
4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 1/22

Posted: April 19, 2019 by hasherezade April 19, 2019

“Funky malware format” found in Ocean Lotus sample
blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample

Recently, at the SAS conference I talked about “Funky malware formats”—atypical executable formats used
by malware that are only loaded by proprietary loaders. Malware authors use them in order to make static
detection more difficult, because custom formats are not recognized as executable by AV scanners.

Using atypical formats may also slow down the analysis process because the file can’t be parsed out of the
box by typical tools. Instead, we need to write custom loaders in order to analyze them freely.

Last year, we described one such format in a post about Hidden Bee. This time, we want to introduce you
to another case that we discussed at the SAS Conference. It is a sample of Ocean Lotus, also known as
APT 32, a threat group associated with Vietnam.

Sample

49a2505d54c83a65bb4d716a27438ed8f065c709 – the main executable

Special thanks to Minh-Triet Pham Tran for providing the material.

Overview

The sample comes with two elements—BLOB and CAB—that are both executables in the same unknown
format. The custom format is achieved by conversion from PE format (we can guess it by observing some
artifacts typical for PE files, i.e. the manifest) However, the header is fully custom, and the way of loading it
has no resemblance with PE. Some of the information from a typical PE (for example, the layout of the
sections) is not preserved: sections are shuffled.

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/
https://speakerdeck.com/hshrzd/funky-malware-formats
https://www.msreverseengineering.com/blog/2018/9/2/weekend-project-a-custom-ida-loader-module-for-the-hidden-bee-malware-family
https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/
https://beta.virusbay.io/sample/browse/46745e29f15eedfabba7e080f6295200?q=5c069cf73d275127369cb440
https://twitter.com/MinhTrietPT

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 2/22

Origin

This sample is from June 10, 2017, from the following email:

Content of the phishing email, along with its attachment

The title “Sổ tay vấn đề pháp lý cho các nhà hoạt động nhân quyền” translates to: “Handbook of legal
issues for human rights activists.” It’s a subject line for a spear phishing campaign targeting Vietnamese
activists.

The malicious sample was delivered as an attachment to the email: a zipped executable. The icon tried to
imitate a PDF (FoxitPDF reader).

An executable with FoxitFDF icon

Behavioral analysis

After being run, the sample copies itself into %TEMP%, unpacks, and launches the decoy PDF.

The main executable and the decoy copied to the Temp folder

While the user is busy reading the launched document, the dropper unpacks the real payload. It is dropped
into C:\ProgramData\Microsoft Help:

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 3/22

All the elements of the malware unpacked

The dropper executable is deleted afterwards.

The malware manages to bypass UAC at default level. We can see the application sporder.exe running with
elevated privileges.

 Persistence is provided by a simple Run key, leading to the dropped script:

Added run key (view from Sysinternals Autoruns)

The interesting factor is that the sample has an “expiry date” after which the installer no longer runs.

Internals
The main executable sporder.exe is packed with UPX. It imports the DLL SPORDER.dll:

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 4/22

Import table of SPORDER.exe (view from PE-bear)

SPORDER.dll imports another of the dropped DLLs, hp6000.dll:

Import table of SPORDER.exe (view from PE-bear)

The key malware functionality is, however, not provided by any of the dropped PE files. They are just used
as loaders.

As it turns out, the core is hidden in two unknown files: BLOB and CAB.

Custom formats

The files with extensions BLOB and CAB are obfuscated with XOR. After decoding them, we notice some
readable strings of code. However, none of them are valid PE files, and we cannot find any of the typical
headers.

BLOB

The BLOB file is obfuscated by XOR. We can see the repeating pattern and use it as an XOR key:

SPORDER.blob (original version), the repeating pattern is selected

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 5/22

As a result, we get the following clear version: 2e68afae82c1c299e886ab0b6b185658

BLOB’s header:

The BLOB file looks like a processed PE file, however, its sections appear to be in swapped order. The first
section seems to be .data, instead of .text.

We can see visible artifacts from the BZIP library and C++ standard library.

CAB

The CAB file is obfuscated with XOR in a similar way, but with a different key:

When we apply the key, we get an analogical clear version: b3f9a8adf0929b2a37db7b396d231110

This sample also has a custom header, which does not resemble the PE header. However, we found
sections inside that are typical for PE files, for example, a manifest.

Loader

As it turned out, both files are loaded by hp6000.dll: 67b8d21e79018f1ab1b31e1aba16d201

The loading function is executed in an obfuscated way: when the DllMain is executed, it patches the main
executable that loaded the DLL.

https://www.virustotal.com/#/file/f3f62d0813c1226316e12d0d403bad475b6f0128918a845695686d4b9359c546/detection
https://github.com/google/bzip2-rpc/blob/master/bzlib.c
https://www.virustotal.com/#/file/a87d6c0ef82bd430e7b54de5b41668bf2f1fa688e45206c871f259508653d006/details
https://www.virustotal.com/#/file/806d6f36e39de3c1775e0856227aab65f5772d6111101189651b67dd9e6d81f4/detection

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 6/22

First, the file name of the current module is retrieved. Then, the file is read and the address of the entry
point is fetched. Then, the analogical module that is loaded in the memory is set as an executable:

Using VirtualProtect to make the main module writable

Finally, the bytes are patched so that the entry point will redirect back to the appropriate function in the
loading DLL:

Patching the entry point of the main module, byte by byte

This is how the entry point of the main module looks after the patch is applied:

The Entry Point of the main module (sporder.exe) after patching

We see that the Virtual Address (RVA 0x1210 + DLL loading base) of the function within the DLL is moved
to EAX, and then the EAX is used as a jump target.

The function that starts at RVA 0x1210 is a loader for BLOB and CAB:

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 7/22

Beginning of the loading function

This redirection works, thanks to the fact that when the executable is loaded into the memory, before the
Entry Point of the main module is hit, all the DLLs that are in its Import Table are loaded, and the DllMain of
each is called. Just after the DLLs are loaded, the execution of the main executable starts. And in our case,
the patched entry point redirects back to the DLL.

Inside the function loading BLOB and CAB:

The function loading BLOB and CAB

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 8/22

As you can see, the CAB file is loaded first:

Executing the function loading CAB file
(unconditional)

Further, we see this function retrieving some
environmental variable. This variable is used to
store the state of the application, and is shared
between consecutive executions. Depending on
this state, one of multiple execution paths can
be taken.

The name of the variable is created by concatenating:

1. hardcoded string: L”Local\\{076B1DB0-2C01-45A5-BD0A-0CF5D6410DCB}”
2. the name of the executable
3. a local username

Setting the variable name

The content variable may be one of the following: ‘@’, ‘*’,’:’. If it is empty, the first value ‘@’ is set. Those
variables are translated to particular states that control the flow.

‘@’ -> state 1
‘*’ -> state 2
‘:’ -> state 3

The main process is restarted on each state change. Finally, the state 3 creates mutex and loads the file
with the BLOB extension.

https://blog.malwarebytes.com/wp-content/uploads/2019/04/env_var_name-1.png

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 9/22

Final state: setting the mutex and loading the BLOB

The mutex name is the same as the variable name, but with a suffix “_M” added:

Setting the mutex

While the application runs, we can see the BLOB being loaded in executable form inside the main module’s
memory:

Memory of the sporder.exe, view from Process Hacker

By comparing the format that is loaded in the memory with the format that is stored on the disk, we can see
that the beginning and the end of the BLOB is skipped in the loading process. So, we can guess that those
parts are some headers that contains the information necessary for loading, but not for execution. The
header at the beginning of the file will be referenced as Header1, and the one at the end (footer) will be
referenced as Header2.

https://blog.malwarebytes.com/wp-content/uploads/2019/04/added_m.png
https://blog.malwarebytes.com/wp-content/uploads/2019/04/loaded_blob.png

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 10/22

The Header2 file in the memory vs. its equivalent on the disk:

Comparing the memory dump with the raw file

We also found that some of the addresses were relocated (the new Image Base was added).

Reversing the reversed PE
The files with both extensions CAB and BLOB are loaded by the same function:

View from IFL (Interactive Functions List)

The core of the loader is in the following function:

This is the function that we need to analyze in
order to make sense out of the custom format.

Let’s take a look at the loading process itself.

First, DWORD of the Header1 is skipped. Then,
we have two DWORDs that are used as an XOR
key. Once they are fetched, the rest of the header
is decoded.

https://blog.malwarebytes.com/wp-content/uploads/2019/04/read_and_load_custom.png

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 11/22

After applying the key, we get the content of the file in its clear form. The next value from the headers is
used in the formula calculating the size for loading the executable part of the module. In the currently
analyzed case (the CAB file), it is 0x17000:

Header 1 at the beginning of the CAB file, decoded

So, 0x17000 + 0x2000 is the size of the memory that will be allocated for the payload.

Example (from CAB file):

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 12/22

Then, 0x17000 bytes of the payload is copied, but the beginning containing the Header1 is skipped (the
first 16 bytes).

After the module content is copied, Header2 is used to continue loading.

Looking at Header2, we can see some similarities with Header1. Again, the initial DWORD is skipped, and
then we have a value that is used in a formula calculating the size of the memory to be allocated. The new
memory region that is being allocated this time is used for the imports that are going to be loaded (the full
process will be explained further).

Conceptually, we can divide Header 2 into two parts.

First comes a prolog that contains two DWORD values. Example from the currently-analyzed CAB file:

Header2 (at the end of the CAB file) – prolog is hilighted

val[0] = 0x21A0 -> skipped
val[1] = 0x013D -> val[1]*8+0x400 -> size of the next area to allocate

Then there is a list of records of a custom type. Each record represents a different piece of information that
is necessary for loading the module. They are identified by the type ID that is represented by a DWORD at
the beginning of the record.

Header2 (at the end of the CAB file) – records are hilighted

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 13/22

Relocations

Type 1 stands for relocation. It has one DWORD as an argument. It is an address that needs to be
relocated.

typedef struct {
 DWORD reloc_field;
} reloc_t;

Parsing of the type 1

We can see how the field is used to relocate the address. Example: filling the address at 0x8590:

The address pointed by the relocation record is relocated to the base at which the module was loaded

https://blog.malwarebytes.com/wp-content/uploads/2019/04/type1_reloc.png

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 14/22

Entry point

Type 2 stands for entry point or an exported function. The pointed address is stored on the list in order to
be called later, after the loading finished. This record has three DWORD parameters.

typedef struct {
 DWORD count;
 DWORD entry_rva;

 DWORD name_rva;
 } entry_point_t;

Example of the record of type 2:

Parsing of the type 2

Address to be stored: params[1] = 0x00001030

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 15/22

Record of the type 2 in the original file

By observing the execution flow, we can confirm that indeed the stored entry point of the module is being
called later:

The address in the loader where the CAB module is called after being loaded

Exported functions are stored in the same way, along with their names.

Imports

Type 3 stands for imports. It has four DWORD parameters.

typedef struct {
 DWORD type;

 DWORD dll_rva;
 DWORD func_rva;
 DWORD iat_rva;

 } import_t;

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 16/22

Parsing of the type 3

Example of a chunk responsible for encoding imports:

Record of the type 3 in the original file

Type: params[0] = 0x00000002 – means the function will be imported by name, meaning of all the possible
types of this record.

Address of the DLL: params[1] = 0x0107DA

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 17/22

Address of the import: params[2] = 0x010774

In contrast to PE format, the address of the imported function is not loaded into the main module. Instead, it
is written into the separate executable area (in the given example it is written at VA: 0x00240001):

And then, the address where the import was filled is filled back in the main module. The address in the
main module that needs to be filled is specified by the last parameter of this record. In the given example,
chunk[3] = 0x0000E014 is being filled by 0x00240001:

Atypical IAT

The functions from the embedded list are for a loader, however, as mentioned earlier, the addresses are not
filled in a normal IAT, typical for PE format. Rather, all are filled as a list of jumps stored in a newly-allocated
memory page.

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 18/22

The import loading function not only fills the address, but also emits the necessary code for the jump:

Address of the imported function is retrieved and written into the emitted jump

Meaning of the type field

The import record has a field type, that can have one of the following values: 1,2,3,4.

The 1 and 2 are the most important: They are used for loading the imports. 1 stands for loading by ordinals,
2 for loading by name. The remaining 3 and 4 are used for cleanup of the fields that are no longer needed.
3 erases import name, 4 erases DLL name.

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 19/22

When the record of the type 3 or 4 occurs, the pointer in the IAT area is still incremented, so as a result we
can see some gaps between the functions records:

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 20/22

Functionality of the custom files
The CAB file is another installer that provides persistence to the whole package by creating a service:

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 21/22

“C:\Windows\system32\wscript.exe” /B /nologo “C:\Users\tester\Desktop\mod\sporder.vbs”

I also generate the VBS script that is dropped:

The CAB file is loaded first, just to install the malware, and then deleted.

All the espionage-related features are performed by the BLOB that is loaded later and kept persistent in the
memory of the loader.

In addition to being in a custom format, BLOB is also heavily obfuscated.

We can observe its attempts to connect to one of the CnCs:

4/23/2019 "Funky malware format" found in Ocean Lotus sample - Malwarebytes Labs | Malwarebytes Labs

https://blog.malwarebytes.com/threat-analysis/2019/04/funky-malware-format-found-in-ocean-lotus-sample/ 22/22

png.eirahrlichmann.com : 443
engine.lanaurmi.com :3389
movies.onaldest.com : 44818
images.andychroeder.com : 80
png.eirahrlichmann.com : 44818
engine.lanaurmi.com : 44818
movies.onaldest.com : 9091
images.andychroeder.com : 9091
png.eirahrlichmann.com : 3389

Some of those domains are known from
previous reports on Ocean Lotus, i.e. [the
Cyclance white paper].

Ocean Lotus: a creative APT

Ocean Lotus often surprises researchers with its creative obfuscation techniques. Recently, a different
sample of Ocean Lotus was found using steganography to hide their executables (you can read more about
it in the report of ThreatVector). The format that we described is just one of many unusual forms that their
implants can take.

Appendix

Parser for the described format:
https://github.com/hasherezade/funky_malware_formats/tree/master/lotus_parser

 Presentation from the SAS conference:

https://www.cylance.com/content/dam/cylance-web/en-us/resources/knowledge-center/resource-library/reports/SpyRATsofOceanLotusMalwareWhitePaper.pdf
https://threatvector.cylance.com/en_us/home/report-oceanlotus-apt-group-leveraging-steganography.html
https://github.com/hasherezade/funky_malware_formats/tree/master/lotus_parser

