
1/36

February 22, 2021

The Story of Jian – How APT31 Stole and Used an
Unknown Equation Group 0-Day

research.checkpoint.com/2021/the-story-of-jian

February 22, 2021

Research by: Eyal Itkin and Itay Cohen

There is a theory which states that if anyone will ever manage to steal and use nation-

grade cyber tools, any network would become untrusted, and the world would become a

very dangerous place to live in.

There is another theory which states that this has already happened.

What would you say if we told you that a foreign group managed to steal an American

nuclear submarine? That would definitely be a bad thing, and would quickly reach every

headline.

However, for cyber weapons – although their impact could be just as devastating – it`s

usually a different story.

Cyber weapons are digital and volatile by nature. Stealing them and transferring from one

continent to another, can be as simple as sending an email. They are also very obscure,

and their mere existence is a closely guarded secret. That is exactly why, as opposed to a

nuclear submarine, stealing a cyber-weapon can easily go under the radar and become a

fact known only to a selected few.

https://research.checkpoint.com/2021/the-story-of-jian/

2/36

The implications of such a scenario can be devastating, as the world have already

experienced with the case of the Shadow Brokers leak, in which a mysterious group have

decided to publicly publish a wide range of cyber weapons allegedly developed by the

Tailored Access Operations (TAO) unit of the NSA – also referred to as the ‘Equation

Group’.

The Shadow Brokers leak lead to some of the biggest cyber outbreaks in history – the

most famous of which was the WannaCry attack causing hundreds of millions of dollars in

damages to organizations across the globe – and which its implications are still relevant

even 3 years after it happened.

The Shadow brokers leak however, just gave us a taste of some of the possible

implications such a cyber-theft can cause. Many important questions still remain – could

this have also happened before? And if so, who is behind it and what did they use it for?

Our recent research aims to shed more light on this topic, and reveal conclusive evidence

that such a leak did actually take place years before the Shadow Brokers leak, resulting in

US developed cyber tools reaching the hands of a Chinese group which repurposed them

in order to attack US targets.

Key Findings

The caught-in-the-wild exploit of CVE-2017-0005, a 0-Day attributed by Microsoft

to the Chinese APT31 (Zirconium), is in fact a replica of an Equation Group

exploit code-named “EpMe.”

APT31 had access to EpMe’s files, both their 32-bits and 64-bits versions, more than

2 years before the Shadow Brokers leak.

The exploit was replicated by the APT during 2014 to form “Jian”, and used since at

least 2015, until finally caught and patched in March 2017.

The APT31 exploit was reported to Microsoft by Lockheed Martin’s Computer

Incident Response Team, hinting at a possible attack against an American target.

The framework containing the EpMe exploit is dated to 2013, and contains 4

Windows Privilege Escalation exploits overall, two of which were 0-Days at the time

of the framework’s development.

One of the 0-Days in the framework, code-named “EpMo”, was never publicly

discussed, and was patched by Microsoft with no apparent CVE-ID in May 2017.

This was seemingly in response to the Shadow Brokers leak.

3/36

Figure 1: Timeline of the events detailing the story of EpMe / Jian / CVE-2017-0005.

Introduction

In the last few months, our malware and vulnerability researchers focused on recent

Windows Privilege Escalation exploits attributed to Chinese actors. During this

investigation, we managed to unravel the hidden story behind “Jian”, a 0-Day exploit that

was previously attributed to APT31 (Zirconium), and show its true origins.

In this blog we show that CVE-2017-0005, a Windows Local-Privilege-Escalation (LPE)

vulnerability that was attributed to a Chinese APT, was replicated based on an

Equation Group exploit for the same vulnerability that the APT was able to access.

“EpMe”, the Equation Group exploit for CVE-2017-0005, is one of 4 different LPE

exploits included in the DanderSpritz attack framework. EpMe dates back to at least 2013

– four years before APT31 was caught exploiting this vulnerability in the wild.

This isn’t the first documented case of a Chinese APT repurposing an Equation Group

exploit. In the Bemstour case, discussed by both Symantec and our own research team,

the main assumption was that APT3 (Buckeye) sniffed the EternalRomance exploit from

network traffic, and later upgraded it to the equivalent of EternalSynergy using an

additional APT3 vulnerability. In the present case, however, we have strong evidence that

APT31 had access to the actual exploit files of Equation Group, in both their 32-

bits and 64-bits versions.

In the following sections we introduce the 4 different Windows LPE exploits included in

the DanderSpritz framework, and reveal an additional exploit code named “EpMo.” This

exploit was patched in May 2017, probably as part of the follow-up fixes for the Shadow

https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/buckeye-windows-zero-day-exploit
https://research.checkpoint.com/2019/upsynergy/

4/36

Brokers “Lost in Translation” leak of Equation Group tools. While the vulnerability was

fixed, we failed to identify the associated CVE-ID. To our knowledge, this is the first

public mention of the existence of this additional Equation Group vulnerability.

Background

As part of our ongoing research on Windows LPE exploits, and tracking exploit authors,

we started analyzing exploits attributed to Chinese APTs. As CVE-2019-0803 was recently

mentioned in the NSA list of top 25 vulnerabilities used by Chinese actors, we decided this

was a good place to start. After we finished documenting all the information we gathered

on this unique exploit, originally a 0-Day attributed to Chinese actors, we went on to the

next Chinese-attributed exploit in our list: CVE-2017-0005.

In our review of Microsoft’s report on the vulnerability that was caught exploited in the

wild and was attributed to Zirconium (APT31), we found a few interesting details:

The exploit was caught and reported to Microsoft by Lockheed Martin’s Computer

Incident Response Team.

The exploit uses a multi-staged packer, which appears identical to the one we saw

used by CVE-2019-0803.

Figure 2: Comparison between the packer of CVE-2017-0005 (left) and that of CVE-

2019-0803 (right).

Armed with these two leads, and already familiar with the packer used by these exploits,

we set out to find the described exploit of CVE-2017-0005.

After we obtained a 64-bit sample of the CVE-2017-0005 exploit, we verified it against the

information described by Microsoft in their blog. Not only did it match, when ignoring the

random page allocation, both samples use the same addresses (same lower 3 nibbles).

https://research.checkpoint.com/2020/graphology-of-an-exploit-volodya/
https://media.defense.gov/2020/Oct/20/2002519884/-1/-1/0/CSA_CHINESE_EXPLOIT_VULNERABILITIES_UOO179811.PDF
https://www.microsoft.com/security/blog/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/

5/36

Figure 3: Comparison between Microsoft’s sample (left) and ours (right).

Comparing CVE-2017-0005 and CVE-2019-0803

In the following section, we describe in detail some of the characteristics of the packer and

the loader used in CVE-2017-0005 and CVE-2019-0803, and highlight their

commonalities and differences.

Jian, the exploit of CVE-2017-0005, was shipped in a DLL named Add.dll . It contained

an interesting PDB path suggesting that it was written in 2015 under a project named

“rundll32_getadmin”.

F:\\code\\2015\\rundll32_getadmin\\Add\\x64\\Release\\Add.pdb

When we checked the Time Date Stamp of the binary in the file header, we saw that the

DLL was compiled on Wed May 06 02:08:24 2015 , which fits nicely with the folder

name from the PDB. An additional timestamp on the export directory points to the exact

same date. Speaking of the export directory, the DLL has a single exported function

named “AddByGod”, which, as we will learn soon, is the entry function of the packer.

The decryption routine is very straightforward. The packer starts by allocating memory

for the encrypted code and copies it to the newly allocated buffer. It then allocates a buffer

with PAGE_EXECUTE_READWRITE protection to store the decrypted code. After the buffers

are allocated, the packer checks if a string argument, which will be used as a decryption

key, was passed to the AddByGod function. Next, the packer uses the AES256 algorithm

with a SHA1 derived key of the passed argument to decrypt the encrypted code. If the

decryption is successful, the decrypted code is executed and a second stage payload runs.

Luckily, we managed to obtain the password that was needed to execute the binary and

decrypt the encrypted payload.

rundll32.exe Add.dll AddByGod [password]

The second stage begins with a typical shellcode technique, searching the module’s header

for the address of kernel32.dll and dynamically retrieving a pointer to the

GetProcAddress export function. Next, the program decompresses another Portable

Executable (PE) and jumps to its entry point. The decompressed PE, which is the 3rd

stage in the loading sequence, has intentionally corrupted headers. It does basic loading

6/36

operations and then begins with a reflective loading of an embedded executable (yes,

another one). The loaded PE is the last stage in the loading sequence and is responsible

for executing the exploit.

It’s interesting to mention that the compilation time of the embedded binary — the exploit

itself — goes back to October 2014. This suggests that the attackers used this 0-day in

2014, almost three years before it became publicly available in the Shadow Brokers leak

and was fixed by Microsoft.

Figure 4: The execution flow of the loaders used for CVE-2017-0005 and CVE-2019-

0803.

As can be seen in the figure above, the packer used for CVE-2019-0803 is very similar to

the one used in CVE-2017-0005. In fact, the flow is almost identical. The file was

compiled on September 18, 2018, and is also internally named “Add.dll”. Like the

previously packed exploit, CVE-2019-0803 also has an export function named

“AddByGod” and contains debug information:

C:\Users\sms2056\Desktop\Add（未修改dll‘）\x64\Release\Add.pdb

Unlike the previous sample, this one uses a different decryption password and needs an

additional argument when running (used in later stages). The execution flow then

continues exactly as we observed in the previous sample with one exception: after the

program decompresses a PE payload and jumps to its entry point, it does not have a 4th

stage of another embedded PE, but simply begins the exploitation stage.

We looked for more samples that use this or a similar variant of the packer we described,

and found multiple samples and malware families that have used it for many years. All of

the malware are clearly and exclusively attributed to Chinese-affiliated attack groups.

Adding this conclusion to the contextual information we have, Microsoft’s independent

7/36

attribution of CVE-2017-0005 to a Chinese APT, and NSA’s attribution of CVE-2019-

0803 to “Chinese State-Sponsored Actors”, make us believe that the exploit of CVE-2017-

0005 was indeed used by attackers that are part of a Chinese group.

Jian – CVE-2017-0005

When analyzing Jian, we noticed the following interesting characteristics.

Operating System (OS) Version Context

The exploit creates a rich version context that includes multiple fields, each representing a

different characteristic of the target’s operating system. This extensive context isn’t typical

of the Chinese-attributed exploits we previously analyzed and looks like some sort of a

utility/framework. This is even more suspicious, as some fields in the context aren’t even

initialized (marked in red), and overall only three of them are used by the exploit itself

(marked in blue).

Figure 5: Rich version information, as collected by

Jian.

Just for comparison, the exploit of CVE-2019-0803

supported only a single Windows version and used

the hardcoded version-dependent constants for

Windows Server 2008 R2. Alibaba even reported

that the tool’s file name was 2008.dll , leaving no

doubt about the tool’s intended target.

Global Configuration Table

The OS version enum is used as an index for a global configuration table. This is a classic

example of using such an enum when one needs a version-dependent configuration. The

configuration table itself looks like a promising artifact that might appear in additional

exploits by the same authors.

We created detection signatures and looked for samples that contain this configuration

table. Our search query resulted in the following samples:

https://sec-lab.aliyun.com/2019/04/25/%E9%98%BF%E9%87%8C%E4%BA%91%E4%BA%91%E5%AE%89%E5%85%A8%E4%B8%AD%E5%BF%83%E6%8D%95%E8%8E%B7Win32k%E7%BB%84%E4%BB%B60day/

8/36

Mcl_NtElevation_EpMe_GrSa.dll (x86) –

292fe1fc7d350cc7b970da0f308d22089cd36ab552e5659e3cfb0d9690166628

Mcl_NtElevation_EpMo_GrSa.dll (x64) –

1537cad1d2c5154e142af775ed555d6168d528bbe40b31f451efa92c9e4f02de

The naming convention of the files and their context immediately caught us by surprise.

We recognized them as part of the Shadow Brokers’ “Lost in Translation” leak of Equation

Group tools. Equation Group is the name given to an APT group which is believed to be

the Tailored Access Operations (TAO) unit of the NSA. How did our search for extremely-

unique artifacts extracted from a Chinese 0-Day exploit that was patched in March

2017 show results of leaked Equation Group tools from 2013? To answer this

question, we started to dive deep and analyze the information we found.

Lost In Translation

Before we describe our analysis, we want to give a brief history of The Shadow Brokers

group and their leaks of Equation Group tools. We believe that understanding the nature

of the leak, and especially the timeline, is crucial for understanding what happened next.

The Shadow Brokers is a mystery group of hackers that first appeared on August 12, 2016,

when they invited the public to participate in an auction of Equation Group’s “Cyber

Weapons.” Since then, the group started to leak more and more files over a period of

several months. One of these leaks, called “Lost in Translation”, emerged in April 2017,

and is well known for releasing Equation Group’s notorious exploits such as Eternal Blue.

One of the main components in this leak is DanderSpritz, Equation Group’s post-

exploitation framework that contains a wide variety of tools for persistence,

reconnaissance, lateral movement, bypassing Antivirus engines, and more. The

framework is very modular and provides the operator many capabilities to access victims’

computers. During the recent months, we revisited the DanderSpritz framework, reverse-

engineered some of its modules and implants, and plan to publish a detailed

publication dedicated to the framework and our findings.

Our project of profiling exploit authors focuses on Windows LPE exploits, like CVE-2017-

0005 whose artifacts we searched. As common in post-exploitation frameworks,

DanderSpritz and the Lost In Translation leak also contain LPE exploits, and two of them

matched our query.

We now present a brief overview of some of the LPE exploits that were attributed to the

Equation Group and their connection to the leaked DanderSpritz framework.

History of Equation Group LPE Exploits

PrivLib and the Houston Disk

https://en.wikipedia.org/wiki/The_Shadow_Brokers#Fifth_leak:_%22Lost_in_Translation%22
https://en.wikipedia.org/wiki/EternalBlue

9/36

The term “PrivLib” is often used when referring to a Privilege Escalation module

embedded inside a given Equation Group implant. PrivLib contains a selected set of

Windows LPE exploits chosen from the Equation Group arsenal, and all of them are

wrapped using a thin wrapper known by its “prkMtx” unique mutex.

In 2015, Kaspersky reported a set of Windows LPEs embedded inside a booby-trapped

disk given away at a Houston scientific convention. The exploits, attributed to Equation

Group, were all 0-Day at the time of development, and some even dated as far back as

2008. All in all, the Houston Disk contained a PrivLib version that executes a set of 3

exploits one after the other, until the desired privileges are acquired.

Here is a list of the exploits included in the disk, according to their execution order:

1. MS09-025 (Fanny / Stuxnet)

2. CVE-2013-3128

3. CVE-2011-3402

Note: The CVEs listed here don’t match those mentioned originally by Kaspersky in their

report. First, Kaspersky’s researchers weren’t sure about the CVE-IDs to begin with,

marking them as “possibly.” Second, we found additional information regarding the latter

two exploits, which helped shed light on more probable CVE-IDs for each. More details

about the CVE-ID identification can be found later on under the respective sections

describing each exploit.

DanderSpritz NtElevation

DanderSpritz is a modular post-exploitation framework that contains dozens of different

interdependent modules. For example, some modules do not run unless specific modules

are not executed first, and others require special privileges or artifacts to run. Some of the

modules require privileges of a SYSTEM account to run. For this to happen, DanderSpritz

executes a set of modules named ‘NtElevation’ that are responsible for elevating the

privileges of the implant running on the victim’s computer.

https://securelist.com/equation-group-from-houston-with-love/68877/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064459/Equation_group_questions_and_answers.pdf

10/36

Figure 6: An example for the dependencies of the PasswordDump module, including

NtElevation .

These privilege escalation modules are the ones we caught when we queried for Jian’s

global configuration table. And they were not alone. We also found a couple of more Local

Privilege Escalation exploits from the NtElevation series.

While the Eternal* exploits received a lot of attention, and rightly so, mentions of the

NtElevation exploits were somehow missing. We couldn’t find any online reference that

points to the existence of the NtElevation module as part of the Equation Group arsenal

or even as part of the “Shadow Brokers Exploits”, nor any reference to the following 4

exploit code names.

ElEi

ErNi

EpMo

EpMe

Note: Equation Group’s exploits are known to have code names that are abbreviated

using 4 letters. For example, Eternal Blue and Eternal Romance are internally referred to

as ETBL and ETRO . Similarly, the Local Privilege Escalation exploits we discussed have

their own code names, as listed above.

Despite our attempts, we couldn’t manage to trace back the full code names for these

exploits. However, the naming convention suggests that EpMo and EpMe are of the

same type or that they exploit vulnerabilities in the same module, just like the Eternal*

exploits (EternalBlue, EternalRomance, etc). This conclusion does make sense as our

single search query found both of these exploits.

When we analyzed the DanderSpritz NtElevation API, we found the checks that each

module deploys to declare that the exploit is indeed supported. When combined with the

original patch dates Kaspersky estimated for the two font exploits from the Houston Disk,

this new information helped us make a better estimate of the inner workings of each CVE-

ID.

We thoroughly analyzed the found exploits and tried to match each exploit file to its

respective CVE-ID. These are the results of our analysis and our conclusions.

ElEi – CVE-2011-3402

Houston Disk: 3rd in the execution order.

Supported DanderSpritz Windows Versions: Windows 2000 to Windows 7,

inclusive.

The exploit also contains an additional check that win32k.sys is dated to before

November 23, 2011. This is a clear indication of CVE-2011-3402, which is the only font

vulnerability that was fixed in December 2011. The gap in the dates is explained by the

fact that Microsoft compiled the patched driver on the mentioned date.

11/36

We are aware that CVE-2011-3402 was originally spotted as a 0-Day that was exploited in

the wild, and was found in Duqu (1.0). Currently, we can only point out this interesting

CVE-ID match, but we have not yet studied it further or compared the two exploits, as

these font exploits are outside of the scope of our research, which focuses on the unknown

DanderSpritz exploits and their connection to CVE-2017-0005.

We do recommend this lead for a future work publication and invite security researchers

worldwide to examine this connection.

ErNi – CVE-2013-3128

Houston Disk: 2nd in the execution order.

Supported DanderSpritz Windows Versions: Only Windows 2000.

The exploit also contains an additional check that ATMFD.dll is of the exact version

“5.0.2.227”. As the Houston Disk exploit supported additional versions, we aren’t fully

sure why the version range was narrowed down in DanderSpritz. Compared to ElEi ,

there is no indicative patch check, which may be because the DanderSpritz files are dated

to mid-2013, which is prior to the patch that was identified by Kaspersky and is dated to

October 2013.

We chose CVE-2013-3128 instead of CVE-2013-3894 because this vulnerability is an

OpenType Font vulnerability, which correlates with the exploit at hand. This

identification should be taken with a grain of salt as none of these CVE-IDs were actually

marked as “exploited in the wild.” The reason we chose this CVE-ID is merely because it is

mentioned in the Patch Tuesday cited by Kaspersky. As with ElEi , further study of these

font exploits is more than welcome.

User Mode Print Driver (UMPD) 101

Basic analysis of both EpMo and EpMe found them to be GDI User-Mode-Print-Driver

(UMPD) related, which explains why we found them when searching for a GDI UMPD

related artifact from Jian. Before diving into the exploits, we first provide some

background on what exactly is a User-Mode-Print-Driver.

The Windows operating system supports the option of rendering most of the needed

graphics for a given print job in user-mode, in contrast to the traditional implementation

of such drivers inside the Windows kernel. The architecture of deploying such a User-

Mode-Print-Driver (UMPD) is shown below.

https://msrc-blog.microsoft.com/2011/12/13/more-information-on-ms11-087/

12/36

Figure 7: UMPD architecture, based on figures from this Black-Hat Europe talk.

Supporting such a data flow dictates that the kernel is aware of the user’s UMPD device

and can forward it a set of requests, depending on the types that the driver declared to

support. As is explained in more detail in this excellent Black Hat Europe 2020 talk

focusing on UMPD, allowing for user-mode callbacks, invoked from the kernel, is a sure

recipe for security vulnerabilities.

In the next few sections, we explain in detail how each Equation Group exploit uses the

UMPD, and which vulnerabilities in this mechanism were exploited.

EpMo – Analysis

Houston Disk: N/A.

Supported DanderSpritz Windows Versions: Windows 2000 to Windows Server

2008 R2, inclusive.

Root Cause

After we finished reverse engineering the rich context and utilities exposed as part of the

DanderSpritz framework and API, the vulnerability itself was quite simple. A short

analysis revealed that this is probably a NULL-Deref vulnerability, as the NULL page is

allocated, and the shellcode is immediately copied to it, as can be seen below:

https://i.blackhat.com/eu-20/Wednesday/eu-20-Han-Discovery-20-Yeas-Old-Vulnerabilities-In-Modern-Windows-Kernel.pdf
https://i.blackhat.com/eu-20/Wednesday/eu-20-Han-Discovery-20-Yeas-Old-Vulnerabilities-In-Modern-Windows-Kernel.pdf

13/36

Figure 8: Preparation of the NULL-page, as part of the EpMo exploit.

As this is a NULL-Deref vulnerability, we can immediately rule out CVE-2017-0005, as

the stack trace shown in Microsoft’s blog has nothing to do with the NULL page. This

means that this is possibly another vulnerability found and exploited by Equation Group

in 2013. With that out of the way, it is time to understand what triggers this NULL-Deref

vulnerability.

Our first hint as to the identity of the affected module, which we expect to be the UMPD,

can be found in this classic example of the use of the OS version enum field:

Figure 9: Using OS version enum to query for the ppClientPrinterThunk callback

index.

After the version-dependent index of the callback is fetched, the callback itself is replaced

with the attacker’s fake ClientPrinterThunk callback.

14/36

Figure 10: Replacing the KernelCallbackEntry with the attacker’s

ClientPrinterThunk .

Bingo! The exploit indeed makes use of a fake ClientPrinterThunk . Let’s dig in and

analyze the exploit logic inside this fake callback.

The callback itself is a thin wrapper that forwards the gdi_ctx and the original

argument to a function that is very similar to Windows’s own GdiPrinterThunk . As a

matter of fact, the code of the exploit is very modular, and each supported driver

command is handled by its own virtual handler implemented in the gdi_ctx class.

Aside from the chosen set of implemented handlers, there is no real logic in this function.

Figure 11: Driver command types that are handled by the exploit’s user-mode driver.

While analyzing this function, we stumbled upon the GDI configuration array that

originally pointed us to this exploit sample. Now, placed in the right context, we can easily

deduce the role of this configuration array. It holds the print driver’s INDEX_LAST value

for each version of the target operating system.

15/36

Figure 12: Global INDEX_LAST configuration table, as used by the driver.

As can be seen above, this configuration value is crucial for the driver’s logic as it

represents the total number of dispatched functions that should be handled by the driver.

Now that we understood the overall flow of the exploit, and the structure of the User-

Mode-Print-Driver (UMPD), tracing the root cause of the vulnerability proved to be a

relatively simple task. The driver implemented special handlers only for the following

basic command types:

Figure 13: List of driver-supported

command types.

On top of these commands, there is one

additional supported command, with the

os-dependent value of INDEX_LAST +

4 :

16/36

Figure 14: Handler for the DrvFN command type.

In this command, we initialize an array that tells the operating system which function

handlers we support. The attackers chose to mark all of the functions as “supported”

except for 3 specific function handlers:

DrvStartDoc (0x23)

DrvEnableSurface (0x03)

DrvDisableSurface (0x04)

Please pay close attention to DrvEnableSurface . The syscall that triggers the

vulnerability is NtGdiStartDoc , which is responsible for starting the print job.

However, to do so, the vulnerable function win32k!PDEVOBJ::bMakeSurface() is

invoked and tries to create a surface, exactly the operation that isn’t supported by our

driver. Here is a debugging output from the vulnerable function:

17/36

Figure 15: Debugger output inside the vulnerable function showing the missing handler

entry.

While the entry for DrvDisablePDEV (0x02) exists, and points to the correct Windows

function, the adjacent entry for DrvEnableSurface (0x03) contains only zeros.

From this point, the vulnerability is clear. The vulnerable function assumes that our

driver supports this handler, fetches the empty entry from the struct, and invokes NULL

as the function responsible for enabling the surface. The figure below shows the full stack

trace, right at the point in which the control flow is passed to the shellcode that the

attacker stored at address 0x0:

00 8aeb8c6c 8fa42330 0x0

01 8aeb8c88 8fbae3f6 win32k!PDEVOBJ::bMakeSurface+0x43

02 8aeb8cb0 8fbae94c win32k!GreStartDocInternal+0x7e

03 8aeb8d1c 82a4f42a win32k!NtGdiStartDoc+0x2ff

04 8aeb8d1c 000f0813 (T) nt!KiFastCallEntry+0x12a

05 0022eed0 10008118 (T) 0xf0813

06 0022ef18 10006f53 Mcl_NtElevation_EpMo_GrSa+0x8118

07 0022ef28 10006fc3 Mcl_NtElevation_EpMo_GrSa+0x6f53

08 0022ef44 10007af4 Mcl_NtElevation_EpMo_GrSa+0x6fc3

09 0022ef74 10006ce5 Mcl_NtElevation_EpMo_GrSa+0x7af4

18/36

0a 0022efcc 10004a31 Mcl_NtElevation_EpMo_GrSa+0x6ce5

0b 0022f324 100038c0 Mcl_NtElevation_EpMo_GrSa+0x4a31

0c 0022f338 10003a7b Mcl_NtElevation_EpMo_GrSa+0x38c0

0d 0022f370 10002adf Mcl_NtElevation_EpMo_GrSa+0x3a7b

0e 0022f3d8 77d5af24 Mcl_NtElevation_EpMo_GrSa+0x2adf

The Patch

Microsoft fixed this vulnerability in May 2017, one month after the Shadow Brokers’s Lost

in Translation leak. However, we failed to find a CVE-ID that refers to this fix. The patch

itself addresses the exact flaw in the vulnerable function

win32k!PDEVOBJ::bMakeSurface() . It adds a sanity check after the handler is fetched

from the struct, and before it is invoked by the function. If the entry is NULL, the function

aborts.

Figure 16: Patched version now checks the function handler before invoking it.

To conclude, the EpMo Equation Group exploit is a NULL-Deref in GDI’s UMPD module,

and is therefore not an exploit for CVE-2017-0005. It was patched by Microsoft in May

2017, and we couldn’t find a clear CVE-ID associated with it.

Now that we better understand the framework’s API, and have a better understanding of

the UMPD module, it is time to focus on the next exploit – EpMe .

Just to recap, we found both of these exploits when searching for an artifact from Jian,

APT31’s exploit for CVE-2017-0005. As EpMo is a different vulnerability that originates

from the same module, our hope was that EpMe does indeed exploit CVE-2017-0005.

Time to analyze it and find out.

EpMe – Analysis

Houston Disk: N/A.

Supported DanderSpritz Windows Versions: Windows XP to Windows 8,

inclusive.

Root Cause

19/36

Armed with our newly acquired knowledge about the UMPD module, we started analyzing

the EpMe exploit. The exploit itself shares a lot of code with EpMo, thus allowing us to

easily focus on the exploit-specific logic that is unique to EpMe. While the initialization

phase of this exploit is longer and involves a lot of GDI-related bootstrapping

(DrawStream() , finding the wanted Display, etc.), the actual flow that hijacks the

control flow is relatively simple.

After the bootstrap is finished, the exploit triggers a call to the NtGdiBitBlt syscall.

This initiates a chain of events in the Windows kernel and eventually passes the flow back

to our user-mode callback (DrvBitBlt()) registered by our UMPD. Here lies the heart

of the exploit.

Our function allocates a new Rbrush using NtGdiBRUSHOBJ_pvAllocRbrush() , whose

sole purpose is to allow UMPD implementations to allocate themselves an Rbrush and

couple it with a BRUSHOBJ . As a direct result, it also means that the Rbrush is allocated

in user-mode, using EngAllocUserMemEx() . Storing it in user-mode means that we

can access it and craft the struct’s content. And so, the attackers corrupted the Rbrush to

point at a set of fake GDI objects that were forged on a local stack buffer inside the

callback.

To hijack the control flow, the attackers chose to use a Palette and crafted it so that

PALETTE.pfnGetNearestFromPalentry points to their shellcode, exactly as Microsoft

pointed out in their blog on the caught-in-the-wild exploit. After everything is built, the

callback invokes the NtGdiEngBitBlt syscall with a rop4 parameter of 0xCCAA . This

specific syscall was chosen because of two key features:

The user passes to it a BRUSHOBJ .

A rop4 value of 0xCCAA means the kernel directly accesses the user-controlled

Rbrush from within the supplied BRUSHOBJ .

More specifically, a Stream is extracted from the fully-controlled Rbrush and is

forwarded on to EngDrawStream() , causing the unsuspecting kernel function to use our

fully crafted Stream.

20/36

Figure 17: Control flow of the EpMe exploit of CVE-2017-0005.

This chain of functions gradually uses all of the GDI objects that we’ve crafted in our user-

mode callback, eventually leading to XLATEOBJ_iXlate() . This last function invokes

our crafted PALETTE.pfnGetNearestFromPalentry function pointer, thus hijacking the

control flow and triggering the execution of our shellcode.

To summarize, the root cause for this vulnerability is based on the complex design

involved in supporting UMPD, and the need to allocate objects for it in user-mode. The

vulnerability itself lies inside EngBitBlt() , which blindly trusts and directly uses our

crafted Rbrush and the set of fake GDI objects it points to. Not only does this

vulnerability give an attacker a powerful exploit primitive, but it also points at a design

issue in the Windows kernel. As long as there is a function somewhere in the kernel that

directly accesses a user-supplied Rbrush , it also blindly trusts all the values that it

points to and that are fully controlled by the user.

The Patch – CVE-2017-0005

Another important conclusion we drew from analyzing the exploited vulnerability is that

we now know for sure that EpMe exploits CVE-2017-0005. On top of our analysis of

both the Equation Group and APT31 exploits, the EpMe exploit aligns perfectly with the

details reported in Microsoft’s blog on CVE-2017-0005. And if that wasn’t enough, the

exploit indeed stopped working after Microsoft’s March 2017 patch, the patch that

addressed the said vulnerability.

The patch itself is rather straightforward: EngBitBlt() with a rop4 value of 0xCCAA

no longer supports the option to draw a Stream, an action that demands extracting a

Stream from the user-supplied Rbrush . By removing this feature altogether, Microsoft

completely eliminated the vulnerable code flow.

21/36

Before:

Figure 18: Vulnerable win32k.sys , supports both EngDrawStream() and

EngTransparentBlt() .

After:

Figure 19: Patched win32k.sys , no longer supports EngDrawStream() .

It is important to remember that two APTs exploiting the same vulnerability (CVE-2017-

0005) could just be a coincidence. When this happens to security researchers, such a case

is often referred to as a “bug-collision.” It’s possible that researchers on both sides found

this vulnerability independently, and it doesn’t necessarily mean that there is a real

connection between the tools.

22/36

We now compare the two exploit samples, Jian and EpMe, and see if we can spot any

connection between them aside from them exploiting the same vulnerability.

EpMe vs Jian

Similar Version Context

At the beginning of our research, we saw that Jian uses a context that holds multiple fields

about the version of the target’s operating system. Used fields are marked in blue, and

uninitialized fields are marked in red.

Figure 20: Rich version information, as

collected by Jian.

Now, when we review the version context used by

all exploits shared by the DanderSpritz

framework, we can see the following, very

similar, structure:

23/36

Figure 21: Version context used by DanderSpritz and shared by all Equation Group

exploits.

The fields that are marked in red in Jian were marked again in the sample from the

Equation Group exploits. As can be seen, one field is still unused in all 4 DanderSpritz

exploits, but the other field is heavily used and holds the handle for the mapped version of

NTOS kernel. It is hard to miss the wide similarity between the two structures, up to the

order and size of the first 9 fields, even including the size of the unused field in

between.

The changes between the two configuration structures are that Equation Group’s

configuration contains more fields, mostly used for security mitigation policies, that are

relevant for Windows 8 systems and higher. The last difference between the structures is

in the field specifying the architecture of the target’s kernel, which for some reason was

negated in Jian. Anyway, this field was never used by the exploit.

Overall, having a Chinese-attributed exploit use a version context is uncommon. Having

one that is nearly identical to the version context used by the entire DanderSpritz

NtElevation module can’t be a coincidence.

24/36

Same Memory Layout

At the heart of the exploits lies a single function that populates a buffer with the various

fake GDI objects, which is pointed to by our user-mode Rbrush object. Not only do both

exploits use a single function for the construction of all of these fake objects, but the

memory layout of the objects in the argument buffer is also identical.

Figure 22: Construction of the fake GDI objects, as done in Jian.

When we analyzed the code of the Equation Group exploit, we used it to recreate a source

code Proof-Of-Concept (POC). The result is the following beautified and labeled code:

void populate_buffer_and_brush(char * pBuffer, HBRUSH hbrush)

{

memset(pBuffer, 0, 0x200);

memset(&pBuffer[0x200], 0, 0xA8);

memset(&pBuffer[0x2A8], 0, 0x30);

memset(&pBuffer[0x2D8], 0, 0x10);

25/36

// 0x00: PALETTE

*(DWORD *)(pBuffer + 0x18) = 2; // 0x14 - 0x1C: flPal

*(size_t *)(pBuffer + 0x80) = pBuffer + 0x2A8; // 0x80 - 0x88: apalColor

// Brush (DRAWSTREAMINFO)

size_t * pBrush = (size_t*)hbrush;

pBrush[3] = pBuffer + 0x29C; // pptlDstOffset - Pointer to 0

pBrush[4] = pBuffer + 0x208; // pxloSrcToBGRA

pBrush[5] = pBuffer + 0x208; // pxloDstToBGRA

pBrush[6] = pBuffer + 0x208; // pxloBGRAToDst <-- We use this one (offset 0x30)

pBrush[7] = 60; // ulStreamLength - 60

pBrush[8] = pBuffer + 0x260; // pvStream - Pointer to our built "Stream"

// Second Struct

*(size_t *)(pBuffer + 0x200) = hbrush;

// 0x208: _XLATE

*(size_t *)(pBuffer + 0x230) = pBuffer; // ppalSrc

*(size_t *)(pBuffer + 0x238) = pBuffer; // ppalDst <-- We use this one (offset 0x30)

*(size_t *)(pBuffer + 0x240) = pBuffer; // ppalDstDC

// 0x260 - 0x2A8: Our "Stream"

*(DWORD *)(pBuffer + 0x260) = 9; // DS_NINEGRIDID (ulCmdID)

*(DWORD *)(pBuffer + 0x26C) = 1; // rclDst.right = 0x01

*(DWORD *)(pBuffer + 0x270) = 1; // rclDst.bottom = 0x01

*(DWORD *)(pBuffer + 0x27C) = 80; // rclSrc.right = 0x50

*(DWORD *)(pBuffer + 0x280) = 80; // rclSrc.bottom = 0x50

*(DWORD *)(pBuffer + 0x284) = 4; // ngi.flFlags := DSDNG_PERPIXELALPHA (4)

// 0x2A8: Palette Color Table

*(DWORD *)(pBuffer + 0x2CC) = 100;

// Fourth Struct

26/36

*(size_t *)(pBuffer + 0x2D8) = AllocMemoryPage(0x10000);

*(size_t *)(pBuffer + 0x2E0) = g_pRtlCopyUnicodeString;

}

Aside from the added struct at the end of the buffer, which uses

RtlCopyUnicodeString , the memory layout of the objects inside the argument buffer

was completely identical.

As we also labeled the different objects, we can see that the important part is the

references from one object to another, and not the location in which they are stored in the

buffer itself. And yet, as if by magic, both exploits share this memory layout.

Shared Constants

One more advantage of our recreated code POC for EpMe is that it enabled us to play

around with various constants used throughout the exploit, such as:

GUI Window Name – Originally “h”.

Point locations – One of which was originally (100, 100).

Print Job ID – Originally 5.

Driver Name / Document Name – A weird Unicode string is shown below.

Figure 23: Weird Unicode string, later used as both the driver and document names.

Needless to say, none of the above were related to the vulnerability itself, and changing

them didn’t affect the exploit at all. They are simply hardcoded constants chosen by the

original developers of the exploit.

The interesting thing is, both EpMe and the Jian use the exact same hardcoded

constants. The fact that all of these constants are shared between the two samples, even

the weird looking Unicode string above, just shows that one of the exploits was most

probably copied from the other.

27/36

Figure 24: Jian containing the same constants as the Equation Group exploit.

It is also possible that both parties were inspired by some unknown 3rd-party

implementation that used all of these constants. Alas, we failed to find any evidence for

the existence of such a module. We must say that the odds of this scenario are rather slim,

especially when taking into account the weird-looking Unicode string.

Comparison Conclusion

The meaning of all of this is pretty simple:

One APT found the vulnerability and developed an exploit for it.

Another APT caught it and replicated it for their own use.

While both of them deserve full credit for these remarkable achievements, we still want to

find out who copied from whom. Time to attribute the exploit.

Exploit Attribution – Who was the original developer?

Weird Looking Unicode String

To the eyes of a Western researcher, the Unicode string used for both the print driver

name and the name of the printed document looks foreign. And indeed, we can surely say

that the string “屁썟“ doesn’t look like an obvious choice for native English speakers.

We therefore consulted with colleagues around the world who are fluent in Chinese,

Korean and Japanese, and asked for their opinion about these two symbols. The

unanimous answer we received declared that there is no language in which these symbols

make sense. In each language, only one symbol has a meaning, and in any case doesn’t

make sense as part of a two-symbol phrase. We also checked for a meaning for the

symbols created from inverting the order of the original bytes, and the result was the

same.

So this is probably not a Chinese phrase used by the original developers of the exploit, but

what is it?

28/36

Our main hypothesis is based on the op-sec of the developers. Aside from names of DLL

files and imported functions, it is very rare to find any string inside Equation Group

samples. Even the name of the created window is only “h”, not exactly a long string that

could be used by YARA rules so as to “sign” the binary. Faced with the need to use a

Unicode string that is surely longer than a single ASCII char string, we believe that the

developers chose to use a pattern that matches their needs:

Unicode-enough for the Windows API.

Not a real string that might be traced by security researchers / solutions.

If we look closely at the chosen Unicode string, we can see that it actually makes more

sense as an x64 assembly snippet:

41 5C pop r12

5F pop rdi

C3 retn

As a matter of fact, this byte sequence is actually a very popular assembly snippet, found

almost 150 times just in ntdll.dll . Choosing such a popular assembly sequence for a

“Unicode string” achieves all of the stated goals.

Finally, the string can also be randomly generated and lacks any meaning whatsoever.

Window Name – “h”

As we just mentioned in the previous section, the GUI Window name used in both of the

exploits is “h”. What may seem like a randomly selected short string actually has quite a

history behind it. Since the earliest PrivLib version we managed to find, dated to 2008, all

of the Equation Group exploits that we’ve analyzed used the exact same string when a

window name was needed. And this string was always “h”.

As a matter of fact, all of the 3 exploits included in the Houston Disk used the exact same

global string when creating their window:

Figure 25: Global string used as the window name in all Houston Disk exploits.

This is one small indication that the original authors of the exploits could indeed have

been Equation Group. However, as this artifact could also be just a coincidence, we now

review additional aspects of the exploits.

Quirks in Jian

Windows 2000 support

29/36

Close examination of the vulnerable function shows us that Windows 2000 was never

vulnerable, as can be seen below:

Figure 26: win32k.sys from Windows 2000, just before the version reached End-of-

Life.

Despite Windows 2000 not being vulnerable, the UMPD code in Jian has special cases for

Windows 2000, and Windows 2000 is part of the OS Version enum.

Figure 27: Jian’s logic for supporting Windows 2000, inside the UMPD module.

The interesting issue is that according to the exploit configurations of Equation Group,

EpMe doesn’t support Windows 2000. The minimal supported version is Windows

XP, which aligns perfectly with the vulnerable Windows versions.

The fact that Equation Group built proper frameworks means that the UMPD module was

shared between EpMe and EpMo. The variation between the exploits is based on exploit-

specific logic that was implemented inside virtual handlers that are invoked by the generic

UMPD module. Because EpMo supports Windows 2000, so does the UMPD module,

which explains why EpMe might seem to support this version of Windows.

30/36

Figure 28: Support for Windows 2000 in the shared UMPD module of EpMo and EpMe.

If we assume for a moment that APT31 was the original developer of the exploit for CVE-

2017-0005, why would they even attempt to add support for Windows 2000? Windows

2000 was never vulnerable in the first place. To be clear, we have no indication that the

actors had their own version of the EpMo exploit or anything similar, meaning we have no

indication they ever needed such Windows 2000 support for any other tool / exploit.

A far more probable scenario is that APT31 copied the exploit from Equation Group. It is

likely that the threat group’s developers probably didn’t fully understand the limitations

of the exploit, and so left the Windows 2000 specific code untouched. An old relic

inherited from the EpMo exploit of which APT31 wasn’t even aware of or care about.

Enum value rotation

For some unknown reason, Jian contains the syscall definitions for a 32-bit exploit, on top

of those needed for the 64-bit exploit. While they aren’t used in practice, as the sample is

64-bit, they still give us a glimpse of how their 32-bit exploit would have looked.

We can see that Jian’s 32-bit logic for each syscall ID once again matches that of the

Equation Group sample, up to the level of adjusting some IDs based on the refined Service

Pack Major Number.

31/36

Figure 29: Jian’s logic for configuring 32-bit syscalls, using a refined Service Pack value.

The problem is, if we check the actual syscall numbers for Windows XP Service Pack 0

and Service Pack 1, we can see that the condition for setting the value of SP_delta is

flawed. It was correct for the Equation Group exploit, but is not correct here as APT31

modified the wSpMajor_refined value during the exploit’s initialization.

32/36

Figure 30: Jian’s rotation of almost all wSpMajor values.

This value update is even stranger, as the Equation Group exploits have no mention of it

whatsoever:

Figure 31: Equation Group exploit setting the value of wSpMajor_refined .

You might ask, “Why would someone perform the above value rotation?” The answer is

actually rather simple. From our past analyses of several exploits attributed to Chinese-

affiliated actors, we saw that the developers have a habit of using the value 0 as a marker

for “illegal value.” This can be clearly seen as all Service Pack values above 6 are mapped

back to the value 0, which marks them as “illegal.” This was also the case for the OS

Version Enum, which was fully incremented by 1, making Windows NT use a value of 1

instead of 0, and reserving the sacred value of 0 to mark an error state.

And yet, this time the developers used only a partial rotation for the Service Pack value,

causing a collision with the legitimate value for Service Pack 0 which for some reason they

didn’t remap to “1”. This means that 0 is simultaneously an illegal value that shouldn’t be

33/36

supported, and a legitimate value that is crucial for configuring the correct syscall

numbers. The correct adjustment should probably have been to increment all values by 1,

map the illegal values to 0, and adjust the syscall check to wSpMajor_refined != 1 .

Once again, we see a weird pattern. Even under the premise that Chinese exploits should

reserve the value 0 for illegal values, the code still looks odd. A developer writing this

exploit from scratch would probably have just incremented the wSpMajor_refined

value by 1, while remembering that in future checks Service Pack 0 is marked with the

value 1. Instead, as if not to break an existing piece of code, the syscall initialization still

checks for 0, and this value is simultaneously both valid and illegal at the same time.

A more probable explanation is that the original code was the Equation Group version,

and that the developers affiliated with Chinese attack groups were afraid to break it, thus

going only half-way in remapping the values. This fear of breaking the code also reflects

on their poor understanding of the overall exploit.

Debug string in the trigger function

Jian contains a debug string “int the overflow!!!” that can be found inside UMPD’s

DrvBitBlt() , the callback responsible for triggering the vulnerability.

Figure 32: APT31 debug string inside the trigger function.

As we already established, the exploited vulnerability is not an “overflow” vulnerability.

While the string may hint at either a “buffer overflow” or an “integer overflow”, none of

them have any connection to the user-mode callback design issue that was actually

exploited.

While it may just be a language barrier issue, this is yet another possible clue that the

attackers behind Jian didn’t properly understand the true nature of the exploited

vulnerability.

Attribution Conclusion

Together with additional artifacts that match Equation Group artifacts and habits shared

between all exploits even as far back as 2008, we can safely conclude the following:

Equation Group’s EpMe exploit, existing since at least 2013, is the original exploit

for the vulnerability later labeled CVE-2017-0005.

Somewhere around 2014, APT31 managed to capture both the 32-bit and 64-bit

samples of the EpMe Equation Group exploit.

They replicated them to construct “Jian”, and used this new version of the exploit

alongside their unique multi-staged packer.

Jian was caught by Lockheed Martin’s IRT and reported to Microsoft, which

patched the vulnerability in March 2017 and labeled it CVE-2017-0005.

34/36

Timeline

Below is a timeline of the events surrounding both exploit versions of what began as

EpMe (Equation Group) and was eventually patched by Microsoft as CVE-2017-0005

(APT31).

Figure 33: Timeline of the events detailing the story of EpMe / Jian / CVE-2017-0005.

In greater detail:

2008/2009 – Early Equation Group exploit tools: PrivLib / Houston Disk.

2013 – DanderSpritz NtElevation exploits: ElEi, ErNi, EpMo, EpMe.

October 27, 2014 – Early timestamp from the embedded PE – cloned EpMe.

May 6, 2015 – Multiple indicators that the complete APT31 tool was compiled in

2015.

August 13, 2016 – Initial Shadow Brokers publication.

January 8, 2017 – Shadow Brokers leak a directory structure of their files, clearly

indicating the possession of DanderSpritz and Eternal* exploits.

February 14, 2017 – Patch Tuesday is cancelled, merged with March’s fixes.

March 14, 2017 – Patch Tuesday – Fixed CVE-2017-0005 and 1st round of critical

Equation Group exploits included in the to be published “Lost in Translation” SB

leak.

March 27, 2017 – Microsoft publishes the blog on CVE-2017-0005 that was reported

by Lockheed Martin, and attributed it to a Chinese APT (Zirconium / APT31).

April 14, 2017 – Lost in Translation leak is published.

May 9, 2017 – Patch Tuesday: Second round of Equation Group patches includes a

silent fix for the EpMo Equation Group exploit.

Summary

35/36

We began with analyzing “Jian”, the Chinese (APT31 / Zirconium) exploit for CVE-2017-

0005, which was reported by Lockheed Martin’s Computer Incident Response Team. To

our surprise, we found out that this APT31 exploit is in fact a reconstructed version

of an Equation Group exploit called “EpMe”. This means that an Equation Group

exploit was eventually used by a Chinese-affiliated group, probably against American

targets.

This isn’t the first documented case of a Chinese APT using an Equation Group 0-Day.

The first was when APT3 used their own version of EternalSynergy (called UPSynergy),

after acquiring the Equation Group EternalRomance exploit. However, in the UPSynergy

case, the consensus among our group of security researchers as well as in Symantec was

that the Chinese exploit was reconstructed from captured network traffic.

The case of EpMe / Jian is different, as we clearly showed that Jian was constructed from

the actual 32-bits and 64-bits versions of the Equation Group exploit. This means that in

this scenario, the Chinese APT acquired the exploit samples themselves, in all of

their supported versions. Having dated APT31’s samples to 3 years prior to the Shadow

Broker’s “Lost in Translation” leak, our estimate is that these Equation Group exploit

samples could have been acquired by the Chinese APT in one of these ways:

Captured during an Equation Group network operation on a Chinese target.

Captured during an Equation Group operation on a 3rd-party network which was

also monitored by the Chinese APT.

Captured by the Chinese APT during an attack on Equation Group infrastructure.

While reviewing the NtElevation exploits used in Equation Group’s DanderSpritz post-

exploitation framework, we found 4 Windows LPE exploits. The first two NtElevation

exploits were font vulnerabilities that were previously discussed as part of the Houston

disk (an earlier sample attributed to Equation Group). In addition, EpMe (CVE-2017-

0005) was mentioned and patched when Jian was caught, even if at that point in time the

true origins of it weren’t yet known.

Finally, although EpMo was indeed patched by Microsoft in May 2017, we couldn’t trace

the CVE-ID that was assigned to the patched vulnerability. Not only that, to our

knowledge, our publication is the first to even mention the existence of this Equation

Group exploit, even though it was publicly accessible on GitHub for the last 4 years.

These are our new additions to the attribution map:

EpMe (CVE-2017-0005) – An Equation Group exploit that was cloned by APT31,

thus causing CVE-2017-0005 to be attributed to the latter, instead of to Equation

Group.

EpMo – An additional Equation Group exploit that was never discussed before.

Jian – APT31’s cloned version of EpMe, which was caught-in-the-wild by Lockheed

Martin’s IRT.

https://github.com/x0rz/EQGRP_Lost_in_Translation/blob/6692b1486f562f027567a49523b8c151a4050988/windows/Resources/Dsz/Modules/Files-dsz/x64-winnt-vc9s/release/Mcl_NtElevation_EpMo_GrSa.dll

36/36

CVE-2019-0803 – Attributed by multiple sources to a “Chinese State-Sponsored

Actor.” We showed that it shares the same exploit loader (and tool API) as APT31’s

Jian.

Appendix – IOC Table

Jian – CVE-2017-0005:

Jian: AE512F13136774B4AAB79EBCC378927143BE77181E3B256E6F9940CE73696DE4

CVE-2019-0803:

tools.dll:

68A3710765DA1886F00E40F2D5E02776D224C77AEA114CD22C3A6204A7FAD363

2008.dll:

279320EE5C3B2DA4364AFBACBE5286EC4EED9AB5E887D4E0B9AAB2EB618BC539

Equation Group Exploits:

Note: There are several variants of each exploit in the leak. The following are single

examples of each exploit.

Houston Disk:

868EB363F32BEACD8BCDC7A114E020D4CFE67913A15275F4E7493D87DB643FF2

DanderSpritz – ElEi:

C99FFACBA6D6689F7934E6E912E36EFCC4BD6A09C8A4D1E43BB27C3AFD131882

DanderSpritz – ErNi:

E4FBF75ABF928CD1C9073656A61755FD3F0C25DC2E7922FB5073E1F64E5E9161

DanderSpritz – EpMo:

1537CAD1D2C5154E142AF775ED555D6168D528BBE40B31F451EFA92C9E4F02DE

DanderSpritz – EpMe (CVE-2017-0005):

634A80E37E4B32706AD1EA4A2FF414473618A8C42A369880DB7CC127C0EB705E

