W

a
‘.

It's not the end of the world: DarkComet misses by a mile

Reversing the DarkComet RAT's crypto- 3/13/2012
Jeff Edwards, Research Analyst, Arbor Networks ASERT

In this article, we will continue our series on reversing DDoS malware crypto systems. Previous subjects have included
Armageddon, Khan (now believed to be a very close "cousin” of Dirt Jumper version 5), and PonyDOS. Today we'll be
diving deep into the details of DarkComet's crypto. Over the last several months, we have encountered a large number of
DarkComet samples, numbering well over a thousand. DarkComet is primarily a general purpose remote access trojan
(RAT). It's capabilities support quite an extensive laundry list of mischief, including but not limited to key logging, web
cam (and sound card) spying, deleting victim files, scanning ports, hijacking MSN sessions, etc.

REMOTE ADMINISTRATION TOOL

Figure 1. Dark Comet's pretty logo

http://ddos.arbornetworks.com/2012/03/its-2012-and-armageddon-has-arrived/
http://ddos.arbornetworks.com/2012/03/kahn/
http://ddos.arbornetworks.com/2012/03/not-just-a-one-trick-ponydos/

Of course the malware includes DDoS capabilities as well - hence our interest in reversing its communications so that we
can keep tabs on whom the DarkComet botnets are attacking. In fact, it is believed to have been used as a DDoS weapon
by supporters of the Syrian regime against opposition forces in the recent Syrian uprisings; TrendMicro has a nice article
/on this topic.

DarkComet has been studied by a number of researchers. In particular, in November 2011 Laura Aylward of Contextis
published an excellent analysis [http://www.contextis.com/research/blog/darkcometrat/] of Dark Comet in which she
described the basic cryptographic mechanism used by DarkComet bots to hide their communications; Laura’s analysis
saved us a considerable amount of time. It was also included in Curt Wilson's recent survey of modern DDoS weapons .

The DarkComet sample upon which we will primarily focus on today is 462,848 bytes in size and has an MD5 hash of
63f2ed5d2ee50e90cda809f2ac740244. It happens to be an instance of DarkComet Version 4.2; however, the
results presented here apply to most other versions of DarkComet as well.

When executed in a sandbox, we observed it connecting to a command & control (C&C) server at newrat2.no-
ip.orgon TCP port 1604. The RAT uses a raw TCP protocol to exchange information with its C&C; on the wire, the
comms look something like this (modified and re-encrypted to protect some of our sensitive sandbox information):

C&C:

155CAD31A6GLlFE

Bot:

OF5DAB3EB308

C&C:

1B7D8D3BBF14C6B619480C265C2F4664F9DCB878EATDFCOF2637

Bot:
35769F079329BR4E04603496A432E5AT7CFCO0A47T7F478F07A3826A1B436AR92852B685636
F72B52C56D70434D7691F3307D637118B869586A1D19FD15B8COAELI4F8F8CS57EFAFCCCO9
964E8EE8EED553886AB188665F1AR96586F4F2581C093E75DCF2A8ADC817558BF3452344
OCDBE43CA4CO5AC6E8DO90D0O0F35BE795A44AEO0E2EDE36C061EAERD754461F680DBD9893A
CF6211698AF22B0BBB92A9BR47363AE86E69A08C29DD3DBAS9D287E4A0E12664B312A81CO0
E9FE4D6E5S538AB5CC8952CCB372869F57D168CES8ABBS52B8D7F8E78547A5EB009931735868

Arbor Networks | 2

http://blog.trendmicro.com/darkcomet-surfaced-in-the-targeted-attacks-in-syrian-conflict/
http://www.contextis.com/research/blog/darkcometrat/
http://ddos.arbornetworks.com/2012/02/ddos-tools/

ADEC6BA2B73A94CT7TA9A6784B1A81C58CF746D384B645DD02D4616479A055420DADEF0458
658A33EEAG2BF7F12ABF1ICOEOOCB6B971869FBC275A3270E8DEBFA20ES53E8C3BC6CA2744
AB88897EOB16FBBDCAAT731B93A72D75FF6DC297

Bot:

KEEPALIVE144357

Bot:

C: KEEPALIVE160360

C&C:

S: KeepAlive|27120274

Bot:

C: KEEPALIVE176363

Bot:

C: KEEPALIVE192366

C&C:

S: KeepAlive|27160288

Figure 2. Example of DarkComet's encrypted comms

These communications are consistent with those reported by Contextis in their DarkComet report. It certainly looks like an
initial "phone home" exchange of information, after which the bot and C&C send periodic "Keep Alive™" messages to each
other. Besides being encrypted, this protocol is somewhat unusual in that the C&C sends the first payload,; it is much more
common for the bot to send the first payload.

So in order to develop a tracker that impersonates a DarkComet bot so as to snoop on DDoS attacks, we need to reverse the
malware's crypto system and write decryption and encryption routines in Python. Let's start reversing by loading a process
memory dump of the running bot in IDA Pro. We'll then start poking around looking for routines that might implement the
phone home protocol. Since DarkComet clearly uses raw TCP for communication (as opposed to, say, HTTP), we'll focus

on finding WinSock2 calls such as socket (), connect (), send (), and recv ().

Well, it turns out that the bot is riddled with vast numbers of WinSock?2 calls; not surprising, since DarkComet has a great
deal of RAT functions that require network communication. So to narrow down on the actual bot-C&C comms loop, we

Arbor Networks | 3

http://www.contextis.com/research/blog/darkcometrat/
http://www.hex-rays.com/products/ida/index.shtml

locate the lengthy list of command strings, such as KeylogOn, GetOfflineLogs, WEBCAMLIVE, GetMsnList,
DDOSHTTPFLOOD, etc. In particular, we note that all these command strings are referenced from the same function.
Furthermore, this function is structured as a very long sequence of i f-else statements that compare each of these
command strings against the same buffer. Even better, there is only a single caller of this function. Hmmm, that certainly
sounds like the bot's primary command dispatch routine; we'll call it Di spatchCommands sub 493DAC ().

Checking out the caller function, we see that it operates in a loop. On each iteration through the loop, it basically performs
the following actions:

1. Calls recv () to read network traffic into a buffer;

2. Performs some copies and operations on this buffer to produce an intermediate buffer;

3. Performs an operation (decryption perhaps?) on the intermediate buffer and a global string to produce a final buffer;
3. Passes the final buffer to the aforementioned DispatchCommands sub_ 493DAC () function;

Yes, this sounds like the main comms loop for which we are looking; we'll name this caller function
MainCommsLoop sub 493A30 (), and focus our attention on the aforementioned loop:

Arbor Networks | 4

Arbor Networks | 5

X

BN
00433BAC
00493BAC START COMMZ LOOP loc A93BAC:
O0493BAC lea ead, [ebp+onc_comd buffer war 201C]
00493BEZ =or BCX, BCX
00493BE4 mow edw, 2000hL
00493EES call ZeroMemory sub_ 4034FE4d ; zero out Ceal command buffer
00493BEE push 0 ; flags
00493BC0 push 2000k : buf size
00493ECS lea eax, [ebptcnc cmd buffer war Z01C]
00493BCE push eax
00493ECC mov eax, ds:cnc_socket handle off 444F1C
00493BD] mow eax, [eax]
00493ED3 push eax ; socket handle to CaC
00493ED4 call recy_sub_430535 ; read up to 4096 bytes from CeC
00493EDY mov ebx, eax
00493BDE test ebx, ebx
00493BDD g short GOT_CHC_DATL loc_493EED ; jump if got Cal data
| ¥
EEN L
00493EED
0049353BED GOT CNC_DATA loc_ 495EED:
00493BED lea eax, [ebptcmdbuf copy var Z024]

_493BAC 00493EF3 lea edw, [ebp+cnc cmd buffer war z201C]
00493BF9 call near ptr - ; ocopy raw command buffer
0049353EFE movw eax, [ebptcmdbuf copy var Z024]
00493C04 lea edw, [ebp+intermediate_buf_war_ 20207
00493C04 call PreprocessEncryptedBuffer sub 4094CC ; Pre-processing 222
00493C0F mow edw, [ebp+intermediate_buf_war_ 20207
00493C15 lea eax, [ebptuworking buffer war 4]
00493C18 call Copy_sub_4056F4d ; copy intermediate buffer
00493C10 lea ecx, [ebptplain buf wvar Z0ZE]
00493C23 mow edw, da:global_string off 484dFAS ; crypto key 277
00493C29 mov edx, [edx]
00493C2ZE mowv ead, [ebp+working buffer war 4]
00493C2E call DecryprCommandBuffer sub_44C628 ; Decryption 27
00493033 mov edx, [ebptplain buf wvar Z0ZE]
00493C39 lea ear, [ebp+working buffer wrar 4]
00493C3C call Copy_zub_405504 ; copy decrypted plain buf
00493C4] mow ear, [ebp+working buffer war_4] ; ELX passes CeC command string
00493044 call DispatchConmands_sub_493DAC
00433C49 Jup START_COMME_LOOP_loc_495BAC

L

Figure 3. Function MainCommsLoop_sub_493A30 ()

It definitely looks like a great candidate for the decryption operation. It follows the general structure that is quite common
among bot families that encrypt their comms; namely, a pre-processing operation applied to a buffer, followed by the
actual decryption step. In particular, one strong clue is that the (assumed) decryption step takes a third argument which, in
this case, is a reference to a global string - very likely to be the decryption key string!

So first let's see what our (tentatively named) DecryptCommandBuffer sub 44C628 () function looks like.
DarkComet being a Delphi-based bot, the decryption function is passed the source (encrypted) buffer in EAX, the
(presumed) crypto key in EDX, and an output string buffer in ECX. After checking to make sure neither the source nor key
strings are empty, the function gets down to business. The first substantive operation is to pass the raw (encrypted) source
buffer src_buf var 4 viaEAX, along with an output buffer temp buf wvar 420 via EDX, to function
sub_44C1CO0 (); the output buffer is then copied back into the original source buffer src_buf var 4:

(. I

0044cesl lea eds, [ebp+tenmp buf war 420]

0044Cca37 mow gax, [ebpt+src buf wvar 4]

0044ce9s call PreProcess _sub 44C1C0 ; dned gOmE pre-processing on src bufr?
0044Ce94

0044Ce9F mow eds, [ebp+tenmp buf war 420]

0044ceds lea gax, [ebpt+src buf wvar 4]

0044cehs call Copy sub 405504 ; copy pre-processed src back to

0044cehs ; original src buffer

0044Cehs

Figure 4. Function DecryptCommandBuffer sub 44C628 ()

Arbor Networks | 6

So sub 44C1cCO0 () seems like it might be doing some pre-processing on the encrypted source buffer; let's see what kind
of pre-processing it is doing. Skipping past the obligatory checks for empty source buffers, etc., we arrive at some code
that loops over the source buffer, referenced by src_buf var 4;however, it makes only one loop iteration for every
two bytesin src_buf var 4. This is accomplished by extracting the DWORD just in front of the source string and
shifting it one bit to the right, in order to calculate the number of pairs of source characters:

¥
21, LY
0044Cz0e mow ea, edx ; EDX holds src buf
00ddC208 test BN, Bax
003AC204 = ghort loc_44CzZ1l1
003dC204
%I
BN Ll
0034C20C =uhb eax, 4
0044CZ0F mow eax, [eax] ; extract length field from src but
0034C20F

0044cz211
0044Ccz11 loc_ 44C=11: ;
0044CczZ1ll mow edw, eax H dtnre lenizrc) in EDX

naaa"a1 2

0044dcil3 sar ed=, 1 ; diwvide src len by 2

Figure 5. Function PreProcess_sub_44C1CO ()

Arbor Networks | 7

This works because in Delphi, the AnsiString class stores its length at an offset of 4 bytes in front of the first actual
byte of string content:

Ref count Length

r 8 F 3

-0=08 -0x04 0x00

Figure 6. Structure of a Delphi AnsiString

For example, in the case of the initial encrypted payload received by the bot from the C&C, 155CAD31A61F , the length
of the source buffer is 12, so the code will make only 6 iterations through the loop. On each iteration of the loop,
DarkComet will process a pair of two source bytes to yield one output byte.

The first operation inside the loop is to test whether or not the value of the first source byte in the pair is greater than 0x39,
and branch accordingly. After using the one-based index EBX to pull out the first of the two source bytes in the pair, it adds
0xDO, subtracts 0x0A, and then tests whether the resulting value is greater than or equal to zero. Since it is operating on
the 8-bit register AL, the result is that source bytes with values of 0x3A or greater will be processed by one branch, and
those with values of 0x39 and less will be processed by a second branch:

Arbor Networks | 8

EE N

0oa4cz3e
00440232 loc_44CE32:

r

: Ei¥ holds lenisrc buf)

fEE

00ddC2532 mow edi, eax ; EDI i= primary [(decrementing)] laoop counter
00ddCisd test edi, edi ; loop EDT times
00ddczse jle loc_ 440328 ; bail if dst buf is =zero length
00d4cz36
|| v
BN
0034C23530 mowr ebx, 1 ; EBX =1
00adcasc ; EBX iz secondary [incrementing) loop counter
0o04a4cz3c
0o44cz41
0044cz41 LOOF START loc 440241
0044C24d]l mow eax, ehx
0044Cc24ds add eax, eax ; EA¥ 1= EEx ¥ 2
0044C24ds mow edw, [ebp+src_buf war 4] @ EDX = src buffer
0044C24ds mowzEx eax, byte ptr [edy+4eax-2] ; Eix = src[EEX¥Z-2] for EBX=1,2,3,...
0044cz4ds : Eix = sreo[k¥#Z] for k=0,1,2,...
0044Ccz2dnd add al, ODOh ; test if src byte AL is digit or letter
0044CZ4F =ub al, 0Oih ; Jump if orig AL »= 0«34
00d4Ccz4F ;oo jump if orig AL <= 0x39
0044cz51 jnb ghort TF SEC_TI5 NOT DIGIT loc 44CZ6F ; jump if signed(il) »>= 0
0o044czsl
|1
¥

Figure 7. Function PreProcess_sub_44C1CO ()

If the first source byte in the pair has value 0x39 or less, the bot will subtract 0x30 from it and save the result to the

current index within the output buffer:

Arbor Networks | 9

.1 T

0044Cz53 mow eax, e3l ; branch here if src byte <= 0x39 [(digit)
00ddC253 ; E3T holds d=t output buffer
00ddc255 call sub_40595C

o0adCcz55

Q044Cz5h mow eds, ebx

00d4ac25C add edx, edx | ; EDX := EBExX & 2

Q044CzZ5E mow ecx, [ebp+src buf war 4]

00ddC26] mowvEx ed=, byte ptr [ecx+edx-2] ; EDX := src[EBExX 2-2]
00ddCzZes sub dl, S0h

00ddC269 mow [eax+ebx-1], dl ; dst[k] = src[k*2] - 0x30
00ddCzas ;

00ddc2el Jup short loc_44CZAZ

o0ddczal

Figure 8. Function PreProcess_sub 44C1CO ()

In other words, it will convert the ASCII representations (0x30, 0x31, ..., 0x39) of the digits 0 through 9 into their
equivalent integer representations (0x00, 0x01, ..., 0x09).

The second branch performs a similar operation: it first tests to make sure that the value of the source byte is not 0x47 or
greater (in which case it will immediately bail out of the loop and jump to the end of the PreProcess sub_ 44C1CO ()
function.) It will then subtract 0x37 from the source byte and save the result into the current index within the output
buffer:

Arbor Networks | 10

Nl

0044CczeF
0044CzeF IF SRC T35 NOT DIGIT loc 44CZ6F: ; branch here if src byte »>= 0x34 [(letter)
00d4czZeF mov eax, ebx

0044cz71 add BaM, eax ; EA¥ 1= EBX * 2
00d4cz73 mow ed, [ebp+src buf war 4]
0044Cz27e movex eax, byte ptr [edx+eax-2] : AL := src[EBExX¥Z-2]
O044Ccz7E add al, OEFh ; test if src byte == 0x47
003dC27D sub al, &
0044cz7F b loc_ 440323 ; bail if source byte == 0xd7
0034C=7F
|
ir________
21, LEY!
O04dC255 mow eax, esl s E3I holds ptr to dst DIWORD
0044cza7 call sub_40595C s lock? [routine]
00adac2a7
0044C258C mow edx, ebx
0044C258E add edx, edx
0044C290 mow ecx, [ebp+src buf war 4]
0044C293 movex edx, byte ptr [ecx+edx-2] : EDX := src[k]
004dC298 =ub dl, 4lh
0044C=9E add dl, 0ih s subtract 0x37 from src byte
0044C29E mow [eax+ebx-1], dl : dst[k] = src[k] - 0x37
0044C29E

Figure 9. Function PreProcess_sub_44C1CO ()

Arbor Networks | 11

In other words, it will convert the ASCII representations (0x41, 0x42, ..., 0x46) of the upper-case letters A through F
into their equivalent hexadecimal representations (0x0A, 0x0B, ..., 0x0F).

The two branches (for handling digits and upper-case A through F) will then re-join, and the resulting integer/hexadecimal
representation of the first source byte will be left-shifted by four (thus multiplying it by 16):

0044CzZA9 movw edx, [e3i] ; E3I holds pointer to dst buf
0044CZAF mowveEx edx, byte ptr [ed<+ebx-1] ; EDX := dst[EEx-1]
003aC2AR ; EDX 1= d=st[k]

0034CZE0 =shl eds, 4 ; EDK <<= 4

0044CEZE3 mow [eax+ebx-1], dl ; dst[k] *= l&

00adCzE3 :

Figure 10. Function PreProcess sub 44C1CO0 ()

At this point, it is pretty clear what is going on. The PreProcess sub 44C1CO0 () function is converting the ASCII
representation of the source string of bytes into the equivalent hexadecimal representation. This conjecture is confirmed
upon inspection of the remaining portion of the loop, which applies the same ASCII-to-hex operation on the second byte of
each pair of source bytes, and adds the result to the left-shifted output from the first byte of the pair. So at the end of the
day, the first line of raw encrypted source payload from the C&C is pre-processed from the 12-character ASCII string
155CAD31A61F to its equivalent sequence of six hexadecimal bytes 0x15 0x5C 0xAD 0x31 0xA6 0x1F, as follows:

src index 0 1 2 3 4 5 6 7 8 9 10 11
src (ASCII) 1 5 5 C A D) 3 1 A 6 1 F
src (raw) O0x31 | O0x35 | 0x35 | 0x43 | O0x41 | Ox44 | O0x33 | O0x31 | Ox41 | Ox36 | Ox31 | Ox406
src (hex) 0x01 | 0x05 | 0x05 | 0x0C | Ox0A | Ox0D | 0x03 | Ox01 | Ox0A | Ox06 | Ox01 | OxOF
shifted 0x10 0x50 0xAQ 0x30 0xAQ 0x10

dst 0x15 0x5C O0xAD 0x31 0xAb6 Ox1F

Arbor Networks | 12

Figure 11. ASCII to Integer Conversion

So we will rename this function as Integerize sub 44C1CO (), and head back to the main
DecryptCommandBuffer sub 44C628 () function to continue reversing the crypto algorithm. After the raw source
buffer has been converted from ASCII form to integer form, the next substantive code block initializes a 256-element

array stable var 41C:

¥r
21, BT
00d4C7 38
0044CY353 INIT STABLE loc 44C735:@
0044ci3s xor ezl, ezl s E3I := 0 [loop counter)
00d4dCT3h lea gax, [ebp+stable war 41C]
003dC7T 34
o
2.1, LBV
00a4c740
0044Cc740 loc 44C740: ;
0044c740 mow [eax], e2i ; subst[E3I] := E3I
o044ci4az inc ezl
o044c7?4s add eax, 4 ; EAX points Lo current position
0044Cc743 } within subst table
0044C746 cmp esi, 100k
0044ciac jne ghort loc_44C740 ;@ loop ower 256 DUWORDs=
00a4C74c

!

Arbor Networks | 13

Figure 12. Function DecryptCommandBuffer sub_ 44C628()

Each elementin stable var 41C isa 32-bit DWORD; the elements are initialized to the values 0x00000000 through
0x000000FF in ascending order:

Index ESI 0 1 2 3 4 ... | 253 | 254 | 255
Value subst var 41C[ESI] 0x00 | Ox01 | 0x02 | 0x03 | Ox04 | ... | OXFD | OXFE | OxFF

Figure 13. Initial state of substitution table stable_var_ 41C

At this point, we can guess that stable var 41C is going to play the role of a substitution table for decrypting the
source buffer src_buf var 4, so let's see how DarkComet builds this table.

After initializing the substitution table to hold all the values between 0x00 and OxFF in a nice ascending order, it
proceeds to vigorously scramble up the elements of the table. It makes 256 iterations through a loop; on each iteration, it
swaps the positions of two of the elements in the substitution table. On the kth iteration, one of the swapped elements is
always the kth element, which is pointed to by register ECX; the other is chosen based on the key string. The core of the
loop that scrambles up the substitution table is as follows:

Arbor Networks | 14

Arbor Networks | 15

y¥

BN Ll
0044Cc754
0044C764 CHOOSE_ELEMENT_TO_SWAP loc_d4C76d:
0044C764 mow eaw, ezi ¢ EDI holds lenikey_buf)
0044C764 : E3I iz loop counter "k'
o044c7ea cdg
0044C767 idiv edi ; when he runs off the end of key buffer,
oo44cyet ; then he re-starts at the beginning
o044cte’ ; EDX := E&X % len(key)
00440769 mow eax, [ebptkey buf copy war C]
0044C760 mowex eax, byte ptr [eax+edx] ; EAX = keybuf[EDX] = keybuf[ESI % len kew]
0044c770 add ebx, [ecx] ;: EBX += stable[k]
0044C772 add eaxw, ebx
0044C774 and eaw, S00000FFh @ make sure we clamp to lowest 5 bits
0044C779 dns short SWAP _ELEMENTS loc_44C752
an44cya
I}I—
BN L
0044C77E dec v
0044c77C or exd, OFFFFFFO0OL
0044Cc751l inc 2ax
0044c751
I —
BN Ll
a044c7ss
0044C752 EULP _ELEMENTSE loc_ J4C75Z:
00440782 mow ehux, eax
0044C7384 mowex eax, byte prr [ecx] » &L := subst[k] (first element to swap)
0044C7387 mow [ebp+swap_temp_war_15], al
0044C784 mow eax, [ebp+ebx*d+ztable war 41C] ; EALX := stable[EEX] (second element to swap)
0044CT8a H
0044C791 mow [ecx], =ax ; perform swap, using tewp swap temp war 15
0044C793 mowzx eax, [ebpt+swap temp war 13] ; swap(stable[k], stable[EEX])
0044C797 mow [ebptebx*dt+astable war 41C], ead
a044c7s? H
0044C79E inc esi ; incr loop counter
0044C79F add ec, 4 : proceed to next element in subst tahle
0044C7TAZ cup esi, 100h ; stop after 256 swaps
0044C748 jn= short START LOOP_loc_44C753
o044cTas

v

Figure 14. Function DecryptCommandBuffer sub 44C628 ()

The first code block in the above IDA listing chooses which element of stable var 41C should be swapped with the
k™ element. It uses an accumulator variable, implemented by register EBX and initialized to zero. On each pass through
the loop, it updates the acccumulator EBX by adding to it the value of the k™ element of stable var 41C and the value
of the current key string byte. One byte of key string is used per iteration, and whenever the key string is "used up", it
restarts again at the beginning of the key; register EDT holds the length of the key string, so the bot just computes k
modulo EDI (at instruction 0x0044C767) to choose which byte of the key to use on the k" iteration.

The last code block performs the actual swapping, using swap temp var 15 asthe temporary variable to do the swap.
Once 256 such swaps have been performed, the loop exits and the substitution table stable var 41C has been nicely
scrambled and is ready for use.

At this point, the actual process of decryption is performed. DarkComet iterates through its decryption loop once for each
byte in the encrypted source message (after conversion from ASCII to integer representation.) The decryption loop
performs the following two steps:

First, it performs an additional scrambling operation on the substitution table stable var 41C by swapping two
elements. When processing the k™ source byte, the first element of the swap pair is always the k+1" element of table
stable var 41C; ituses another accumulator variable, implemented by register EDI, to choose the second element of
the swap pair:

Arbor Networks | 16

BN Ll

0044cs54d
n044cs34

D0_ANOTHEE SWAP loc 44C534: ; swap two elements of subst table

0044C53d mowex eax, byte ptr [ebp+ebx*d+atable war 41C]
0044C83C mow [ebp+swap temp war 15], al ; temp := stable[k+l]
0044cs3c H
0044C53F mow eax, [ebpt+edi*dtstable war 41C]
0044C546 mow [ebp+ebx*d+atable war 41C], eax ; stable[k+1] := atable[accum]
0044Cs4ds H
0044C540 mowex eax, [ebp+swap temp war 15]
0044C55]1 mow [ebpt+edi*d+atable war 41C], eax ; stablef[accum] := Temp
0044Ccs51 H
004408558 mow eax, [ebpt+ebx*d+stable war 41C] @ add the two swapped elements
0044C55F add eax, [ebpt+edi*dtstable war 41C] ; xor_index := stable[acoum] + stablel[k]
0044Cs66 and eax, SO0000FFh
0044C56E Jn= short DECEYPFT_ONE_EYTE loc_44C574
0044C36E
HI

EAN L

0044C560 dec Baw : handle owerflow

0044C56E or eax, OFFFFFFOO0L

0044Cs573 inc [==ne

0044cs73
0044cs74
0044C574 DECEYFT ONE_EYTE loc_ 44Ca74:
0044C574 movwex eax, byte ptr [ebpteax*dstable war 41C] ; xor _byte = stable[xor_index]
0044cs74 H
0044Ccs7C mow edx, [ebp+src_copy_war 10]
0044CE7F xor [edx+e=i], al : src[k] = stable[xor_index]
0044cs?F H
0044Csdz inc esi : keep looping til entire src buf decrypted
00440553 dec [ebp+len src_bmf war 1C]
0044C586 jn= ghort DECEYPT_LOOP START loc_ 44C80C
0044csse

Arbor Networks | 17

Figure 15. Function DecryptCommandBuffer sub 44C628 ()

After performing this swap operation, DarkComet finally decrypts a byte of message. It sums up the values of the two
swapped elements (at instruction 0x0044C85F), then uses the result (modulo 256) to re-index into the
stable var 41C table to pull out a third element (at instruction 0x0044C874). This third element is XORed against
the current (k™) source byte to produced a decrypted character.

It should be pointed out that conceptually, this decryption mechanism - both the manner in which the substitution table is
built, as well as how it is used for XOR-based decryption - is very similar to that used by the Trojan.PonyDOS malware
family. The actual implementation has quite a few differences, but the basic encryption algorithm is the same.
Trojan.PonyDOS, however, adds a few additional layers to secure its communications protocol above and beyond the core
crypto algorithm which it shares with DarkComet; specifically, the computation of some cryptographic hashes. Also,
Trojan.PonyDOS does not go to the trouble of converting its encrypted data payloads into ASCII representations as
DarkComet does.

Now that we've reversed the core DarkComet decryption mechanism (needed to read C&C commands), we'll want to
confirm that the encryption mechanism (needed to read and/or fake bot phone home messages) is symmetric. And indeed,
by following references to the socket handle used to recv () the initial C&C command, we can trace through to find the
encryption routine called by DarkComet just prior to send () ing back its response messages. Sure enough, the encryption
routine, Encrypt sub_44C34C (), is functionally identical to the decryption routine, as hoped and expected; the only
difference being that the Integerize sub 44C1CO0 () routine prior to decryption is absent, and a new routine, which
we'll call Integer2String sub 409C6C (), is called following the encryption step; this routine simply converts the
raw encrypted data back into the ASCII version of its hexadecimal values.

Of course, in order to have a fully functional implementation of DarkComet's crypto system, we'll need to know what key
strings it uses. We see that there are two locations where DecryptCommandBuffer sub 44C628 () is called, and
one of those locations, EncryptData sub_ 49D9EC (), has a hard-coded string with an uncanny resemblance to a
decryption key:

Arbor Networks | 18

http://ddos.arbornetworks.com/2012/03/not-just-a-one-trick-ponydos/

3

BNl

0049na4s lea gax, [ebp+key war 10]

0049DAd5

0042DAa45 FORM FEY loc 45DA45: ;

0049DA48 mow ecx, [ebx+E] ; «== WHAT I3 THIZ?

0049DA4E mow edx, offset aKcmddcdaf : "#ECHDDCAZF#-"

0049Dat0 call Concat _sub 405734 ; concatenate prefix with [ehd+5]
0043nas0

0049DASS mow edx, [ebp+key war 10] ; key string

Q049DASS mow ecx, e3i s dat buf (plain text)

0049DA5LA mow gax, [ebp+plain buf war 8] ; src buf (encrypted)
0042DAa5D call DecryptConmandBuffer sub 44C6:25 ; EAX passes src buffer
0049natD ; EDX paszszeszs key buffer

0049nasD ; ECX passes dat buffer

0049DASD

Figure 16. Function EncryptData_sub_ 49D9EC ()

We see that the decryption string key var 10, passed to DecryptCommandBuffer sub 44C628 () viaEDX, IS
formed by concatenating a hard-coded string #KCMDDC4 2 F# - with some mystery string stored at [EBX+8]. It turns out
that this mysterious value stored at an offset from EBX is passed into EncryptData sub_ 49D9EC () viathe EAX
register. Tracing backwards up the stack, we follow the reference to EAX as the baton is passed from register to register. It
does not take long to come across the following routine, which we will label ComputeKeySuffix sub 48F52C():

Arbor Networks | 19

BN

0048F52C

O048F52C

O048F52C

0043F52C ComputeEeyiuffix_sub_ 458F5iC proc near
0043F52C push ehx

0043F520 push esi

0043F5ZE mow esl, eax ; passges output buffer
0048F530 mow ebx, OFFFFFFEFh ; EBX := OxFFFFFFEF
0043F530 ; EBEX = -0x71
0043F530 s EEX 1= -113
0043F535 add ehx, 3ESh ; EBX += 0x3ES
0043F535 ; EEX += 1000
O048FL35 ; EBX := -113 + 1lo00
0043F535 ; EEX := 887
0043F55E mow eax, 4 ;s loop four times
0043F53E
5
BN
0043F540
0043F540 LOOP START loc 48F540: ; EBX += 1
0043F540 inc ehx ; EEX: 887 ==> 8§91
0045F541 dec eax
00453F542 jn= short LOOP_3TART loc_43F540
00453F542
f
EH M L
0045F544d dec ebx ; EBx -= 1
0045F544 ; EBX 1= §90
0043F545 mow edw, esi
0043F547 mow eax, ebx
0043F549 call IntegerZitring sub_409CAC : EAX passes integer
004aFs4a ; EDX passesz dst buf
0045F549
0043F54E pop esi
0043F54F pop ehx
O043F550 retn
0043F550
0043F550 ComputeEeyiuffix_ sub_ 48F52C endp
0043F550

Arbor Networks | 20

Figure 17. Function ComputeKeySuffix sub 48F52C ()

You don't run into code like this very often. It receives an output buffer passed via EAX. It then uses register EBX to do
some rather "inefficient™ operations. First, it assigns EBX the value OxFFFFFF8F, or -71. It then adds 1000 to EBX,
yielding 887. Then it goes through four iterations of a loop that has no purpose other than to increment EBX by one on
each iteration, resulting in a value of 891. Finally, it completes its laborious calculations by decrementing EBX by one,
yielding a final answer of 890. This integer is passed to a standard integer-to-string API, which writes the string 890 into
the output buffer. In C, these shenanigans would look something like the following:

int nAddend = 1000;
int nSuffix -71;
int nResult = nSuffix + nAddend;
for (int k=0; k<4; k++)
nResult += 1;
sprintf (suffix, "%d", --nResult);

This is a very roundabout way of assigning the hard-coded string 890 to a buffer. Clearly the DarkComet author is
(wisely) trying to avoid having the entire decryption key string hard-coded in the bot executable.

So at this point, we know that the decryption key is composed of the prefix #KCMDDC42F #- concatenated with the suffix
890, yielding #KCMDDC42F#-890.

One final note regarding the encryption key strings used by DarkComet: as first documented in
Contextis' Laura Aylward's DarkComet analysis, each version of DarkComet uses a different hard-coded string for the key
prefix. For example, we have observed the following:

Dark Comet version Crypto Key Prefix (Default)
Version 4.0 #KCMDDC4#-890
Version 4.2 #KCMDDC42F#-890

Arbor Networks | 21

http://www.contextis.com/research/blog/darkcometrat/

| Version 5.0 | #KCMDDC5%-890

Figure 18. Standard crypto key prefixes for DarkComet versions

Furthermore, and also documented by Contextis, DarkComet supports the use of an optional password that is appended to
the default (version-specific) crypto key. For example, the default password (if enabled) string is 0123456789. This 10-
digit string will be appended to the standard crypto key #KCMDDC42F#-890 (in the case of DarkComet version 4.2) to
yield a final key of #KCMDDC42F#-8900123456789. The code that performs this concatenation is found in a routine
we'll call FormCryptoKey sub 49D2F4 ():

QO49n3z1 ;

00430324 mow eax, dsikey off 4d4FAT ; base wversion-specific key prefix
Q049n3Ez4 ;e.d., #ECMDDCAZF#-

0043D3zZ9 push dirord ptr [eax]

0043D3ZE lea eax, [ebpt+key suffix war £4]

0043D3EZE call ComputeKeyiduffix sub 45F5EC ; hardcoded to yield 320"
Q049D 3EE

o043D333 push [ebp+key suffix war Z4] ; always "g90"

0043D336 lea edw, [ebp+password component war 23]

0049033539 mow eax, ds:PWUD _off 444F54 4 Password stored in PUD resource
0049D33E mow eax, [eax]

Q049D540 call gub_ 409475

Q049n340

004sD345 push [ebp+password component wvar 28] ; password (if any)
00490343 mow eax, da:ikey off 4AbdFiL3

00430340 mow eds, 3 ; concatenate three strings

00490352 call Concatitrings sub 405300

QOd9D35E

Figure 19. Function FormCryptoKey sub_ 49D2F4 ()

Arbor Networks | 22

This code concatenates the three components of the final crypto key: the hard-coded prefix (e.g., #KCMDDC42F #-), the
three-digit string 8 90 that is not technically hard-coded but deterministically computed using the aforementioned

ComputeKeySuffix sub 48F52C () routine, and the optional botnet password stored in the global variable
PWD off 4A4B84.

The password itself is actually stored as an encrypted resource. Upon initialization, it is decrypted using a preliminary
crypto key comprised only of the first two components (e.g., #KCMDDC42F#-890) using a routine we've labeled
DecryptResource sub 49D9EC (). To make a long story short, this routine uses the Windows APIs
FindResource (), LoadResource (), etc. to extract a named resource of type RT RCDATA (code 0x0A), intended
for "application-defined resources (raw data)". The raw data is then decrypted using the preliminary crypto key.

In the case of the crypto password, the name of the resource is PWD. The resource is extracted, decrypted, and stored for
future use in the global variable PWD off 4A4B84 by a function we call DecryptResources sub 49F92C():

Arbor Networks | 23

0049Fa64d :

004d9Fas9 call GEtKeySuffixLﬁuh_49D934 ; returns suffix to be appended
0049Faas ; Lo crypto key

0049Fa69

O049F96E mow ebx, eax ; returns suffix string "8907

004d9Fa70 lea ecx, [ebpt+decrypted password var 14]

Q049Fa73 mow edw, offset aPwd ; "PFUD"

O049F37E mow eax, ehx

0049Fa7a call DecryptResource sub 49DSEC : EDX holds input/src buf (plain)
O049FaTh ; ECx holds output/dst buf (encrypted)
0049Fa7h ; EA¥ holds suffix for key

0049F97a

Q049F97F mow edw, [ebp+decrypted password war 14]

0049F958E mow gax, ds:PUD_off 4adR54

0049Fas7 call DoCopy_sub_ 4054C0 ;@ copy decrypted PUWD resource
0049Fa57 ; into global PWD _off 4a4R54

0049Fas7

Figure 20. Function DecryptResources_sub 49F92C ()

In the case of the default password 0123456789, the encrypted resource will hold the value
6811E636E69E9AEFAS5C6. This DecryptResources sub 49F92C () function actually decrypts a lot of
encrypted bot parameters stored in various resources; some of the more interesting ones are as follows:

Resource Name Encrypted Data Decrypted Value
FAKEMSG 69 1

GENCODE 6146B749A3CFICIFESCFAB2C 9fcLgd0Gu007
MSGCORE 1100A768B3CT7COF8FCDECO07B6F9 I small a RAT!
MSGTITLE 1C41A66E91CAC1BDEY DarkComet

Arbor Networks | 24

MUTEX

1C638B4887FFE980BOBO9AE72B1EA40A3

DC MUTEX-F54S21D

NETDATA 6919E62BE39D94F6ACCFAB68D5SED4BD67BA333 | 192.168.100.75:1604
PWD 6811E636E69E9AEFALSCH 0123456789
SID 1F55B176A69A9A Guestlb

Figure 21. Interesting encrypted resources

Of particular interest is the encrypted NETDATA resource, which holds the C&C hostname and port. The Resource Hacker
tool is a great utility for viewing and extracting the various DarkComet encrypted parameters:

Arbor Networks | 25

BN Resource Hacker - C:\SAMPLES\MAIL \fynloskildark... [= |[B)fX)
File Edit “ew Action Help

+-[] Cursor

+-_] lean

+-[] String Table

-3 RCData
¥{3 DvCLAL
+-{_] FAKEMSG
+-{1] FWiE
+-{_7] GEMCODE
+-{_] M3GCORE
+- MSGICON
+-{_] MSGTITLE
+-{1 MUTEX
+-[_] METDATA
+-[[]] PACKAGEINFO

-5 PWD

6311E636EG9ESAEFASCH

¥ {7 8D
+-[_] Cursor Graup
+-[] lcon Group
+-[] Wersion Info

Line: 1 20

http://www.angusj.com/resourcehacker/

Figure 22. Resource Hacker extracting DarkComet resources

So to summarize, DarkComet uses a hard-coded (although different for each version) preliminary key string, such as
#KCMDDC42F#-890, to decrypt its sensitive parameters from various raw resources - such as the C&C information and
communications password stored in the NETDATA and PWD resources, respectively. It then appends the decrypted comms
password (stored in the PWD resource) to the end of the preliminary crypto key string to form the final key,
#KCMDDC42F#-8900123456789, that it uses for securing the network traffic to and from its C&C server.

Putting everything together into a complete DarkComet crypto module yields the following Python script:
DarkComet decryptor/encryptor
Copyright (c) 2012 Arbor Networks
import sys
class DarkCometCryptor (object) :
def init (self, key):
self. len key = len(key)

self. key = [ord(token) for token in key]

def decrypt(self, szrc):
Convert ASCII to hex representation

buf = [int ("0x%s" % src[k*2:k*2+2], 16) for k in range(len(src)//2)]
self. cryption (buf)
return "".join([chr (token) for token in buf])

def encrypt(self, src):
buf = [ord(token) for token in src]

Arbor Networks | 26

self. cryption (buf)
Convert to hex codes (upper case)
return "".join (["%02x" % tok for tok in buf]) .upper ()

def cryption(self, src):

Build subst table

stable = list (range(256))

accum = 0

for k in range (256) :
accum += stable[k]
accum += self. keylk $ self. len key]
accum &= Oxff

stable[k], stablef[accum] = stablel[accum], stablelk]
Apply subst table
accum = 0

for k in range(len(src)):
elem a idx = self. LS BYTE(k + 1)
accum += stablelelem a idx]
elem b idx = self. LS BYTE (accum)
stable[elem b idx], stable[elem a idx] = \
stable[elem a idx], stablef[elem b idx]
swap_sum = self. LS BYTE (stable[elem b idx] + stablef[elem a idx])
srclk] "= self. LS BYTE (stable[swap sum])

@staticmethod
def LS BYTE (value):
return Oxff & wvalue

if name == ' main_ ':
if len(sys.argv) != 4 or sys.argv[l] not in ('-d', '-e'):

print "usage: %$s [-d|-e] SRC TEXT KEY" $ sys.argv[O]

Arbor Networks | 27

sys.exit (1)
do decrypt = bool(sys.argv[l] == '-d')
src = sys.argv|[2]
key = sys.argv[3]
print "%s: %s" % ("CRYPT" if do decrypt else "PLAIN", src)
cryptor = DarkCometCryptor (key)
dst = cryptor.decrypt(src) if do decrypt else cryptor.encrypt(src)
print "%s: %s" % ("PLAIN" if do decrypt else "CRYPT", dst)

Figure 23. darkcomet.py Crypto Module

Applying our DarkComet encryption module against the observed traffic results in the following:

C&C:

IDTYPE

Bot:

SERVER

C&C:

GetSIN192.10.8.64127038511

Bot:

infoesComet|192.10.8.64 / [192.1.167.30] : 1604 |SANDBOX7 /
Admin|27038511|29s|Windows XP Service Pack 2 [2600] 32 bit (C:\
) I x| |US|C:\WINDOWS\system32\cmd.exe| {16382783-b70c-71ed-11e0-
28f8efc0696f-10806d6172}1127.43 MiB/256.09 MiB [128.22 MiB Free] |English
(United States) US / --]110/9/2011 at 8:13:31 PM

Figure 24. Decrypted version of comms from Figure 2.
Likewise, when a DarkComet C&C issues attacks command, the encrypted traffic on the wire looks like these examples:

185CB63BBEOEA3DF6D2AT725936265160E391BCT77F47FF46A3934CFB173AC

Arbor Networks | 28

185CB63BA31EATCO967297252432E5ATCFC96B261EBTEF4742533CEBF37A9C081
185CB63BA503B9CY967297252432E5A7CFC96B261EBTEF4742533CEBF37A9C081

But applying the decryption routine yields the following:

DDOSHTTPFLOOD192.168.100.254 |5
DDOSUDPFLOOD192.168.100.254:8015
DDOSSYNFLOOD192.168.100.254:8015

Which corresponds to ordering an HTTP flood, a UDP flood, and a TCP flood, respectively, against target
192.168.100.254, with each attack lasting for 5 seconds. Once the attacks are completed the DarkComet bot will
respond with an encrypted status message such as the following:

1E4CAB2DAS0FBBDB781F5336347B073DA9DCDO936B46EBO3B646DDAE366F7D5CT76D3C0420A55906F524
240A0F34D3A6384150

Which decrypts to the following:
BTRESULTSyn Flood|Syn task finished!|Administrator

As implied above, DarkComet supports three types of DDoS attacks: HTTP flooding, UDP flooding, and TCP flooding
(mis-advertised as "SYNFL.0OOD"). The UDP and TCP volumetric floods are quite unremarkable and simply consist of
random gibberish blasted at a target host and port. The HTTP flood also appears to be intended as a rudimentary GET
flood with a minimalist HTTP request header. However, DarkComet's HTTP flood implementation happens to have not
one, but two catastrophic bugs.

First of all, the thread procedure that implements the DDOSHTTPFLOOD attack command, SendHttp sub 485848 (),
uses the WinSock2 library's socket (), connect (), and send () APIs to send the following hard-coded HTTP
flooding request:

GET / HTTP/1.1\r\n\r\n

Arbor Networks | 29

At first glance, this looks like an (almost) valid, although minimalist, HTTP request that is terminated with a double

carriage-return/line-feed (CRLF) combination. However, when one takes a closer look at the way DarkComet stores this
string, we see that the \ r and \n characters are not actually CR (0x0D) and LEF (0x0A) bytes. Instead, they are literally
comprised of the backslash (0x2F), letter r (0x72), and letter n (0x6E) bytes!

. LSECT
. ESECT
ESECE
« LSECT
. LSECT
. ESECT
« LSECT
. LSECT
. ESECT
. ESECT
« LSECT
. LSECT
. ESECT
ESECT
« LSECT
. ESECT
. ESECT
« LSECT
. LSECT
. ESECT
ESECT
« LSECT
. LSECT
. ESECT
ESECT

004559635
00455960
o04s5970
n0455971
o0455972
00455973
no4s55974
n0455975
o04s5976
a04s5977
00455973
o04s55979
00455974
00455975
Q0455970
o043 597D
0045 597E
o045 5979 F
n04s859380
o04s5931
004559352
00455983
o045 5954
n04s559355
004559356

Arbor Networks | 30

dd OFFFFFFFFh

dd 16h |

HetpReoquest byte 455970 dbh 47h
: E

EEEEEEBEEEEEEREEEEEEREBEEER

45h
adh
20h
&Fh
20h
4ch
54dh
adh
alh
2Fh
31lh
2Eh
3lh
iCh
Tzh
aCh
6Eh
iCh
Tzh
aCh
6Eh

-

r

: T

-

L =R B =

(= I - N R S

» length of 22, instead of 18...

HE

LT
P

LT
4

ooops! these should be 0x0D
and these should be Ox0A4A
samne here

and here...

Figure 25. Hard-coded HTTP request string HttpRequest_byte 485970

If the HTTP request string had been encoded properly (ending with 0x0DOAODOA), the length of the string would have
been 18. But instead, we see that it is 22 bytes in length. Due to this, DarkComet's attempt at an application layer attack is

not close to a valid HTTP request per the RFCs.

The second big mistake in the implementation of DarkComet's HTTP flood attack becomes apparent further down in the
attack thread code, just before the (buggy) HTTP request payload is sent to the target via the send () API:

Arbor Networks | 31

Arbor Networks | 32

00493964 lea
00493967 mov
00493960 mowv
004939a6F mow
0049397z call
00493972
00493972
00433972
00433977 mowv
00493974 lea
00493970 call
00433970
00493952 mow
00493935 test
00493957 j=

ecH, [ebptoryprtbuf war 3]

edw, da:tkey off 444FAS

ed=, [edx]

eax, [ebptpayload war 4]

Encrypt_sub_44C34C ;@ EL¥ holds src buf (plain)
; EDX holds key but
; ECX holds dst buf (crypt)

eds, [ebptoryprtbuf war 3]
eax, [ebp+payload wvar 4]
Copy_sub_ 405504 ; copy encrypted buf back into payload wvar 4

ead, [ebp+pavload war 4]
eax, eax
ghort loc_49395E

oo493937
I?l
BN L
004939539 suhb eaw, 4
00493980 mow eax, [eax] s pull length of payload
oo4a39sc
00493938E
0049393E loc_49338E: ; EBX = lenipayload)
004935398E movw ebx, eax
00453990 push 0 ; flags for send() API
00493992 push ehx : payload len
00493993 lea eax, [ebp+payload war 4]
00493998 call gub_40595C
00493994
00493998 push e ax ; payload
0049399C push esi ; socket handle
00493990 call gend sub 430545

Figure 26. Function EncryptAndSendData_sub_49393C()

Unbelievably, DarkComet bot is accidentally encrypting the (buggy) GET request string at instruction 0x00493972 via a
call to the already-reversed Encrypt sub 44C34C () routine. The resulting (encrypted) HTTP request is then sent on
its merry way to the DDoS target via the send () API call at instruction 0x0049399D.

So the target web server ends up receiving gibberish instead of a well-formed HTTP request that might exhaust resources

at the application layer. Due to these two serious flaws, DarkComet's HTTP flood attack reduces down to nothing more

than a volumetric TCP flood against port 80, and a very weak one at that (a mere 22 bytes of TCP payload per flooding

packet...) In fact, here is what the actual "HTTP flooding" traffic looks like:
1B5DAD48DO7ABEFDBT7F3612275C26342091CED63D8620
1B5DAD48DY97ABEFDBT7F3612275C26342091CED63D8620
1B5DAD48D97/ABFDB/F3612275C26342091CED63D8620

Clearly, this is very unlikely to bring any web server to its knees!

Acknowledgements to Arbor Networks analyst Curt Wilson for his valuable insights and assistance with this article.

Arbor Networks | 33

