
W64/Regin, Stage #1

Contents
1. Introduction� 2
2. General information� 2
3. Hiding technique� 3

3.1 Mimicking a valid Microsoft Dynamic Link Library� 3
3.2 The certificate� 4

4. Malware analysis� 6
4.1 Deployment and startup� 6
4.2 Content retrieval� 6

4.2.1 The virtual machine and its meta-language� 7
4.3 Content loading and mapping� 11

4.3.1 The QuickPeParse64 function� 12
4.3.2 Headers, Sections and Imports� 13
4.3.3 Relocations� 14

4.4 Payload invocation� 14
4.5 Cleanup� 15

5. Conclusions� 16

ABSTRACT

In this document we describe the inner
workings of the stage #1 of the complex
malware threat by the name of Regin,
specifically the version targeted at 64-bit
machines running the Microsoft Windows
operating system.

Paolo Palumbo
Senior Researcher
Security Response
F-Secure Labs
Twitter: @paolo_3_1415926

Contact
F-Secure Incident Response
irt@f-secure.com

Malware Analysis
Report

TLP: WHITE

mailto:irt@f-secure.com

2 Malware Analysis Report

1. Introduction

In this document we present the results of our analysis of a sample of Regin’s stage #1 for 64-bit machines; the document
will focus on a number of different items, both high and low level in nature. We will cover items such as the main purpose
of the sample; the virtual machine used to retrieve and process the raw payload, with its implementation and its meta-
language; the sample’s strategy to remain unnoticed and avoid raising suspicions.

2. General information

The analysis in this document is based on the a sample received by F-Secure Labs with the following SHA1:

SHA1: 5191d7e28ffd1bc76ec7ed02d861679a77f2c239

An examination of the static properties of the file reveals that the file is a 64-bit Dynamic Link Library for the Microsoft
Windows operating system. The file’s PE headers provide also the following interesting information:

1.	 The creation time of the file is 19:37:07, 25.11.2011 according to the PE header’s TimeDateStamp field.

2.	 The linker version is set to 9.00. This is consistent with Visual Studio 2008 Orcas, initially released in 2007.
Despite not being the latest version of Microsoft’s development tools available at the moment of the
(suspected) compilation of the DLL, Visual Studio 2008 is able to generate x64 binaries. This might hint at the
fact that this binary was produced using an existing development framework as part of an existing operation.

3.	 The binary appears to be digitally signed by Microsoft. The digital signature will be further considered in
section 4, but it is at this point interesting to note that the validity range of the certificate does encompass the
binary creation date as specified in the PE header. Keeping in mind that the adversary has done a tremendous
effort in camouflaging this binary, it is reasonable to assume that the binary was indeed produced at the time
specified by the PE header.

4.	 The DLL exports 16 functions, which are simply forwarders for functions exported by wshtcpip.dll, a standard
component of Microsoft Windows. These exports will be considered again in section 4.

The analysis of the sample’s strings, in combination with the symbols specifically imported from other modules, hint at the
fact that the sample we have analyzed might interact at a low level with physical drives of the machine it is running on. For
example, the string PRIVHEAD is a strong indicator that the sample might have some knowledge of Microsoft Windows’
Logical Disk Manager (LDM); in fact, such PRIVHEAD is the expected magic value for LDM’s PRIVATE_HEADER structures.
Proper malware analysis presented in section 4 will confirm these suspicions.

Finally, the string ’\\.\<WINDOWS>’ is particularly interesting. The format of the string, specifically the ’WINDOWS’
substring between angular brackets, is an indication of a strong connection between this sample and 32-bit samples
of stage #1 of the complex threat named Regin; in fact, samples of Regin’s 32-bit stage #1 used a similar format to mark
strings that needed expansion.

3W64/Regin, Stage #1

3. Hiding technique

We could simply say that the 64-bit version of Regin’s stage #1 hides in plain sight. In fact, in contrast with most malicious
software, this component is not packed or protected in any way from code inspection and reverse engineering. Instead,
its structure is designed to fool investigators and users of a victim machine into believing that the malware is simply
another standard component of the operating system. Two particular aspects of the sample structure will be covered in
detail in sections 3.1 and 3.2.

3.1 Mimicking a valid Microsoft Dynamic Link Library

From the DLL’s export table and version information, we can see that the original name of the module is wshnetc.dll.
This name is strongly reminescent of the other winsock-related system libraries that can be found on a clean Windows
computer, in the system folder. Moreover, a victim would not be surprised to see that the description of this particular
module is Winsock 2 Helper DLL (TL/IPv4).

In general, the characteristics highlighted above in conjunction with the remainder of the file properties would make up
for a very convincing decoy even for a technically astute victim. The file properties as they would be presented to the user
are shown in Figure 1.

Figure 1: Visualizing the properties of the sample

Looking again at the export table, we notice that the sample exports 16 different functions, which are exactly the same
that are exported by Windows’ own wshtcpip.dll. The sample does not provide the implementation of these functions, but
it simply forwards the exports to wshtcpip.dll in the remote case that someone would try using these functions. The list of
symbols exported by the sample is reported in Listing 1.

Listing 1: Symbols exported by the sample

wshnetc.dll : WSHAddressToString
wshnetc.dll : WSHEnumProtocols
wshnetc.dll : WSHGetBroadcastSockaddr
wshnetc.dll : WSHGetProviderGuid

Continues overleaf

4 Malware Analysis Report

wshnetc.dll : WSHGetSockaddrType
wshnetc.dll : WSHGetSocketInformation
wshnetc.dll : WSHGetWSAProtocolInfo
wshnetc.dll : WSHGetWildcardSockaddr
wshnetc.dll : WSHGetWinsockMapping
wshnetc.dll : WSHIoctl
wshnetc.dll : WSHJoinLeaf
wshnetc.dll : WSHNotify
wshnetc.dll : WSHOpenSocket
wshnetc.dll : WSHOpenSocket2
wshnetc.dll : WSHSetSocketInformation
wshnetc.dll : WSHStringToAddress

It is then clear that the authors of this malware have spent a considerable amount of time camouflaging their creation as a
system file. If we consider that it is probable that the sample would be located inside the system folder on a compromised
system, it is very easy to see how its techniques might be very effective. Moreover, effectively stealing the exported
functionalities from a different system module might deceive even a victim with a strong technical background.

3.2 The certificate

The authors of this sample have also digitally signed the malware, with the intent to give it additional credibility and to
make it look as if it was a Microsoft file. Keeping in mind the what was said about sample’s exports in section 3.1, it is even
more likely that with the digital signature they were trying to camouflage the sample as a legitimate Microsoft Windows
system file.

The Authenticode signature is, in itself, valid, but the certificate properties (shown in Figure 2), highlight the inability of
the system to find and validate the issuer of this certificate. The certificate’s validity period is from 15/7/2011 to 14/10/2012;
the fact that the compilation timestamp from the file’s PE header is inside this range makes us believe that the binary was
indeed built on November 25th, 2011. Moreover, combining the alleged compilation time and the certificate validity range,
we can speculate that this binary was probably updated regularly.

The issuer of the certificate is an alleged Microsoft Root Authority. This name resembles a valid Microsoft issuer, but if we
focus on the KeyID we find that such entry does not match any of the known Microsoft Root Authority IDs. Details about
the supposed issuer of the certificate are presented below.

KeyID=41 68 26 6a 16 60 0f 36 41 19 af 06 f9 54 4d 06
Certificate Issuer:
CN=Microsoft Root Authority
OU=Microsoft Corporation
OU=Copyright (c) 1997 Microsoft Corp
Certificate SerialNumber=0c ea ea 19 bb bd 4f 86 4e b7 e9 47 97 cf 74 a8

It is also interesting to notice that, while the malware claims to be signed by Microsoft, the certification path does not
show the same structure of proper Microsoft-signed binaries; specifically, there is a lack of an intermediary before
Microsoft’s Root Certificate Authority (CA). The certification path for the malware versus the one from a valid Microsoft-
signed binary is shown in Figure 3. It is likely that the authors of this threat have used standard signing tools to create such
a certificate hierarchy; they then deployed the signed binary in combination with the root certificate.

Continued

5W64/Regin, Stage #1

Figure 2: Inspecting the certificate properties

Figure 3: The certificate (left) does not follow the customary approach followed by Microsoft. A proper Microsoft-
signed binary is shown on the right for comparison

Regin’s 64-bit stage #1 component is not the first piece of malware pretending to be signed by Microsoft. What is more
interesting to consider is how this particular certificate might have been useful to keep the sample operating under the
radar on a compromised machine.

6 Malware Analysis Report

4. Malware analysis

In this section we will detail the results of the analysis of Regin’s 64-bit stage #1 component. Based on our analysis of the
malware’s functionalities, the sample can be considered a support module — its sole purpose is to facilitate the operation
of additional user-mode, 64 bit modules by loading and transferring control to them.

The malware’s payload is stored on the disk of the infected machine, in a specific location among the gap between the
end of the last partition [1] and the end of the disk itself. Such payload is read by the malware, possibly decrypted and
decompressed, mapped into memory and given control to. To be usable, the payload must be another 64-bit usermode
DLL, with at least a symbol exported by ordinal. Once the payload completes its duty, Regin’s 64-bit stage #1 component
carefully removes all traces of its presence by overwriting memory areas before freeing them.

From our analysis of the sample, it is clear that whoever has created this piece of malware is a professional developer with
a solid experience, with detailed knowledge of low-level and Windows’ security concepts.

It is also clear that Regin is a complex threat. What we have seen of Regin hints strongly at capabilities that extend beyond
the realm of normal malware: support for basically the whole set of Microsoft NT-based operating systems, including
newer, 64 bit versions; appropriately selected techniques to remain unseen on compromised systems; ability to support
generic payloads; professional code. Everything from these samples leads us to believe that Regin is been used as part of
an extensive operation.

4.1 Deployment and startup

At the time of writing, it is not known how the Regin 64-bit samples are deployed to target systems; our analysis of the
sample’s interactions with the system show that the the sample is no different from any other Dynamic Link Library. We
therefore believe that Regin’s 64-bit stage #1 samples are installed and made persistend as any other Dynamic Link Library.

4.2 Content retrieval

The malware will attempt to retrieve the its payload from the victim computer’s hard drive. The retrieval is performed
according to the specifications contained in a meta-program embedded in the malware’s body, which initially lies
encrypted inside the malware body. Very early in the execution the malware will decrypt the retrieval program, and
execute it to fetch the possible payload from the infected system.

The reconstructed program for the malware’s virtual machine is presented in Algorithm 1, while the details of the virtual
machine implementation and of its language will be presented in detail in section 4.2.1.

Algorithm 1: Payload retrieval program embedded in the analyzed sample

begin
id = 1;
decryption_key = [0xA4, 0x4B, 0xAE, 0xF0, 0x98, 0x4C, 0x56, 0x33];
output_buffer_size = 0xB600;
OPERATION_TYPE_LOAD(id);
OPERATION_TYPE_DECRYPT(decryption_key);
OPERATION_TYPE_DECOMPRESS(output_buffer_size);

end

[1] Last in the sense of "farthest from the beginning of the disk".

7W64/Regin, Stage #1

4.2.1 The virtual machine and its meta-language

The sample is designed to retrieve, map and execute a payload from a previously infected system; the payload is a PE32+
DLL for Microsoft Windows. How such payload is retrieved and what transformations are applied to it are controlled by
a meta program for a simple virtual machine that is embedded in the malware. The malware will locate and decrypt this
program from its own body as the first step in attempting to find and load its payload.

The structure of a program written for this Virtual Machine is presented in Listing 2.

Listing 2: Structure of a program for the virtual machine

typedef struct VMProgram {
QWORD dqField_0 ;
DWORD ddField_8 ;
DWORD ddPayloadSize ;
DWORD ddField_10 ;
DWORD ddSizeOfCode ;
VM_OPCODE voProgramCode [] ; // Variable sized array containing
 // the sequence of operations that
 // the VM needs to execute

} VMProgram;

The structure of a program for this custom virtual machine is relatively simple, as it consists of what we believe to be a
small header and of a sequence of operations. While the program’s header is still largely undocumented [2], the purpose
of each of the opcodes has been completely discovered. The set of virtual machine operations in the code embedded
in the sample we analyzed does not include any conditional instruction, which partially accounts for the simplicity of the
program structure.

Each instruction of the virtual machine is characterized by a few fields and is optionally followed by enough space to hold
a variable sized input argument. The format of an opcode is presented in Listing 3.

Listing 3: Structure of an individual operation for the virtual machine

#define OPERATION_TYPE_LOAD 1
#define OPERATION_TYPE_DECRYPT 2
#define OPERATION_TYPE_DECOMPRESS 3
#define OPERATION_TYPE_CLEAN 4

typedef struct VMOpcode {
 BYTE dbOperationType ;
 BYTE dbField_1 ;
 DWORD ddVe r s ionInformat ion ; // Suspected
 DWORD ddSizeOfIncomingArguments ;
 BYTE dbArgument [] ; // Variable sized array containing the
			 // (optional) argument to the opcode
} VMOpcode ;

[2] The sample we analyzed neither accessed most of this header at any point during execution nor referenced it anywhere in its
code,making it impossible to completely reconstruct this structure's fields. We were however able to infer the meaning of some
of its fields from other information gathered in the course of our analysis.

8 Malware Analysis Report

The Virtual Machine in itself is also very simple. Beside the handlers, the virtual machine provides only a few facilities:

1.	 A counter that gets decreased as the program’s various opcodes are consumed.

2.	 A pointer to the payload, which is what will be returned in case of termination of the program. This pointer
always points towards the current state of the payload.

3.	 A pointer to an auxiliary memory buffer that is used when performing transformations over the payload. This
pointer can be imagined as pointing to the previous version of the payload

4.	 A variable that holds the current size of the payload.

Each handler is responsible for performing its own parsing of the (possible) input arguments, executing the operation
and advancing to the next operand by skipping the appropriate amount of bytes. The main virtual machine loop has been
highlighted in Figure 4.

Figure 4: Overall structure of the main loop for the virtual machine

Below we present the description of the operations supported by the virtual machine.

OPERATION_TYPE_LOAD
The most important operation carried out by the Virtual Machine is OPERATION_TYPE_LOAD. Such operation is the only
mandatory operation, as it is the only moment in which the malware accesses any form of storage on the infected system;
this means that OPERATION_TYPE_LOAD provides the malware’s only way to retrieve its payload. OPERATION_TYPE_
LOAD receives as an argument an id which is used to verify the payload possibly hidden on the disk.

The retrieval of the content begins with the malware trying to retrieve the physical location of the volume that
contains the operating system, specifically the %WINDOWS% directory. The retrieval of the path to the Windows
folder is performed through the Windows’ API GetWindowsDirectoryA and before that, via a convoluted custom
string expansion subroutine. Specifically, the malware contains code that parses entries between angular brackets
(’<’ and ’>’) and tries to replace the item between these markers with the appropriate value. The particular sample
described in this document supports the following strings: <system>, <temp>, <windows>, <common> and <program>.
In addition to the items specified above, the malware has the abilities of passing entries between ’%’ characters to the
ExpandEnvironmentStrings Windows API. This same string expansion routine was encountered in samples of Regin’s 32-
bit stage #1 samples, further confirming the link between these malware samples.

9W64/Regin, Stage #1

Once the correct disk has been identified, the malware proceeds to obtain a handle to it and starts looking for its payload.
On infected systems, the payload will be stored in the gap area between the end of the partition that is physically farthest
from the beginning of the disk and the end of the disk itself. To move to the right location, the malware needs to have an
understanding of those low-level structures that allow calculating start and end offsets of the various partitions; examples
of these structures are MBR, EBR and GPT. Some systems and partitions are not supported, like those that implement
logical disk management (LDM).

Once the malware has identified the correct location on the disk, it will attempt to find a marker structure at the
beginning of the gap space. The format of this structure is presented in Listing 4. The field Id of MarkerStructure is
matched against OPERATION_TYPE_LOAD’s operand to partially ensure the validity of the block. Once this has been
verified, a ddSize number of bytes is read; the CRC32 of the read bytes is calculated and its value matched against the value
of the field CRC32 contained in the marker structure. If both checks are successful, then the buffer is considered valid, and
is made available to the virtual machine for further processing.

Listing 4: Marker structure for Regin’s 64-bit stage #1 payload

/* � size of (MarkerStruct) = 0xC �* /
typedef struct MarkerStruct {
 DWORD ddId ;
 DWORD ddSize ;
 DWORD ddCRC32 ;
} MarkerStruct ;

OPERATION_TYPE_DECRYPT
The payload that the malware needs to retrieve and load might need to be decrypted. In order to support this scenario,
the virtual machine that handles the retrieval and transformation of the payload into a PE file image provides an
OPERATION_TYPE_DECRYPT opcode. The pseudo-code for the decryption algorithm is provided in Listing 5.

Listing 5: Reconstructed C version of the decryption routine

bool __fastcall DecryptBuffer (BYTE �* pdbKey , BYTE ��* pdbBuffer , DWORD ddBufferLength ,
				 BYTE ���* �* ppdbBufferOut , DWORD ��* pddBufferOutLen , 			
				 bool ��* pbSuccess)
{
	 bool bResult ; // r10@1
	 DWORD ddInitialBackOffset ; // eax@7
	 unsigned __int64 i ; // r8@9
	 BYTE �* pdbRoundKey ; // rsi@10
	 unsigned int ddInnerCounter ; // ebp@12
	 DWORD p8ByteBlockIterator ; // edi@12
	 char dbOffsetsLowByte ; // cl@14
	 BYTE �* pByteToDecrypt ; // rdx@14
	 __int64 ddInKeyCounter ; // rax@14

bResult = 0 ;

Continues overleaf

10 Malware Analysis Report

// Check pointer validity
if (pdbKey && pdbBuffer && pdbSuccess &&
	 ddBufferLength > 0 && bDecryptedMalwareConfig)
{
	 // Check the length of the encrypted buffer to calculate
	 // the initial starting position for the decrypted loop
	 if (ddBufferLength & 7)
	 ddInitialBackOffset = ddBufferLength & 7 ;
	 else
	 ddInitialBackOffset = 8 ;

	 // Begin decryption of the buffer
	 for (i = ddBufferLength - ddInitialBackOffset ;
	 (unsigned int) i < ddBufferLength ;
	 i = (unsigned int) (i - 8))
	 {
	 pdbRoundKey = pdbKey ;

	 if (i & 0xFFFFFFF8)
	 pdbRoundKey = &pdbBuffer [i - 8] ;

	 ddInnerCounter = 0 ;
	 p8ByteBlockIterator = i ;

	 do
	 {
	 // If out of buffer boundaries, exit loop
	 if (p8ByteBlockIterator >= ddBufferLength)
		 break ;

	 dbOffsetsLowByte = i + ddInnerCounter++ ;
	
	 pByteToDecrypt = &pdbBuffer [p8ByteBlockIterator] ;

	 ddInKeyCounter = p8ByteBlockIterator++ & 7 ;

	 * pByteToDecrypt ^= dbOffsetsLowByte ^ pdbRoundKey [ddInKeyCounter] ;
	 }
	 while (ddInnerCounter < 8) ;
	 }	
	
	 * ppdbBufferOut = pdbBuffer ;
	 bResult = TRUE ;
	 * pddBufferOutLen = ddBufferLength ;
	 * pbSuccess = TRUE ;
	 }
	 return bResult ;
}
 		

Continued

11W64/Regin, Stage #1

OPERATION_TYPE_DECRYPT receives as input argument the decryption key to be used. The length of the decryption key
is hardcoded to 8 bytes.

It might be of interest to the reader that the decryption functionality is not exclusively used for the payload, but also by
Regin’s 64-bit stage #1 itself to decrypt the virtual machine program that it carries in its own body, albeit with a different
decryption key.

OPERATION_TYPE_DECOMPRESS
One of the commands of the virtual machine is used to decompress data from one buffer into another. In the sample that
was analyzed, only a single compression algorithm was supported, specifically NRV2E with an 8-bit buffer. Such algorithm
is part of the UCL data compression library.

The pseudo code for the handler OPERATION_TYPE_DECOMPRESS is provided in Algorithm 2. The OPERATION_TYPE_
DECOMPRESS command receives as input argument the size of the output buffer.

Algorithm 2: Pseudo code representation of the OPERATION_TYPE_DECOMPRESS handler

Data: output_buf_size
begin

temp_pointer = payload_pointer;
payload_pointer = AllocateMemory(output_buf_size);
if output_buffer == NULL then

exit_vm(error);
end
result = decompress_NRV2E_8(temp_pointer, output_buf_size, payload_pointer, &payload_size);
if result != 0x0 then

WipeAndFreeMemory(payload_pointer, payload_size);
WipeAndFreeMemory(temp_pointer, output_buf_size);
exit_vm(error);

end
Free_Memory(temp_buffer);
temp_buffer = NULL;
raw_byte_pointer += sizeof(VMOpcode) + sizeof(DWORD); return;

end

OPERATION_TYPE_VM_CLEAN
This particular opcode is responsible for shutting down the virtual machine in a clean manner. The handler carefully
overwrites the contents of both the payload buffer and auxiliary memory buffer if they are available and terminates the
execution of the virtual machine program. While it would seem logical that this operation would be performed at the end
of a VM execution, the program embedded in the sample does not make use of it.

4.3 Content loading and mapping

Once the payload has been located and extracted from the compromised machine and all the necessary transformations
have been applied to it, Regin’s 64-bit stage #1 component will attempt to load the image. The loading process is
quite generic and well coded, providing a further confirmation that the authors of this particular family of malware are
knowledgeable when it comes to the operating system’s internals and with low level structures and concepts. The various
aspects of the loading process will be individually detailed in sections 4.3.1, 4.3.2 and 4.3.3.

12 Malware Analysis Report

4.3.1 The QuickPeParse64 function

Throughout the code of its loader the malware uses extensively the QuickPeParse64 subroutine to quickly get information
about key elements of the PE structure. Code for the QuickPeParse64 subroutine is presented in Listing 7, while the format
of its output is described in Listing 6.

Listing 6: Format of QuickPeParse64’s output

typedef struct PePointers {
IMAGE_DOS_HEADER �* pDosHeader ;
IMAGE_NT_HEADERS �* pNtHeader ;
IMAGE_SECTION_HEADER � * pSectionHeaders [] ;
IMAGE_DATA_DIRECTORY � * pDataDirectories [] ;
} PePointers ;

Listing 7: The QuickPeParse64 subroutine

; bool __fastcall QuickPeParse64 (void �* pPeFile , PePointers �* pParsedPe)
QuickPeParse64 proc near

	 arg_8 		 = word ptr 10h
	 arg_10 		 = word ptr 18h
	 arg_18 		 = dword ptr 20h

		 xor 		 r8d , r8d
		 mov 		 r9 , rdx
		 cmp 		 rdx , r8
		 jz 		 short @@exit_func

		 cmp		 rcx , r8
		 jz 		 short @@exit_func

		 mov 		 eax , 7777h
		 mov 		 edx , 2D3Ah
		 mov 		 [rsp+arg_8] , ax
		 mov 		 [rsp+arg_18] , 77777777h
		 mov 		 [rsp+arg_10] , ax
		 movzx 		 eax , [r sp+arg_8]

		 xor 		 ax , dx

		 ; ; DOS header magic check (“MZ”)
		 cmp 		 ax , [rcx+IMAGE_DOS_HEADER.e_magic]
		 jnz 		 short @@exit_func

		 mov 		 eax , [r sp+arg_18]
		 movsxd 		 rdx , [rcx+IMAGE_DOS_HEADER.e_lfanew]
		 xor 		 eax , 77773227h

Continues overleaf

13W64/Regin, Stage #1

		 ; ; COFF header magic check (“PE”)
		 cmp 		 eax , dword ptr [rdx+rcx+IMAGE_OPTIONAL_HEADER64.Magic]
		 jnz 		 short @@exit_func

		 movzx 		 eax , [rsp+arg_10]
		 mov 		 r10d , 757Ch
		 xor 		 ax , r10w

		 ; ; Verify that the file is a PE32+
		 cmp 		 ax , [rdx+rcx+IMAGE_NT_HEADERS.OptionalHeader.Magic]
		 jnz 		 short @@exit_func

		 ; ; Prepare output by filling the result structure
		 mov 		 [r9+PePointers .pDosHeader] , rcx
		 movsxd 		 rdx , [rcx+IMAGE_DOS_HEADER.e_lfanew]
		 mov 		 r8b , TRUE
		 add 		 rdx , rcx
		 mov 		 [r9+PePointers .pPeHeader] , rdx
		 movzx 		 eax , [rdx+IMAGE_NT_HEADERS.FileHeader.SizeOfOptionalHeader]
		 lea 		 rcx , [rax+rdx+18h]
		 add 		 rdx , 88h
		 mov 		 [r9+PePointers .pSectionHeaders] , rcx
		 mov 		 qword ptr [r9+PePointers .pDataDirectories] , rdx

@@exit_func :
mov 	 al , r8b
retn

QuickPeParse64 endp

The QuickPeParse subroutine is not an exclusive characterstic of this malware. In fact, samples of Regin’s 32-bit stage #1
samples also included a version of this subroutine; the main differences lie in the fact that the 64-bit version of the code
use “encrypted” constants and that the code has been produced using a different toolchain. This particular aspect not
only allows us to link together samples of the 32 and 64-bit version of Regin’s stage #1 components, but also to mark the
64-bit version as the evolution of its 32-bit counterpart.

4.3.2 Headers, Sections and Imports

In order to map the payload, the malware will allocate a segment of memory that is big enough to hold the memory
mapped image of the payload. The mapping subroutine allows for client code to specify a preferred address to map the
payload at; if the client specifies a loading address of 0x0, then the mapping function will use the preferred imagebase
specified in the PE file image’s PE header as a preferred allocation base; this is the case for the sample that has been
analyzed [3]. Would the allocation with any of these specific addresses fail, the code will fall back to let the system allocate
enough memory at an address of its choice.

Continued

[3] This behavior would indicate that the functionality is possibly part of a shared library that is used by a number of projects.

14 Malware Analysis Report

Once the memory has been allocated, the code maps first the headers then each of the sections in a loop. The code
responsible to map each of the sections is shown in Figure 5.

Figure 5: The code responsible for mapping the sections

Once the headers and sections are in place, the malware focuses on the dependencies of the payload and begins
processing its import directory. The loader code will take care not only of resolving symbols, but also of loading additional
modules as required. The malware supports symbols exported by name and by ordinal.

4.3.3 Relocations

After the previous stages of the mapping are complete, the malware will continue the loading process by applying
relocations in case there would be need. The fact that the PE file loader implemented supports relocations makes the
loader more flexible and allows to the malware to load a wider variety of payloads. The following relocation items are
supported explicitly by the malware:

•	 IMAGE_REL_BASED_ABSOLUTE

•	 IMAGE_REL_BASED_HIGHLOW

•	 IMAGE_REL_BASED_DIR64

If relocation entries of a type different from the ones above are encountered, the relocation process will fail gracefully.
This is yet another indication that the authors of this family of malwares are experienced developers that take time to
create code that is well engineered and fault tolerant.

4.4 Payload invocation

After the payload has been retrieved and loaded into memory alongside its dependencies, Regin’s 64-bit stage #1 will first
transfer control to the entrypoint of the payload. Once execution of the payload’s entrypoint is completed, the malware
will process the payload’s export table, retrieve the address for the entry exported with ordinal 1, and execute it. The
relevant code portion, appropriately edited, is presented in Listing 8. The way the payload is handled and control is passed
to it, makes it clear that the next stage of this complex threat is also a 64-bit Dynamic Link Library.

15W64/Regin, Stage #1

Listing 8: Invocation of the next stage

mov 	 rcx , [rsp+28h+pPayload] ; pPe64File
xor 		 edx , edx
call 		 CustomLoadDll 	 ; Completely loads the input PE
			 	 ; and invokes its entrypoint

mov 	 rbx , rax
test 		 rax , rax
jz 		 short @@cleanup_1

mov 	 edx , 1 		 ; dqOrdinal
mov 	 rcx , rax 		 ; hModule
call	 	 GetAddressOfSymbolExportedByOrdinal

test 		 rax , rax
jz 		 short @@cleanup_2

mov 	 rcx , r d i		 ; Pass needed parameter to the function
call 		 rax 		 ; Invoke Ordinal #1 of the payload

xor 		 esi , es i
jmp 		 short @@cleanup_1

With the information extracted by analyzing the code of the sample, it is possible to reconstruct the type of parameters
passed to the payload’s export #1. The reconstructed prototype of the exported entry is presented in Listing 9.

Listing 9: Reconstructed prototype for Ordinal #1 of the payload

typedef struct PayloadInputStructure {

	 HMODULE hSelf ;

	 HTHREAT hThread ;

	 /* � Loaded by LoadLibraryEx (. . . , DONT_RESOLVE_DLL_REFERENCES) * �/
	 HMODULE hSelfNoDep ;

} PayloadInputStructure ;

// Reconstructed prototype
void __fastcall ordinal_1 (PayloadInputStructure * pInput) ;

4.5 Cleanup

After the invocation of the payload’s export number 1, Regin’s 64-bit stage #1 component will proceed to unload the
payload and terminate operations. The malware will first invoke the payload’s entry point passing the DLL_PROCESS_
DETACH parameter, to notify the payload of the impending unload. After this, stage #1 will start removing the artifacts

16 Malware Analysis Report

that were associated to the execution. Each item that was associated with the payload and its interactions with stage #1 is
carefully first overwritten then, where applicable, deallocated.

In this final part of the execution, we also find references to the a value of 0xFEDCBAFF; such value is just one off from the
value of 0xFEDCBAFE, which was observed in samples of Regin’s 32-bit stage #1 component.

5. Conclusions

Our analysis of the Regin’s 64-bit stage #1 component, as detailed in this document, shows that the malware is designed
to retrieve a payload from an already infected system, map it into memory and transfer control to it. The utilitarian
nature of the rootkit makes it obvious that this a support module, designed to enable the presence of something surely
more meaningful. Most of the malware’s code is fairly generic, therefore allowing it to load any kind of payload as long
as it satisfies a minimum number of constraints mostly related to how it is stored on the disk. This is a sign that Regin is
designed as a platform rather than an individual entity.

Given the support nature of Regin’s 64-bit stage #1 component, precise attribution is fairly challenging. The similarities
with the 32-bit version of Regin’s stage #1 are very strong, starting from the fact the two different versions of the malware
have the same high level purpose, to the fact that they share code like the QuickPeParse subroutine and the string
expansion functionalities. We are quite confident in claiming that this 64-bit version of Regin’s stage #1 component is an
evolution of the 32-bit version, designed to work on more modern versions of the Windows operating system.

Like with the 32-bit version, we have observed a great care put into this malware by its authors. The code of the malware is
tidy and safe, making it less likely to malfunction or crash during operations. Its camouflage is similarly done with a great
attention to details, effectively making the malware blend seamlessly with the rest of Windows’ standard system files. All
of this supports us in confirming our suspicion that the authors of Regin are skilled developers, experienced in the ways of
software design and implementation.

	1. Introduction
	2. General information
	3. Hiding technique
	3.1 Mimicking a valid Microsoft Dynamic Link Library
	3.2 The certificate

	4. Malware analysis
	4.1 Deployment and startup
	4.2 Content retrieval
	4.2.1 The virtual machine and its meta-language

	4.3 Content loading and mapping
	4.3.1 The QuickPeParse64 function
	4.3.2 Headers, Sections and Imports
	4.3.3 Relocations

	4.4 Payload invocation
	4.5 Cleanup

	5. Conclusions

