
MosaicRegressor:
Lurking in the
Shadows of UEFI
Technical details

2

Contents
UEFI Bootkit  �   3

RAR SFX droppers for the Curl-based downloaders  �   5

BITS Downloaders  �   10
Main thread  �   11
C&C Communication  �   11
BITS Transfer  �   11
Loading the DLL modules  �   12
BITS Downloader, extended  �   12
System information  �   13
Payload  �   14
Language artifacts  �   15
BITS Downloader, extended, MSVC 10 version  �   16
BITS Downloader, “HHDump.dll”  �   16
Load.rem  �   17
Main thread  �   17
BITS Downloader, “cryptui.sep”  �   17
BITS Downloader, 64-bit  �   18

Curl-based downloaders  �   19
C&C communication  �   19
Payload ABI  �   20
Notable file properties  �   20
Variable parameters  �   20
C&C URLs  �   20
Payload DLL names  �   20
C&C communication delay  �   21
Curl-based downloader, extended  �   21
C&C communication  �   21
Payload  �   21
Curl downloader, “OINFO11.OCX”  �   22
Rich header dump  �   22
CallA  �   24
CallB  �   24
CallC  �   24
WinRAR wrapper “load.rem”  �   24
Load  �   24
Intermediate DLL loader “mapisp.dll”  �   25
CryptoSysPrep  �   25

E-mail downloader  �   26
“Process” function  �   26

OLE2 Equation dropper  �   27
Payload of the OLE2 dropper, “Data.dll”  �   27

Launcher for the Curl downloader  �   28

Winhttp-based downloaders, extended  �   28
C&C addresses and file names  �   29
Modification with the “ID” field  �   30
C&C addresses and file names  �   30

MosaicRegressor: Lurking in the Shadows of UEFI

3

MosaicRegressor is a multi-stage and modular framework aimed at espionage and data gathering. It consists of downloaders,
and occasionally multiple intermediate loaders, that are intended to fetch and execute payload on victim machines. In two
known cases, the initial stage of the framework was installed in the victim’s UEFI firmware, achieving the above-OS level of
persistence.

UEFI Bootkit

When inspecting the compromised UEFI firmware, we noticed four components that had unusual proximity in their assigned
GUID values. These were two DXE drivers and two UEFI applications. Upon closer analysis, we could conclude that those
were compiled from the source code of a Hacking Team bootkit named VectorEDK, that was leaked in 2015 and is now
available online.

Rogue components found within the compromised UEFI firmware

Following is an outline of the revealed components:

F5B320F7E87CC6F9D02E28350BB87DE6 (SmmInterfaceBase)
B53880397D331C6FE3493A9EF81CD76E (SmmAccessSub)
91A473D3711C28C3C563284DFAFE926B (SmmReset)
DD8D3718197A10097CD72A94ED223238 (Ntfs)

•	 SmmInterfaceBase: a DXE driver intended to deploy the bootkit itself on the system by registering a callback that will
be invoked upon an event of type EFI_EVENT_GROUP_READY_TO_BOOT. The event occurs at a point when control can
be passed to the operating system’s bootloader, effectively allowing the callback to take effect before it. The callback
will, in turn, load and invoke further components of the bootkit, in this case ‘SmmAccessSub’.
This is equivalent to Hacking Team’s ‘rkloader’ component, and is built using its source code.

•	 Ntfs: a driver used to parse the NTFS file system to allow reading or writing to disk.

•	 SmmReset: a UEFI application intended to mark the execution of the bootkit. This is done by setting the value of a
variable named ‘fTA’ to a hard-coded GUID. The same is done by the original Vector-EDK bootkit as part of the bootkit’s
main business logic. In this case, it’s not invoked and it seems to be a residue from the open source code that was not
properly leveraged by the developers.

Setting of the fTA variable with a predefined GUID to mark the execution of the bootkit

MosaicRegressor: Lurking in the Shadows of UEFI

4

•	 SmmAccessSub: the main bootkit component that serves as a persistent dropper for user-mode malware. It is executed by
the callback registered during the execution of ‘SmmInterfaceBase’, and takes care of writing a binary embedded within it as
a file named ‘IntelUpdate.exe’ to the startup directory on disk. This allows the binary to run when Windows accomplishes
the boot process.

This is the only proprietary component amongst the ones we inspected, which doesn’t rely on Vector-EDK code.
It conducts the following actions to drop the intended file to disk:

	– Bootstraps pointers for SystemTable, BootServices and RuntimeServices global structures.

	– Tries to get a handle to the currently loaded image by invoking the HandleProtocol method with the EFI_LOADED_
IMAGE_PROTOCOL_GUID argument.

	– If it succeeds, it attempts to find the root drive with Windows installation by enumerating all drives and checking that
the ‘\Windows\System32’ directory exists. A global EFI_FILE_PROTOCOL object that corresponds to the drive will be
created at this point and referenced to open any further directories or files on this drive.

	– If the root drive is found, it looks for a marker file named ‘setupinf.log’ under the Windows directory and proceeds only
if it doesn’t exist. In the absence of this file, it is created.

	– If the creation of ‘setupinf.log’ succeeds, it goes on to check if the ‘Users’ directory exists on the same drive.

	– If the ‘Users’ directory exists, it writes the ‘IntelUpdate.exe’ file (embedded in the UEFI application’s binary) under the
‘\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup’ directory.

Code from ‘SmmAccessSub’ used to write the embedded ‘IntelUpdate.exe’ binary to the Windows startup directory

MosaicRegressor: Lurking in the Shadows of UEFI

5

RAR SFX droppers for the Curl-based downloaders

These are several SFX droppers with decoy documents that were sent to victims by e-mail. Each contains a document and
a variant of a Curl-based downloader or a Winhttp-based downloader

b23e1fe87ae049f46180091d643c0201

This file is a plain RAR archive with one EXE file inside.

Size Date Name MD5

221461 2018-03-27 Health and Ageing on the occasion
of the World Health Day_180326.exe

0efb785c75c3030c438698c77f6e960e

The EXE file in turn is also a RAR SFX archive with the following contents:

0efb785c75c3030c438698c77f6e960e

Size Date Name MD5

13520 2018-03-27 1.docx d197648a3fb0d8ff6318db922552e49e

208896 2018-01-16 msreg.exe 61b4e0b1f14d93d7b176981964388291

Screenshot of the document

RAR SFX script:
Path=%appdata%
 Setup=%appdata%\1.docx
 Setup=%appdata%\msreg.exe
 Silent=1
 Overwrite=1

3b3bc0a2772641d2fc2e7cbc6dda33ec

Size Date Name MD5

500529 2018-01-17 1.docx 67cf741e627986e97293a8f38de492a7

208896 2018-01-16 msreg.exe 61b4e0b1f14d93d7b176981964388291

MosaicRegressor: Lurking in the Shadows of UEFI

6

 Screenshot of the document

This document contains an embedded external image with URL: http://43.252.228.179/ambeg.png

ae66ed2276336668e793b167b6950040

Size Date Name MD5

208896 2018-01-16 msreg.exe 61b4e0b1f14d93d7b176981964388291

499904 2018-01-17 6.docx 92f6c00da977110200b5a3359f5e1462

This document looks exactly like 3b3bc0a2772641d2fc2e7cbc6dda33ec but has no references to external images.

RAR SFX script:
Path=%appdata%
 Setup=%appdata%\6.docx
 Setup=%appdata%\msreg.exe
 Silent=1
 Overwrite=1

cfb072d1b50425ff162f02846ed263f9

Size Date Name MD5

161280 2017-02-27 wq2.exe bd393a70e44fdf175c5b428286bb890f

17728 2017-02-26 2.docx a69205984849744c39cfb421d8e97b1f

12b5fed367db92475b071b6d622e44cd

Size Date Time Name MD5

46080 2013-09-27 06:38 contract.doc 6e949601ebdd5d50707c0af7d3f3c7a5

95744 2018-01-04 03:50 winword.exe 08ecd8068617c86d7e3a3e810b106dce

MosaicRegressor: Lurking in the Shadows of UEFI

7

The creation date set in the file “contract.doc” is 2013-09-27. The text inside the file is supposed to be displayed with the
Simplified Chinese font “SimSun” but is unreadable and looks like a result of incorrect encoding.

RAR SFX script:
Path=%appdata%
 Setup=winword.exe
 Setup=contract.doc
 Silent=1
 Overwrite=1

70def87d180616406e010051ed773749

Size Date Time Name MD5

25370 2017-06-12 09:39 0612.doc 449be89f939f5f909734c0e74a0b9751

95744 2017-06-12 10:23 dwhost.exe 1732357d3a0081a87d56ee1ae8b4d205

The decoy document “0612.doc” is actually an RTF document written in Russian.

ae66ed2276336668e793b167b6950040

Size Date Name MD5

208896 2018-01-16 msreg.exe 61b4e0b1f14d93d7b176981964388291

499904 2018-01-17 6.docx 92f6c00da977110200b5a3359f5e1462

This document looks exactly like 3b3bc0a2772641d2fc2e7cbc6dda33ec but has no references to external images.

RAR SFX script:
Path=%appdata%
 Setup=%appdata%\6.docx
 Setup=%appdata%\msreg.exe
 Silent=1
 Overwrite=1

cfb072d1b50425ff162f02846ed263f9

Size Date Name MD5

161280 2017-02-27 wq2.exe bd393a70e44fdf175c5b428286bb890f

17728 2017-02-26 2.docx a69205984849744c39cfb421d8e97b1f

MosaicRegressor: Lurking in the Shadows of UEFI

8

12b5fed367db92475b071b6d622e44cd

Size Date Time Name MD5

46080 2013-09-27 06:38 contract.doc 6e949601ebdd5d50707c0af7d3f3c7a5

95744 2018-01-04 03:50 winword.exe 08ecd8068617c86d7e3a3e810b106dce

The creation date set in the file “contract.doc” is 2013-09-27. The text inside the file is supposed to be displayed with the
Simplified Chinese font “SimSun” but is unreadable and looks like a result of incorrect encoding.

RAR SFX script:
Path=%appdata%
 Setup=winword.exe
 Setup=contract.doc
 Silent=1
 Overwrite=1

70def87d180616406e010051ed773749

Size Date Time Name MD5

25370 2017-06-12 09:39 0612.doc 449be89f939f5f909734c0e74a0b9751

95744 2017-06-12 10:23 dwhost.exe 1732357d3a0081a87d56ee1ae8b4d205

The decoy document “0612.doc” is actually an RTF document written in Russian.

Screenshot of the document

MosaicRegressor: Lurking in the Shadows of UEFI

9

RAR SFX script:
Path=%appdata%
 Setup=dwhost.exe
 Setup=0612.doc
 Silent=1
 Overwrite=1

7908b9935479081a6e0f681ccef2fdd9

Size Date Time Name MD5

18521 2017-12-06 10:40 1206.doc 233b300a58d5236c355afd373dabc48b

95744 2017-11-30 15:02 return.exe 74db88b890054259d2f16ff22c79144d

Screenshot of the document

RAR SFX script:
Path=%appdata%
 Setup=return.exe
 Setup=1206.doc
 Silent=1
 Overwrite=1

3b58e122d9e17121416b146daab4db9d

Size Date Time Name MD5

25088 2017-09-27 16:37 0927.doc 0d386ebba1ccf1758a19fb0b25451afe

73728 2017-09-25 15:27 dwhost.exe d848d4ec24e678727b63251e54a0a5de

MosaicRegressor: Lurking in the Shadows of UEFI

10

Screenshot of the document

RAR SFX script:
Path=%appdata%
 Setup=dwhost.exe
 Setup=0927.doc
 Silent=1
 Overwrite=1

BITS Downloaders

SHA256 e1d1d5e1c91d0f4142247b45fb18c0c7dcc94719f4340cf6443100364802aeae

MD5 b53880397d331c6fe3493a9ef81cd76e

Compiled 2010.01.02 06:56:27 (GMT), 9.0

Type I386 Windows GUI EXE

Size 13312

The downloader is the application that is dropped by the “EFI dropper” module. When executed, it creates a BITS Job with
display name “test” of type BG_JOB_TYPE_UPLOAD. It creates a mutex to ensure only one instance is being executed.

MosaicRegressor: Lurking in the Shadows of UEFI

11

Mutex name: “FindFirstFile Message Bi”

Enumerates all BITS jobs. For a job whose display name contains the substrings “first_tf” or “second_tf” and overall display
name is five or six characters (this never happens since the conditions are contradictory), it cancels the job, effectively
interrupting the transfer and removing temporary files. Then the module follows its business logic in a separate thread while
running an empty window message loop in the startup thread.

Main thread
The program contains four blocks of data encrypted with a simple one-byte XOR algorithm. Three of those blocks contain
URL strings and the fourth contains a unique string, “D22”.

It builds an identification string following the format: %Computer name%-D22_32 or 64

The 32 or 64 suffix is chosen based on system identification. The system is supposed to be 64 if the program is able to
locate the file or directory named %WINDIR%\SysWOW64

The program then follows into an infinite C&C communication loop. It delays for a hardcoded period of 20 minutes between
each attempt.

C&C Communication
The module compiles a final URL string following the format: URL from the decrypted buffer/identification string/on.z

It then attempts to download the contents of that URL to the file %TEMP%\on.dat using its BITS transfer routine. The
contents of the file areignored and the file is deleted immediately after transfer. This initial download is used to determine
the valid C&C server. The module iterates through all three URLs hardcoded in its body and uses the first one that responds
without error for further communication.

In case any of the C&C servers provided a valid response, the program sends another download request for: URL of the
valid C&C server/identification string/BeFileA.z The downloaded contents are then saved to: %TEMP%\BeFileA.dll

It also tries to fetch the file using the URL: URL of the valid C&C server/identification string/BeFileC.z and save it to:
%TEMP%\BeFileC.dll

The file “BeFileA.dll” is downloaded only once during the duration of the program’s instance and is loaded in a separate thread.
The attempts to download the file “BeFileC.dll” occur in every communication period. The file is loaded in the same thread.

BITS Transfer
The program creates a new BITS job. For a download job it names the job “first_tf” and for the upload tasks it uses the
name “second_tf”. Other versions use slightly different strings as job names but they all start with “first” and “second”
correspondingly, and are always identical to the names of the jobs that are cancelled during the startup. The job is started
with the priority setting “BG_JOB_PRIORITY_FOREGROUND”. It also toggles the security options “BG_SSL_IGNORE_
CERT_CN_INVALID”, “BG_SSL_IGNORE_CERT_DATE_INVALID”, “BG_SSL_IGNORE_UNKNOWN_CA”, to accept invalid
HTTPS certificates.

It then waits for up to about five minutes for the BITS job to complete, also extending the wait if the actual transfer is in
progress.

MosaicRegressor: Lurking in the Shadows of UEFI

12

Loading the DLL modules
The module expects the files provided by the C&C server to be PE DLLs. They are loaded normally using the LoadLibrary
API function. Each DLL may have one or more exported functions named “CallA”, “CallB”, “CallC”, “CallD”, “CallE”.

All exported functions are supposed to have the same ABI: cdecl calling convention, five arguments all passed by pointers.
Following the execution of each function the program delays for one second and then processes the results returned in
these arguments. Depending on the data returned by the exported function, the program may then download or upload
arbitrary files from/to arbitrary URLs using its BITS transfer routine. Also, depending on the returned data, it may delete or
leave the DLLs file on disk.

Then it checks if a corresponding “dat” file exists in the %TEMP%directory. In case the file exists it uploads it to the C&C
server using the BITS transfer routine, the same URL except the last component is identical to the actual filename. The
“dat” file is deleted if the upload succeeds.

C&C URLs https://103.56.115.69/bisen (twice)
https://menjitghyukl.myfirewall.org/thren

Unique ID D22

BITS Downloader, extended

SHA256 14e48d3aa7b9058c56882eb61fa40cf1f52614fe8feb8a43658ad02a570147e0
fc189b913bfd5995a7ed5c4e8a811ad237f7b973e120a25baccffbf4ea1d3838
aa9627a62eb193cc40f2a5ffd259035a43540b2abd634c80f0d988f7588fa23d
19300fd4cf9dfa28d8d3331e9d48739c38d7151f330463ffe13d6809d5705f1a

MD5 dc14ee862dda3bcc0d2445fdcb3ee5ae
88750b4a3c5e80fd82cf0dd534903fc0
c63d3c25abd49ee131004e6401af856c
d273cd2b96e78def437d9c1e37155e00

Compiled 2008.01.01 11:58:33 (GMT), 9.0

Type I386 Windows GUI EXE

Size 62976

This module is similar to the “BITS Downloader” and appears to be based on the same code. The differences follow. It uses a
different mutex name: “set instance state”.

After starting the C&C communication thread, the program sets the registry value HKEY_CURRENT_USER\Software\
Microsoft\Windows\CurrentVersion\Run, value name qwinstd, to the location of its own executable. It also overwrites
the value if it is not equal to the location of the executable. This ensures the program’s automatic startup. Also the program
sets up a timer callback routine to be called every second. The routine looks for the file %APPDATA%\Microsoft\Internet
Explorer\usk.rs. When such a file is found it acts as a kill switch: the file deleted, the BITS Jobs are cancelled and the
program exits.

Instead of the %TEMP% directory this version uses the directory %APPDATA%\Microsoft\Internet Explorer to store its
temporary files.

MosaicRegressor: Lurking in the Shadows of UEFI

13

System information
The module creates a text file %APPDATA%\Microsoft\Internet Explorer\%Computername%.dat and fills it with system
information. Note the non-ASCII symbols 0xA3 and 0xBE used in the string literals. These were replaced with a colon
character (See “Language artifacts”).

Host Infomation:
 EXE ID: %Unique ID, see table%
 Host Name: %Computername%
 Current User Name: %USERNAME%
 PRIVILEGE: %User privilege%
 OS: Windows NT %Major%.%Minor%\t%Service pack string%\t%Product type%\tSystemMetrics:
%Build number for Windows 5.2%\tSuiteMask hex: %Suite mask%
 OS BITS: %32 or 64%
 Host Power ON Time: %04d-%02d-%02d %02d:%02d
 Power ON Time: %d Hours %2d Minutes %2d Seconds *or*Power ON Time: %2d Minutes %2d Seconds

 ===
=================

 Installed Programe List 32:

 *the following list is the contents of registry keys from HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Uninstall*
 %Item number% *%Registry key last write timestamp in format %04d-%02d-%02d %02d:%02d%*
%Display Name%

 *optional, when the program determines that it is running on a 64-bit OS, it disables
64/32 registry reflection and enumerates the installed program list again, generating a
similar list with a header “Installed Programe List 64”*

Remarks. The %User privilege% string is produced using the NetUserGetInfo API for the current user. Depending on
the returned result, it can be one of the strings: “Administrator”, “User”, “Guest”, “ACCESS_DENIED”, “COMPUTER_
NAME_ERROR”, “USER_NAME_ERROR”. The %Product type% string is one of “VER_NT_SERVER”,“VER_NT_DOMAIN_
CONTROLLER”, “VER_NT_WORKSTATION”

Once the report file is ready, the program creates a BITS job to upload it to the C&C server. The upload location follows the
format: URL of the C&C server/%Computername%.dat The file is deleted if the upload succeeds.

MosaicRegressor: Lurking in the Shadows of UEFI

14

Payload
When finished with uploading the system information report, the program then attempts to fetch the payload from the
C&C server. The business logic is similar to the one of the “BITS Downloader”, with the following differences:

Files that are downloaded and executed in separate threads:

FileA.dll fetched from %C&C URL%/%Computername%/FileA.z

FileB.dll fetched from %C&C URL%/%Computername%/FileB.z

Files that are downloaded and executed in the current thread:

FileC.dll fetched from %C&C URL%/%Computername%/FileC.z

FileD.dll fetched from %C&C URL%/%Computername%/FileD.z

Each DLL may have one or more exported functions named “CallA”, “CallB”, “CallC”, “CallD”, “CallE”, “CallF”, “CallG”, “CallH”,
“CallI”, “CallJ”, “CallK”, “CallL”. Once finished, the program may delete the DLL file depending on the returned value.

C&C URL:

Sample C&C URL

DC14EE862DDA3BCC0D2445FDCB3EE5AE https://43.252.228.84/bits

88750B4A3C5E80FD82CF0DD534903FC0 https://103.243.24.171/bits

C63D3C25ABD49EE131004E6401AF856C https://43.252.228.252/help

D273CD2B96E78DEF437D9C1E37155E00 https://103.30.40.39/bits

Unique IDs (“EXE ID” in the report):

Sample Unique ID

DC14EE862DDA3BCC0D2445FDCB3EE5AE da

88750B4A3C5E80FD82CF0DD534903FC0 tan

C63D3C25ABD49EE131004E6401AF856C t

D273CD2B96E78DEF437D9C1E37155E00 0115

C&C communication period: 15 minutes

MosaicRegressor: Lurking in the Shadows of UEFI

15

Language artifacts
Many strings contain the sequence 0xA3, 0xBE (hexadecimal). This is an invalid sequence for a UTF8 string and the LATIN1
encoding translates these symbols to a pound sign followed by a “masculine ordinal indicator” (“£º”).

Дanguage artifacts

An attempt to iterate over all available iconv symbol tables trying to convert to UTF-8 produces possible candidates that
produce a more meaningful conversion for this byte sequence:

CN-GB//, “ : ” # EF BC 9A
 CP936//, “ : ” # EF BC 9A
 CP949//, “ : ” # EF BC 9A
 CSEUCKR//, “ : ” # EF BC 9A
 CSGB2312//, “ : ” # EF BC 9A
 EUC-CN//, “ : ” # EF BC 9A
 EUC-KR//, “ : ” # EF BC 9A
 EUCCN//, “ : ” # EF BC 9A
 EUCKR//, “ : ” # EF BC 9A
 GB2312//, “ : ” # EF BC 9A
 GB13000//, “ : ” # EF BC 9A
 GB18030//, “ : ” # EF BC 9A
 GBK//, “ : ” # EF BC 9A
 ISIRI-3342//, “!:” # 21 3A
 ISIRI3342//, “!:” # 21 3A
 MS936//, “ : ” # EF BC 9A
 MSCP949//, “ : ” # EF BC 9A
 OSF0004000A//, “ : ” # EF BC 9A
 OSF100203B5//, “ : ” # EF BC 9A
 UHC//, “ : ” # EF BC 9A
 WINDOWS-936//, “ : ” # EF BC 9A

Given the context of the string preceding the symbol and line feed symbols following it, the best match is the “FULLWIDTH
COLON” Unicode character translated from one of the Chinese or Korean code pages (CP936 and CP949).

MosaicRegressor: Lurking in the Shadows of UEFI

16

BITS Downloader, extended, MSVC 10 version

SHA256 7eba9f6f9774c87fafc4aba403821fae73a50d387624d039d1b296cf0befca73

MD5 72c514c0b96e3a31f6f1a85d8f28403c

Compiled 2017.10.07 12:12:33 (GMT), 10.0

Type I386 Windows GUI EXE

Size 57344

This module is similar to the “BITS Downloader, extended” but was compiled with a more recent version of Visual Studio and
bears minor differences.

Mutex name used: “foregrounduu state”

Payloads downloaded and executed: “FileA.z”(“FileA.dll”), “FileB.z”(“FileB.dll”) and “FileC.z”(“FileC.dll”)

Exported function names executed from the payload DLLs: “CallA”, “CallB”, “CallC”, “CallD”, “CallE”.

C&C URL https://103.39.109.252/insult

Unique ID (“EXE ID”) Nli

BITS Downloader, “HHDump.dll”

SHA256 b2982325d3231ba5959484b01f5b6492babd37f10a8736e6bf81b47253bc99eb

MD5 9aa47dceccb306a80101f47ab148578d

Compiled 2011.01.03 07:36:03 (GMT), 9.0

Type I386 Windows GUI DLL

Size 58368

Internal name HHDump.dll

This module is a DLL version of a “BITS Downloader”. The library provides one exported function “SetFormName” that is
empty; all the business logic is implemented in the DllMain function.

The DllMain function, when executed with the reason code of DLL_PROCESS_ATTACH, checks if the filename of the host
process is equal to “vc9play.exe”. It then spawns its main thread if the filename matches.

C&C URL https://43.252.228.84/quest

MosaicRegressor: Lurking in the Shadows of UEFI

17

Load.rem
The module checks for the presence of the file %APPDATA%\Microsoft\Windows\load.rem. If the file is present it follows in
a new thread: it copies it to %APPDATA%\Microsoft\Windows\SendTo\load.dll, then loads the copy as a regular DLL and
calls its function exported with the name “Load”, if present. The copy is deleted if the module fails to load it as a DLL.

Main thread
The module enumerates and cancels BITS jobs if their names contain a substring “first job” or “second job” and the length
of the name is either 9 or 10. This is an improvement over the original “BITS Downloader” that checked for a contradictory
condition that never becomes true.

The module creates a directory if it doesn’t exist: %APPDATA%\Microsoft\Network. Due to a bug, it will not attempt to
create the directory if a file exists with the same name, failing later when the directory is required. This directory is then
used to store any temporary files, instead of %TEMP% in the original “BITS Downloader”.

Files that are downloaded and executed in separate threads:

DFileA.dll fetched from %C&C URL%/%Computername%/DFileA.z

DFileD.dll fetched from %C&C URL%/%Computername%/DFileD.z

Files that are downloaded and executed in the current thread:

DFileC.dll fetched from %C&C URL%/%Computername%/DFileC.z

Exported function names executed from the payload DLLs: “CallA”, “CallB”, “CallC”, “CallD”, “CallE”, “CallF”, “CallG”, “CallH”,
“CallI”, “CallJ”, “CallK”, “CallL”, “CallM”, “CallN”, “CallO”, “CallP”, “Final”.

The signature of the function called “Final” is different from the rest: it takes 21 arguments that not only contain those
passed to other functions but also the return values of the previous (Call…) functions called.

C&C communication period: 30 minutes

Remarks. “vc9play.exe” may refer to the component of software called “Virtual CD 9”.

BITS Downloader, “cryptui.sep”

SHA256 2826815873d90ad38c5aeeed57c09385d6ad9a3cebaa18757f557a698e9f92b6
7e2b1bbffa7f05e7bf57ee60d162ef1e6f83b2e3fb5aa0da985add67af517901

MD5 1c5377a54cbaa1b86279f63ee226b1df
9f13636d5861066835ed5a79819aac28

Compiled 2008.01.01 11:56:50 (GMT), 9.0

Type AMD64 Windows GUI DLL

Size 57856

Internal name aeinv64.dll

MosaicRegressor: Lurking in the Shadows of UEFI

18

This module is supposed to be loaded by the payload of a BITS Downloader named “FileA.dll” and is in turn another variation
of a BITS Downloader. It is very similar to “HHDump.dll”. The following description includes only the differences.

The library provides one exported function with the name “RetrievePKCS7FromCA”. The DllMain function is empty and the
module doesn’t have any checks for the name of the current executable.

The payload is loaded in the same way as “HHDump.dll”; the only difference is an additional optional call to the function
exported with the name “CallQ” after the call to the function named “Final”.

C&C communication period: 15 minutes

Sample C&C URL

1c5377a54cbaa1b86279f63ee226b1df https://103.243.26.211/bits

9f13636d5861066835ed5a79819aac28 https://103.39.109.239/requry

BITS Downloader, 64-bit

SHA256 bffe333c3470e6012924409b6aa48b20e9d12f181c0f6b03f50db64ddf7596a7

MD5 afc09deb7b205eadae4268f954444984

Compiled 2010.01.02 06:40:26 (GMT), 9.0

Type AMD64 Windows GUI EXE

Size 55808

This executable is based on the codebase of the “BITS Downloader” but also contains pieces of boilerplate code that later
appeared in “BITS Downloader, extended”. It is worth noting that the part of the code that checks for, and cancels, the BITS
job by name uses the same name lengths as the first “BITS Downloader” (5 and 6) but the correct substring literals “first”
and “second”.

This version does not create any mutex.

C&C communication period: 15 minutes

This version uses the directory %APPDATA%\Microsoft\Internet Explorer to store its temporary files.

The module creates a text file %APPDATA%\Microsoft\Internet Explorer\%Computername%.dat and writes a
hardcoded string in there:

LINE

The file is then uploaded to the C&C server using the same code that uploads the system information report in “BITS
Downloader, extended”.

The names of payloads, filenames and exported function names that are executed from the payload DLLs is identical to the
one of “BITS Downloader, extended”.

MosaicRegressor: Lurking in the Shadows of UEFI

19

C&C URL https://144.48.241.32/bits

Unique ID tnb

Curl-based downloaders

SHA256 230de38fc10b7c07af5aceb6ebbafa80c45c2b9123a7a167f85e8a05b5cf0db7
b8425a5c05c01c1294ce75719049e1b4eab32c34cabe456c281f110976cf2ade
25da7cc807578394716925afd30a9cc9d543e2fa2a2b25ce8f52160b3b4bc073

MD5 9e182d30b070bb14a8922cff4837b94d
61b4e0b1f14d93d7b176981964388291
3d2835c35ba789bd86620f98cbfbf08b

Compiled 2017.12.13 03:24:47 (GMT), 6.0

Type I386 Windows GUI EXE

Size 208896

This is a standalone application built using a generic “Hello world” template of a Win32 GUI application.

All string constants relevant to the business logic are stored in Base64-encoded form.

The program creates a hidden window with the name “curl_test” and class name “CURL_TEST”. Then it follows into the C&C
communication routine.

C&C communication
The module downloads several files from its C&C server. The URL of the server is hardcoded and varies among the samples.

It may download modules specific to either 32-bit or 64-bit target systems, using the suffix “32” or “64” correspondingly. For
each DLL file the download routine enters an infinite loop and continues to the next module only when the current file has
been download without errors. Each attempt is followed by a predefined delay that is different for each sample.

The first file to download is the following:

URL of the C&C server/msreg_32.dll or URL of the C&C server/msreg_64.dll

The file is saved to: %APPDATA%\msreg.dll.

Next, the module attempts to download the files:

URL of the C&C server/wrtreg_32.dll, saved to %TEMP%\wrtreg_32.dll

URL of the C&C server/wrtreg_64.dll, saved to %TEMP%\wrtreg_64.dll

This library is then loaded, unloaded and deleted. The latter two libraries are downloaded and executed only if the file
msreg.dll is is nnot present on disk.

MosaicRegressor: Lurking in the Shadows of UEFI

20

Then the module continuously attempts to download another file:

URL of the C&C server/%Computername%/%PayloadName.dll, saved to %APPDATA%\%PayloadName%.dll
(%PayloadName% varies, see the list of names)

The previous version of the file, if present, is moved to a temporary filename with the prefix %TEMP%\34F and then
deleted. Every time a new such file is successfully downloaded, the module starts a new thread to execute it.

Payload ABI
The payload file is expected to be a regular Windows DLL. The code that interacts with the library is similar to the one used
in BITS Downloader. The file is loaded using the standard LoadLibraryA API function. Then it resolves the addresses of
functions exported with the names “ExpA”, “ExpB”,“ExpC”, “ExpD”, “ExpE”, “ExpF”, “ExpG”. The functions, if present, are then
consequently called. Every function has to take five arguments passed on the stack by pointers.

Depending on the returned values, the module can stop executing the exported functions, download files to disk or upload
data produced by the function to the C&C server. The data is uploaded with HTTP POST request to the URL:

URL of the C&C server/upload.php

The POST request contains the part called “txt” as a file attachment, with its filename and contents provided by the
exported function.

Notable file properties
The binary is statically linked with libcurl and contains the version string “libcurl/7.49.1”. According to the official Curl website,
version 7.49.1 was released on May 30 2016.

The language identifier of the file’s resources is set to 2052 (“zh-CN”). One of the resources is its version information
containing the application name “curl_test”.

Variable parameters

C&C URLs

Sample C&C URL

9e182d30b070bb14a8922cff4837b94d https://43.252.230.180

61b4e0b1f14d93d7b176981964388291 https://43.252.228.179

3d2835c35ba789bd86620f98cbfbf08b https://103.39.110.193

Payload DLL names

Sample Payload DLL filename

9e182d30b070bb14a8922cff4837b94d rfvtgb.dll

61b4e0b1f14d93d7b176981964388291 sdfcvb.dll

3d2835c35ba789bd86620f98cbfbf08b newplgs.dll

MosaicRegressor: Lurking in the Shadows of UEFI

https://curl.haxx.se/docs/releases.html

21

C&C communication delay

Sample C&C communication period, min

9e182d30b070bb14a8922cff4837b94d 11

61b4e0b1f14d93d7b176981964388291 8

3d2835c35ba789bd86620f98cbfbf08b 15

Curl-based downloader, extended

SHA256 2c0df314dcdc9fa161f5f31369037f747a794e26cee6f8835cc37eef3077f782

MD5 328ad6468f6edb80b3abf97ac39a0721

Compiled 2010.01.01 12:37:47 (GMT), 6.0

Type I386 Windows GUI EXE

Size 208000

This module is built mostly from pieces of code found in the “BITS Downloader, extended”. However, the C&C
communication routines are similar to those found in the “Curl-based downloader”.

Mutex name: “single UI”

Sets the autorun registry location: HKCU\Software\Microsoft\Windows\CurrentVersion\Run,
value dsuiext=%location of the executable%.

Every second the module checks for the presence of a kill switch file %APPDATA%\Microsoft\exitUI.rs and terminates if it
is present.

The module enters an infinite C&C communication loop with a preset delay between each attempt.

C&C communication
First, the module sends a test GET request using the URL of the C&C server and continues if the attempt succeeds. Then
it collects system information and writes the results into a text file %APPDATA%\%Computername%.dat. The code that
collects the system information is identical to the one found in the “BITS Downloader”. Then the resulting file with the system
information is sent to the C&C server in a POST request to %URL of the C&C server/upload.php. The code also checks if
there is a file %APPDATA%dat present on the disk and if so the file is uploaded instead.

The URL of the C&C server and the unique identifier (“EXE ID”) are hardcoded in the binary and encrypted with a simple
one-byte XOR operation.

Payload
When it has finished uploading the system information report the program then attempts to fetch the payload from the
C&C server. The business logic is similar to the one for “BITS Downloader, extended”, with the following differences:

Files that are downloaded and executed in separate threads:

MosaicRegressor: Lurking in the Shadows of UEFI

22

%APPDATA%\Microsoft\WebA.dll fetched from %C&C URL%/%Computername%/WebA.z

%APPDATA%\Microsoft\WebB.dll fetched from %C&C URL%/%Computername%/WebB.z

Files that are downloaded and executed in the current thread:

%APPDATA%\Microsoft\WebC.dll fetched from %C&C URL%/%Computername%/WebC.z

Each DLL may have one or more exported functions named “FunA”, “FunB”, “FunC”, “FunD”, “FunE”, “FunF”, “FunG”, “FunH”,
“FunI”, “FunJ”. Once finished, the program may delete the DLL file depending on the returned value. Depending on the data
returned by the functions the module may upload or download the files from the C&C server.

C&C URL https://117.18.4.6

Unique ID (“EXE ID”) o

C&C communication period: 15 minutes

Curl downloader, “OINFO11.OCX”

SHA256 4b03409184b3206f7e3a43ff9f7713722c9acd871dd961d918f66e65d92f43f9

MD5 7b213a6ce7ab30a62e84d81d455b4dea

Compiled 2010.01.01 12:27:15 (GMT), 9.0

Type I386 Windows GUI DLL

Size 176128

Internal name OINFO11.OCX

The module is a DLL based on the Curl-based downloader, extended. Only the differences are included in this description.

Mutex name: “Office Module”

The kill switch file is monitored in a separate thread. When that file is found, the module not only terminates the current
process but also deletes the autorun registry value.

Rich header dump
The 66 modules compiled with Visual Studio 6 are parts of the libcurl library identical to the one used in the “Curl-based
downloader”. The rest of the code was compiled with the more recent version 9 (VS 2008).

Raw data Type Count Produced by

0093 521E 00000002 sdk/imp 2 VS 2008 (build 21022)

0096 4FBD 00000009 unknown 9 150 build 20413

0095 521E 00000009 masm 9 VS 2008 (build 21022)

MosaicRegressor: Lurking in the Shadows of UEFI

23

Raw data Type Count Produced by

0083 521E 0000000B cobj 11 VS 2008 (build 21022)

000A 2636 00000042 cobj 66 VS 6 (build 9782)

007B C627 0000000D sdk/imp 13 VS 2005 (build 50727)

0001 0000 000000A3 imports 163 imports (build 0)

0084 521E 00000004 c++obj 4 VS 2008 (build 21022)

0092 521E 00000001 unknown 1 VS 2008 (build 21022)

0091 521E 00000001 linker 1 VS 2008 (build 21022)

C&C URL:

Sample C&C URL

7b213a6ce7ab30a62e84d81d455b4dea https://103.229.1.26

17a11d22e491acb8c84f8636c3a41637 https://103.30.40.116

Unique IDs (“EXE ID” in the report):

Sample Unique ID

7b213a6ce7ab30a62e84d81d455b4dea mo

17a11d22e491acb8c84f8636c3a41637 amb

C&C communication period: 15 minutes

Payload of the BITS Downloader, “FileA.z”

SHA256 c093c3e366ef0d4bd759a467842868cb1dd974c17e5230499707ec5bee5af304

MD5 89527f932188bd73572e2974f4344d46

Compiled 2008.01.01 11:58:02 (GMT), 9.0

Type I386 Windows GUI DLL

Size 46592

Internal name FileA.z

This module is a DLL library that matches the prototype of the payload of the BITS Downloader, extended and was
discovered along with one of the downloader samples.

The library has an empty DllMain function and three exported functions with the names “CallA”, “CallB”, “CallC”. The
description of these functions follows.

MosaicRegressor: Lurking in the Shadows of UEFI

24

CallA
•	 creates the directory %APPDATA%\Microsoft\Windows
•	 deletes the file %APPDATA%\Microsoft\Windows\mapisp.dll and, if this fails, renames the file to %TEMP%\Hx101.tmp
•	 returns the values that result in the BITS Downloader, fetching the file “SecondA.z” from the C&C server to

%APPDATA%\Microsoft\Windows\mapisp.dll

CallB
•	 creates the directory %APPDATA%\Microsoft\Windows\SendTo
•	 deletes the file %APPDATA%\Microsoft\Windows\SendTo\cryptui.sep and, if this fails,renames the file to

%TEMP%\Hx102.tmp
•	 returns the values that result in the BITS Downloader, fetching the file “SecondB.z” from the C&C server to

%APPDATA%\Microsoft\Windows\SendTo\cryptui.sep

CallC
•	 sets an autorun registry value : HKCU\Software\Microsoft\Windows\CurrentVersion\Run,

name mapisp to “rundll32.exe “%APPDATA%\Microsoft\Windows\mapisp.dll”,CryptoSysPrep
•	 checks if the files “mapisp.dll” (called “file a”) and “cryptiu.sep” (“file b”) are present
•	 writes a log of operations into the file %APPDATA%\Microsoft\Internet Explorer\FileOutA.dat and returns

Strings written to the log depend on the results of the preceding operations:
“second file successA”
 “file a success” or “file a error”
 “file b success” or “file b error”
 “registry set success” or “registry set error”
 “do move file a” or “do not move file a”
 “do move file b” or “do not move file b”

WinRAR wrapper “load.rem”

SHA256 b47f8eda04def2df3d2c58199af5fdded338d08bee8fb3636f441a46bb3ff119

MD5 fa0a874926453e452e3b6ced045d2206

Compiled 2011.01.02 07:00:22 (GMT), 9.0

Type I386 Windows GUI DLL

Size 43008

Internal name load.rem

This module is referenced and loaded by the downloader modules. It is a DLL with an empty DllMain function and one
exported function with the name “Load”.

Load
The function is an infinite loop. Every five minutes it checks if there is a file named
%APPDATA%\Microsoft\Windows\LnkClass.dat. If the file is present, it then executes

MosaicRegressor: Lurking in the Shadows of UEFI

25

“%APPDATA%\Microsoft\Windows\LnkClass.dat” a -hpHFG5fv(*&# -r
“%APPDATA%\Microsoft\Credentials\MSI36C2.dat” %CSIDL_RECENT%

Here, %CSIDL_RECENT% is the location of the “Recent documents” folder. Although the original file named LnkClass.dat
was not recovered, the command line is valid for a popular archiver called WinRAR - it is a command to store the contents
of the “Recent Documents” folder in the archive named MSI36C2.dat encrypted with the password “HFG5fv(*&#”.

Intermediate DLL loader “mapisp.dll”

SHA256 2e7808e3cfebad45815b3de7b91ea39970e8d99c607c71cb70052cee0e140db4

MD5 36b51d2c0d8f48a7dc834f4b9e477238

Compiled 2008.01.01 12:03:43 (GMT), 9.0

Type AMD64 Windows GUI DLL

Size 41984

Internal name capisp64.dll

SHA256 a651af2ce8338d979e6c9d7eed4b3f5c4500602565d36025b3079f9f05afcb33

MD5 df1b910626a380bffa22a757f419135c

Compiled 2017.10.07 00:02:20 (GMT), 9.0

Type AMD64 Windows GUI DLL

Size 41984

Internal name capisp.dll

This module is referenced by “FileA”. It is a DLL with an empty DllMain function and one exported function with the name
“CryptoSysPrep”.

CryptoSysPrep
The function checks for the presence of additional DLL files and loads them in separate threads:

%APPDATA%\Microsoft\Windows\SendTo\cryptui.sep, called by function RetrievePKCS7FromCA

%APPDATA%\Microsoft\Network\sppsvc.sep, copied to %APPDATA%\Microsoft\sppsvc.tbl, then loaded and called by
function “PlugA”

%APPDATA%\Microsoft\Network\subst.sep, copied to %APPDATA%\Microsoft\subst.tbl, then loaded and called by
function “PlugB”

Any of these DLL files are deleted if the module fails to load them. The function never returns.

The sample df1b910626a380bffa22a757f419135c loads all libraries in place.

MosaicRegressor: Lurking in the Shadows of UEFI

26

E-mail downloader, “ehlwapi.dll”

SHA256 e3d63dc50b6a477e0361e71f80e133337bab1d11e809387e8e3a058614780b21

MD5 e2f4914e38bb632e975cff14c39d8dcd

Compiled 2009.01.03 01:57:17 (GMT), 8.0

Type AMD64 Windows GUI DLL

Size 556544

Internal name netmgr.dll

This creates the mutex: “process attach Module”

It exports two functions, “Config” that just returns “3” and “Process” that spawns a new thread.

“Process” function
All strings related to the business logic are encrypted with a homebrew algorithm similar to RC4 with a hardcoded extended
S-Box of 1024 bytes.

The module checks if there is a file present at %COMMON_APPDATA%\Microsoft\Windows\user.rem. If it is present, the
file is copied to %APPDATA\Microsoft\dfsadu.dll; then it is loaded and its export “MediaA” is called in a new thread.

Then the function enters an infinite loop. Every 20 minutes it tries to connect to a POP3S server “pop.mail.ru”. The module
uses the first of two pairs of hardcoded credentials that worked.

Login (password hardcoded but not shown) Feedback e-mail address

thtgoolnc@mail.ru thgetmmun@mail.ru

thbububugyhb85@mail.ru thyhujubnmtt67@mail.ru

The module attempts to download the first e-mail message from the mailbox into the %TEMP% directory using a temporary
filename with the prefix “Ht”. If the download succeeds, it deletes the message via IMAPS using the same credentials.

It parses the MIME format using a code that appears to be similar to a widespread open-source class CMimeMessage
(the class name is included in the RTTI information too). It extracts the message’s subject and continues if it is equal to
“RepeatA”, “RepeatB”, “RepeatC”, “RepeatD”. If the subject matches one of the names, the attachment from that message is
saved and decrypted and then copied with a DLL extension:

Subject Temporary DLL name

RepeatA %TEMP%\RepairA.dll

RepeatB %TEMP%\RepairB.dll

RepeatC %TEMP%\RepairC.dll

RepeatD %TEMP%\RepairD.dll

MosaicRegressor: Lurking in the Shadows of UEFI

27

The DLL file is then loaded and called by export “MediaA”. Depending on the return value of that function, the DLL file may be
deleted or left on disk. Also, the module may encrypt a temporary file produced by the function, and send it as an attachment
of type “application/x-msdownload” with the name “attach.dat”, to the “feedback” email address via SMTPS. The subject of
the message is set to “MINE UPLOAD” and the “From” field is set to the login used to retrieve the incoming messages.

OLE2 Equation dropper

MD5: 33F21AC73AFF4DFF71316795282A3D06 (OLE2 part)

This is a recovered part of a weaponized document. Since most related code and documents described in public reports
are known to be RTF documents, this one could also have been embedded in an RTF document.

The OLE2 stream creation date for all the streams is 2019-02-02. It contains composite objects of types “Microsoft
Equation 3.0” and “Microsoft OLE 1.0 Native”. The Equation object uses a well-known exploit CVE-2018-0802 and the OLE
1.0 holds the EXE file that is decrypted by the shellcode of the exploit.

Several notable findings:

The OLE 1.0 Native CompObj stream contains the name in Russian “Пакет” along with the English name “Package”. It also has
a path inside “C:\Users\ADMINI~1\AppData\Local\Temp\8.t” that is used to drop the payload on disk.

The shellcode and the filename “8.t” are known to be produced by the “Royal Road / 8.t” used by several malicious actors.

The payload of the document is a dropper for a Curl downloader; the description follows.

Payload of the OLE2 dropper, “Data.dll”

SHA256 ab021048f3d2c61cfbef9d4fb54148e81b2f2c887589e3e6813eb8c1dba36468

MD5 6dbb092e081c3e23d555c2a460b96187

Compiled 2009.12.31 23:53:59 (GMT), 6.0

Type I386 Windows GUI DLL

Size 253952

Internal name Data.dll

The file is a DLL with four empty exports:

??0CData@@QAE@XZ

??4CData@@QAEAAV0@ABV0@@Z

?fnData@@YAHXZ

?nData@@3HA

MosaicRegressor: Lurking in the Shadows of UEFI

28

The DllMain function decrypts (only the first 20 bytes are encrypted) and then drops an embedded EXE file to %TEMP%\
store.exe and executes it. The EXE file is the “Curl-based downloader, extended”

Launcher for the Curl downloader, “msreg.exe”

SHA256 35a476a77218128bd797c04b27f53049998c0951833e47b32455091d83ff4f02

MD5 a8516452fe7d4d5d2fd0685ccf8a64b2

Compiled 2017.10.27 00:28:56 (GMT), 10.0

Type AMD64 Windows GUI DLL

Size 58880

This library is a utility for launching the executable %APPDATA%.exe that is an instance of a Curl-based downloader. It just
starts the executable from its DllMain function and returns.

Winhttp-based downloaders, extended

These samples seem to be based on the same code for collecting system information as the downloaders using BITS and
Curl and use the same text messages with non-ASCII symbols. However the code in these files uses WinHTTP API for
connecting with the C&C servers and expects the payloads to be EXE files, not DLLs. The major differences follow.

The files contain RTTI information for two user-written classes called “CGetInfo” and “MyWinHTTP”.

SHA256 c2695ef5f3a400219caa2347f5b914c15d74a133efa24d96d121acfa7f95a67e
64eabfc0612ac82eb80b8e955549b6a01899b712a99243d116e087828ca9e070
adb8bfa6e227847c2ffa6e1c97d08280081426480ed9b2ce6af26a23fbd1334c
0fdcea00a78e0263caa45205d09b107bd50a9696f59a66951e8b9afc42d54e02

MD5 08ecd8068617c86d7e3a3e810b106dce
1732357d3a0081a87d56ee1ae8b4d205
74db88b890054259d2f16ff22c79144d
7c3c4c4e7273c10dbbab628f6b2336d8

Compiled 2017.05.11 08:33:49 (GMT), 11.0

Type I386 Windows GUI EXE

Size 95744

SHA256 5c7a75d30713bb6873529efebd8bf0a28f8c3720ef4300804703dd33e2086fd0

MD5 4769891fccc26c1583e0f21b1a18d2ba

Compiled 2017.05.04 13:34:51 (GMT), 6.0

Type I386 Windows GUI EXE

Size 73728

MosaicRegressor: Lurking in the Shadows of UEFI

29

It sets the autorun registry location: HKCU\Software\Microsoft\Windows\CurrentVersion\Run,
value Media=%location of the executable%.

The program collects system information in a text file %APPDATA%%Computername%. The data is similar to the
one collected by other “extended downloaders”, but also includes the list of running processes (all samples except
4769891fccc26c1583e0f21b1a18d2ba), installed services (4769891fccc26c1583e0f21b1a18d2ba only) and information about
mounted disks and the listings of their root directories. The text file is uploaded to the C&C server with a POST request
to %C&C server%/upload.php.

The module downloads two executable files. The first file is saved in the %STARTUP% folder and the second one is saved
in the folder named %APPDATA%\Microsoft and started immediately. The URLs and names of the files vary. The code also
contains references to the file “repeat” but that file is never downloaded. Existing files, if they are present and are different
in size, are moved into a temporary file with the prefix %TEMP%\341 and then deleted.

Each file is downloaded from the URL constructed according to the format:
%C&C server%/%Computername%/%filename%,
i.e. “http://103.195.150.106/%Computername%/winword.exe”.

The code uses WinHTTP API functions to communicate with its C&C server via HTTP. It uses the default system User-
Agent string or “Mozilla/4.0”.

C&C addresses and file names

MD5 C&C server Remote
name

Folder name Filename

08ecd8068617c86d7e3a3e810b106dce

103.195.150.106

tasken.exe %STARTUP% tasken.exe

winword.exe %APPDATA%\Microsoft winword.exe

1732357d3a0081a87d56ee1ae8b4d205

103.82.52.18

cohost.exe %STARTUP% cohost.exe

winlogon.exe %APPDATA%\Microsoft winlogon.exe

74db88b890054259d2f16ff22c79144d

144.48.241.167

cohost.exe %STARTUP% remote.exe

time.exe %APPDATA%\Microsoft time.exe

7c3c4c4e7273c10dbbab628f6b2336d8

103.82.52.18 cohost.exe %STARTUP% cohost.exe

103.195.150.106 winword.exe %APPDATA%\Microsoft winword.exe

4769891fccc26c1583e0f21b1a18d2ba

150.129.81.21

cohost.exe %STARTUP% cohost.exe

winlogon.exe %APPDATA%\Microsoft winlogon.exe

MosaicRegressor: Lurking in the Shadows of UEFI

30

Modification with the “ID” field

SHA256 f31034fffec424d6e4505318400ecc3b00f8c2107c1823510a037b11a49f0741
f63ccdabade319cc73a3c5eb41a2877bdb70f4db8bf8414d49fd2f402845f27c

MD5 0d3da5adb9bb63c7fcb0185756601749 13773bc34a47124743c9836c6ff80695

Compiled 2018.01.29 02:57:16 (GMT), 10.0

Type I386 Windows GUI EXE

Size 87040

SHA256 eaa31ce8f9ec828e040801df9faa911e7b70f29f23a70f24504f6ec02f3504ff

MD5 7ac0189801242d5261ab5c0c43c7f8d3

Compiled 2018.02.01 06:36:46 (GMT), 10.0

Type I386 Windows GUI EXE

Size 87040

SHA256 fa116cf9410f1613003ca423ad6ca92657a61b8e9eda1b05caf4f30ca650aee5

MD5 d848d4ec24e678727b63251e54a0a5de

Compiled 2017.07.21 03:01:45 (GMT), 6.0

Type I386 Windows GUI EXE

Size 73728

This is a variant of a WinHTTP-based downloader that only collects basic system information and also
reports a unique hardcoded “ID” similar to the “EXE ID” string used in other types of downloaders. the sample
d848d4ec24e678727b63251e54a0a5de also collects the information about installed system services.

C&C addresses and file names

MD5 ID C&C
server

Remote
name

Folder name Filename

0d3da5adb9bb63c7fcb0185756601749
7ac0189801242d5261ab5c0c43c7f8d3

D01

144.48.241.167

time.exe %STARTUP% time.exe

cohost.exe %APPDATA%\Microsoft cohost.exe

13773bc34a47124743c9836c6ff80695

D01

43.252.228.75

crss.exe %STARTUP% crss.exe

winlgon.exe %APPDATA%\Microsoft winlgon.exe

d848d4ec24e678727b63251e54a0a5de

D02

103.82.52.18

cohost.exe %STARTUP% cohost.exe

winlogon.exe %APPDATA%\Microsoft winlogon.exe

MosaicRegressor: Lurking in the Shadows of UEFI

	UEFI Bootkit
	RAR SFX droppers for the Curl-based downloaders
	BITS Downloaders
	Main thread
	C&C Communication
	BITS Transfer
	Loading the DLL modules
	BITS Downloader, extended
	System information
	Payload
	Language artifacts
	BITS Downloader, extended, MSVC 10 version
	BITS Downloader, “HHDump.dll”
	Load.rem
	Main thread
	BITS Downloader, “cryptui.sep”
	BITS Downloader, 64-bit

	Curl-based downloaders
	C&C communication
	Payload ABI
	Notable file properties
	Variable parameters
	C&C URLs
	Payload DLL names
	C&C communication delay
	Curl-based downloader, extended
	C&C communication
	Payload
	Curl downloader, “OINFO11.OCX”
	Rich header dump
	CallA
	CallB
	CallC
	WinRAR wrapper “load.rem”
	Load
	Intermediate DLL loader “mapisp.dll”
	CryptoSysPrep

	E-mail downloader, “ehlwapi.dll”
	“Process” function

	OLE2 Equation dropper
	Payload of the OLE2 dropper, “Data.dll”

	Launcher for the Curl downloader, “msreg.exe”
	Winhttp-based downloaders, extended
	C&C addresses and file names
	Modification with the “ID” field
	C&C addresses and file names

