
Offensive Software
Exploitation

SEC-300-01/CSI-301-02

Ali Hadi
@binaryz0ne

Exploit Mitigation
Preventing memory corruption techniques!!!

Slides are modified from Memory Corruption 101, NYU
Poly, by Dino Dai Zovi

Exploit Mitigation – Part #2

Last session: SafeSEH, SEHOP, and Stack Guards
(Canaries)…

Data Execution Prevention (DEP)
/ No eXecute (NX)

W ^ X

www.ashemery.com

Defeating Exploits using DEP

• No-eXecute CPU technology
– Intel  eXecute Disable (XD bit)

– AMD  Enhanced Virus Protection

– ARM  eXecute Never (XN)

• Has four modes: OptIn, OptOut, AlwaysOn, AlwaysOff
– Permanent DEP uses SetProcessDEPPolicy for all programs compiled

with /NXCOMPAT option

• Use bcdedit.exe to check your Windows DEP status

5

https://support.microsoft.com/en-ca/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in

www.ashemery.com

Defeating Exploits – Past.

6

Shellcode

buffer

Padding

www.ashemery.com

Data Execution Prevention (DEP)

7

Shellcode

buffer

Padding

Crash

Mark stack as
non-

executable
using NX bit

Each memory page is
exclusively either

writable or
executable.

www.ashemery.com

Data Execution Prevention – Cont.

8

Shellcode

buffer

Padding

Crash

Worst Case:
DoS ?

www.ashemery.com

Data Execution Prevention – Cont.

Software DEP

• Makes sure that SEH exception handlers point to non-
writable memory (weak)

Hardware DEP

• Enforces that processor does not execute instructions from
data memory pages (stack, heap)

• Make page permission bits meaningful
– R != X

• Fallback to software if hardware DEP isn’t supported
– Not too good!

9

Cited [1]

www.ashemery.com

Bypassing DEP

• Return-to-libc / code reuse
– Return into the beginning of a library function

– Function arguments come from attacker-controlled stack

– Can be chained to call multiple functions in a row

• On XP SP2 and Windows 2003, attacker could return to a
particular place in NTDLL and disable DEP for the entire
process

10

Cited [1]

www.ashemery.com

Return-to-libc (ret2libc)

• An attack against non-executable memory segments (DEP,
W^X, etc)

• Instead of overwriting return address to return into shellcode,
return into a loaded library to simulate a function call

• Data from attacker’s controlled buffer on stack are used as the
function’s arguments
– i.e. call system (bash or cmd)

Getting around non-executable stack (and fix)”, Solar Designer (BUGTRAQ,
August 1997)

11

Cited [1]

www.ashemery.com

Return-to-libc (ret2libc) – Cont.

Overwrite return address by address of a
libc function

• setup fake return address and
argument(s)

• ret will “call” libc function

No injected code!

12

“/bin/sh”

&system()

Fake ret addr

Fake arg1

Buffer
(# of bytes)

Caller’s EBP

Cited [1]

www.ashemery.com

Return Chaining

• Stack unwinds upward

• Can be used to call multiple functions
in succession

• First function must return into code to
advance stack pointer over function
arguments
– i.e. pop-pop-ret

– Assuming cdecl and 2 arguments

13

&(pop-pop-ret)

Argument 1

Argument 2

Function 1

Argument 2

Function 2

&(pop-pop-ret)

Argument 1

Cited [1]

A: Address
S: Space
L: Layout
R: Randomization

…

www.ashemery.com

ASLR

• Almost all exploits require hard-coding memory addresses

• If those addresses are impossible to predict, those exploits
would not be possible

• ASLR moves around code (executable and libraries), data
(stacks, heaps, and other memory regions)

• Windows Vista randomizes DLLs at boot-time, everything else
at run-time

15

Cited [1]

www.ashemery.com

addr of buf
(0xffffd5d8)

caller’s ebp

buf

Sh
el

lc
o

d
e

0xffffe3f8

0xffffe428

0xffffd5d8

addr of buf
(0xffffd5d8)

caller’s ebp

buf

buf[0]

buf[63]
Sh

el
lc

o
d

e

0xffffd5d8

0xffffd618

Oops…
16

Address Space
Layout

Randomization

www.ashemery.com

ASLR

Traditional exploits need precise addresses

– stack-based overflows: location of shell code

– return2libc: library addresses

• Problem: program’s memory layout is fixed

– stack, heap, libraries etc.

• Solution: randomize addresses of each region!

17

www.ashemery.com

Memory

18

Program

• Code

• Uninitialized
data

• Initialized data

Mapped

• Heap

• Dynamic
libraries

• Thread stacks
• Shared Memory

Stack

• Main stack

Base address a Base address b Base address c

www.ashemery.com

ASLR Randomization

19

a + 16 bit rand r1 b + 16 bit rand r2 c + 24 bit rand r3

Program

• Code

• Uninitialized
data

• Initialized data

Mapped

• Heap

• Dynamic
libraries

• Thread stacks
• Shared Memory

Stack

• Main stack

* ≈ 16 bit random number of 32-bit system. More on 64-bit systems.

www.ashemery.com

Bypassing ASLR

• Poor entropy
– Sometimes the randomization isn’t random enough or the attacker

may try as many times as needed

• Memory address disclosure
– Some vulnerabilities or other tricks can be used to reveal memory

addresses in the target process

• Using non-ASLR enabled module

• One address may be enough to build your exploit !!!

20

Cited [1]

www.ashemery.com 21

www.ashemery.com

Return-Oriented Programming

• Instead of returning to functions,
return to instruction sequences
followed by a return instruction

• Can return into middle of existing
instructions to simulate different
instructions

• All we need are useable byte
sequences anywhere in executable
memory
– Forge shell code out of existing

application logic gadgets

22

mov eax, 0xc3084189

mov [ecx+8], eax
ret

B8 89 41 08 C3

Cited [1]

www.ashemery.com 23Image by Dino Dai Zovi

www.ashemery.com

Return-Oriented Programming

• Return into useful instruction sequences followed by return
instructions

• Chain useful sequences together to form useful operations
(“gadgets”)

Requirements:

• vulnerability + gadgets + some un-randomized code
(addresses of gadgets must be known)

24

Cited [1]

www.ashemery.com

ROP Programming

1. Disassemble code

2. Identify useful code sequences as gadgets

3. Assemble gadgets into desired shellcode

25

Cited [1]

www.ashemery.com

Return-Oriented Gadgets

• Various instruction sequences can be combined to form
gadgets

26

pop ecx
ret

mov
[ecx],eax

ret

pop eax
ret + + =

STORE
IMMEDIATE

VALUE

Cited [1]

www.ashemery.com

After all that…

• Bypassing DEP & ASLR makes you Mohammad Ali of Software
Exploitation 

27

www.ashemery.com

Summary

• Explained exploit mitigation techniques (Compiler/System)

• Explained different mitigation techniques such as DEP and
ASLR

• What is Ret2libc

• What is Return-Oriented Programming and how to benefit
from it for software exploitation

28

www.ashemery.com

References

• Memory Corruption 101, NYU Poly, Dino Dai Zovi

• DEP Evasion Techniques, http://woct-
blog.blogspot.com/2005/01/dep-evasion-technique.html

• SEHOP, http://www.sysdream.com/articles/sehop_en.pdf

• Shellcode Storm, http://shell-storm.org/shellcode/

• Stack /GS, https://msdn.microsoft.com/en-
us/library/8dbf701c%28VS.80%29.aspx?f=255&MSPPError=-
2147217396

29

http://woct-blog.blogspot.com/2005/01/dep-evasion-technique.html
http://www.sysdream.com/articles/sehop_en.pdf
http://shell-storm.org/shellcode/
https://msdn.microsoft.com/en-us/library/8dbf701c(VS.80).aspx?f=255&MSPPError=-2147217396

