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Shellcode

/* the Aleph One shellcode */
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xeb\x1f\x5e\x89"
"\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb"

"\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh";
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Shellcode?

• Small piece of code used as the payload in the exploitation of 
a software vulnerability.

• Problems of writing shellcodes:
– Not easy to write

– Architecture and OS dependent

– Must remove all string-delimiting characters
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System Calls

• Kernel trap calls used by user-space programs to access 
kernel-space functions.

• Linux:
– INT \x80, Sysenter, etc

• Windows
– INT 0x2e, Sysenter, DLL(s), API(s), etc

• System Call # stored in EAX.
– 1st ARG in EBX, 2nd in ECX, and so on.
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Shellcode Basics

• Spawning the process
– Linux/Unix: execve

– Windows: CreateProcess

• How child process deals with input and output is very 
important

• File descriptors (regardless of OS):
– 0 for Standard Input (stdin)

– 1 for Standard Output (stdout)

– 2 for Standard Error (stderr)

5



ashemery.com

Shellcode Types

• Port Binding

• Reverse

• Find Socket

• Command Execution Code

• File Transfer

• Multistage

• System Call Proxy

• Process Injection

• Kernel Space
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Port Binding Shellcode

• AKA “bind shell”

• Why/When to use this type of S.C.?

• What it does:
– Create TCP socket

– Bind socket to port (hardcoded and specified by the attacker)

– Make socket Listen

– Dup listening socket onto stdin, stdout, and stderr

– Spawn command shell (bash, cmd.exe, etc)

• Attacker connects to that port to get control

• Problems:
– Firewalls

– Not Invisible

– Can’t distinguish between connections made to it 7
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Port Binding Shellcode – Cont.
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Reverse Shellcode

• AKA ‘callback shellcode”, solves bind shell problems

• Why connect to the target, were we can make the target connect to us?

• What it does:
– Create TCP socket

– Make socket connect back to the attacker on IP+Port (hardcoded and specified by the 
attacker)

– Connect to the IP and port

– Dup the socket onto stdin, stdout, and stderr

– Spawn command shell (bash, cmd.exe, etc)

• Problems
– Outbound Filtering

– Attacker must be listening on the specified port

– Attacker behind NAT

– Target behind some proxy

– Not invisible too
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Reverse Shellcode – Cont.
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Find Socket Shellcode

• Search for the file descriptor that represents attackers 
connection
– POSIX (File descriptors) 

– Windows (File Handlers)

• Query each descriptor to find which is remotely connected to 
the attackers computer

• Hardcode the outbound port into the shellcode, makes find 
much easier on target

• No new network connection (hard to detect)!
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Find Socket Shellcode – Cont.

• Steps:

– Find file descriptor for the network connection. 

– Duplicate the socket onto stdin, stdout, and stderr.

– Spawn a new command shell process (will use original 
socket for I/O).

• Problem:
– Attacker behind NAT device, can’t control the outbound port from 

which his connection originated (P.S. won’t know what file descriptor 
is used for his connection!)
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Command Execution Shellcode

• Why create a network session when all needed to do is run a 
command?
– ssh-copy-id to target

– Adding/modifying a user account

– Modify configuration file

• Steps:
– Assemble command name

– Assemble arguments required (if any!)

– Invoke system call to execute the command

• Often very small
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File Transfer Shellcode

• Very simple, all needed is to upload a file to the target

• Steps:
– Open new file on target

– Read data from the network connection, and write it to the opened 
file (Note: connection obtained using previous discussed network 
shellcodes)

– Repeat RW until file successfully transferred.

– Close the open file

• Can be combined with a CmdExec Shellcode

14



ashemery.com

Multistage Shellcode

• Vulnerability contains un-sufficient space for injecting 
shellcode

• Consist of 2 or more shellcode stages

• Steps:
– Stage1: 

• read more shellcode, 

• pass control to Stage2 shellcode

– Stage2: accomplish the functionality required
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System Call Proxy Shellcode

• AKA Syscall Proxy

• Technique first introduced by Maximiliano Caceres (CORE 
Impact creators) which can provide a real remote interface to 
the target's kernel

• Local process running 

has no idea it is running 

remotely!

• Syscall proxy payload can 

continue to run in the 

context of the exploited 

process.
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System Call Proxy – Cont.

• Use many tools without installing anything on the target 
machine

• Memory resident

• Kernel Interface

• Request Local, Execute Remote

• Remote Debugging

• Others? use your own imagination!
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Process Injection Shellcode

• Loading libraries of code running under a separate thread of 
execution within the context of an existing process on the 
target.

• Host process can be:
– Process exploited.

– Migrate to a complete different process.

• Injected library might never get written to the hard drive and 
harness in memory (hard even for forensics to discover)
– Ex: Metasploit’s Meterpreter (later).
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Ultimate Goal

• Our goal in exploit development is always arbitrary code 
execution, so its time to get familiar with Windows shellcode
architecture.

• Windows shellcode is brutally complicated compared to Linux 
shellcode, so prepare for battle.
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Linux vs Windows Shellcode

The top image is an example of Linux hello world style shellcode, the lower image
is an equivalent example in Win32. Ouch!!!
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I’m not finished yet !

• Never run shellcode from unknown sources!

• Test the code you’re running before using it!
– Who knows that the code won’t exploit your own system?!?!?!

• So always Disassemble
– Maybe running a backdoor !

• Encoding (you’re gona need this for sure  )
– Bad char(s) is chasing you!
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?

• How can we debug a shellcode?
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Summary

• What Shellcodes are, and problems that face shellcode 
developers

• Types of Shellcodes

• Why it’s important to disassemble a shellcode you didn’t write

• Why sometimes you need to encode your shellcode

• List of useful tools related to shellcode development
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