsrGkc+uW9LMQDFd+MbfRprj:N/0OvniPJiz3yUrvGkc+uylR

Table 2: Information about the payload (DLL contained as resource in the Dropper/Loader)

The injected DLL has a very characteristic dependency: it requires the “msxfs.dlf’. This library provides
access to the EXtension for Financial Service (XFS) API, the communication interface needed to interact
with AMT components such as PIN pad and cash dispenser. Again, this is a very particular dependency
can only be resolved on special purpose Windows environment, like the Wincor machines.

----- £l indicators (7/24)

..... O directories (4]

..... =l ibraries (1/7)

..... b virustotal (41/65 - 2404.20 |
----- O des-stub ({This program c
----- O file-header (Oct.2017)
----- O optional-header (GUI)

----- O sections (93.33%)

=7 cusershadmin'\desktop\e372 | fibrary (7) blacklisted (1) missing (1) type imports (107} file-description
kernel32.dll - - Implicit 38 Windows MT BASE API Client DLL
user32.dll - - Implicit 1 Multi-User Windows USER API Client DLL
advapi32.dll - - Implicit 5 Advanced Windows 32 Base API
msvert.dll - - Implicit 30 Windows MNT CRT DLL
msvepb0.dll - - Implicit 26 Windows NT C++ Runtime Library DLL
shiwapi.dil - - Implicit 2 Shell Light-weight Utility Library

Figure 5: “msxfs.dll”, library required by malware to communicate with ATM device

The malware is quite simple: it reads commands from a file included into “c:\intel” folder and interacts with
the ATM drivers in order to retrieve information about the current amount and to dispense money at the
right time. In the following screen is shown a function used to initiate the communication with the PinPad
and Dispenser ATM components.

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/ 5/10

5/8/2019

ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

[e =
loc_100@2850:
Attributes: bp mov eax, [ebp+var_14]
push offset aExceptionCaugh of L
sub_18@62804 proc near push dword ptr [eax+@Ah] ; int
call sub_100017E9
var_l14= dword ptr -14h pop ecx
var_10= dword ptr -16h mov eax, offset loc_10002068
var_C= dword ptr -8Ch pop ecx
var_4= dword ptr -4 retn
o eax, offset loc_18087968
call _EH_prolog
push ecx
push ecx
and [ebp+var_4], 8
push ebx
push esi
push edi ; ArgList
o esi, ecx
o [ebpsvar_18], esp
mov [ebpsvar_14], esi
call sub_18681F 3D
test al, al
iz short loc_1008203F
™1
k| L |
]
movzx eax, word ptr [esi+5]
push Bax ; ArgList loc_1000203F : loc_10002068:
push offset aPinpadHservice ; “PinPa is determin # push offset aCanTDetermineP ; an't determir mow esi, [ebpsvar_14]
push dword ptr [esi+dah] ; int push dword ptr [esi+@ah] ; int
call sub_18e01761 call sub_1800817E9
add esp, @Ch pop ecx
jmp short loc_ 10082068 Pop ecx
[imp short loc_10062068
Y
mov ecx, esi
mov [ebpavar_4], 2
call sub_18881F4C
test al, al
jz short loc_188828A1
™1
¥ ¥
]
movzx eax, word ptr [esi+7]
push eax ; Arglist loc_1008028A1
push offset aDispenserIsDet ; "DISPENSER is determined # push offset aCanTDetermineC ; ! SER
push dword ptr [esi+Bah] ; int push dword ptr [esi+BAh] ; int
call sub_18881761 call sub_18e817E9
add esp, @Ch pop ecx
pap ecx

Jmp short loc_100882892
sub_10002084 endp

loc_100082002:

ecx, [ebpevar_C]
edi
esi
large fs5:8, ecx
ebx

Figure 6: Discovering of PinPad and Dispenser components

Using the functions provided by “msxfs.dll” library, the malware can easily interact with these components.
For example, using the WFSExecute function it is possible to send one of the supported commands to the

dispenser, like OPEN_SHUTTER or OPEN_SAFE_DOOR.

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/

6/10

5/8/2019

ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

/* CDM Execute Commands */

#define
#define
fdefine
#define
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine

WFS_CMD_CDM_DENOMINATE
WFS_CMD_CDM_DISPENSE

WFS CMD CDM PRESENT

WFS_CMD CDM_REJECT

WFS CMD CDM RETRACT

WFS_CMD CDM_OPEN SHUTTER
WFS_CMD CDM_CLOSE SHUTTER
WFS_CMD CDM_SET TELLER INFO

WES CMD CDM SET CASH UNIT INFO
WFS CMD CDM START EXCHANGE

WFS CMD CDM END EXCHANGE

WFS CMD CDM OPEN SAFE DOOR
WES_CMD_CDM_CALIBRATE CASH UNIT
WES CMD CDM SET MIX TABLE

WES CMD CDM RESET

WFS_CMD CDM_TEST CASH UNITS

WES CMD CDM_COUNT

Figure 7: Part of commands accepted by ATM

(CDM_SERVICE_OFFSET
(CDM_SERVICE OFFSET
(CDM SERVICE OFFSET
(CDM SERVICE OFFSET
(CDM SERVICE OFFSET
(CDM SERVICE OFFSET
(CDM_SERVICE OFFSET
(CDM_SERVICE OFFSET
(CDM_SERVICE OFFSET
(CDM_SERVICE OFFSET
(CDM_SERVICE OFFSET
(CDM_SERVICE OFFSET
(CDM™ SERVICE OFFSET
(CDM SERVICE OFFSET
(CDM SERVICE OFFSET
(CDM SERVICE OFFSET
(CDM_SERVICE OFFSET

In the specific case, the malware uses the function to dispense money through the command
WFS_CMD_CDM_DISPENSE, as shown in figure:

nrJv LA COMAy T W '_FI.I LEI_'.'\TJ’J

push eax ; Arglist
push offset aDispenseDispen ;
push dword ptr [ebx+B&h] ; int
call vsnprintf_sub_ 1888176l
add EspJI @ch

"Dispense, dispense device is ¥d"

; 382 WF5_CMD_CDM_DISPENSE
v device ID

mav [Ebp+arg @], eax
WFSFreeResult

Figure 8: Command “WFS_CMD_CDM_DISPENSE” used by malware to dispense money

The core of the malware is the following switch structure: after reading the new command from the specific

S SR TR S S T S T e i e T T O T -

1}
2)
3)
4}
5)
7)
8)
9)
10)
11)
12)
13)
15)
20)
21)
22)
23)

file, it compares the command code with the embedded ones, such as “code 2” for retrieving information or
“code 7” for dispensing money.

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/

7/10

5/8/2019

4= byte ptr
dword ptr -1
ach

24

ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

ds:0ff_10009008 cdx"4] ; switch jup

: +

‘ll_I'Il‘

= el " el = e =
10c_teoaaare: i jumptable 10004077 case 2 loc_19004957. ; jumptable 10001077 case 4 1oc_10064090: ; jusptable 10004677 case 5 loc_10064099: ; jusptable 10004077 case 3 loc_10084002: ; jumptable 10004677 case 7|
lpov eex, esi wov ecx, esi v ecx, est v eex, esi push eex
leall getinfo_sub_teassans eall sub 10064152 call setBalancencok_sub_10004387 call sub 16004117 mov ecx, esi
90 short loc_1peessan prable 10004977 cases 1, jap short loc_1008seas ; juptsble 10002077 case Jap short loc_1068s8as ; jumtable 100¢ Jmp short loc_106:8a% ; jumptable 100040 lcall aispense_sub 10064185
e T = T T = R

T“_i,tv

-
Loc_toe0saan: ; jumptable 10904077 cases 1,8-13|
-
mav x, esi
push [ebpevar_16] ; int
call sub_1ede3Eel
12X
[Pl
pr— : jusptable 10004677 default case]
oo fenpruar_a1, oreirirren
i ex, [ebprvar_14]
all sub_1e0e:
lmov ecx, [edprvar_(]
pop w51
v Taree f10, e
Leave
4
10004545 ands

Figure 9: Malware’ switch structure

Moreover, the malware provides a well-structured logging system: all actions are traced and logged into
“c:\intel__log.txt”. In relation to the action that needs to be logged, it is able to set a specific logging level

(FATAL, ERROR, DEBUG etc.).

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/

8/10

5/8/2019 ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

I

sub_18881B24 proc near

arg_@= dword ptr 4

mov
cmp
jnz

eax, [esp+arg_@]
eax, 1
short loc_188@1B33

L]

I mov eax, offset aFatal ; "FATAL" I

[r=en

loc_1@8@1B33:

eax, 4
short loc_18@88@1B3E

L]

=
mav eax, offset aError ;

[T

L]

"ERROR™ h

loc_l@@elB3E:

eax,

short loc_188@1B49

@ah

mov eax,
retn

offset aWarning ; ".-.;RI.II.E"F

loc_l@eelB49:

Imov eax, offset aNotice ; "NOTICE"

BEh

eax,
short loc_188@1B54

¥

[FEEn

loc_le@alB54:

eax, 1zh
short loc_18@881B5F

L] '] v

5=
mov eax, offset aTrace ; "TRAC

=

loc_1@@e1B5F:

eax, @FAh

eax, offset aAll ; "aLL”
short locret 18681870

il s (=

mov

eax, offset alnknown ; “UNKNOWN"

locret_1@@a1B7@:
retn
sub_1@8@81B24 endp

Figure 10: Logging-level of the malware logging system

Conclusion

This recently discovered ATMitch sample is one of the key assets used by advanced attackers during bank
cyber-robberies, potentially even by the Carbanak or the GCMAN group. Who manually install it within
segregated hosts and write commands directly into the target machine, without any command and control
traffic. The usage of Remote Desktop to directly connect to the target machine is also supported by the
presence of a prompt window (Figure 4) which shows the correct execution of the first stage. Probably the
last steps of an attack flow involving ATMitch are the following:

1. The attacker connects to the ATM machine using Remote Desktop;

2. The attacker transfers the loader EXE and runs it: the prompt window shows if everything went well;
3. The attacker deletes the initial file in order to remove tracks;

4. The attacker writes commands in the appropriate file;

5. The malware executes the new commands and writes in the log file;

6. The attacker examines the log file to know the state of the command execution.

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/ 9/10

5/8/2019 ATMitch: New Evidence Spotted In The Wild — Yoroi Blog

So, the eventual presence of this malware could be the tip of the iceberg of a more complex and articulated
attack perpetrated by advanced cyber-criminals.

Indicators of Compromise
Hashes

o bf9c35d8f33e2651d619fe22a2d55372dedd0855451d32f952ecfc73fa824092
o e372631f96face11e803e812d9a77a25d0a81fad41ed4ac362dc8aee5c8a021000

Yara Rules

import "pe"
rule ATMitch {
meta:
description = "Yara Rule for ATMitch Dropper/Payload"
author = "ZLAB Yoroi - Cybaze"
last_updated = "2019-05-03"
tlp = "white"
category = "informational"

strings:
$strl = {4A 75 E6 8B C7 8B 4D FC}
$str2 = {EC 53 8D 4D DC 88}
$str3 = "MSXFS.d1l1"
$str4 = "DISPENSE"
$str5 = "PinPad"
$str6 = "cash"
$str7 = {40 59 41 50 41 58 49 40 5A}
$str8 = "WFMFreeBuffer"

condition:

pe.number_of_sections == 4 and pe.number_of_resources == 3 and $strl and $str2 or $str3
and $str4 and $str5 and $str6 and $str7 and $str8
}

This blog post was authored by Antonio Farina, Davide Testa, Antonio Pirozzi and Luca Mella of Cybaze-
Yoroi Z-LAB

https://blog.yoroi.company/research/atmitch-new-evidence-spotted-in-the-wild/ 10/10

