
MARCH 2019

IN-DEPTH ANALYSIS OF JS-SNIFFERS

CRIME WITHOUT
PUNISHMENT

SHORT VERSION

REGISTER FOR A FREE PRODUCT TOUR TO TEST DRIVE

ALL THE BENEFITS OF GROUP-IB THREAT INTELLIGENCE

AND RECEIVE THE FULL VERSION OF THE REPORT BY

CONTACTING US THROUGH

research@group-ib.com

2CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Introduction 3
Key findings 5

Subject of research 5

How JS-sniffers work 6

Methods of infection 8

Attacks via supply chain 8

JS-sniffer as a service 12

Scale of infections and victims 12

Recommendations for affected parties 14

Detailed description of JS-sniffers families 15
GMO 15

TokenLogin 16

TokenMSN 19

ImageID 20

PreMage 26

MagentoName 27

PHP backdoors 28

GetBilling 31

WebRank 32

PostEval 38

Illum 39

FakeCDN 43

CoffeMokko 45

ReactGet 49

G-Analytics 56

Qoogle 60

TABLE OF CONTENTS

СHAPTER IS AVAILABLE IN FULL VERSION ONLY

3CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

INTRODUCTION

The underground market for the sale and rental of malware, like any other market,
has its own structure and is divided into segments. Each niche has its own
developers, customers, sellers, and intermediaries. In this case, the products include
viruses, Trojans of all types, RAT, rootkits, as well as frameworks for their creation -
builders and various modules that allow purchasers to create complex malware or
improve the characteristics of existing malware samples.

Often, however, cybersecurity analysts are unaware of threats that do not rush to
make themselves known. Over time, the market niche of these threats increases,
new actors appear, the software itself begins to be divided into families, competition
unfolds, and damage increases. The result is a poorly-studied type of malware
striking a blow.

Thus, in September 2018 it became known that users of the site and mobile
application of the international airline British Airways were compromised. All of its
customers who made bookings using the company's official website or application
between 25 August and 5 September, 2018 were at risk. In total, the personal and
financial data of 380,000 people fell into the hands of threat actors.

The new incident became known in March 2019, thanks to the Group-IB team.
Group-IB Threat Intelligence experts discovered that the website of the international
sporting goods company FILA UK was infected, which could have led to the theft of
payment details of at least 5,600 customers for the past 4 months.

In both cases, threat actors injected JavaScript code stealing the financial data
entered by users. It was done using a JS-sniffer. This type of malware seemed to
be a rather primitive threat to large players like banks and payment systems, as it is
commonly believed that the targets of JS-sniffers are small online stores. But it's
time to question that belief. First, when a site is infected, everyone is involved in the
chain of victims - end-users, payment systems, banks
and companies that sell their goods and services on
the Internet. Secondly, the examples above are not
the only precedents of JS-sniffers being planted on
the sites of large companies, which means that this
“insignificant threat” is growing.

Group-IB Threat Intelligence specialists continuously
monitor the appearance of new JS-sniffers,
both universal and specially designed for specific CMS (Content Management
System). Taking into account the growing volume of this malicious code market
segment, Group-IB team decided to analyse the family of JS-sniffers, significantly
complementing previously existing descriptions and reports on the market.

What is JS-sniffer?
A JS-sniffer is a type of malicious code injected by threat

actor into the victim's website to intercept user input: bank

card numbers, names, addresses, logins, passwords.

4CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

In this report, the Group-IB team presents the results of its
study and analysis of the following parameters describing the
JS-sniffer market:

 • Total number of JS-sniffer families has reached 38 (whereas previously

only 12 were known). 15 out of these 38 families are described in the report

(and at least 8 out of these 15 families are described for the first time). The

rest will be uploaded to Group-IB Threat Intelligence system.

 • Classification of JS-sniffers was added describing two types of

JS-sniffers: universal and specialized (developed for a specific CMS or

payment system).

 • Connections between JS-sniffers and signs of “competition” at the

technological level when malicious code of the one family is programmed to

“displace” an earlier infection or use it as a “donor”.

 • Ways JS-sniffers are sold or rented, as well as how customers are moving

from one JS-sniffer provider to another.

 • Classic and new schemes of attacks, including the creation of fake

webpages for real payment systems with full copy of their branding.

 • The total number of sites infected with JS-sniffers with confirmed

belonging to a particular family.

The trends in the development of JS-sniffers identified in this study
deepen our understanding of this type of threat and provide a good
basis for investigating cybercrime carried out with this malicious code.

 � �

extended

current

rese rch

15

JS-snifers re

described in

this report

JS-snifers hve

been discovered

by Iroup-E9

38

㌀�
�

JS-snifers will e

uploaded to Group-IB

Threat Intelligence

 � �

newly

discovered

previously known

JS-snifers

12

5CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

KEY FINDINGS

Subject of research
A JS-sniffer is a type of malicious code injected by threat actor into the victim's
website to intercept user's input: bank card numbers, names, addresses, logins,
passwords and other data. Threat actors resell the data they obtain or use it
themselves to purchase valuable goods, usually for the purpose of resale and,
accordingly, to earn money.

RiskIQ analysts were the first to analyse the activities
of JS-sniffers, and identified 12 groups under
the common name MageCart. Group-IB experts
studied these JS-sniffers and, thanks to proprietary
analytical systems, were able to discover their entire
infrastructure as well as access sources and tools.
This approach allowed for better attribution and
identification of at least 38 different families.

Each family has unique characteristics, and they are most likely managed by
different people: all JS-sniffers perform similar functions and the creation of two
JS-sniffers by one cybercriminal would be inexpedient.

The research continues: descriptions of all JS-sniffers appear in the Group-IB
Threat Intelligence system. This report analyses the work of 15 JS-sniffer families
and the differences between them. At least 8 of these families are described for the
first time and have not been investigated before.

Group or family?
A JS-sniffer can either be developed by a particular threat

actor, or be a program provided to customers for rental or

sale. Since in some cases it is difficult to determine how

many people use the JS-sniffer, Group-IB experts call them

families, not threat actors.

TokenLogin March 2016 Illum End of 2016 MagentoName December 2017

TokenMSN Mid 2016 WebRank End of 2016 ImageID End of 2017

G-Analytics September 2016 ReactGet June 2017 GetBilling Start of 2018

PreMage November 2016 PostEval Mid 2017 Qoogle April 2018

FakeCDN November 2016 CoffeMokko September 2017 GMO May 2018

List of JS-sniffer families analyzed in this report: 15 out of 38 discovered by Group-IB team

6CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Potentially huge number of victims (it's a rare person today who doesn't buy
online) and illustrate the urgency of the problem. Also this threat is not being taken
seriously as it should be and therefore cybercriminals have a sense of impunity and
the number of attacks is growing. A multi-linked chain of victims include different
parties: user, online store, payment system, bank, all of them suffer from attacks.

How JS-sniffers work
Step 1 - Obtain access to the site with the ability to change scripts on it

 • Option 1 - obtain login and password for the administrator panel via password-stealing

malware or other methods.

 • Option 2 - find vulnerable sites and use exploits of popular CMS or known vulnerabilities of

service providers to get access to modify site files.

 • Option 3 - find another group that has already gained access to the site and buy it out.

Step 2 - Acquire the JS-sniffer

 • Option 1 - develop the JS-sniffer.

 • Option 2 - purchase/rent the JS-sniffer on an underground forum.

Step 3 - Install the JS-sniffer

JS-sniffer installed via a control panel or web-shell collects data and sends it to a
host managed by the threat actor. Some families use methods that allow them stay
unnoticed during a manual check:

 • adding it to the legitimate library of scripts;

 • suspending JS-sniffer activity when a user uses the developer console (e.g. Chrome

DevTools or Firefox Browser Toolbox).

USERS

 • data compromise

 • direct financial loss

ONLINE SHOPS

 • reputational damage, customer

outflow and even closure

 • compliance and violation of

regulatory requirements for data

safety

 • reimbursement of losses to clients

PAYMENT SYSTEM
OR ACQUIRING BANK

 • Illegal use of the brand - phishing pages

 • reduced user confidence & trust

 • safety system alarms, suspicions of

targeted attacks

CARD ISSUER BANK

 • reputational damage, compromise

of customer card data

 • operational costs on investigating

money theft from a client’s card

 • safety system alarms, suspicion

of targeted attacks

 • reimbursement of losses to clients

7CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Step 4 - Monetization

 • Option 1 - sale data to carders - cybercriminals who earn money

from the resale of goods or services purchased using stolen bank

cards. From each card, the threat actor can get from 1 to 5 USD.

This method is the simplest and require only to have contacts with

several verified buyers.

 • Option 2 - using stolen cards to purchase goods which are easy to

resell: gadgets, electronics, home appliances, interior items, clothes

and shoes.

After being collected, the payment information and personal data of the victim are
sent to the threat actor's server. The server responsible for receiving stolen data
is a gate. The JS-sniffer chain can use multiple levels of gates located on different
servers or hacked sites, making it difficult to detect the threat actor's end server.
However, in some cases, the administrative panel is located on the same host as the
gate used for collecting the stolen data.

The threat actor's end server for tracking JS-sniffer activity and exporting stolen
data can be either a fully-featured administrative panel or a server for hosting
database administration tools. For example, administrative panel functions can be
performed by such tools as Adminer or phpMyAdmin.

The picture shows a telegram bot offering to buy data

stolen by JS-sniffers - 24/7, at a price of 5 to 10 dollars.

Scheme of the sniffer’s work

8CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Methods of infection:
Threat actors use various methods to infect sites and inject malicious code:

1) CMS vulnerabilities - malicious code can be injected into the code of online
store sites by exploiting vulnerabilities in CMS developed specifically for online
stores - Magento, OpenCart and others.

 • By downloading a web shell to the site by exploiting the

vulnerability, with subsequent modification of the site

files; or

 • By implementing JS-sniffer code by exploiting a

vulnerability that allows malicious code to be added to

one of the site code blocks: for example, to a footer.

2) Hacking the administrative panel of the site

The JS-sniffer can be installed by obtaining the
administrative panel of the site with the permission to
edit files. Login and password can be compromised by
several methods:

 • Stealers (if the web developer saved the password in the

browser)

 • Brute force

 • Injecting code for password stealing

3) Hacking of third-party services

The JS-sniffer can get to the target site by hacking third-party services, the scripts
of which work on the target site:

 • Hacking websites which provide services for online stores (customer support chats, or

analytics and statistics systems). By injecting malicious code into the code of service

scripts, the JS-sniffer gets into the code of online stores' sites.

 • Hacking the accounts of CDN services with the ability to modify scripts loaded from CDN

to target sites.

Attacks via supply chain
The threat actor that used the WebRank JS-sniffer family often carried out attacks
on third-party sites that provide various services for other sites. For example, by
hacking into the web analytics system, threat actors injected the JS-sniffer code
into the web analytics script. This script, which is loaded by a large number of sites,
loaded a bank card JS-sniffer along with itself.

The use of third parties to deliver JS-sniffers to victims' websites also explains
the hacking of the rival MagentoName JS-sniffer family. During one wave of
MagentoName JS-sniffer infections, the threat actor used JS-sniffers posted on
hacked legitimate websites. WebRank JS-sniffer operators gained access to the
MagentoName JS-sniffer code and added their malicious code to it.

Breakdown of attacked resources by CMS

9CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

One of these attacks was the attack on Feedify, a real-time push notifications
service. By injecting the JS-sniffer code into the code of the file, which was
located at https://feedify.net/getjs/feedbackembad-min-1.0.js, the threat actor
automatically uploaded the JS-sniffer to all Feedify customers, and their sites were
infected with the feedbackembad-min-1.0.js script.

The injected code was obfuscated. Decoding the script produces JS-sniffer code.
Stolen data was sent to the threat actor's website: https://info-stat.ws/js/slider.
js. Data is only sent if the user's address meets certain criteria. Hackers use this
method to try to determine whether the user is on the payment page, by using a list
of keywords.

Initially, the JS-sniffer was injected into the Feedify code on 17 August, and on 11
September it was detected and removed. However, the intruders re-infected it
on 12 September. Attacks on third-party suppliers have proven successful: more
than 60% of the 300 sites downloading the Feedify script belong to eCommerce
websites, and therefore are targets for the WebRank JS-sniffer family.

Target payment systems

In terms of architecture, each JS-sniffer has a client and a server parts.

Processing the data in the administrative panel is advantageous, as it is easier for
the hacker to make changes to the administrative panel code if necessary than to
change the code of the JS-sniffer injected into the online store website.

However, many JS-sniffer families are not universal and use unique options for
each individual payment system, which requires modification and testing of the
script before each infection.

The client part of the JS-sniffer
is responsible for initial data
collection, which can be carried
out in various ways:

 • on a hard-coded list of names of
payment forms fields for various
payment systems;

 • using a list of regular expressions
that define fields of interest to the
JS-sniffer and contain sensitive
information;

 • according to the list of basic HTML
elements used in the payment form.

The server part of the JS-
sniffer is the application the
JS-sniffer operator works
with.

The functions performed by the
server depend on how accurately
the client part determines the
type of data stolen: if the data
is transmitted in unprocessed
form, it means that identification
of the card number, CVV,
expiration date, etc is done in the
administrative panel.

10CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Universal JS-sniffers

Universal JS-sniffers are JS-sniffer families that are set up to steal information
from different types of payment forms and do not require modifications for specific
websites.

G-Analytics and WebRank JS-sniffer families are designed to collect all the
content of the hardcoded list of HTML elements, which means that parsing all
the collected information is conducted in the administrative panels of these JS-
sniffers, on the server side.

WebRank JS-sniffers search for elements such as “text”, “a”, “button”, “input”,
“submit” and “form” and create specific event handlers for them all.

G-Analytics JS-sniffers search for elements such as "input", "select", "textarea",
"checkbox". If the result of this search contains data matching the regular
expression of a credit card number, the JS-sniffer sends this information to the
attackers’ server.

JS-sniffers for specific CMS

Most JS-sniffer families detected were created to steal information from the
payment forms of a specific CMS. These JS-sniffers search for specific fields by the
list of names hardcoded in the JS-sniffer source code. Such fields could contain the
victim’s payment information.

The following JS-sniffer families search default Magento fields:

 • PreMage

 • MagentoName

 • FakeCDN

 • Qoogle

The GetBilling JS-sniffer family also targets Magento websites, however it
searches not for fields but for forms, by name.

The PostEval JS-sniffer family targets OpenCart websites. These JS-sniffers use
a hardcoded list of names that correspond to the fields in a payment form. The list
of field names is used to search for the victim’s payment information.

11CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

GMO TokenLogin TokenMSN ImageID CoffeMokko ReactGet
● ● ● ● Adyen

● ANZ eGate

● ● ● ● ● ● Authorize.Net

● ● ● Braintree

● Chase Paymentech (Orbital)

● Cielo

● ● CyberSource

● DataCash (MasterCard)

● EBANX

● ● ● eWAY

● ● Fat Zebra

● First Data

● Flint

● Heartland Payment Systems

● heidelpay

● LinkPoint

● MivaPay

● Moip

● Moneris Solutions

● MundiPagg

● Pagar.me

● PagSeguro

● Payflow

● Paymetric

● PayOnline

● ● ● ● PayPal

● Pin Payments

● PsiGate

● Quickbooks Merchant Services

● Realex Payments

● ● ● ● Sage Pay

● Secure Trading

● ● ● ● ● Stripe

● Tranzila

● ● USAePay

● ● ● ● Verisign

● Wirecard

● Website Payments Pro

● ● WorldPay

Breakdown of target payment systems by JS-sniffer families

12CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

JS-sniffer as a service
Each individual family of JS-sniffers can represent
different types of services. When analysing
underground forums intended for communication
between cybercriminals, a large number of services
were discovered offering their customers a complete
solution, including:

 • JS-sniffer or utility for generating JS-sniffers;

 • Administrative panel for data processing and tracking

JS-sniffer activity;

 • Manuals for infecting online store sites;

 • Ready-made exploits to infect sites;

 • Auxiliary utilities for searching for vulnerabilities and mass infection of the sites.

An analysis of some JS-sniffer families showed that in some cases the domains used to
store the JS-sniffer code and to collect stolen data were registered by different users.
In other cases, the code has been modified, and different obfuscation methods and
techniques of hiding malicious activity were used. This may indicate that a separate
family of JS-sniffers is used by different threat actors, that is, delivered as a service.

In other cases, the activities of a certain threat actor have been clearly defined, which
could mean independence from outside developers and usage of its own products
only. This would mean that these threat actors must have at least one person with web
development skills and knowledge of languages such as HTML, JavaScript and PHP.

Scale of infections and victims
The JS-sniffer families which have been detected were used to infect at least 2,440
online stores that accept bank cards. The total daily number of visitors of all the
infected sites is more than 1.5 million people.

The average number of visitors to infected sites for each JS-sniffer family shows which
JS-sniffers are used to infect the most popular online stores: the average number of
visitors to sites infected with Illum, G-Analytics and TokenMSN is about 3,000 people
per day per site while the same number for MagentoName is about 500 people.

Due to the massive infections of sites (with the
highest numbers of total visitors for infected
sites being on those infected by the families
MagentoName and CoffeMokko), sites infected with
these JS-sniffers are visited by more than 440,000
people daily. The JS-sniffer family which infected
the third-most sites is the WebRank, representing
250,000 visitors.
An analysis of the sites showed that more than
half of them were infected with the MagentoName,
whose operators use vulnerabilities to inject
malicious code into the code of sites running older
versions of CMS Magento.

How much JS-sniffers cost
The cost of JS-sniffers ranges from $250 to $5,000. Some

services provide the opportunity to work in partnership:

the client provides access to the store and gets 80% of

the revenue, and the JS-sniffer creator is responsible

for providing hosting servers, technical support and an

administrative panel for the client.

Statistics of total visitors for sites infected by different JS-

sniffers families daily

13CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

More than 13% of infections occur due to the WebRank, which is used in attacks on
third-party services to inject malicious code into target sites. Additionally, 11% are
infected by JS-sniffers of the CoffeMokko family.

Breakdown of attacked resources by JS-sniffers families

Based on an analysis of the list of TLDs (top-level domains) of infected online
stores, it can be concluded that attackers are generally interested in infecting sites

from major developed countries: the USA ,Great Britain, Australia, Germany.

Breakdown of attacked resources by top-level domains

14CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Recommendations for affected parties:
For the issuer bank of the compromised card

 • Notify users about possible risks arising in the online payment process when using bank

cards.

 • If your company's bank cards have been compromised, block the card and inform users

about the use of an online store that has been infected with a JS-sniffer.

For online store administrators

 • Use strong, unique passwords and change them regularly.

 • Install all necessary updates for your software, including CMS. This will complicate the

process of loading the web shell for the attacker.

 • For payment on a website, use a payment window that opens inside a separate iframe

element, without using third-party scripts.

 • Carry out regular inspections and safety audits of your site.

 • Use the appropriate systems to log all changes that occur on the site, as well as log access

to the site control panel, and track file change dates. This will help you detect infection of

site files with malicious code, as well as the fact of unauthorized access to the site or web

server.

For the payment system / payment processing bank

 • If you provide payment services for e-commerce sites, inform your customers about the

threat of JS-sniffers and basic security techniques when accepting online payments on

the sites.

 • Use an online payment window that runs on a separate page of your service, not on the

online store page. This will help to prevent theft of customers' bank card data even if

malicious code is injected into the online store website.

 • Make sure that your services use a correctly-configured Content Security Policy.

15CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

DETAILED DESCRIPTION
OF JS-SNIFFERS FAMILIES

GMO
The GMO JS-sniffer was used in attack on FILA UK described in the introduction to
this report. It attacks websites running CMS Magento, the earliest activity for dates
back to 07 May, 2018 when the domain name and a gate were created.

Description

When a site is infected, the attackers inject JavaScript code into the code of the
target site page that is responsible for loading the JS-sniffer: the code checks
whether user billing data has already been collected by checking the presence of
data in localStorage with a special key, or whether there is a /checkout/ substring.
If at least one of these conditions is true, the body of the JS-sniffer responsible for
interception of the user's credit card will be injected into the online store page. The
reference to a PHP-script returning JS-sniffer code is encoded in Base64.

Data collection is carried out with hard-coded names of payment form fields.

If the data is collected successfully, it will be saved to localStorage and then sent
to the JS-sniffer gate via an image request. The link to the gate is also Base64-
encoded, and the gate is located on the same server as the script for loading the
JavaScript code of the JS-sniffer.

newly
discovered

16CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Infrastructure

TokenLogin
Analysis of malicious campaigns using this family of credit card JS-sniffers showed
that website infections were first detected in the middle of 2016. The first domain
name created for hosting an administrative panel for the TokenLogin JS-sniffer was
registered on 31 March 2016.

It was also discovered that some files of one of the hosts used to deploy the
administrative panel were modified in April 2016. We can therefore assume that
this JS-sniffer family appeared around this time. JS-sniffers of the TokenLogin
family were detected on websites that work with CMSs and platforms such as
Magento, Shopify, and Bigcommerce.

Description

The TokenLogin JS-sniffer was developed using the jQuery framework. During an
infection, malicious script injects JS-sniffer into existing HTML before the last body
tag. This type of infection has two goals: first, to make it complicated to manually
detect the JS-sniffer code, and second, to make automatic reinfection simpler in
case the JS-sniffer is removed.

Presumably, when the attackers gain access to a shop’s website, they create
additional backdoors to regain access and restore the JS-sniffer. In such cases, in
order to automatically inject the JS-sniffer into the website, attackers must create
a routine that will find the last body tag and place sniffing code before it.

All payment data is saved to local storage and then sent to the attacker’s server
via an HTTP POST request, as long as the JS-sniffer is active. In some cases,
JS-sniffers that run data validation were found; in other cases, there were no
modifications or checks of stolen data on the client side.

Domain
Detection date/
Creation date

gmo.li 07.05.2018

newly
discovered

17CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Administrative panel

While analysing hosts used as gates for receiving
stolen information, multiple administrative panels with
text in Russian were detected.

Some folders on the web servers were open, which
provided us with “Last modified” dates and helped us
understand when these panels were deployed for new
campaigns.

Monetisation of stolen information

Group-IB specialists detected a sample of the JS-
sniffer presumably linked to the TokenLogin family and
actively used in 2016.

18CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

The domain name jscdn-jquery.com, which was used as a gate for collecting
stolen data, led to the IP address 5.8.88.165. The same IP address is linked to the
Jabber-server coffee.creditcard, which was used by a seller of stolen credit cards
in 2016. This seller owned a service created for selling payment information stolen
using JS-sniffer on Russian-speaking underground forums.

The domain name jqueryextd.us was registered by a user with the email address
futbolka183@yandex.ru. Group-IB specialists found that this email address is
owned by a user with the nickname futbolka.

Mass infections

A sample of the JS-sniffer that uses the domain name jquery-cdnlib.com as gate
was used to infect several websites belonging to a Californian marketing company
that sells music band merchandise. Several dozen websites were infected as a
result of this attack.

Infrastructure

Domain
Detection date/
Creation date

a11dd11blogger.com 25/04/2016

air-frog33.pw 01/11/2016

cdn-js-42.com 09/09/2016

cdnbotstrap.com 14/03/2017

cloud-update.top 18/11/2016

cr1red-one.ltd 15/02/2017

jquery-cdnlib.com 28/02/2017

jquerycdnlibrary.com 10/05/2017

jqueryextd.us 31/03/2016

jqueryexts.us 16/12/2017

jscdn-jquery.com 10/02/2017

magento-analytics.com 12/05/2018

19CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

TokenMSN
The main part of the infection campaign using the TokenMSN family of credit card
JS-sniffers started in the middle of 2017. However, several of the samples detected
were created earlier, in the middle of 2016. This JS-sniffer family was used to infect
Magento websites.

Description

During an infection campaign, attackers conducted multiple attacks by injecting
malicious code into website HTML code. This malicious code, in JavaScript, was
designed to steal personal and payment information. This family of JS-sniffers is
presumably a modified or updated version of the TokenLogin JS-sniffer family.

The main difference between these two families is that in the case of TokenMSN
JS-sniffers, the malicious script is injected through a link from the attacker’s server
and can often be inserted into the legitimate code of web analytics systems, for
example. At the request of the web root, which acts as a gate for the JS-sniffer,
users are redirected to msn.com.

TokenLogin and TokenMSN JS-sniffer families also
share similarities. For example, they both use AJAX
and jQuery. They also both have a token parameter in
the gate URL, although in the case of TokenMSN this
parameter has a constant value of KjsS29Msl.

While analysing hosts used by this JS-sniffer family,
Group-IB specialists detected that there were multiple
versions of JS-sniffers located on some of them.
The newest sample was uploaded to these hosts in
September 2018.

extension of
current research

20CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Analysis of infrastructure

The domain name analiticoscdn.com was registered on 12 May 2017 by a person
with the email address yalishanda@rocketmail.com. A user with the nickname
yalishanda is the owner of a bulletproof hosting service for cybercriminals on
Russian-speaking underground forums.

The domain names analyzer-js.com, js-cloud.com, and js-react.com were resolved
into 24, 39, and 35 unique IP addresses since April 2018. Presumably, the owner of
these domain names used the service to hide the real IP addresses of servers.

Infrastructure

ImageID
ImageID is one of the JS-sniffer families most widely used for attacks on online
shops. During the entire time that the JS-sniffer was active, the developer added
several improvements. Currently, this JS-sniffer family has an advantage over the
others. After infecting the target website, the JS-sniffer works as a keylogger: it
logs every keystroke and sends it to the attackers’ server every time the victim fills
in a checkout form on the infected website.

The first detected domain names linked to this family were registered at the end
of 2017, which could mean that the main part of the infection campaign started
around this time. Attackers infected websites running on the CMSs and platforms
Magento, OpenCart, Shopify, WooCommerce, and WordPress.

Domain
Detection date/
Creation date

analiticoscdn.com 01/12/2016

analyzer-js.com 01/06/2018

bootstrap-js.com 31/05/2018

jcloudcdn.com 19/06/2016

js-cloud.com 07/05/2017

js-react.com 11/04/2018

msn-analytics.com 26/08/2018

extension of
current research

21CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Description

Samples of this JS-sniffer family were used as keyloggers. They sent Base64-
encoded payment information to the attacker-controlled server, which is a
middleware between the victim’s browser and the JS-sniffer’s administrative panel.
Based on the function names in the JS-sniffer source code and simple obfuscation,
it is likely that each JS-sniffer was generated with random function names and
variables. However, it had to be human-readable to allow for simple modifications
in case it was necessary to edit the source code for a specific online shop or if the
code was not working.

While analysing the gate host used to collect stolen
credentials, an unknown login page was detected. At
first, this login page was identified as a login page for
the malware family Agent Tesla.

Through in-depth analysis, some negligible differences
from the Agent Tesla panel were discovered. The
purpose of this panel remains unknown, however.

While analysing an infected website, Group-IB specialists found that the attackers
used not only a JS-sniffer, but also a fake payment form. For some reason, the
attackers were forced to create and inject a fake payment form that was loaded
from the other compromised website. This payment form offers victims two
payment options: by credit card or PayPal. If the user chooses to pay via PayPal,

22CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

the fake form will show an error message saying that this
payment method is currently unavailable.

If the user chooses to pay by credit card, all payment
information is sent to the script validation.php on the
same compromised website as the fake payment form.
The script validation.php sends stolen information to
the next level gate.

While stolen payment information is sent, empty files
are created in the first gate’s /database/ directory.
The name of each file is an MD5 value of the victim’s
IP address and a User-Agent value. Presumably, this
technique is used to avoid data duplication in the JS-
sniffer’s administrative panel.

While analysing the ImageID infection campaign,
Group-IB specialists found one interesting sample,
which was slightly different from the other samples in
this family. Nevertheless, it had the same parameter
list in the gate URL, Base64-encoding of stolen
information, and encoded gate address in the JS-
sniffer source code.

The main differences between this particular sample
and other JS-sniffers in this family are different
JS-sniffer source codes and different methods of
injecting the JS-sniffer into the source code of the
compromised e-commerce website. In this case,
the JS-sniffer was injected by a direct link to the
JavaScript file from the attacker-controlled server.

The functionality of sending stolen data is similar to
the one described above, however it does not contain
any obfuscated code or randomly generated function
names.

23CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

While analysing a gate used by this JS-sniffer, Group-
IB discovered a log file directory. Each file contained
information intercepted from a compromised online
shop by a credit card JS-sniffer, and each log file
stored information from one website. At the time of
the analysis, the directory contained 122 log files. Each
file contained the name and values of fields from HTML
forms filled in on the infected websites as victims
proceeded with their payment.

Based on the file modification dates, we can conclude
that this JS-sniffer received more than 20 requests
from different infected websites.

While analysing the gate on the website adsservicess.
com, our specialists discovered an ImageID JS-
sniffer’s administrative panel. This administrative
panel is linked to an old version of the JS-sniffer,
seeing as CAPTCHA was removed from the login page
in later versions.

To hide the JS-sniffer’s malicious activity, operators of
the gate jquerylivecdn.com cloned the legitimate website
https://jquery.com and deployed their clone to the gate
host.

During a recent e-commerce website infection campaign,
attackers used a gate with the domain name google-

24CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

analytics.org to collect stolen payment information. This domain name imitates the
legitimate domain name of the Google Analytics service. Attackers used an updated
version of the JS-sniffer, which includes detection of Chrome Developer Tools and
Firebug. This technique is used for hiding malicious activity from analysts.

Administrative panel

While analysing the gate google-analytics.org,
Group-IB found an archive with the source code of
an administrative panel of this JS-sniffer family, with
scripts for middleware deployment.

The text file with the database dump makes it possible
to determine which types of payment data the JS-
sniffer stole and saved.

25CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

Moreover, there was a text file with PHP code for the
deployment of middleware scripts or gates. The code
is similar to the example found previously, but contains
some modifications.

To create new samples of the JS-sniffer, there is a
special tab in the administrative panel that includes a
generator of JS-sniffers and settings for each script.

While researching this family of credit card JS-sniffers,
our specialists discovered that one of the versions
of the administrative panel was posted publicly on
several Russian-speaking underground forums.

Infrastructure

Domain
Detection date/
Creation date

94.249.236.106 30/11/2017

anonimousall.xyz 30/10/2017

googles-contents.com 21/09/2017

gstaticss.com 10/09/2017

iwanalekseeff.000webhostapp.com -/-

jackhemmingway.com 20/08/2018

miorita-timisoara.ro 01/08/2018

26CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

patrickwilliams.x10host.com 23/07/2018

tecjobs.net -/-

vuln.su 28/10/2017

wildestore.biz 27/12/2017

z3networks.de 29/03/2018

google-analytisc.com 20/03/2018

google-analutics.com 15/04/2018

google-analyitics.org 26/09/2018

adsservicess.com 24/08/2018

jquerylivecdn.com 20/09/2018

27CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

REGISTER FOR A FREE PRODUCT TOUR TO TEST

DRIVE ALL THE BENEFITS OF GROUP-IB THREAT

INTELLIGENCE AND RECEIVE THE FULL VERSION

OF THE REPORT BY CONTACTING US THROUGH

intelligence@group-ib.com

CONFIDENTIAL
NOT FOR PUBLICATION OR ANY DISTRIBUTION

