
6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 1/38

A detailed analysis of ELMER Backdoor used by APT16
cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16

Summary

In this blog post, we’re presenting a detailed analysis of a backdoor known as ELMER that was
used by the Chinese actor identified as APT16. This group targeted Japanese and Taiwanese
organizations in industries such as high-tech, government services, media and financial services.

The malware is encrypted with a custom algorithm and it’s written in Delphi. This sample is
capable of detecting proxy settings on the local machine and exfiltrating information such as the
hostname and IP address of the machine to the Command and Control server. The process uses a
custom decryption algorithm that consists of AND, XOR, and ADD operations in order to decrypt
relevant strings during runtime. It implements 8 different commands depending on the response
from the C2 server, including: file uploads and downloads, process execution, exfiltration of file
names/sizes and directory names, exfiltration of processes/process IDs. Data exfiltration is
performed using an HTML document that contains the information encoded using the NOT
operator.

This sample is using a custom encryption algorithm, that we will describe below. For this analysis,
we have also created a python script that can be used to facilitate the decryption process, which
can be found at https://github.com/Rackedydig/string_decode_algorithm_apt16.

Technical analysis

SHA256:
BED00A7B59EF2BD703098DA6D523A498C8FDA05DCE931F028E8F16FF434DC89E

It’s important to mention that a part of the malicious code is encrypted, and we’ll explain using a
step-by-step approach how to decrypt it. The process is scanning the memory in order to find the
magic number “MZ” which corresponds to EXEs (DLLs), and then it’s extracting the first word of
the PE header and compares it with “PE” as follows:

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/
https://github.com/Rackedydig/string_decode_algorithm_apt16

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 2/38

Figure 1

The following picture contains a part of the bytes that will be transformed as we’ll see in the next
paragraphs:

Figure 2

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 3/38

The first 16 bytes are reordered as follows: [byte1, byte5, byte9, byte13], [byte2, byte6, byte10,
byte14], [byte3, byte7, byte11, byte15], [byte4, byte8, byte12, byte16]:

Figure 3

Now there is a buffer of 16 bytes, which represents a “key” in the upcoming operations:

Figure 4

An XOR operation is performed between the corresponding positions of the 2 buffers mentioned
above:

Figure 5

The first 4 bytes of the buffer remain in their current positions, however, the last 12 bytes are
reordered, as shown in figure 6:

Figure 6

Each byte is replaced by a byte that can be found at the position 0x671911EC+current_byte, as
explained in the next figure:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 4/38

Figure 7

After this transformation, the buffer becomes the following one:

Figure 8

There is a second XOR decryption step, but this time the key is changing:

Figure 9

After the XOR operation is complete, the current buffer has been changed, as shown below:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 5/38

Figure 10

A few more operations will be performed, including shl cl, 1 (shift left by 1) and xor cl, 1B (xor
with 0x1B). Let’s take, for example, byte 0x90 from the buffer which is left shifted by 1 (0x20)
and then XORed with 0x1B -> 0x3B. Byte 0x3B is left shifted by 1 and becomes 0x76 (no XOR is
performed) and one more time, 0x76 is left shifted by 1 and becomes 0xEC. The confirmation that
all of these operations are accurate:

Figure 11

Now the values from this buffer are XORed together (0x90 XOR 0x76) XOR 0xEC and then the
result (0xa) is XORed with other results from similar operations. After all operations are done, the
buffer will be the following:

Figure 12

The sample performs the steps presented above 10 times, and the buffer looks like in the next
figure:

Figure 13

The buffer is reordered and copied in the location displayed in figure 2, as follows:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 6/38

Figure 14

The algorithm applied for the first 16 bytes is repeated 2078 times. The new buffer is the decrypted
version of the first one:

Figure 15

The malicious process loads multiple DLLs and retrieves the address of export functions using
LoadLibraryA and GetProcAddress APIs:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 7/38

Figure 16

The list of DLLs to be loaded + the export functions:

kernel32.dll

DeleteCriticalSection, LeaveCriticalSection, EnterCriticalSection, InitializeCriticalSection,
VirtualFree, VirtualAlloc, LocalFree, LocalAlloc, GetTickCount, QueryPerformanceCounter,
GetVersion, , GetCurrentThreadId, GetThreadLocale, GetStartupInfoA, GetLocaleInfoA,
GetLastError, GetCommandLineA, FreeLibrary, ExitProcess, WriteFile,
UnhandledExceptionFilter, SetEndOfFile, RtlUnwind, RaiseException, GetStdHandle,
GetFileSize, GetFileType, CreateFileA, CloseHandle, TlsSetValue, TlsGetValue,
GetModuleHandleA, lstrcmpiA, WaitForSingleObject, Sleep, SetFilePointer, ReadFile,

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 8/38

GetProcAddress, GetModuleFileNameA, GetFileAttributesA, GetCurrentDirectoryA,
FindNextFileA, FindFirstFileA, FindClose, FileTimeToLocalFileTime, CreateThread,
CreateProcessA

user32.dll

GetKeyboardType, MessageBoxA

advapi32.dll

RegQueryValueExA, RegOpenKeyExA, RegCloseKey

oleaut32.dll

SysFreeString, SysReAllocStringLen

ws2_32.dll

WSAGetLastError, gethostname, gethostbyname, socket, setsockopt, send, recv, inet_ntoa,
inet_addr, htons, connect, closesocket, WSACleanup, WSAStartup

dnsapi.dll

DnsRecordListFree, DnsQuery_A

The process passes the execution flow to the unencrypted code as illustrated in the next figure:

Figure 17

In order to also perform static analysis on the binary, we have to dump the memory of this process
using OllyDumpEx plugin of x32dbg debugger:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 9/38

Figure 18

The problem is that the IAT (Import address table) hasn’t been populated as expected and contains
only 2 functions that were also present in the original binary:

Figure 19

We have to use another plugin of x32dbg called Scylla. This plugin is used to find the IAT entries
in the process memory, and then it can fix our dropped binary:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 10/38

Figure 20

We’ve successfully fixed the IAT in our dropped binary, and this operation is useful because it
reveals different API calls which have to be analyzed:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 11/38

Figure 21

Now we will analyze the decrypted binary. It initiates the use of Winsock DLL by calling the
WSAStartup function:

Figure 22

During the entire execution, the process decrypts relevant strings by using a custom algorithm that
can be described shortly: If m is the encrypted buffer and key is the decryption key, the result of
the algorithm is (m[i] AND 0xF) XOR (key[i] AND 0xF) + (m[i] AND 0xF0), as presented below:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 12/38

Figure 23

After these operations are finished, the result represents the C2 server and the corresponding port
number:

Figure 24

The malware opens the “Software\Microsoft\Windows\CurrentVersion\Internet Settings” registry
key by calling the RegOpenKeyExA API:

Figure 25

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 13/38

The “ProxyEnable” value is extracted using the RegQueryValueExA function, and it’s compared
with 1. This action has the purpose of verifying if the current machine is using a proxy for network
communications:

Figure 26

If “ProxyEnable” is equal to 1, the malware proceeds and extracts the value of “ProxyServer”
(hostnames/IPs of the proxy server on the network), as displayed in the next figure:

Figure 27

The gethostname function is used to retrieve the host name for the local machine:

Figure 28

The function result from above is used as a parameter for the gethostbyname function, which can
be used to retrieve host information corresponding to the local machine, as shown in figure 29:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 14/38

Figure 29

The inet_ntoa function is utilized to convert the IP address of the host into an ASCII string
(dotted-decimal format):

Figure 30

There is some sort of reverse operation done by the malware because it’s using the inet_addr
function to convert the string representation of the IP address into a proper address for the
IN_ADDR structure:

Figure 31

The hostname and the IP address of the machine represented as a decimal number are combined
into a string that will be used in the upcoming network communications with the C2 server:

Figure 32

The malicious process uses the same decryption algorithm described before in order to decrypt
important strings. The function is highlighted in the next picture:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 15/38

Figure 33

An example of how the algorithm performs is displayed below, where EAX represents the
encrypted string and the key is moved into the EDX register:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 16/38

Figure 34

By placing a breakpoint after the operation is supposed to end, we can observe that the string was
successfully decrypted:

Figure 35

After a few more operations are performed, we can distinguish other interesting strings, like the
User Agent that will be used in the communications with the Command and Control server:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 17/38

Figure 36

The sample builds an HTML document that contains the infected hostname and the IP address
corresponding to the local machine. This form will be used in a POST request as we’ll see later on:

Figure 37

The socket function is used to create a socket, and the following parameters are passed to the
function call: 0x2 (AF_INET – IPv4 address family), 0x1 (SOCK_STREAM – provides
sequenced, reliable, two-way streams with an OOB data transmission mechanism) and 0 (the
protocol is not specified). The function call is shown below:

Figure 38

The setsockopt API is used to set a socket option. The following parameters can be highlighted –
0xFFFF (SOL_SOCKET – socket layer), 0x8 (SO_KEEPALIVE – enable keep-alive packets for
a socket connection):

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 18/38

Figure 39

The second setsockopt call has different parameters – 0xFFFF (SOL_SOCKET – socket layer),
0x1006 (SO_RCVTIMEO – receive timeout), 0x15f90 = 90000ms = 90s (optval parameter):

Figure 40

The third setsockopt call is different than the second one because it sets the send timeout to 90
seconds:

Figure 41

The port number 0x1BB is converted from TCP/IP network byte order to host byte order (little-
endian on Intel processors) by using a ntohs function call:

Figure 42

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 19/38

The malware is using the inet_addr function to transform the C2 IP address into a proper address
for the IN_ADDR structure:

Figure 43

There is a network connection established to the C2 server using the connect function. The
following elements can be highlighted in the sockaddr structure: 0x2 (AF_INET – IPv4 address
family), 0x1BB = 443 (port number), 0x797FF94A (the C2 server represented as a hex value). The
function call is represented in the next figure:

Figure 44

The sample performs a GET request to the C2 server with the user agent that was decrypted
earlier: “User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1)”. The data is
sent using the send function:

Figure 45

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 20/38

The malware reads the response from the server using the recv function, byte-by-byte (the length
parameter is 1). It stops when the result contains “\x0d\x0a\x0d\x0a” (2 new lines characters in
Windows) and it checks to see if the response contains “200 OK”, which means that the
connection was successfully established:

Figure 46

There is also a second comparison between the response and the “!!” string (if the result doesn’t
contain “!!”, then the process performs a closesocket API call):

Figure 47

The hostname and the IP address of the local machine are exfiltrated to the C2 server using a
POST request. The SessionID parameter is randomly generated:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 21/38

Figure 48

As before, there are multiple recv function calls following the POST request, and the process
expects the response to contain “200 OK” and “Success”. If it doesn’t, then there is a Sleep call for
90 seconds and it tries again. A new thread is created using the CreateThread function:

Figure 49

Thread activity

Some parameters used in the network communications like “id” and “SessionID” are generated by
a function called “Randomize”:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 22/38

Figure 50

It’s important to mention that some HTTP headers are just decrypted before the network
communication is performed using the algorithm described in the first paragraphs. The sample
performs another GET request using the send function:

Figure 51

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 23/38

The file reads the response from the server using the recv function, byte-by-byte. It expects again a
“200 OK” string and as opposed to before, it expects the response not to contain “!!” (if it does,
the malware exits):

Figure 52

The process parses the response from the C2 server for an integer corresponding to a command
that has to be executed. It implements 8 different commands, as shown in figure 53:

Figure 53

Case 1 – EAX = 0

The process sends a POST request to the server that contains a similar HTML document, however
the exfiltrated information is different. The following bytes can be highlighted: CF 83 CD 83 CF
83, on which we can apply a NOT operation and obtain 30 7C 32 7C 30 7C (0|2|0|):

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 24/38

Figure 54

The reponse from the server is received using the recv function. If the connection was successful,
the process expects a “200 OK” string and also “Success”, as shown below:

Figure 55

There is another GET request to the CnC server performed by the malicious process:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 25/38

Figure 56

The response from the server is expected to be larger this time (0x1000 = 4096 bytes):

Figure 57

The response from the server is written to a file specified by a handle transmitted by the C2 server
(in our case, this was 0 because we’re trying to emulate the C2 server communications). The
WriteFile API call is presented below:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 26/38

Figure 58

The process announces the C2 server that the write operation was successful by issuing a POST
request (NOT (CF 83 CE 83 CF 83) = 30 7C 31 7C 30 7C = “0|1|0|”):

Figure 59

If the write operation failed, the request is changing (NOT (CF 83 CF 83 CF 83) = 30 7C 30 7C 30
7C = “0|0|0|”):

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 27/38

Figure 60

An identical GET request, as presented before, is sent to the server and the malware jumps back to
the switch statement (this applies to each case).

Case 2 – EAX = 1

In this case, we have 2 subcases depending on the response from the server. In the first one, the
only thing that is exfiltrated to the CnC server is the current directory, which can be obtained by
applying a NOT operation:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 28/38

Figure 61

In the second subcase, the malware scans the current directory using the FindFirstFileA and
FindNextFileA functions:

Figure 62

Each file time is extracted and converted to a local file time by using the
FileTimeToLocalFileTime API:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 29/38

Figure 63

The process constructs the next buffer for every file: 1|File name|dwHighDateTime (high-order 32
bits of the file time) in decimal|File size in decimal|. An example of such buffer is presented in the
next picture:

Figure 64

After the process succeeds in applying the algorithm for every file in the current directory, the final
buffer looks like the following:

Figure 65

The buffer is encoded using the NOT operator and is exfiltrated to the C2 server via a POST
request:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 30/38

Figure 66

Case 3 – EAX = 2

By parsing the response from the server to obtain the command line to be executed, there is a new
process created using the CreateProcessA function:

Figure 67

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 31/38

If the new process was successfully created, the following request is made to the CnC server (NOT
(CD 83 CE 83 CF 83) = 32 7C 31 7C 30 7C = “2|1|0|”):

Figure 68

Whether any error occurred during the process creation, the POST request is different (NOT (CD
83 CF 83 CF 83) = 32 7C 30 7C 30 7C = “2|0|0|”):

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 32/38

Figure 69

Case 4 – EAX = 3

We have only observed a POST request performed by the malware (NOT (CC 83 CE 83 CF 83) =
33 7C 31 7C 30 7C = “3|1|0|”):

Figure 70

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 33/38

Case 5 – EAX = 4

The server provides a file name to be opened by the malicious process. This action might indicate
that the attacker tries to exfiltrate the content of targeted files:

Figure 71

A POST request is performed by the file, the user agent is the same as in every network
communication:

Figure 72

The process reads the content of the specified file by using a ReadFile function call:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 34/38

Figure 73

The content of the targeted file is exfiltrated to the CnC server using the send function:

Figure 74

Case 6 – EAX = 5

We believe that this command is responsible for downloading other malware payloads. There is
only a GET request to the same C2 server:

Figure 75

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 35/38

Case 7 – EAX = 6

The CreateToolhelp32Snapshot API is utilized to take a snapshot of the processes, the first
parameter being 0x2 (TH32CS_SNAPPROCESS – all processes in the system):

Figure 76

All running processes on the system are retrieved by using the Process32First and Process32Next
functions:

Figure 77

The list of processes is exfiltrated to the CnC server. By decoding the encoded information, we can
observe the following string in the beginning “6|1|System Idle
Process|0|System|4|smss.exe|500|csrss.exe|604|” (note the process name and the process ID in the
buffer):

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 36/38

Figure 78

Case 8 – EAX = 7

The GetFileAttributesA API is used to retrieve file system attributes for the current directory, as
shown in figure 79:

Figure 79

The current directory name is sent to the CnC server in the following form “7|1|Directory name|”:

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 37/38

Figure 80

If EAX > 7, the process performs a few recv function calls and jumps back to the switch
instruction.

References

Decryption algorithm: https://github.com/Rackedydig/string_decode_algorithm_apt16

FireEye APT groups: https://www.fireeye.com/current-threats/apt-groups.html

FireEye report: https://www.fireeye.com/blog/threat-research/2015/12/the-eps-awakens-part-
two.html

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

Fakenet: https://github.com/fireeye/flare-fakenet-ng

VirusTotal:
https://www.virustotal.com/gui/file/bed00a7b59ef2bd703098da6d523a498c8fda05dce931f028e8f1
6ff434dc89e/detection

INDICATORS OF COMPROMISE

C2 IP address: 121.127.249.74

SHA256:
BED00A7B59EF2BD703098DA6D523A498C8FDA05DCE931F028E8F16FF434DC89E

https://github.com/Rackedydig/string_decode_algorithm_apt16
https://www.fireeye.com/current-threats/apt-groups.html
https://www.fireeye.com/blog/threat-research/2015/12/the-eps-awakens-part-two.html
https://docs.microsoft.com/en-us/windows/win32/api/
https://github.com/fireeye/flare-fakenet-ng
https://www.virustotal.com/gui/file/bed00a7b59ef2bd703098da6d523a498c8fda05dce931f028e8f16ff434dc89e/detection

6/2/22, 5:26 PM A detailed analysis of ELMER Backdoor used by APT16 – CYBER GEEKS

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/ 38/38

SHA256:
44DD6A777F50E22EC295FEAE2DDEFFFF1849F8307F50DA4435584200A2BA6AF0

URLs: https[:]//121.127.249.74/cxpid/submit.php?SessionID=<decimal number>

https[:]//121.127.249.74/send.php?id=<decimal number>

https[:]//121.127.249.74/query.php?id=<decimal number>

https[:]//121.127.249.74/cxgid/<Hostname>/<IP address in decimal>/<IP address in
decimal>0/index.php

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

