Wiper Malware — A Detection Deep Dive
This post was authored by Christopher Marczewski with contributions from Craig Williams

A new piece of wiper malware has received quite a bit of media attention. Despite all the recent press,
Cisco’s Talos team has historic examples of this type of malware going back to the 1990s. Data is the new
target, this should not surprise anyone. Recent examples of malware effectively “destroying” data --
putting it out of victims’ reach — also include Cryptowall, and Cryptolocker, common ransomware variants

delivered by exploit kits and other means.

Wiping systems is also an effective way to cover up malicious activity and make incident response more

difficult, such as in the case of the DarkSeoul malware in 2013.

Any company that introduced proper back-up plans in response to recent ransomware like Cryptolocker
or Cryptowall should already be protected to a degree against these threats. Mitigation strategies like

defense in depth will also help minimize the chance of this malware reaching end systems.
The Deep Dive

Initially we started investigating a sample reported to be associated with the incident to improve detection
efficacy. Based off our analysis of
e2ecec43dag74dbo2f624ecadcggbafid21fdiasc4990c¢15863bbgg29f781a0a we were able to link
0753f8a7ae38fdb830484dod737f975884499bg335e70b7d22b7d4ab149c01b5 as a nearly identical
sample. By the time we reached the network-related functions during our analysis, the relevant IP
addresses belonging to the C2 servers were no longer responding back as expected. In order to capture the
necessary traffic we had to modify both of the aforementioned disk wiper components. One modification
replaced one of the hard-coded C2 server IP addresses with a local address belonging to a decoy VM while
changing references to the other hard-coded addresses to point to this local address instead. The other
modification simply changed the parameter being passed to an instance of the Sleep() function so

debugging efforts wouldn’t be put on hold for 45 minutes (the original sample used a 10 minutes sleep).

When we initially examined a rule that was being distributed in the public we were looking for areas where
we could improve coverage to better protect our customers. The new Wiper variant is poorly written code
and luckily includes very little obfuscation.The author(s) made the mistake of allocating a buffer for the
send() function that surpasses the data they wished to include in the payload: a null-terminated opening
parentheses byte, the infected host’s local IP address, and the first 15 bytes of the host name. This
incorrect buffer allocation results in the desired data, in addition to some miscellaneous data already

present on the stack (including the oxFFFFFFFF bytes we alerted on in the first revision of our rule).

https://linkedin.com/in/christophermarczewski
http://blogs.cisco.com/author/CraigWilliams
http://blogs.cisco.com/security/thoughts-on-darkseoul-data-sharing-and-targeted-attackers
http://krebsonsecurity.com/2014/12/sony-breach-may-have-exposed-employee-healthcare-salary-data/comment-page-1/

Simply running the disk wiper component on different versions of Windows proves the miscellaneous data

from the stack that we onced alerted on only applies to beacons being sent from Win XP hosts:

Beacon payload from infected WinXP x86 VM:

v Follow TCP Stream

Stream Content

00000000 28 00 ©a Ob fa b7 57 49 4e 58 50 2d 53 50 33 2d (..... WI NXP-SP3-
000EOO10 58 38 36 00 ac 71 80 6b ab 71 ff ff ff ff 63 6b X86..9.k .qg....ck
00000020 ab 71 d5 13 40 00 04 60 00 00 1 -

Beacon payload from infected Win7 x64 VM:

v Follow TCP Stream

-Stream Content

00000000 28 0O Ga Ob fa aa 4d 41 52 43 5a 5f 57 37 45 4e (..... MA RCZ W7EN
00000010 54 5f 53 50 31 00 a9 de 7f 06 fe ff ff ff eb 3b T SP1... -
00000020 60 76 d5 13 40 00 04 60 00 00 'V..@...

We have tested part of this hypothesis by running the malware on the same VMs when they had maximum
length host names. The resulting beacons continued to limit the hostname bytes in the payload to 15 bytes.
To confirm the entire hypothesis, we had to debug and step carefully through the instructions responsible
for the data in these beacon payloads. You start by running the disk wiper component alone with the -w
flag (which will naturally occur at some point when the disk wiper component is executed and copies itself

to host three times). When you hit the following instruction...

804012AF call inet_addr
06461284 mov dword 411E3C, eax
06461289 mov eax, dword 415Fulh
8640612BE mov word_411E40, si
864612C5 mov word_415D88, 7DEh
864612CE mov word_415D8A, OAh
864612D7 mov word_415D8E, 1Ah
864612E0 mov word_415D98, 5
064612E9 mov word_415D92, 1Eh
864612F2 mov ecx, [eax+i]
864612F5 mov al, [ecx+1]
Iaaua12rn jnz 1oc_ua1uas|

...we have to force execution of the alternate jump condition using the debugger to get to the next

interesting chunk of assembly:

Y

06401300 mov esi, ds:Sleep

08461306 push edi

00401307 push 9 ->Was 2700000 ; dwMilliseconds
00408136C call esi ; Sleep

0048136E mov ecx, 81h

00401313 xor eax, eax

008401315 lea edi, [esp+3ABh+var_396]
00461319 mov [esp+3ABh+var_398], O
00401320 rep stosd

00401322 lea edx, [esp+3ABh+var_398]
00401326 push offset an ; —at
0040132B push edx ; wchar_t =
00848132C stosw

8040132E call _wcscpy

00401333 lea eax, [esp+3A8h+var_398]

00401337 push eax

00401338 call sub_4033A0

0040133D add esp, OCh

0684061340 push 1388h ; duMilliseconds
004081345 call esi ; Sleep

We eventually arrive to our function call in the code block following the ZF toggle. It’s responsible for

setting up the necessary socket and sending the beacon payload once a connection has been established:

Later on, we reach a call within the current function (sub_402D10) that is purely responsible for sending

the constructed payload:

00402084 cmp esi, OFFFFFFFFh
00402D87 jz short loc_402DA6
L
_ y
s 555
06402D89 push 28h ; int
00402D8B push offset unk_u415D66 ; int
04 6 PG 5 S
esp,
004062D99 test eax, eax
004062D9B jnz short loc_462DB4
L —
When we arrive at the following instruction...
8684082C%A push edi
00402C9B lea edi, [esp+48Ch+var_3FE]
00402C9F shr ecx, 2
004062CA2 mov word ptr [esp+48Ch+buf], bx

00402CAE and ecx, 3
004062CB1 rep mousb

https://en.wikipedia.org/wiki/Zero_flag

The code is just about to move 10 double words (ECX is currently 0x0A) from ESI (currently assigned to
0x415D60, which was on the stack prior to calling sub_402C80) to the stack itself (starting at EDI,
currently assigned stack pointer 0x12F4CE).

Finally, we reach the call to the Windows function send():

UU4UZLHH rep movsa

00402CAC mov ecx, eax

00402CAE and ecx, 3

004062CB1 rep mousb

86462CB3 mov edi, [esp+48Ch+s]

00402CBA xor esi, esi

884082CBC push esi ; flags

00402CBD lea ecx, [esp+418h+buf]

00462CC1 push ebx ; len

00462CC2 push ecx ; buf

SISLIYS 1 1 odi s S
[80402CC4 call send

SIS ? tes eax, eax

00402CCB jz short loc_482CEE

1 1

!
Now, at this point you’re probably thinking, “Cool. You explained how the payload is ultimately sent out,
but how does this explain the random bytes in the payload?”. Glad you asked...
Shortly after the instruction where you had to manually toggle the ZF but prior to sub_402D10, there’s a

call to a function that fetches the name of the infected host:

084613D6 call usaStartup

06461305 mov ecx, 6Ah
004613DA xXor eax, eax
004613DC mov edi, offset unk_u415D60

004613E1 push offset unk_415D68
SISE'YS i P[] NS (]

084613E8 call sub 462DD8

§151S D add esp,

064013F0 mov dword_u415D84, 4

The first block of instructions belonging to this function is shown below:

08462DD6 sub esp, 24h

80402DD3 push ebx

004062DD4 push esi

00402DD5 lea eax, [esp+2Ch+nSize]
00462DD? push edi

00402DDA lea ecx, [esp+36h+Buffer]
004082DDE push eax ; nSize
80402DDF push ecx s lpBuffer
00402DE® mov [esp+38h+nSize], 26h
00402DE8 call ds:GetComputerNameA
00402DEE mov ebx, [esp+36Bh+arg_#0]
004062DF2 mov ecx, 8

00402DF7 lea esi, [esp+38h+Buffer]
00402DFB lea edx, [esp+36h+Buffer]
00402DFF lea edi, [ebx+4]

80402E02 push edx ; hame
00402E03 rep mousd

80402E05 call gethostbyname

00402E06A test eax, eax

00402E0C jz short loc_4B82E17

L4 L

When you get to the following instruction in that block...

88462DD6 sub
8684062DD3 push
064062DD4 push
084062DD5 lea
0684062DD9 push
084062DDA lea
884062DDE push
884062DDF push

06462DESG mov
08402DES
084062DEE
08402DF2
08402DF7
084062DFB
08402DFF

call
mov
mov
lea
lea
lea

08462E83 rep
))

00402E8A test
00402E0C jz

esp, 24h

ebx

esi

eax, [esp+2Ch+nSize]

edi

ecx, [esp+3Bh+Buffer]

eax ; nSize
ecx 5 lpBuffer

[esp+38h+nSize], 206h
ds:GetComputerNameA
ebx, [esp+3Bh+arg_0]
ecx, 8

esi, [esp+3Bh+Buffer]
edx, [esp+3Bh+Buffer]
edi, [ebx+4]
-
movsd

; name

hostbyname
eax, eax
short loc_482E17

...ECX = 0x08, ESI = 0x14F8D4, & EDI = 0x415D64. This means that eight double words will be extracted

starting at the pointer in ESI and moved to the pointer in EDI. Guess what’s on the stack right now?:

L4 L4

-

|©) Stack view

0812F8CH
0012F8C4
0012F8C8
8812F8CC
8812F8D0O

0012F8D8
8812F8DC
0012F8ES
0012F8E4
0012F8ES

8012F8D4
00415D88
7C8082446
0606006080
§6666868D

508532D50
38582D33
71AC 0036
71AB6B8O
FFFFFFFF

Stack[000004447 :0012F8D
.data:word_415D88
kernel32.dll:kernel32_Sleep

ws2 32.d11:ws2_32_WSAGetServiceClassNameByClassIdW+B5

ws2 32.d11:ws2_32 WSAStartup+12B

8612F8EC
0612F8F O

71AB6B63

ws2 32.d11:ws2_32 WSAStartup+16E

51§ : SIS LTINS) sSub_48 i+)

0012F8F8 00415D66 .data:unk_415D60

0012F8FC 7E419E36 wuser32.dll:user32_LoadString¥
0012F9060 00410144 .data:004106144

The data from these eight stack frames will get moved to the .data section, starting at 0x415D64. You’ll get

the four “prefix bytes” added on once the local IP address is acquired from that same code block via:

08462DD6 sub esp, 24h
80402DD3 push ebx
004062DD4 push esi
00402DD5 lea eax, [esp+2Ch+nSize]
00462DD? push edi
00402DDA lea ecx, [esp+36h+Buffer]
004082DDE push eax ; nSize
80402DDF push ecx s lpBuffer
00402DE® mov [esp+38h+nSize], 26h
00402DE8 call ds:GetComputerNameA
084062DEE mov ebx, [esp+36h+arg_0]
004062DF2 mov ecx, 8
00402DF7 lea esi, [esp+38h+Buffer]
00402DFB lea edx, [esp+36h+Buffer]
00402DFF lea edi, [ebx+4]
80402E02 push edx ; hame
084 62E 83 movsd

gethostbyname
00402E0C jz short loc_4B82E17

L4 L)

And, as we’ve already detailed earlier, 0x2800 will be added as final prefix bytes to the resulting payload.

But, we now have another hard-coded element we can alert on in the beacon payload:

004813E8 call sub_462DD8
004613ED add esp, 4

064613F6 mov dword_415D84, 4
064013FA call sub_462D10

The third instruction shown above will store 0x04 as a doubleword to 0x415D84, which just happens to be

at the very end of the payload currently stored in the .data section.

With this information, we were able to revise accordingly and design the following rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET [8000,8080] (\
msg: "MALWARE-CNC Win.Trojan.Wiper variant outbound connection"; \
flow:to_server,established; \
dsize:42; \
content:"(|e0|"; depth:2; \

content:" |04 00 00 00|"; within:4; distance:36; \
metadata:impact_flag red, policy security-ips drop; \
reference:url,virustotal.com/en/file/e2ecec43da974db02f624ecadc94
classtype:trojan-activity; \

s1d:32674; rev:2; \

Click for a text version. It is important to note that sid 32674 will continue to be improved in the future
as the malware evolves. This blog applies to the variants we are aware of as of revision 2 of the

signature.

This rule will alert on the samples we’ve analyzed thus far that send these beacons back to their respective
C2 servers. What’s more, the rule alerts on all of the hard-coded portions of the payload, providing more

complete coverage regardless of the major Windows version running on these infected hosts.
Conclusion

We always want to deliver up-to-date detection for the latest threats in the quickest most efficient manner
possible. However, the quality of the detection should never be dismissed. The suggested rule we initially
landed upon did cover these wiper components when run under select Windows environments, but our
team wanted to fully understand the reasoning and justification behind every option of that rule. This
helps us ensure we cover the threat to the best extent possible and do so in the most efficient way possible.
Once we did we were able to analyze further and release coverage that was more robust for our customers

to help prevent further compromises of this magnitude that may just utilize the Wiper malware family.

Coverage
Advanced Malware Protection (AMP) is well suited to detect and block this type of attack.

CWS or WSA web scanning will prevent access to malicious websites and detect the malware used in this
attack.

The Network Security protection of IPS and NGFW have up-to-date signatures and will block this threat.
ESA is not applicable for this attack because this threat is not using email.

Tags: APT, malware, security, Talos

http://blogs.cisco.com/wp-content/uploads/rule.txt
http://www.cisco.com/c/en/us/support/security/amp-firepower-software-license/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
http://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
http://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
http://www.cisco.com/c/en/us/products/security/asa-next-generation-firewall-services/index.html
http://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
http://blogs.cisco.com/tag/apt
http://blogs.cisco.com/tag/malware
http://blogs.cisco.com/tag/security-2
http://blogs.cisco.com/tag/talos2

AMP J
CWS Y 4
ESA N/A
Network
Security o

WSA 4

