
1/17

A Deep Dive into Lokibot Infection Chain
blog.talosintelligence.com/2021/01/a-deep-dive-into-lokibot-infection-chain.html

By Irshad Muhammad, with contributions from Holger Unterbrink.

News summary

Lokibot is one of the most well-known information stealers on the malware landscape. In

this post, we'll provide a technical breakdown of one of the latest Lokibot campaigns.

Talos also has a new script to unpack the dropper's third stage.

The actors behind Lokibot usually have the ability to steal multiple types of credentials

and other sensitive information. This new campaign utilizes a complex, multi-stage,

multi-layered dropper to execute Lokibot on the victim machine.

What's new?

This sample is using the known technique of blurring images in documents to encourage users

to enable macros. While quite simple this is fairly common and effective against users. This

write up is intended to be a deep dive for reverse engineers into the latest tricks Lokibot is

using to infect user machines.

How did it work?

The attack starts with a malicious XLS attachment, sent in a phishing email, containing an

obfuscated macro that downloads a heavily packed second-stage downloader. The second stage

fetches the encrypted third-stage, which includes three layered encrypted Lokibot. After a

privilege escalation, the third stage deploys Lokibot. The Image below shows the infection

chain.

https://blog.talosintelligence.com/2021/01/a-deep-dive-into-lokibot-infection-chain.html
https://1.bp.blogspot.com/-UtUpKsCXAAs/X_XGdUOX_MI/AAAAAAAAB28/uCJ594MhrVgoaKED-o31JSCYxuidI01uACLcBGAsYHQ/s1001/image1.png
https://blog.talosintelligence.com/2020/07/current-events-lures.html

2/17

So what?

Defenders need to be constantly vigilant and monitor the behavior of systems within their

network. This blog provides a detailed overview of how complex the infection chain is for

Lokibot and which tricks the adversaries are using to bypass common security features and

tools of modern operating systems.

First-stage analysis

When the user opens the phishing email, it presents a Spanish social engineering message

("Payment: Find scheduled payment dates attached"). The figure below shows a screenshot of

one of the emails we looked at.

The Excel sheet uses another common social engineering technique by showing a blurred-out

image of a table with the text "Changing the size of this document, please wait," in Spanish. If

the victim clicks the "Enable Content" button, thinking it will make the image visible, a

malicious macro is executed.

https://1.bp.blogspot.com/-KLZmf9Jt5vc/X_WNfNLae5I/AAAAAAAABxk/kyOSJWewQBwyOIgdFu1LVMuRffDe5DlrACLcBGAsYHQ/s1999/image16.jpg
https://1.bp.blogspot.com/-evpb97E-0Ag/X_WNotZyc9I/AAAAAAAABxo/5GabIahVv34Biv751z28IvwKrDifvSxZwCLcBGAsYHQ/s1033/image13.png

3/17

The macro is mainly obfuscated by using long hexadecimal variable names. The screenshot

below shows a portion of the `Workbook_Open` function of this macro.

The deobfuscated macro is shown below.

https://1.bp.blogspot.com/-lXQNvTdvc8o/X_WNxKyUQwI/AAAAAAAABxw/p2j-TXUYrGsPe1Yn3ICe2bNhcEIMZTVEACLcBGAsYHQ/s1999/image12.png
https://1.bp.blogspot.com/-bwj40LCWOuM/X_WN8pB09iI/AAAAAAAABx4/bjJc3pH0WA0CCzAQ3wXbPCS8U-9j2TMxACLcBGAsYHQ/s698/image20.png

4/17

It decrypts the URL for the second-stage from hardcoded bytes, saves it to the "Templates"

folder, and executes it. The traffic generated from the macro is shown below.

Second-stage analysis

The second-stage executable is packed with a Delphi-based packer.

Packer analysis

The packer contains a timer `xvv` timer under `Form_main`, which unpacks the payload. The

timer and its handler code are shown below.

https://1.bp.blogspot.com/-HtARqsrslXE/X_WOCgjaChI/AAAAAAAAByA/bF2QCVCMb0wHSNhHkNUwvlw4MWhDT78ewCLcBGAsYHQ/s985/image4.png
https://1.bp.blogspot.com/--70CaKOTDB0/X_WOMadU4-I/AAAAAAAAByI/fISwui0w0k4ejFf1JHzWebHPIwoUKCxHwCLcBGAsYHQ/s572/image26.png

5/17

The unpacking function performs the following steps:

1. Loads the image resource with name `T__6541957882` into memory.

2. Finds the anchor `WWEX` and copies data following to the new buffer.

3. Adds `0xEE` to the bytes to decode the DLL.

4. Reflectively loads decoded DLL into memory and executes it.

The figure below shows the resource image that contains the encoded executable.

The following image shows the location of the embedded executable following anchor

`WWEX`.

https://1.bp.blogspot.com/-imNfc7-Ffjo/X_WOjlAEsMI/AAAAAAAAByU/qWrjmqYSjOo4VFxM5W0jAZKGi-XOmTMqACLcBGAsYHQ/s771/image23.png
https://1.bp.blogspot.com/-zudPRMPgGPQ/X_WOuykcYSI/AAAAAAAAByY/33tvde_EEfQbT2eHVLWys0FUeDJjVpwPgCLcBGAsYHQ/s733/image25.png

6/17

The following code shows the code and decoded DLL.

Unpacked DLL analysis

The unpacked DLL is also written in Delphi. It fetches the third payload from the hardcoded

URL.

The DLL sets a timer, as shown below, which will execute the downloader function periodically.

https://1.bp.blogspot.com/-hdd3GJ5cbFA/X_WPEx-YFkI/AAAAAAAAByo/eL6CNV60bkcf_le1HSDl3zdZlsTt-QHIgCLcBGAsYHQ/s603/image34.png
https://1.bp.blogspot.com/-nbF5-WAjkmg/X_WPLaQd6_I/AAAAAAAAByw/3So3nyS3dg4Wm965XlolCxGypWivinBHACLcBGAsYHQ/s708/image27.png

7/17

The `Download3rdStage` will first decode `https://discord.com` and try to connect to it. Then,

it performs a time-based anti-debug check, as shown in the code below. If any of these checks

fail, the DLL will not download the third stage.

Once the checks have passed, DLL will decrypt the hardcoded third-stage URL, as shown in the

code below, and send the HTTP request.

https://1.bp.blogspot.com/-OnhCgL9QRBE/X_WPaacSEwI/AAAAAAAABy8/WfVEO8q9a9g6Y_amlkwcLNLWgVVs4KPwQCLcBGAsYHQ/s420/image11.png
https://1.bp.blogspot.com/-SqUvko9W6hA/X_WPtMaueMI/AAAAAAAABzM/xvMJPgpfVCcr9al-ZylgoHpJidSZTWwiQCLcBGAsYHQ/s322/image33.png

8/17

In response to the request, the server sends a ~618KB long hex string, as shown below.

The DLL decodes the hex string using the following steps:

1. Reverse the hex string.

2. Convert hexadecimal digits to bytes (unhexlify).

3. XOR decode with hardcoded key "ZKkz8PH0".

We have written a small Python script to decrypt the third stage. The same decryption method

was also used to decrypt the hardcoded command and control (C2).The resulting file is also a

DLL, which the second stage reflectively loads.

https://1.bp.blogspot.com/-IVaeLC0elOk/X_WP1AKl-YI/AAAAAAAABzU/XFZD7r2pktsoHOFYu2HNcdmFgQ5DeAteQCLcBGAsYHQ/s907/image18.png
https://1.bp.blogspot.com/-JVR4PURkfvw/X_WP_AfqDFI/AAAAAAAABzc/qTI9uSa0BVcgCdRhTxAzsSxmlMkWmxnTQCLcBGAsYHQ/s667/image14.png
https://gist.github.com/irshadqemu/68a4db9b3f8f4f205e17f6050ffbb652#file-unpack_3rdstage_lokibot-py
https://1.bp.blogspot.com/-yGowvtZoMk0/X_WQKsASoAI/AAAAAAAABzk/ZMEwn9UJfas6yTUVvfNFXVrB6PHWtjVzACLcBGAsYHQ/s1750/image2.png

9/17

Third-stage analysis

The third stage is also written in Delphi. At the start, it loads a sizable binary resource named

`DVCLAL` into memory. It then generates the key `7x21zoom8675309` from hard coded

bytes. The key is then used to decrypt the resource data using a custom encryption algorithm.

The malware then recovers the configuration structure from decrypted resource data. The

structure fields are delimited by string `*()%@5YT!@#G__T@#$%^&*()__#@$#57$#!@`.

The decryption algorithm is shown below.

https://1.bp.blogspot.com/-yGowvtZoMk0/X_WQKsASoAI/AAAAAAAABzk/ZMEwn9UJfas6yTUVvfNFXVrB6PHWtjVzACLcBGAsYHQ/s1750/image2.png

10/17

The hex dump below shows a structure field highlighted separated by delimiters.

The configuration structure layout is shown below.

https://1.bp.blogspot.com/-0tkm9L9nxnk/X_WQkXc6U_I/AAAAAAAABzw/_Aak8kIohKkIKiUaUAvMJCIKxdIMJpl_gCLcBGAsYHQ/s655/image10.png
https://1.bp.blogspot.com/-ezM1PkQ6uCM/X_WQz2ipmkI/AAAAAAAAB0A/U7XzkJGa2kwzXGfjiUQw38Aj0zeOz9gegCLcBGAsYHQ/s730/image30.png

11/17

Injecting malicious DLL to Notepad.exe

Then, the malware will check if `InjectDLLToNotepadFlag` is set and `reverse_str(FileName)

+ ".url"` (mheX.url) file doesn't exist in C:\Users\<username>\AppData\Local\`. If yes, it will

inject malicious DLL into Notepad.exe using the following steps:

1. Launch a Notepad.exe in the suspended state (dwCreationFlag =

CREATE_SUSPENDED).

2. Get the imported DLL name from the malicious DLL's import table (the first one is

"kernel32.dll") and write to the suspended process.

3. Write the following 12-byte structure containing addresses of kernel32: LoadLibrary,

kernel32.sleep, and DLL string.

4. Write a 210-bytes shellcode to Notepad.exe.

https://1.bp.blogspot.com/-zjr_QXlGatE/X_WQ9Is9Y5I/AAAAAAAAB0I/bo6bmIB7V_YcUJE8TZrNemGAqlWA4d_xwCLcBGAsYHQ/s1458/image31.jpg
https://1.bp.blogspot.com/-E9kMDjRBy28/X_WRMdk6XYI/AAAAAAAAB0Q/TmpDK7EcLIQTS3xKhvt6vWtcn9qyYscsACLcBGAsYHQ/s387/image32.png
https://1.bp.blogspot.com/-78MFMIQUiEg/X_WRVLHFncI/AAAAAAAAB0Y/6VUrc6V0fBAg8o6YZIhIkG3IpFzYHlZcwCLcBGAsYHQ/s522/image5.png

12/17

5. Execute this shellcode in Notepad.exe using `CreateRemoteThread` and pass the pointer

to the 12-byte structure shown above. This shellcode loads the DLL ("kernel32.dll") and

then goes into an infinite sleep loop.

6. Write DLL ("kernel32.dll") string again to notepad.exe.

7. Write the 20-byte structure to Notepad.exe containing pointers to important APIs and

two strings: imported DLL name and imported API name.

8.

Write 144 bytes of shellcode to Notepad.exe.

9. Execute this shellcode in Notepad.exe using `CreateRemoteThread` and pass the pointer

to the 20-byte structure from step 7 as param. This shellcode will resolve the import

pointed by the last variable of the structure in step 7, and then exits using

`RtlExistUserThread`.

10. Repeat Steps 2 - 9 for all of the imported DLLs and imported functions in the malicious

DLL's import table.

11. Write malicious DLL to Notepad.exe.

https://1.bp.blogspot.com/-uR2hiPnKKS4/X_WReznxPzI/AAAAAAAAB0c/EOjbqo7giy49z6NNpIJcc93y0GaljKNcwCLcBGAsYHQ/s440/image17.png
https://1.bp.blogspot.com/-Tm-rds4N2tI/X_WRsVzBHEI/AAAAAAAAB0k/JrVxHiItI84IArKYbNrmuQdkPZQ9pq-cwCLcBGAsYHQ/s526/image28.png

13/17

12. Write an eight-byte structure to Notepad.exe containing Malicious DLL base address and

entry point.

13. Write 122 bytes of shellcode to notepad.exe.

14. Execute the shellcode in Notepad.exe using `CreateRemoteThread` by passing the

pointer to structure from step 12 as param. The shellcode calls the entry-point point of

the malicious DLL.

Injected DLL analysis (UAC bypass using two techniques)

It checks if `C:\Windows\Finex` exists. If not, it will drop the following file at path

`C:\Users\Public\cde.bat`:

Then, it drops C:\Users\Public\x.bat containing the following content.

https://1.bp.blogspot.com/-r-9zXrQzUhI/X_WRzAjybxI/AAAAAAAAB0s/J2u1S3XV5IMhIPq8Zf4vMrvNjbT6JXv6wCLcBGAsYHQ/s277/image19.png
https://1.bp.blogspot.com/-A5YCJUwyyIM/X_WR8VXds1I/AAAAAAAAB00/YxQp9HFBh28b7cQ-_yGS9HT2NpexviGYwCLcBGAsYHQ/s526/image8.png
https://1.bp.blogspot.com/-gfF4Rv1JtLI/X_WSDOcWZdI/AAAAAAAAB08/d0ZpzJh0qI0EAUYSpodj1jyqE20K2LtAwCLcBGAsYHQ/s635/image3.png

14/17

Then, it drops C:\Users\Public\x.vbs.

Then it drops, C:\Users\Public\Natso.bat.

Then, it executes `Natso.bat`, which is a "fileless" UAC bypass found by James Forshaw. More

details here.

If C:\Windows\Finex still doesn't exist (which means the UAC bypass failed), it will update the

Nasto.bat and execute it using the code shown below.

This is another UAC bypass technique based on fodhelper.exe. More details here. On our test

machine, the last bypass was successful, and `C:\Windows\Finex` was successfully created.

After that, the DLL deletes the dropped file and exits.

Decrypting and executing Lokibot

After attempting to bypass the UAC, the third-stage DLL will check if `AutoRunKeyFlag` is set.

For this DLL, it is not set. It will then jump to code that decrypts the Lokibot executable using

decryption keys from the configuration structure. The first two layers are decrypted using

`DecryptionKeyA` and `DecryptionKeyB`, and reverses all the data. After that, the final layer

is decrypted using the same decryption method used to decrypt resource data at the start of the

third stage.

https://1.bp.blogspot.com/-nmTPrQ_Et6w/X_WSS5XnAMI/AAAAAAAAB1M/LbKA8XzapE4rdRx5hg5bXI3tekELcZd-QCLcBGAsYHQ/s1750/image22.png
https://twitter.com/tiraniddo
https://www.tiraniddo.dev/2017/05/exploiting-environment-variables-in.html
https://gist.github.com/netbiosX/a114f8822eb20b115e33db55deee6692

15/17

The DLL contains multiple ways to execute a PE file. The execution method is decided based on

the values of ExecutionFlag A, B, C. Their values will lead to the following code for the current

configuration, which will decrypt the shellcode from the configuration using DecryptionKeyB,

pass it three parameters: pointer to decrypted Lokibot .exe, a pointer to an array of string and a

pointer to current command line.

The shellcode will create a suspended process using the third parameter as a command line

command and injects Lokibot into it using process hollowing.

Conclusion

Threat actors are getting more sophisticated when it comes to hiding their final payload. This

dropper uses three stages and three layers of encryption to hide its final payload. The dropper

also injects code into a suspended process to bypass UAC and uses process hollowing to execute

its final payload. The majority of malware is getting more and more sophisticated. They are

constantly improving their social engineering techniques to trick the user into opening

malicious attachments and running malicious code. The malware code and its infection

techniques is also improving constantly like we have described in this blog. The adversaries

combine clever techniques to make detection harder. More than ever it is important to have a

multi layered security architecture in place to detect these kinds of attacks. It isn't unlikely that

the adversaries will manage to bypass one or the other security measures, but it is much harder

for them to bypass all of them. These campaigns and the refinement of the TTPs being used will

likely continue for the foreseeable future.

Coverage

https://1.bp.blogspot.com/-E055snfPwGg/X_WTGolJjXI/AAAAAAAAB1o/oLHabhoL3RMo1gI0Y4tvuwot81pD0LeHQCLcBGAsYHQ/s726/image21.png
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/analyzing-malware-hollow-processes/

16/17

Ways our customers can detect and block this

threat are listed below.

Advanced Malware Protection (AMP) is

ideally suited to prevent the execution of the

malware detailed in this post. Below is a

screenshot showing how AMP can protect

customers from this threat. Try AMP for free

here.

Cisco Cloud Web Security (CWS) or Web

Security Appliance (WSA) web scanning

prevents access to malicious websites and

detects malware used in these attacks.

Network Security appliances such as Next-

Generation Firewall (NGFW), Next-

Generation Intrusion Prevention System

(NGIPS), and Meraki MX can detect malicious activity associated with this threat.

Threat Grid helps identify malicious binaries and build protection into all Cisco Security

products.

Umbrella, our secure internet gateway (SIG), blocks users from connecting to malicious

domains, IPs, and URLs, whether users are on or off the corporate network.

Additional protections with context to your specific environment and threat data are available

from the Firepower Management Center.

Open Source Snort Subscriber Rule Set customers can stay up to date by downloading the latest

rule pack available for purchase on Snort.org.The following SIDs have been released to detect

this threat: 56578 and 56577.

IOC

Hashes

d5a68a111c359a22965206e7ac7d602d92789dd1aa3f0e0c8d89412fc84e24a5 (First stage XLS

file)

6b53ba14172f0094a00edfef96887aab01e8b1c49bdc6b1f34d7f2e32f88d172 (2nd stage packed

downloader)

b36d914ae8e43c6001483dfc206b08dd1b0fbc5299082ea2fba154df35e7d649 (2nd stage

unpacked DLL)

93ec3c23149c3d5245adf5d8a38c85e32cda24e23f8c4df2e19e1423739908b7 (3rd Stage DLL)

21e23350b05a4b84cdf5c93044d780558e6baf81b2148fdda4583930ab7cb836 (DLL used to

bypass UAC)

c9038e31f798119d9e93e7eafbdd3e0f215e24ee2200fcd2a3ba460d549894ab (Lokibot)

https://1.bp.blogspot.com/-NC3pjGMpVKU/X_Wg4mOF4nI/AAAAAAAAB2o/6M4VxWm1QMApa81rqzG8_eHB1THfyHBJQCLcBGAsYHQ/s1999/image6.jpg
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection
https://cisco.com/go/tryamp
https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
https://www.cisco.com/c/en/us/products/security/firepower-management-center/index.html
https://www.snort.org/products

17/17

URL

hxxp://millsmiltinon[.]com/ojHYhkfkmofwendkfptktnbjgmfkgtdeitobregvdgetyhsk/Xehmigm.exe

Domains

millsmiltinon.com (Hosts 2nd and 3rd Stage)

IP

104.223.143[.]132 (Lokibot C2)

