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Vulnerability Identification

a quick road to bug hunting …

Part #1
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Wait …

• Before we proceed into exploitation, do you know 
what we mean by a:

– “Vulnerability”  or “Security hole” ?

• INFOSEC 101 …. ☺
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Bug Hunting

• “Bug hunting is the process of finding bugs in software or 
hardware” [1]

• Security bugs (aka software security vulnerabilities and 
security holes) allows attackers to:
– Remotely compromise systems

– Escalate local privileges

– Cross privilege boundaries

– Wreak havoc on a system!
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4 Fun & Profit

• Finding security bugs was done for fun and to get media 
attention

• Today, organizations are paying for security researchers to 
identify bugs
– Bounty programs (Google, FaceBook, Twitter, RedHat, etc)

– Zero Day Initiative (ZDI)

– iDefense

– Tipping Point

– Pwn2Own

– Others? Please add
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Taking Advantages of Bugs

• Software that take the advantages of a software vulnerability 
are called “exploits”

• Exploiting a widely used application, OS, protocol, etc … will 
lead to huge media attention and coverage
– Road to become a Hacking Star ☺
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Exploits Language

• No specific language for writing exploits

• Exploits can be written using any programming language
• C, C++, Perl, JavaScript, Assembly, and Python!

• I prefer Python for its simplicity and for the huge range of 
libraries that could be used for creating a PoC or a working 
exploit
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Bug Hunting Formal Process

• Writing software is a human art, and two different coders may 
code the same function with the same requirements 
differently!

• For that reason IMHO, Bug Hunting is a human art too!

• No formal process to finding bugs in SW, but there are a 
couple of techniques that can be used for bug discovery
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Common Techniques

• Static Analysis
– Static Code Analysis

– Reverse Engineering

• Dynamic Analysis 
– Debugging

– Fuzzing

• Each technique has its pros and cons
– Bug hunters mix it up
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Static Analysis

• Static Code Analysis
– Code is needed

– Tedious and time consuming

– Requires high knowledge and/or skills with given language

– Costs a lot (expensive)

• Reverse Engineering
– Code not needed

– Requires the binary file

– Time consuming

– High technical skill is needed (assembly!)
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Dynamic Analysis

• Will be covered while we progress through the course

Static Analysis and RE are out 
of the scope of this course…
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General Bug Hunting Methodology

Understand the Application 

• Read specs / documentation 
– understand purpose or business logic

• Examine attack surface
– inputs, configuration

• Identify target components an attacker would hit
– think like an attacker to defend better:

• try to hit the Database for SQLi?

• try to upload a file?

• try to spawn a shell?
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What Leads to Bugs?

• Miscalculations

• Failure to validate input

• Programmer failure to understand an API

• Failure to validate results: operations, functions, etc

• Application state failures

• Complex protocols

• Complex file formats

• Complex encoding / decoding / expansion

• etc
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