“Red October”. Detailed Malware Description 3. Second

§L securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/

By GReAT

First stage of attack

1. Exploits

2. Dropper
3. Loader Module

4. Main component

Second stage of attack

Modules, general overview

Recon group
Password group

Email group

USB drive group
Keyboard group
Persistence group
Spreading group

Mobile group
Exfiltration group

©C Voo NSOk S

—

3. Password group

PswSuperMailRu module

Known variants:

MD5 Size Compilation date (payload)
7b669c32e6ee2c65bec5e09024fc5415 237,568 January 14th, 2011
b7327bfa4a101a21f0cc1b366aa8e107 237,568 March 29th, 2011
a39fa7340b2f1d7b42342b3e2f06df71 266,24 August 16th, 2010
cd170625655424149573¢c88c59716¢cc4 270,336 February 11,2011
f60436b984962e741b81720eab604ad27 241,664 August 16th, 2010
2cf23cd8a7f85529576babc759f8cf37 270,336 March 29th, 2011
9bb32272be87a4dde8c8b05f49ded9f7 266,24 January 14th, 2011
ed72b6150e9fbc8f71e61dfea682a303 237,568 February 11th, 2011

1721

https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#exploits
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#dropper
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#loader
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#main-component
https://securelist.com/red-october-detailed-malware-description-2-second-stage-of-attack/36842/
https://securelist.com/red-october-detailed-malware-description-2-second-stage-of-attack/36842/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-4-second-stage-of-attack/36884/
https://securelist.com/red-october-detailed-malware-description-4-second-stage-of-attack/36884/
https://securelist.com/red-october-detailed-malware-description-5-second-stage-of-attack/36879/
https://securelist.com/red-october-detailed-malware-description-5-second-stage-of-attack/36879/

The files are all PE exe files between 232 KB and 264 KB, compiled with Microsoft Visual
Studio 2005. It is written in C/C++.

Entrypoint, unpacking stub, and obfuscation

Related binaries are heavily packed with a custom packer. The packer disrupts basic
software breakpoints and some api hooking techniques, because it decrypts the original
exe’'s section contents onto heaps in-memory and then writes the decrypted code and
.data, .rdata contents back over the original sections, hopping back into the decrypted code
and executing from there.

Summary

At its OEP, the module further retrieves environment information, and then creates a mutex
with the string “SUPER MUTEX". Then the module steals authentication credentials from
mail.ru agent software and attempts to steal open and saved attachments on the system
from the Outlook Secure Temp Folder. The executable then fails to write its own contents
to another executable file in tmp and maintain persistence on the system. Network
functionality is absent from this module.

Credential Stealing

The module steals Mail.Ru Mail Agent account credentials by reading relevant registry in
order to extract the passwords or decrypt them depending of the version. The two locations
this data is accessed are

e Registry key/value pair for Mail.Ru Agent version < 5.2
Registry key: HKCUSoftwareMail.RuAgentmagent_logins,
binary value: ####password

e Registry key/value pair for Mail.Ru Agent version 5.2 to 5.6
Registry key: HKCUSoftwareMail.RuAgentmagent_logins2
binary value: ####password

e Registry key/value pair for Mail.Ru Agent version >= 5.7 (Last version 6 is also
supported)
Registry key: HKCUSoftwareMail.RuAgentmagent_logins3
binary value: ####password

e Text file used by Mail.Ru Agent to store Blowfish encryption key
%APPDATA%MraUpdatever.txtThe contents of this registry keys are read and the
blowfish key stored inside “ver.txt” is used to decrypt the passwords, in version 5.7
and above.All actions are logged with time stamp, and then encrypted and written to
%temp%~avp2.log.The module will attempt to access “ver.txt” which is protected on
the system. If it can read it using standard API functions, it uses NTFS low level
access.In order to do so, it uses the DeviceloControl API function with the
“FSCTL_GET_NTFS_VOLUME_DATA” and “FSCTL_GET_NTFS_FILE_RECORD"
IOCTLs.The data of this file will also be written to %temp%~mslog.tmp, which is a
backup of “ver.txt"After the module will build a new string with the current timestamp
followed by delimiting dashes and indication that the module has finished running,
like “2012:11:10:10:22:34——-PROGA END". This string will be written to the

2/21

~avp2.log file.Here is an example of a decrypted ~avp2.log file:
“2012:11:22:17:21:44"——-PROGA START—-

“2012:11:22:17:21:44"ERROR ACCESS file ver.txt

“2012:11:22:17:21:44"FILE SYSTEM NTFS

“2012:11:22:17:21:44"PROBING GET FILE LOW LIVEL
“2012:11:22:17:21:44"ACCESS LOW LIVEL OK!!!

“2012:11:22:17:21:44"REG OPEN KEY[SoftwareMail.RuAgentmagent_logins3]
“2012:11:22:17:21:44"SUB KEY[000#victim@mail.ru] “2012:11:22:17:21:44"uin(0)
[000#victim@mail.ru] passwd(0)[%removed%] “2012:11:22:17:21:44"——-PROGA END
The string between “[” and “]” is binary value of MD5 Hash of the Mail.ru Agent
password.All restored credentials are also stored encrypted in the “~pass2.pwl” file
without the time stamp information and how they were accessed.Meanwhile
“PROGA” word used in here might refer to transliteration of Russian slang
“MPO"which literally means an application or a program.

Attachment stealing

The module will finally attempt to steal open attachments or attachments that were
open when the machine or Outlook application shutdown unexpectedly. It identifies
and collects these files from a directory path that looks like “C:\Documents and
Settings\%username%\Local Settings\Temporary Internet Files\OLK%xxx%".

Failed persistence

The module then attempts to maintain some persistence on the system by repeating
the routine. It creates %temp%\19d400.msv, and attempts to write a copy of its own
executable contents to it. Oddly, the WriteFile size parameter is set to “0” and the
write fails. It then attempts to run this 19d400.msv file by calling CreateProcessA on
it, which also fails. The module thread terminates the process.

Finally, it is interesting that network functionality is absent from this module.

Interesting decrypted runtime strings:

19d400.msv
Software\Mail.Ru\Agent\magent_logins2
Software\Mail.Ru\Agent\magent_logins
~pass.pwl

~avp.log

www.mail.ru

ProcessRead ok!

OPEN PROCESS agent_mail.ru OK!
%s——-PROGA END—-

——-PROGA START—-

SUPER MUTEX

19d400.msv

~mslog.tmp

%SsPROBING GET FILE LOW LIVEL
%SACCESS LOW LIVEL OK!!!

%SERROR OPENFILE
3/21

%SERROR GET ACCESS LOW LIVEL

PswOutlook module

Known variants:

MD5 Compilation date

f6e1637e04b33a3e0c57ab355d3e677e 2010.11.30 07:10:32 (GMT)

fa66821fd895b3814e501b804176ef98 2011.02.23 12:41:29 (GMT)

Summary

The file is a PE EXE file, compiled with Microsoft Visual Studio 2008. All the
functionality is implemented in the WinMain function. There are 2 known variants of
this module in over 50 files with identical behavior.

Like PswSuperMailru, this highly-obfuscated module is very different from others. Its

main purpose is to steal email credential information of the current user. This is
achieved by reading system protected storage and system registry. The result is
stored in an encrypted file, after that the application self-removes.

Main function

This module starts from decrypting pieces of information carefully puzzled in the file

body. The puzzle contains extra library names, export function names, their
parameters and set of internal references. The encryption algorithm reminds PKZIP
encryption but seems to be modified.

Decrypted data is carefully collected and filled in a set of internal objects. Next,
module connects to the local registry using RegConnectRegistry system API call.
This is not clear why the developers decided to use RegConnectRegistry call. They
either tried to bypass some local IDS/IPS systems by avoiding usage of
RegOpenKey/RegOpenKeyEx calls or the application was designed to connect to
remote computers as well. In all samples we have

observed, IpMachineName parameter is set to NULL meaning to connect to local
registry.

It dumps MS Outlook account information from the following registry keys:

HKCU\Software\Microsoft\Internet Account Manager
HKCU\Software\Microsoft\Office\Outlook\OMI Account Manager\Accounts
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging
HKCU\Subsystem\Profiles\Microsoft\Outlook Internet Settings
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging
Subsystem\Profiles\Outlook

After that it attempts to access and dump local protected storage identities
information via PStorec.dllAPI.

Collected information is stored in encrypted file: %Temp%\{B30BD41D-46E7-458B-
F412-4D7F80CCADOF}. The file contains a 32bit hash of data in the end.

4/21

This module never communicates with the C&C server and works as a standalone
tool. In the end of execution before exiting application it runs self-removal procedure
as described below.

Self-removal procedure

When the module needs to end the execution and self-remove, it spawns a
%COMSPEC% process (cmd.exe or command.com on older

systems) HKCU\Software\Microsoft\Internet Account Managerusing the following
commandline:

cmd.exe /c del /F /A “%MODULE_PATH%">> NULL

This procedure is very unreliable as it is prone to race-condition issues which might
result in modules remaining undeleted.

MSHash module

Known variants:

MD5 Compilation date

3538fea2c2f9a7117a6a919¢87112731 2011.11.01 15:04:58 (GMT)
a008d1ec659c3758e95bc3f0aafbe3a5 2011.08.05 07:40:37 (GMT)
68d72e12c402038195175b568b3dd0bb 2012.10.22 07:01:30 (GMT)

4b62cc78508b46d74cdd172dc493ec8a 2011.11.01 15:04:58 (GMT)

Summary

This module is a standalone executable, which is essentially a tool to dump cached
domain password hashes, and locally stored sensitive information, such as LSA
secrets. It uses direct disk access to bypass system registry ACLs. After execution
the module self-removes.

First, it uses direct disk access to copy registry files from %SYSTEM%\config\
directory:

%SYSTEM%\config\sam -> %Temp%\ksm
%SYSTEM%\config\system -> %Temp\kss
%SYSTEM%\config\SECURITY -> %Temp%\kse

Then module fetches available cached domain account hashes as well as local
system LSA secrets. The later may contain logins and passwords from various
services in plaintext. Also, it fetches Syskey bootkey secret and appends it to the
output.

The result is stored in an encrypted file of custom binary format which is located
in%TMP%\smrdprev.tmp. The contents of the file contains internal file reference
string, including date and time when it was created, i.e.
“@MSHASH\SAMHASH_2_20121002_034519.txt". This is probably suggested
relative path and file name during data extraction procedure on the attackers system.

5/21

The module also creates an encrypted log file with detailed information of program
execution. It is stored in similar file “%TMP%\smrdprev.tmp*, the hex number
depends on current system boot time. It is encrypted in the same way as the main
output file, using custom cryptoalgorithm based on AMPRNG cryptomethod.

Current module also tags current system by changing the following registry keys:

HKCU\Software\Microsoft\ADOSoftware32\ProductID = binary value of 20 bytes
(System ID)
HKLM\Software\Microsoft\ADOSoftware32\ProductID = binary value of 20 bytes
(System ID)

System ID is calculated as SHA1-hash of System Drive Volume Serial Number and
HKLM\SOFTWARE\Microsoft\Internet Explorer\Registration\ProductID value. These
keys remain after malware self-removes an may serve as good way to identify if your
system was hit by this module in the past.

Most of the cryptoroutines such as DES, RC4, HMAC_MDS5, MD4 are used from
statically linked OpenSSL 0.9.8¢ library.

After the end of execution it deletes temporary files and self-removes with simple
msc.bat file of the following contents:

chcp 1251

‘Repeat
attrib-a-s-h-r*

del **

if exist “ goto Repeat
del “msc.bat”

“un

Note, that current batch file sets current codepage to CP1251, which is used
to display Cyrillic characters in console output.

4. Email group
MAPIClient module

Known variants:

MD5 Compilation date

09e75477e03a968eead17a28d8aef0ce 2012.10.26 07:02:24 (GMT)
10603f7ec89c3472b238e9342f5ba62b 2011.10.10 11:37:27 (GMT)
C196e32764dc698bb88714adfb874667 2012.05.04 11:31:35 (GMT)
0fe600e06a69ccebbb5baf6c9f5f51a6 2011.12.02 07:34:41 (GMT)
c3a50d78669cd58b2cd4e38e30c1e986 2011.11.11 07:13:55 (GMT)
298c4562c8463bed3039ff2d12669adc 2011.09.02 05:08:00 (GMT)

1f91b25d0893d4e1b0418ffeb21f1f03 2011.10.10 11:37:27 (GMT)

6/21

521b45d21b4b2fc48f7ab29ab222d6ee 2011.11.11 07:13:55 (GMT)
7883b174ce69ffed41d3aea54855ff97 2011.06.10 06:11:48 (GMT)

3975b42d9bb39741e988f78020edeb44 2011.11.11 07:13:55 (GMT)

Summary

The file is a PE EXE file, compiled with Microsoft Visual Studio 2010. All the
functionality is implemented in the WinMain function.

This module is used to steal email information of the current user by getting most
valuable information about messages, starting from general fields
(To/From/Date/Subj), copying full MIME headers and message body, and stealing
attachments if extension looks interesting (documents, archives, cryptokeys). The
result is stored in a set of encrypted and compressed files, after that the application
self-removes.

Main function

It starts from creating a new encrypted log file in current directory of the executable,
named “system32ocxms.dat”. The first log entries contain the following:

Program started

V: MSG_26.10.12 This probably indicate internal module name (MSG) and version
(set after date of creation 26.10.12). Current application hasn't got an embedded
config/script file in resource section, all parameters are hardcoded.

Next it fetches the current system general information and default application
preferences from the registry, including the following:

User name

Computer name

User domain name (from %USERDOMAIN% and %USERDNSDOMAIN%)

Default system HTTP protocol handler from HKCR\HTTP\shell\open\command
Default system HTTPS protocol handler from HKCR\https\shell\open\command
Default system application for html files from HKCR\htmlfile\shell\open\command
Default system e-mail client from HKCR\mailto\shell\open\command

This information is added to the log file.

Next it checks if MS Outlook is installed, if it is actively running, whether it is system
default e-mail client. This is appended to the log either.

During next step, it creates a watchdog thread, which every checks foreground
window every 10 milliseconds and in case current foreground window belongs to
current process it spawns self-removal batch-file (see description in section below)
and terminates current process. This is done in case Microsoft Windows MAPI
framework creates a popup message with some connection error report, or asks the
user to enter credentials from the mailbox. The developers obviously wanted to

7/21

escape unnecessary attention and that is why they thought that it would be better to
shutdown and self-remove the module without collecting any information instead of
getting caught by attracting attention.

After watchdog thread was created the module lists local user mail addresses by
connecting to system MAPI. It gets User Email, Address Type and User Name. Next it
iterates through existing MAPI storages for current user and dumps full information
about all messages to the main log file, including e-mail header values, such as

Subject

From

To

Date
AttachmentID
AttachmentName
AttachmentSize

The emails of attackers’ interest with attachments are saved in a separate encrypted
and Zlib-compressed storage file (new storage file is created for each directory):

%CurrentDir%\sys_%HexNumber%\winocx_%IntegerCounter%_rdtp.tmp

The attachment storage file is limited to 60Mb, RC4 encryption key is
1 specialforoutlookattachments!

The filter for interesting emails is defined in a list of regular expressions (PCRE lib is
used to process those):

.doc .xlIs .txt .vef .p7m .mdb .msgz .dcx .egk .zm9 .docx .xIsx .eml .CCC .cif .fas .msg
.kum .key .out .rtf .pdf .enc .TOK .wps .sbox .lock .ass .cer .pem .odt .rar .html .xia
.sec .cm5 .xps .pgp .wfh .cbu .ods .zip .htm .xis .dat .rhs .x05 .xiti .grp .sig .dot .gpg
mht .p7s .dth .max .y05 .egm .pot .ftil

Current module is also capable of dumping full contents of local system Address
Book, however this functionality is currently disabled by the developer (probably
because of some bugs in the code).

This module never communicates with the C&C server and works as a standalone
tool. In the end of execution before exiting application it runs self-removal procedure
as described below.

Self-removal procedure

When the module needs to end the execution and self-remove, it creates a batch-file
with pseudo-random name: %HOMEDRIVE%%HOMEPATH%\Local
Settings\Temp\.bat.

If it couldn’t create random name, the name will be set to “syspart.bat”.

The file contains:

8/21

‘Repeat

del /F /A ™

if exist “" goto Repeat
del /F /A ™

POP3Client module

Known variants:

Compilation date Compilation date
MD5 (encrypted) (payload)
224c382316bedbe7e0009f08b84cd91e 2011.09.26 06:54:09 2011.05.2511:49:19
(GMT) (GMT)
100e53ee8fbeb4546b31eb7e0aad8752 2011.07.27 07:37:01 2011.05.2511:49:19
(GMT) (GMT)

Summary
The file is a PE EXE file, compiled with Microsoft Visual Studio 2005.

This module is responsible for receiving and storing email messages on a local
computer from a POP3 server specified in a configuration file. All the actions and
important info are written to a log file.

Main function
Creates mutex “208D2C60-3AEA-1069-A2D7-08002B30309D”

Creates a directory and a log file in it: %ALLUSERSPROFILE%\Application
Data\System\smrdprev.%d%d.tmp (%d values correspond to time64() * 0x1F3E231
and GetTickCount()).

Installs in system AutoRun:

>HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
“LgfxTray”= PathToExe

Other Registry entries:

HKLM\SOFTWARE\Microsoft\ADOSoftware32
HKCU\SOFTWARE\Microsoft\ADOSoftware32
“ProductID” = SHAT(MAC, AdapterlP, VolumeSerialNumber, IE Product ID)

Always starts the log file from:

@LOG\CMAIL_LOCAL_v1_ %YEAR%%MONTH%%DAY %_%HOUR%%MIN%%
SEC%.txt Software version: 0.8

Current Directory: %s

“——-PROGA START——-"

Opens mutex “huiofwhfiowjcpowjkcwcophwvurweionwopmcvopwkvpwijnhopv”, if it
exists, then module terminates.

9/21

Tries to open config file “jusched32s.dat” and read the contents. If the file doesn’t
exist, then terminates. Checks file MD5 hash in file header (first 16 bytes), if it was
changed after the last saved MD5 (in memory as a variable), then updates it and
writes the new hash to log file.

If calculated hash of the file buffer matched the header hash then module decrypts
and parses config file and launches POP3 client thread, otherwise terminates.

Parameters in config file:

common
account

config_id
email_hash_path
storage_path
storage_size
load_period
time_delta
size_min

size_max
storage_hash_size
uninstall

login

password
pop3server
imapserver

use

email

If “unistall” parameter is set in config file, then module deletes AutoRun keys in
registry, config filejusched32s.dat and terminates.

POP3 client thread

By default all connections are not encrypted with SSL. There is a variable which for
some reason is not initialized, that is used to control the network communication, i.e.
to use SSL encryption or not.

Establishes a connection based on ‘pop3server’ (or ‘imapserver’), ‘login’ and
‘password’ parameter values in config file.

After receiving the number of emails as a response on STAT command starts
processing emails in cycle.

Forms an MD5 hash from a string in format “%s%s%s” with ‘login’ parameter,
‘pop3server’ parameter and the value that depends on current processed email
number and UIDL response.

Seeks in directory specified in ‘'email_hash_path’ for *mso.dat files, reads their
contents and compares the hashes stored in them with calculated hash.

10/21

If calculated hash is found in the contents, then the module doesn't process the
current email, otherwise gets email message size from a POP3 server with a LIST
command.

Creates File %email_hash_path%\%s%.mso.dat (%s — CRC32(GetUserName)) and
appends counted hash to it. If the new File Size is bigger than ‘storage_hash_size’
than rewrites the file with the latest data so it's size doesn't exceed
‘storage_hash_size’'.

If email size is in the range ‘size_min’-'size_max’ then the module retrieves email
headers and email message body, otherwise stops email processing. Then the
module parses the response, retrieves the date of email, counts days elapsed and
compares it to ‘time_delta’. If it's bigger than ‘time_delta’ then breaks the email
processing cycle.

Creates file: %storage_path%\bcmntc.%d.tmp (%d - time64 * 0x1F3E231.tmp) with
decrypted contents including email

header: @CMAIL_LOCAL\%s_%04u%02u%02u_%02u%02u%02u\%d.eml ('email’ field,
Date, Email number) and email contents itself. Some buffers are compressed with
zlib.

All the collected data is stored locally and isn’t uploaded to any C&C by this module.

5. USB Drive group

USBContainer module

Known files

Compilation date
MD5 (encrypted)

b9568a91d6f6b0904de8b2e9d9a2d32¢c 2010.06.01 11:24:07 (GMT)
fOeaecOb25afc24a416810fe46242590 2010.06.01 11:24:07 (GMT)

865ba7958efe7e54501dcf2c19dcd99e 2010.06.01 11:24:07 (GMT)

Summary

This is a standalone EXE application module which is used to drop and run
USBStealer module (IGFXTRAYMS.exe) along with its configuration file
(imapisync32.dat)

Those two files are zlib compressed and stored in the overlay of the dropper.

Main function

Upon execution, the dropper reads its overlay and decompresses it in memory.

The configuration file “imapisync32.dat” is dropped first followed by the opening of a
system event named “ScxinWordSid_0129211FA”. This event is created by the
USBStealer module.

11/21

Afterwards, it will try to delete the “IGFXTRAYMS.EXE" file without checking if it exists

or not.

The USBStealer module is then dropped using the following file
name: “IGFXTRAYMS.EXE" and executed. Both files are dropped in the same

directory of the dropper.

Finally, the following will be executed 3 times before exiting:

C:\WINDOWS\system32\cmd.exe /c del CADOCUME~1\%PATH_TO_DROPPER.EXE%

>> NUL

This module doesn’t create any execution log files, nor does it connect to the C&C

servers.

USBRestore

Known files

MD5

Compilation date
(encrypted)

9572cc04fd442027cfd61178bdf73c0c
febaObbead1a810c223cf8252b529d65
4aabfd510ef66e066946087617638090
1d124d06666cfa6b33768f1147208b9c¢
260ad160972cabbc071b7cb518a9b5fa
ab72d7ed99c3c18f2582b6e9cd5ec875
ef6751567cbf7¢92cd3880fc7aa425c9
56c06123e34dcc8a8e464da9acd852bb
a6d549d7c90c412a20fc9e7abc829eb5
be6f3c214d2a579728fc3537c6454f8¢c
0883d6533aa4fb0e40abe48ab66ea84d4
c3e70e9b50cd3f6cfcd0ac75a60b3464
75b824c5a6a9b950ccbdaee577fe964b
9bb26fb5179db8515cdc81ch9f40387d
d9851c67bfeec5cc37db99be07061857
07999110cab8c6558be11684d2c02793
9d5bb8f9441d31148bf4f190e27764cc
ecd7bec9522e64df7b179b512e71c154
5e215b9272e4a0ff0d9725ac94bd 1541

9a29dbd2a398fda91167169b0866047d1

2011.07.15 12:30:29 (GMT)
2011.06.02 12:30:50 (GMT)
2011.06.02 12:30:50 (GMT)
2011.07.15 12:30:29 (GMT)
2011.06.02 12:30:50 (GMT)
2011.06.02 12:30:50 (GMT)
2011.07.15 12:30:29 (GMT)
2011.05.23 11:33:26 (GMT)
2011.07.15 12:30:29 (GMT)
2011.07.15 12:30:29 (GMT)
2011.05.23 11:33:26 (GMT)
2011.06.02 12:30:50 (GMT)
2011.07.29 10:59:44 (GMT)
2011.07.29 10:59:44 (GMT)
2011.06.02 12:30:50 (GMT)
2011.07.15 12:30:29 (GMT)
2011.06.02 12:30:50 (GMT)
2011.06.02 12:30:50 (GMT)
2011.06.02 12:30:50 (GMT)

2011.07.15 12:30:29 (GMT)

12/21

4355f29680630980cf732e46306a39ce 2011.07.15 12:30:29 (GMT)
d4d959bffa33b0e3076421a02e69f13b 2011.07.15 12:30:29 (GMT)
f2bb34acdebcbbd335e6cc2816a0c5f0 2011.06.02 12:30:50 (GMT)
ca25ca44ef0106c4080415f1¢c2090400 2011.07.15 12:30:29 (GMT)
83ee5deb488d58d924134781e76c416¢c 2011.06.02 12:30:50 (GMT)
9aa8f3ed12ef1003d24c771af69879f8 2011.07.1512:30:29 (GMT)
19cc111e41d804f20e5f65c6d0a48953 2011.07.15 12:30:29 (GMT)
acfc7040304b19422ba0a1278b4d9c48 2011.05.23 11:33:26 (GMT)

a515279eee527f7d20f82ef673308151 2011.06.02 12:30:50 (GMT)

Summary

This module is a standalone Windows executable which is automatically started on
system boot and runs secretly in the background. It expects removable media arrival
and recovers deleted files of attackers’ interest from it. This lets the attacker copy
deleted docs as well as ZIP and RAR archives from attached removable media.

Initialization

Upon start the module creates a general purpose log file in %TMP%\smrdprev..tmp,
where DWORD is a current time value xored with 0x1F3E231, DWORD?2 is value of
GetTickCount() API call.

So, basically log file path is % TMP%\smrdprev..tmp. Same xor value is used among
all variants we have seen (20+ files).

General log starts with internal module name which is essentially “USB_RESTOREv1”.

It also logs software version which is “0.5" for current module. Other modules had
different hardcoded versions. The variants we have seen had 0.3, 0.5 and 0.6.
However, there are few files which didn’t have any indication of internal module
version and are probably the earliest versions. The log file also includes detailed
information about the system it was launched on. Example of system info:

TIME: “2012-11-12 18:07:26 514"
ADMIN: “1”

UserName: “user”

ComputerName: “WIN_XP_105"
TimeZone: “Russian Standard Time”
LOCALE: “Russian_Russia.1251”
OEMCP: “866"

ACP: “1251”

OwnFile: “C:\wusb.exe”

The module changes registry to run automatically during system start:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ctfmon32rt =

13/21

If it didn’t succeed with HKLM (HKLM) it will try to set similar value in HKCU (HKCU).

Next step, it checks if current user has local administrator rights and logs this as well
(“—ADMIN MODE—-" or “—USER MODE—-").

One more string is added to the log which indicates end of initialization stage and
start of main functionality: “WUSB: begin”. This is probably a reference to another
module internal name: “WUSB”.

Main Procedure

It creates an invisible window named “sbw” (Unicode) with window class
“Win32UserHost". The module calls RegisterDeviceNotification() API to receive
systen notifications from particular device GUIDs:

F18A0E88-C30C-11D0-881500A0C906BED8 (GUID_DEVINTERFACE_USB_HUB)
ASDCBF10-6530-11D2-901F00C04FB951ED (GUID_DEVINTERFACE_USB_DEVICE)

So far, the module waits for notifications from USB hubs or USB devices attached to
the local system. According to the notification handler code, the module is only
interested in new attached volumes except those which were mapped to letter A:
(reserved for Floppy drives). Once the new volume appears in the system the module
starts a separate thread to process this event. Device is never processed twice until it
is plugged in again, the module stores currently mounted devices and handles device
removal events properly.

When new USB drive is attached, the module obtains USB device software and
vendor ID, drive character, volume name, filesystem type, volume serial number,
number of free and used bytes. Then it reads the filesystem using direct disk access
and own parser of FAT-based filesystems. It is unable to read other filesystems
including NTFS.

Own filesystem parser code allows to avoid using system API to access files, and
thus bypass various IDS/IPS software and at the same time look into slack space of
the disk. This lets the attackers reveal already deleted files on removable drives. The
module creates additional debug log which traces execution events and records all
problems that have occured. The filesystem parser log files are located

in %TMP%\hsperfdata32sys\bcmntc_rt_*

The parser log includes all discovered filenames, including deleted files. The same
module is capable of recovering deleted files. It can recognize file types and recover
original files depending on format. It is designed to recognize the following file
headers: DOCX, XLSX, DOC, XLS, RAR, ZIP . Recovered files are saved

in %TMP%\hdbrt32sys\ms32jxtr.dat.

All files created by the module, including logs are stored in custom binary format,
which may use Zlib compression, and custom encryption.

This module doesn’'t communicate with any C&c server, all files are stored locally.

USBStealer module

14/21

Known files

MD5

Compilation date
(encrypted)

51d5f5a5¢c7de6a175e269236¢2¢574b0
bbe23b8baec0afbd54154820f4a9d7ea
6abd3d906ebd0e6bf4fb8d00273fdc66
b9114882ed3a184f8a58284f3fe57ch0
657f0f4f6183cd2e87fdfd8a88f927¢9
900ab792a9dc9ae35c821cce98164d81
18bd71030b18f3bc93d08b650ae0d43d
187adc0380142c61224c53eac9a70955
78f2c84fefe80bc84361c40d2bbd0501
b2c60688dc2de4dd4de1f393ae59e317
3b4125c8dc55ae54fa244a8fdcea8bc9
760333093fbcc38f6b8d7e1667d192b8
ffd4096c5d2a2a4801ac6e8ab250a0d0
92b6b580f1d2e5409a6feb5c8883de2b
daf244aacbac081693b914a4a1486fa5
2b08ae138fd27ba62b7eale35d38b56f
48c4e2386chaeba’1bdeccab21ead6e5
a39636¢c2fb253ae9ff7b7c0294abf8ac
f27870dd7bfa952636850a76205f4ba3
c64343fad7¢1f98a8342bd29829fcdf1
58fbcf7d9146eba51¢c22€91bdf7128d0
5¢563e849ec86a542daf492b31dde2bb
4c205fc9c7dbd95316f9ed5aafa34712

b0e2f3c972477e750d5adbed3650ae81

Summary

This is a standalone EXE application module which is used to automatically track and
steal interesting files on removable disks attached to infected system. It starts
automatically on system boot. Criterias for files are defined in external encrypted
binary config file which must be deployed during setup. It creates own database of
known files’ hashes and registers a listener for filesystem changes to do that

efficiently.

Initialization

2010.10.14 07:07:58 (GMT)
2010.10.14 07:07:58 (GMT)
2010.10.14 07:07:58 (GMT)
2011.03.02 09:54:14 (GMT)
2010.10.14 07:07:58 (GMT)
2010.10.14 07:07:58 (GMT)
2011.03.02 09:54:14 (GMT)
2011.03.02 09:54:14 (GMT)
2010.10.14 07:07:58 (GMT)
2010.10.14 07:07:58 (GMT)
2011.03.02 09:54:14 (GMT)
2010.10.14 07:07:58 (GMT)
2011.03.02 09:54:14 (GMT)
2011.03.02 09:54:14 (GMT)
2010.10.14 07:07:58 (GMT)
2010.10.14 07:07:58 (GMT)
2011.03.02 09:54:14 (GMT)
2011.03.02 09:54:14 (GMT)
2010.10.14 07:07:58 (GMT)
2010.06.01 12:13:42 (GMT)
2010.10.14 07:07:58 (GMT)
2010.10.14 07:07:58 (GMT)
2010.10.14 07:07:58 (GMT)

2010.10.14 07:07:58 (GMT)

15/21

At the start it creates system mutex named * Win32Wbem32Prefetch’, a system event
named “ScxinWordSid_0129211FA” (used to signal end of execution) and a log file
at %TMP%\imapispool..0x.ids.

It collects basic system information such as current computer name, current
username, and path to original executable module where it started from.

This information is put in the log file in the first place along with current date and
time. Every time module adds anything to the log file, it checks if the log file

exceeds 15MB size. If that's true it deletes current log file and opens a new one using
the same path.

It changes registry settings to start automatically on system boot. The changes are
made to
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\winns32comp value.

Main Procedure

It creates an invisible window named “sbw” with window class “Win32UserHost". This
window receives notifications from specific device types. The module calls
RegisterDeviceNotification() API to listen for notification from the system on
particular device GUIDs:

F18A0E88-C30C-11D0-881500A0C906BED8 (GUID_DEVINTERFACE_USB_HUB)
A5DCBF10-6530-11D2-901F00C04FB951ED (GUID_DEVINTERFACE_USB_DEVICE)

At the same time it create configs monitoring thread which reacts on file changes
and reloads new values. The config files are stored in the same directory where
current executable module is and named “imapisync32.dat”,

“wmilibrt.dat”. imapisync32.dat is encrypted using some custom algorithm, and has
information about file targets to track and copy if found. There are common criterias
of file size, file age, etc. The module utilizes PCRE (Perl Compatible Regular
Expressions) library to effectively apply regular expression white and blacklists
against filenames. The criterias are splitted into groups and parameters are names
with specific prefix of the group (a, d, s, sd, fa). If group is ended with “a”, that is used
as a whitelist, filenames that match against such regexps are to be stolen. Groups
ending with “d” represent blacklist, files will be ignored. Below is full decrypted config

(imapisync32.dat) with our comments after “#” character:

magic=/lddata/ # magic string identifying config file start

_st_size=/300000000/ # max size of the storage (300MB)

_id=/00020/ # internal storage id

_fdeltatime=/2592000/ # files must be not older than 2592000 seconds or 30 days
_max_size=/20000000/ # maximum size of a single file must be not larger than
20MB

_min_size=/1/ # files must not be smaller than 1 byte

a=/\.txtS/

a=/\.csvS/ # Comma-Separated Values, tabular data file

a=/\.eml$/ # exported e-mail file

16/21

a=/\.doc$/

a=/\.vsd$/ # MS Visio document file

a=/\.sxw$/ # StarOffice/OpenOffice document file

a=/\.odt$/ # OpenOffice document file

a=/\.docx$/

a=/\.rtf$/

a=/\.pdf$/

a=/\.mdbS/ # MS Access database file

a=/\.doc\./ # *.doc.* files, could be for an archive of MS Word document file
a=/\.odt\./ # *.odt.* files, could be for an archive of OpenOffice document file
a=/\.docx\./ # etc

a=/\.rtf\./

a=/\.pdf\./

a=/\.xIs\./

a=/\.wab$/ # Windows Address Book file (used in Outlook Express)
a=/accounts\.ini/ # could be Opera browser accounts and settings file
a=/account\.cfn/ # TheBat! e-mail client accounts and settings file
a=/signons\.txt/ # saved user names and passwords in Thunderbird, Sunbird, and
earlier versions of Firefox

a=/ScribeOptions\.xml/ # probably settings of Scribe crossplatform e-mail client
a=/wand\.dat/ # Opera browser password manager database

a=/bpftp\.dat/ # BulletProof FTP client password database

a=/sm\.dat/ # CuteFTP password database

a=/smdata\.dat/ # CuteFTP password database

a=/FileZilla\.xml/ # FileZilla FTP client password and settings database
a=/ftplist\.txt/ # TotalCommander ftp upload file list (may contain credential
information)

a=/addrbk\.dat/ # TurboFTP password and settings file

a=/wcex_ftp\.ini/ # Total Commander cached FTP credentials database
a=/ws_ftp\.ini/ # WS_FTP client password and settings file

a=/andrq\.ini/ # &RQ ICQ client password and settings file

a=/account\.xml/ # Very generic name, used in various software
a=/odigo\.com\.odu/ # Odigo instant messenger settings file
a=/TheBee\.ini/ # Some “The Bee” software ini file, unclear which software it is

The following subgroup defines useless files that will not be taken.

d=/\\~wordspool.*\.tmp\.doc$/
d=/\\~wordspool.*\.srt\.doc$/
d=/\\~wordspool.*\.rtc\.doc$/

_s_fctime=/1990-01-01 01:02:03/ # files of group “s” after 1990-01-01 are interesting
_S_max_size=/20000000/ # max size for group “s” is 20MB as well
_Ss_min_size=/1/ # min size is 1 byte

Some patterns of filenames below seem to be related to some other malware seen
on usb drives. It may contain stolen credentials, so they copy it as well.

17/21

sa=/.*mssysmgr\.ocx/
sa=/.*\.cab\.bak/
sa=/.*list\.tIb/
sa=/.*drive\.tlb/
sa=/.+\\\Slddata\S\\.+/
sa=/.+\\NT.Config\\.+/
sa=/.*\\ldupver\.txt/
sa=/\w:\\[\d\w]+\.dll/
sa=/\w:\\[\d\w]+\.exe/
sa=/.*autorun\.inf/
sa=/.*thumb\.dd/
sa=/.*thumb\.db/
sa=/.*msnmsngr\.exe/
sa=/.*svchost\.exe/
sa=/.*EXPLORER\.EXE/
sa=/.+\.iau/
sa=/.+\.rst/

sa=/\.xps/ # This is a subgroup of various files with secrets, such as digital
certificates, configs and password databases

sa=/\.cif$/
sa=/\.key$/
sa=/\.crt$/
sa=/\.cer$/
sa=/\.hse$/
sa=/\.pgp$/
sa=/\.gpg$/
sa=/\.confS$/
sa=/passw/
sa=/secret/
sa=/crypt/
sa=/krypt/
sa=/cypher/
sa=/cipher/
sa=/\.ovpn$/
sa=/\.xia$/
sa=/\.xiu$/
sa=/\.xisS/
sa=/\.xio$/
sa=/\.xig$/
sa=/pubring.*/
sa=/secring.*/
sa=/\.acidcsa$/
sa=/\.acidsca$/
sa=/\.aciddskS/
sa=/\.acidpvr$/
sa=/\.acidppr$/

18/21

sa=/\.acidssa$/
sa=/\\ACIDInstallv.*\.exe$/
sa=/\\ACIDdirInstallv.*\.exe$/ sa=/\\Acid Technologies\\/ # Probably this and above
refers to Acid Cryptofiler military grade encryption software
sa=/.*cisco.*\.txt$/

sa=/.*cisco.*\.cfg$/
_f_fctime=/1999-02-03 02:03:07/
_f_max_size=/10000000/
_f_min_size=/1/
fa=/~WRD32cache.*\.doc$/
fa=/glxcrt.*\.dat/

fa=/bcmntc.*\.tmp/
fa=/smrdprev.*\.tmp/

a=/\.ttr§/ # maybe TTR Backup software?
a=/\.tbe$S/ # unclear

a=/\.tteS/ # unclear

a=/\._ok$/ # unclear

a=/\.kiS/ # unclear

a=/\.txt$/

a=/\.tvtS/

a=/\.txr$/ # CorelDraw file?

a=/\.tvr§/

a=/\.tbrS/

a=/\.kinS/

Config file may change during module work and there is a special thread that
monitors config file changes and loads new configuration when it is changed.

The module lists all available attached removable drives, iterates through all of them
except A: and B: (reserved for floppy disks). It collects full file paths and file meta-
information, compresses, encrypts and stores this

in %TMP%\mrtdsync\win64esrt_* database. Additionally, files from the list of interest
are copied to win64berts* files, which also have full information and body of the file.
It is encrypted and compressed twice.

There is a separate thread to monitor filesystem changes and every time new
file/directory is created or changed on the monitored drives updated information
goes to TMP%\mrtdsync\win64esrt_* in separately spawned thread, additionally all
changed or created files are copied to a new win64berts* file.

This module works offline and doesn't communicate with any other host on the
network.
6. Keyboard group

Keylogger module

Known variants:

19/21

MD5

Compilation date
(encrypted)

Compilation date
(payload)

33bda0e77b840809e66e12d020e054c5

3cb7318ed40239f7219d86343a17b54b

dfcce19f2852db652071088bf9461b4a

6079a0746e76c1090dc110e08de645e2

57897¢c997¢c699135b9460c0be7a4b27e

ecc7abef3f5e92f0c7da0bef8d392b5f

2011.04.14 12:00:26
(GMT)

2011.05.10 07:45:02
(GMT)

2011.05.10 07:44:55
(GMT)

2011.05.20 11:00:18
(GMT)

2011.10.10 07:59:41
(GMT)

2011.05.12 10:47:39
(GMT)

2010.10.05 10:53:49
(GMT)

2010.10.05 10:53:49
(GMT)

2010.10.05 10:53:49
(GMT)

2010.10.05 10:53:49
(GMT)

2010.10.05 10:53:49
(GMT)

2010.10.05 10:53:49
(GMT)

The file is a PE EXE file, compiled with Microsoft Visual Studio 2005. Its main
purpose is to log keystrokes, copy input texts and make screenshots.

Main function

Opens and Creates Event WIN_%08X%08X%08X%08X%08X (SHA1(first 512 bytes of
self file)), if exists, terminates. Sets in AutoRun, using the following registry keys:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
“Mspmr32” = %Path to the module%

Deletes file “Keylogger.log” (this filename is not used anywhere else). Registers a
window class with RegisterClassEx API using ClassName “svchost.exe”, assigns a
window procedure that implements main module functionality. Creates window with
CreatWindowEx API using ClassName “svchost.exe”, window name “svchost” and
associates it with a registered class.

Registers a device with RegisterRawlnputDevices APl and associates it with created
window with a flag RIDEV_INPUTSINK which enables the caller to receive the input
even when the caller is not in the foreground.

Window procedure

All the logging actions are implemented basing on receiving WM_INPUT window
message, if raw input for GetRawlnputData APl comes from keyboard and
GetRawlnputData received WM_KEYDOWN message.

Collected information

It collects some general information about current user and opened
windows/processes:

Foreground window text or WT_UNKNOWN
Module FileName or MN_UNKNOWN
Foreground window class name

20/21

UserName

It is capable of making full desktop screenshots, copying clipboard data of password
input fields (to check a window EM_GETPASSWORDCHAR is sent to the window).

If “Shift+Insert”, “Ctrl+C”, “"Ctrl+V","Ctrl+X", “Ctrl+Insert” is pressed then it copies
clipboard data.

Creates File %TMP%\SSDPserv32\ssdtrbs%08x%.sys.%d% (%08x — Random Hex
value, %d - time64()). All the collected information is compressed with Zlib and RC4

encrypted with the key “gefwljkfnw3l;fjwe;fklwejfw;eflkwe;flwe”and written to this file.

21/21

	“Red October”. Detailed Malware Description 3. Second Stage of Attack
	First stage of attack
	Second stage of attack
	3. Password group
	PswSuperMailRu module
	Entrypoint, unpacking stub, and obfuscation
	Summary
	Credential Stealing
	Attachment stealing
	Failed persistence
	Interesting decrypted runtime strings:
	PswOutlook module
	Summary
	Main function
	Self-removal procedure
	MSHash module
	Summary

	4. Email group
	MAPIClient module
	Summary
	Main function
	Self-removal procedure
	POP3Client module

	Summary
	Main function
	POP3 client thread

	5. USB Drive group
	USBContainer module
	Summary
	Main function

	USBRestore
	Known files
	Summary
	Initialization
	Main Procedure

	USBStealer module
	Known files
	Summary
	Initialization
	Main Procedure

	6. Keyboard group
	Keylogger module
	Main function
	Window procedure
	Collected information

