
Sebdraven Follow
OSINT, Python,Malware Analysis, Botnet Tracker, SIEM and IPS/IDS and Threats Expert /
co-organizer #BotConf / co-creator of #FastIR
Jul 31 · 9 min read

Malicious document targets
Vietnamese officials
After our investigation of APT SideWinder, we’ve done a yara rule for

hunting RTF document exploiting the CVE-2017–11882.

We found a document written in Vietnamese dealing with a summary about

differents projects in the district Hải Châu of Đà Nẵng.

HomepageBecome a member Sign in Get started

PDF generated automatically by the PDFmyURL HTML to PDF API

https://medium.com/upgrade?source=upgrade_membership---nav_full
https://medium.com/m/signin?redirect=https%3A%2F%2Fmedium.com%2F%40Sebdraven%2Fmalicious-document-targets-vietnamese-officials-acb3b9d8b80a&source=--------------------------nav_reg&operation=login
https://medium.com/m/signin?redirect=https%3A%2F%2Fmedium.com%2F%40Sebdraven%2Fmalicious-document-targets-vietnamese-officials-acb3b9d8b80a&source=--------------------------nav_reg&operation=register
https://medium.com/
https://medium.com/@Sebdraven?source=post_header_lockup
https://medium.com/@Sebdraven?source=post_header_lockup
https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


In this article, we’ll detail the infection chains and the infrastructures of the

attackers and the TTPs of this campaign.

The infrastructures and TTPs during this campaign seem to the Chinese

hacking group 1937CN.

Infection chains
Joe sandbox has a good representation of the behaviour of the infection.

RTF document

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


This rtf document is really malicious and it exploits the equation

vulnerability to write two files in the system:

A dll named RasTls.dll

A executable file named dascgosrky.exe

This document is interesting to analyze so let’go !

RTF analysis
With rtfobj, we found three ole objects in the document:

1.

2.

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


two non well formed ole object and a third named package ole object.

The package ole object is used to write a file in the disk when the document

is opened at the destination described by the ole object.

That’s why, there is a path and a name in the ole object.

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


This technique is used to execute code like sct file to download an

executable on the operating system. McAfee labs has detailed all this stuff

with sct file: https://securingtomorrow.mcafee.com/mcafee-

labs/dropping-files-temp-folder-raises-security-concerns/

Many attackers use it in the wild because it’ very easy to use and it’

supported by the office software with RTF files.

Package OLE Object

PDF generated automatically by the PDFmyURL HTML to PDF API

https://securingtomorrow.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns/
https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


So, in our case, a file named 8.t is dropped on %TMP% folder.

If we check it, it’s clearly encrypted.

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


The others object ole seem to the exploit of CVE-2017–11882.

8.t encrypted

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


At the end of the object ole, we have differents API functions to make a

runPE.

Equation Ole Object

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


runPE.

Another interesting thing is this string at the begin of the object:

7e079a2524fa63a55fbcfe

We have the same string used by APT SideWinder in the equation object

ole.

It’s the same toolset to create the malicious document.

So now, we have to debug the malicious document to find how the file 8.t is

used and find this runPE.

Debugging of the shellcode
At the start of the analysis, we think the process EQNEDT32.exe is created

by Winword.exe using the function CreateProcess. So we decided to set a

breakpoint at the call of his function.

But EQNEDT32.exe is invoked by Winword.exe using COM Object. It’s not

String found in many exploits of CVE-2017–11882

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


CreateProcess that used and Winword.exe is not the parent process of

EQNEDT32.exe. So we have to attach the debugger when EQNEDT32.exe

is launched.

For that, we used a technique named Image File Execution Options that

was documented by Microsoft.

https://blogs.msdn.microsoft.com/mithuns/2010/03/24/image-file-

execution-options-ifeo/

We create a key EQNEDT32.exe.

And we set a value string for launching the debugger when EQNEDT32.exe

is executed and attaching the debugger to the process .

Registry HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options

PDF generated automatically by the PDFmyURL HTML to PDF API

https://blogs.msdn.microsoft.com/mithuns/2010/03/24/image-file-execution-options-ifeo/
https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


When we open the rtf document, Winword is launched and EQNEDT32.exe

also.

And the debugger is attached at the entrypoint of EQNEDT32.exe.

We check if it’s 8.t is correctly created in the %TMP% folder.

Value to set the debuuger when EQNEDT32.exe is executed

Winword process

EQNEDT32.exe process attached by the debugger

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


Now we set a breakpoint at the createFile to check if the shellcode of the

exploit reads the file 8.t.

CreateFile is called at call eqnedt32.41E5EE.

The param of the path of file is pushed on the stack push dword ptr ss:[ebp-

4].

The shellcode uses CreateFile to the 8.t in the %TMP% folder

So now, we can return of the user code at the calling function.

8.t dropped on disk

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


After a step into, we enter in the shellcode, the address space has changed:

After CreateFile, GetFileSize is called to have the size of the file

Shellcode of the exploit

Get the size of the file

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


After is Virtualloc, and it create a memory page at 1FD0000 (eax value)

ReadFile is called:

VirtualAlloc memory page to load 8.t

After virtualAlloc, the memory page is pointed by EAX

The page allocated

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


And 8.t is loaded at 1FD0000:

And the shellcode decrypts the 8.t file in memory at 0066C82A.

The loop of decryption is a xoring with different manipulations on the

decryption key.

At the start of the decryption the key is set to 7BF48E63.

Readfile 8.t

8.t in memory

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


And the xor is made after key manipulation.

If we check the destination of the result of the xoring (here edx + ebx), we

find 01FD0000 where 8.t is loaded.

After two step of the loop, we can see the magic number MZ set at the begin

of memory section.

Decryption loop

Set the decryption key in EAX

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


At the end of the decryption loop, we have a PE in memory at 01FD0000.

the file 8.t has been decrypted.

Then, the shellcode uses the VirtualAlloc and create a memory page at

02070000.

MZ magic number

8.t fully decrypted

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


And the new PE at 01FD0000 is copied at this address.

After GetModuleFileNameA is called to have the path of EQNEDT32.exe

And EQNEDT32.exe is forked in suspend status by a CreateProcess and the

shellcode overwrite it by the PE at the address 02070000

the PE decrypted is copied in the new memory page

Fork of EQNEDT32.exe

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


And the shellcode does a ResumeThread to launch the new PE.

So, We’ve found all API Calls in the object ole at the beginning and we have

a runPE to launch the new EQNEDT32.exe overwritten.

Analysing the fork of EQNEDT32.exe
We know that this process has to create on disk two files following the Joe

SandBox Analysis:

A dll named RasTls.dll

A executable file named dascgosrky.exe

If we dump EQNEDT32.exe and we put in IDA, we found quickly the

•

•

Overwritting of EQNEDT32.exe

Stack used by NTWriteVirtualMemory

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


If we dump EQNEDT32.exe and we put in IDA, we found quickly the

function that drops the files on disk (sub_00401150) renamed dropFiles.

And at the start of this functions, we have a loop with a xor.

DropFiles Fucntion

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


And just after we have a call of the decompression function.

The function dropFiles is called twice by the sub_4012D0.

Second loop of decryption

Decompression function used zlib

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


If we check the call graph, DropFiles is called only by the function

sub_4012D0.

Drop the dll and the executable

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


So we set a breakpoint on CreateFile because at each execution,

EQNEDT32.exe starts by CreateFile onstaticcache.dat.

And we return at the user code to set a new breakpoint to check the static

analysis.

So we set a breakpoint at 0040159A when DropFiles is called.

Functions using DropFiles function

Breakpoint to createfile

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


So we set a breakpoint at 0040159A when DropFiles is called.

And now we can analyse the second loop of decryption.

The first step is the initialization of the decryption function.

And after we find the xor and store the result in esi+eax.

Breakpoint to the first call of DropFiles

Set for the second loop encryption

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


In the first step of the decryption loop, the result is written to 411BC0 in the

address space of EQNEDT32.exe.

After tree loops, we obtains the header of zlib compressed object.

And at the memory page 021E0000, a PE is decompressed.

Decryption loop

Before the decryption

After the decryption

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


And after the file is created with the following path:

L”C:\\Users\\IEUser\\AppData\\Roaming\\Microsoft\\Windows\\Netw

Page memory allocated to store the dll

After decompression

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


ork Shortcuts\\RasTls.dll”

Stored by ebx.

DropFiles is called a twice to decrypt and decompress the executable file.

The offset where store the file is 00434EF8 and the pe decompressed is

stored at 025D0020

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


And the path of the new file is : ebx=005DA228

L”C:\\Users\\IEUser\\AppData\\Roaming\\Microsoft\\Windows\\Netw

ork Shortcuts\\dascgosrky.exe”

So we have two files in networks shortcuts of Windows.

dll hijacking

Decryption of the executable dascgosrky.exe

Files drops on disk

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


dll hijacking
Dascgosrky.exe is a legit and trusted software develop by Symantec.

To load the library RasTls.dll, the executable calls LoadLibrary and

GetProcaddress in sub_401940 to execute the malicious functions

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


Dascgosrky.exe loading the malicious

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


If we check the exports in IDA, we just have a dllentrypoint. The dll is

executed like this.

We’ll analyse the RAT in the second Part.

Infrastructure of Attackers
The domain contacted is wouderfulu.impresstravel.ga and this domain

resolved on 192.99.181.14.

The original file

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


This IP has differents domains found with PassiveTotal and theses domains

is recorded in the IP 176.223.165.122.

Many domain names is used for Vietnameses people.

Domain wouderfulu.impresstravel.ga

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


There are two domains really interesting:

Halong.dulichculao.com is already used in the campaign targeting

Vietnameses organizations.

https://www.fortinet.com/blog/threat-research/rehashed-rat-used-in-apt-

campaign-against-vietnamese-organizations.html

For Fortinet is the Chinese hacking group 1937CN.

If we compare the TTPs, it’s really similar. They used RTFs to make the

intrusion and dll hijacking to load the real payload.

And the name for domains are really similar between the campaings.

The second one is:

Cat.toonganuh.com is a subdomain of tooganuh.com recorded by

florence1972@scryptmail.com

Expansion of domains

PDF generated automatically by the PDFmyURL HTML to PDF API

https://www.fortinet.com/blog/threat-research/rehashed-rat-used-in-apt-campaign-against-vietnamese-organizations.html
mailto:florence1972@scryptmail.com
https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


Conclusion
The Chinese hacking group 1937CN continues to target Vietnam officials

with the same TTPs with a refreshing on the tools used. The toolset used by

this group to create RTF malicious document has the same properpy of the

SideWinder.

I want to thank my buddies on “Zone de Confort”. It’s with this dreamteam,

I can finalize correctly this analyses.

In the second part, we analyze the RAT using in this campaign. Or if

another reverse can make that, I’ll paid a beer ;)

IOCs:

domains:

dn.dulichbiendao.org

gateway.vietbaotinmoi.com

fis.malware-sinkhole.net

hn.dulichbiendao.org

halong.dulichculao.com

news.malware-sinkhole.net
PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


news.malware-sinkhole.net

cat.toonganuh.com

new.sggpnews.com

dulichculao.com

coco.sodexoa.com.

thoitiet.malware-sinkhole.net

wouderfulu.impresstravel.ga

toonganuh.com

coco.sodexoa.com

IPs:

192.99.181.14

176.223.165.122

RTFs:

42162c495e835cdf28670661a53d47d12255d9c791c1c5653673b25fb587ffe

d

8.t:

2c60d4312e4416745e56048ee35e694a79e1bc77e7e4d0b5811e64c84a72d2

d7

PDF generated automatically by the PDFmyURL HTML to PDF API

https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf


PE:

f9ebf6aeb3f0fb0c29bd8f3d652476cd1fe8bd9a0c11cb15c43de33bbce0bf6

8 (exe)

9f5da7524817736cd85d87dae93fdbe478385baac1c0aa3102b6ad50d7e5e3

68 (dll)

Security Malware Analysis Threat Intelligence

Like what you read? Give Sebdraven a round of applause.
From a quick cheer to a standing ovation, clap to show how much you enjoyed this story.

1

FollowSebdraven
OSINT, Python,Malware Analysis, Botnet Tracker, SIEM and IPS/IDS and
Threats Expert / co-organizer #BotConf / co-creator of #FastIR

6

Never miss a story from Sebdraven, when you sign up for
Medium. Learn more

GET UPDATES

PDF generated automatically by the PDFmyURL HTML to PDF API

https://medium.com/tag/security?source=post
https://medium.com/tag/malware-analysis?source=post
https://medium.com/tag/threat-intelligence?source=post
https://medium.com/@Sebdraven?source=footer_card
https://medium.com/@Sebdraven
https://medium.com/@Sebdraven
https://medium.com/@Medium/personalize-your-medium-experience-with-users-publications-tags-26a41ab1ee0c#.hx4zuv3mg
https://pdfmyurl.com/html-to-pdf-api?src=pdf
https://pdfmyurl.com/?src=pdf

