
Trojan.APT.Seinup Hitting ASEAN
1. Executive Summary

The FireEye research team has recently identified a number of spear phishing activities targeting Asia and ASEAN. Of these, one of the spear phishing documents was
suspected to have used a potentially stolen document as a decoy. The rich and contextual details (body and metadata) which are not available online lead us to believe this
was stolen. This decoy document mentioned countries such as Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Vietnam,
which leads us to suspect that these countries are targeted. As the content of this decoy document is suspected to be a stolen sensitive document, the details will not be
published.

This malware was found to have used a number of advance techniques which makes it interesting:

1. The malware leverages Google Docs to perform redirection to evade callback detection. This technique was also found in the malware dubbed “Backdoor.Makadocs”
reported by Takashi Katsuki (Katsuki, 2012).

2. It is heavily equipped with a variety of cryptographic functions to perform some of its functions securely.
3. The malicious DLL is manually loaded into memory which hides from DLL listing.

As depicted in the diagram below, the spear phishing document (which exploits CVE-2012-0158) creates a decoy document and a malware dropper named exp1ore.exe.
This dropper will then drop wab.exe (Address Book Application) and wab32res.dll (malicious DLL) inside the temp folder. By running wab.exe, the malicious DLL named
wab32res.dll (located within the same folder) will be loaded using DLL side-loading technique. This will in turn install a copy of wab32res.dll as msnetrsvw.exe inside the
windows directory to be registered as Windows service. By registering as a Windows service, it allows the malware to survive every reboot and persist on the network.

Figure 1 Infection Flow

This malware is named “Trojan.APT.Seinup” because one of its export functions is named “seinup”. This malware was analysed to be a backdoor that allows the attacker to
remote control the infected system.

http://www.fireeye.com/blog/wp-content/uploads/2013/06/1.MalwareFlow.jpg

Figure 2 Exported Functions

2. Related APT Domain and MD5

Based on our threat intelligence and reverse-engineering effort, below are some related domain and MD5 sums. Please note that some of the domain/IP association may
change.

2.1. Related Domain

Domain/URL IP Country Comments
elizabearden.com 124.172.243.211 CN Registrar: XIN NET TECHNOLOGY CORPORATIONEmail: liangcheng04@sina.com

dnsserviceonline.com

50.117.115.83

CN Registrar: XIN NET TECHNOLOGY CORPORATIONEmail: liangcheng04@sina.com50.117.115.84
50.117.120.235
69.46.84.51

symteconline.com 175.100.206.183 CN Registrar: XIN NET TECHNOLOGY CORPORATIONEmail: Smartwise9851@yahoo.com

winshell.net 58.64.190.34 HK Registrar: SHANGHAI MEICHENG TECHNOLOGY INFORMATION DEVELOPMENT CO.,
LTD.Email: richardmatind@yahoo.com

philnewsonline.com 50.93.198.128 US Registrar: GODADDY.COM, LLCEmail: woooyeahh11@yahoo.com
www.info-week.com 173.254.197.213 US Registrar: GODADDY.COM, LLCEmail: woooyeahh11@yahoo.com
go-twitter.com 50.93.198.113 US Registrar: GODADDY.COM, LLCEmail: woooyeahh11@yahoo.com

2.2. Associated Files

Name MD5 Comments
Spear-phishing document and decoy
document CONFIDENTIAL CONFIDENTIAL

iexp1ore.exe 137F3D11559E9D986D510AF34CB61FBC Dropper
wab.exe CE67AAA163A4915BA408B2C1D5CCC7CC Benign Address Book Application
wab32res.dll FB2FA42F052D0A86CBDCE03F5C46DD4D Malware to be side loaded when wab.exe is launched.

msnetrsvw.exe FB2FA42F052D0A86CBDCE03F5C46DD4D Malware to be installed as a service.
Note: This is the same as wab32res.dll.

baf227a9f0b21e710c65d01f2ab01244 Calls to www.elizabearden.com:80
0845f03d669e24144df785ee54f6ad74 Calls to www.dnsserviceonline.com:80
d64a22ea3accc712aebaa047ab818b07 Calls to www.elizabearden.com:80
56e6c27f9952e79d57d0b32d16c26811 Calls to www.elizabearden.com:80
cdd969121a2e755ef3dc1a7bf7f18b24 Calls to www.elizabearden.com:80
709c71c128a876b73d034cde5e3ec1d3 Calls to www.dnsserviceonline.com:80

3. Interesting Technical Observations

3.1. Redirection Using Google Docs

By connecting the malicious server via Google Docs, the malicious communication is protected by the legitimate SSL provided by Google Docs (see Figure below). One
possible way to examine the SSL traffic is to make use of a hardware SSL decrypter within an organisation. Alternatively, you may want to examine the usage pattern of the
users. Suppose a particular user accesses Google Docs multiple times a day, the organization’s Incident Response team may want to dig deeper to find out if the traffic is
triggered by a human or by malware.

http://www.fireeye.com/blog/wp-content/uploads/2013/06/2.ExportedFunctions.jpg

Figure 3 Retrieve Command via Google Docs

Below is the code that is used to construct a URL that retrieves command via Google Docs. First, the malicious URL is constructed and then encoded. Next, the malware
simply leverages the Google Docs viewer to retrieve the command from the malicious server (see Figure below).

Figure 4 View Command via GoogleDocs

3.2. Zero-Skipping XOR Encryption

The shellcode encryption technique is fairly standard. The shellcode has a decryption stub which decrypts its body using the XOR key 0x9E, and this shellcode is used to
extract exp1ore.exe(malware) and Wor.doc (benign document).

The exp1ore.exe and Wor.doc were found within the spear phishing document encrypted using the same key (0xFC) and technique. The XOR key decrypts only a non-zero
byte (see Figure 5). This prevents statistical methods of recovering the XOR key. The encrypted executable file and benign document were identified to be located inside the
spear phishing document at offsets 0×2509 and 0×43509 respectively.

Figure 5 Zero Skipping XOR Encryption

Even though statistical methods may not be useful in identifying the XOR key as the zero bytes are not encrypted, we could use some of the “known” strings below to hunt
for the XOR key in this situation. By sliding the known string across the array of bytes to perform a windowed XOR, the key would be revealed when the encoded data is
XORed with the known string.

http://www.fireeye.com/blog/wp-content/uploads/2013/06/Retrieve-Command.jpg
http://www.fireeye.com/blog/wp-content/uploads/2013/06/4.GoogleDocs.jpg
http://www.fireeye.com/blog/wp-content/uploads/2013/06/5.ZeroSkipping.jpg

“This program cannot be run in DOS mode”
“KERNEL32.dll”
“LoadLibraryA”

3.3. Deployment of Various Cryptographic Functions

3.3.1. Secure Callback

The malware performs the callback in a secure manner. It uses a custom Base64 map to encode its data, and creates a salted digital thumbprint to allow validation of data.

Below describes the steps to validate a callback using an example of the following URL:

hxxp://www.elizabearden.com/waterphp/BYyH.php?
dEIXozUlFzx=5P&wDq=6QeZky42OCQOLQuZ6dC2LQ7F56iAv6GpH6S+w8npH5oAZk==&k4fJdSp7=cc3237bc79192a096440faca0fdae10&GvQF2lotIr5bT2=

The URL could be generalised as follows:

Domain/<PHP>?<rand 11-13 char>=<A’>&<rand 3-5 char>=<B’>&<rand 7-9 char>=<C’>&<rand 14-16 chars>=<D’>

The definition of A’, B’, C’ and D’ are as follows:

Let H be the function which encodes binary into hexadecimal characters prepend with “%”, if it is not alphanumeric, dash, underscore or dot.

Let B64 be the base 64 encoder using the following custom map, “URPBnCF1GuJwH2vbkLN6OQ/5S9TVxXKZaMc8defgiWjmo7pqrAstyz0D+El3I4hY”.

Let PT be the plain text which is in the form of “<HostName>[<RunType>]:<IPAddress>{1}”, where HostName and IPAddress are string, and RunType is a character.

Let A be the random of 3 to 7 characters, and A’ = H(A)

Let B be B64 (PT), and B’ = H(B)

Let C be 32 char deliminator, and C’ = H(C)

Let D be H(MD5 (salt + MD5 (B64(PT) + A + C))), salt = “%^^*HFH)*$FJK)234sd2N@C(JGl2z94cg23″ , and D’ = H(D)

Hence, in this case, the specific malicious URL could be applied as follows:

Domain/<PHP> = http://www.elizabearden.com/waterphp/BYyH.php

A’ = “5Pb”

B’ = “6QeZky42OCQOLQuZ6dC2LQ7F56iAv6GpH6S%2Bw8npH5oAZk==”

C’ = “cc3237bc79192a096440faca0fdae107”

D’ = “349118df672db38f9e65659874b60b27” (This is the digital signature)

The hash could be verified as follow:

B64(PT) + A + C = “6QeZky42OCQOLQuZ6dC2LQ7F56iAv6GpH6S+w8npH5oAZk==” + “5Pb” + “cc3237bc79192a096440faca0fdae107”

MD5 (B64(PT) + A + C) = “766cf9e96c1a508c59f7ade1c50ecd28”

MD5 (salt + MD5(B64(PT) + A + C)) = MD5 (“%^^*HFH)*$FJK)234sd2N@C(JGl2z94cg23” + “766cf9e96c1a508c59f7ade1c50ecd28”)

= 349118df672db38f9e65659874b60b27 (This equals to D’, which means verified)

The encoded plain text (B) could be recovered:

B64(PT) = “6QeZky42OCQOLQuZ6dC2LQ7F56iAv6GpH6S+w8npH5oAZk==”;

PT = “MY_COMPUTER_NAME[F]:192.168.1.1{1}”, where “MY_COMPUTER_NAME” is the hostname, ‘F’ is the run type, “192.168.1.1” is the IP address.

Note: This example is mocked up using a dummy computer name and IP address.

The python code below could be used to decode the custom encoded string (see Figure below).

Figure 6 Python to Decode a Custom Base 64

3.3.2. Random Generator Using Mersenne Twister Algorithm

The malware was found to perform a callback at random intervals so as to evade network investigation when looking for network connections that are performed in a
regular interval. Additionally, even the name of the parameters in the get string have a random length and name, which makes it hard to create a fix signature to detect such
callbacks (see 3.3.1 to understand how a callback is created).

Figure 7 Mersenne Twister Algorithm Seeding function

 3.4. In-Memory Only Malicious Code

On the disk, the malicious code is either encrypted or compressed to evade scanning using signature rules. Only upon being loaded into memory, does the malicious code
(that appears to be in the form of a DLL) get manually loaded without the use of Windows 32 API. In this way, when an investigation is performed, the malicious DLL is not
revealed. Additionally, it makes it much harder for analysis to be performed.

Figure 8 Segments in the memory which contains the malicious code

Taking a deeper look at the decrypted malicious code, this malware was found to contain at least the following functions:

Download file
Download and execute or load library
Change sleep duration
Open and close interactive sessions

4. Conclusion

Malware is increasingly becoming more contextually advanced. It attempts to appear as much as possible like legitimate software or documents. In this example, we would
conclude the following.

1. A potentially stolen document was used as a decoy document to increase its credibility. It is also a sign that the compromised organisations could be used as a soft
target to compromise their business partners and allies.

2. It is important to put a stop to the malware infection at the very beginning, which is the exploitation phase. Once a network is compromised, it is increasingly harder
to detect such threats.

3. Anti-incident response/forensic techniques are increasingly used to evade detection. It would require a keen eye on details and a wealth of experience to identify all

http://www.fireeye.com/blog/wp-content/uploads/2013/06/6.PythonCode.jpg
http://www.fireeye.com/blog/wp-content/uploads/2013/06/7.Mersenne_twister.jpg
http://www.fireeye.com/blog/wp-content/uploads/2013/06/8.ZC_Loader.jpg

these advance techniques.

5. Works Cited

Carnegie Mellon University. (n.d.). Retrieved from http://www.cs.cmu.edu/~fp/courses/15122-f10/misc/rand/mersenne.c0

Katsuki, T. (19 Nov, 2012). Malware Targeting Windows 8 Uses Google Docs. Retrieved from http://www.symantec.com/connect/blogs/malware-targeting-windows-8-
uses-google-docs-0

I would like to thank several colleagues for their significant contributions on this post: Darien Kindlund, Ned Moran, Nart Villeneuve, and Thoufique Haq.

