
Offensive Software 
Exploitation

SEC-300-01/CSI-301-02

Ali Hadi
@binaryz0ne



Shellcode

/* the Aleph One shellcode */
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xeb\x1f\x5e\x89"
"\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb"

"\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh";



ashemery.com

Shellcode?

• Small piece of code used as the payload in the exploitation of 
a software vulnerability.

• Problems of writing shellcodes:
– Not easy to write

– Architecture and OS dependent

– Must remove all string-delimiting characters

3



ashemery.com

System Calls

• Kernel trap calls used by user-space programs to access 
kernel-space functions.

• Linux:
– INT \x80, Sysenter, etc

• Windows
– INT 0x2e, Sysenter, DLL(s), API(s), etc

• System Call # stored in EAX.
– 1st ARG in EBX, 2nd in ECX, and so on.

4



ashemery.com

Shellcode Basics

• Spawning the process
– Linux/Unix: execve

– Windows: CreateProcess

• How child process deals with input and output is very 
important

• File descriptors (regardless of OS):
– 0 for Standard Input (stdin)

– 1 for Standard Output (stdout)

– 2 for Standard Error (stderr)

5



ashemery.com

Shellcode Types

• Port Binding

• Reverse

• Find Socket

• Command Execution Code

• File Transfer

• Multistage

• System Call Proxy

• Process Injection

• Kernel Space



ashemery.com

Port Binding Shellcode

• AKA “bind shell”

• Why/When to use this type of S.C.?

• What it does:
– Create TCP socket

– Bind socket to port (hardcoded and specified by the attacker)

– Make socket Listen

– Dup listening socket onto stdin, stdout, and stderr

– Spawn command shell (bash, cmd.exe, etc)

• Attacker connects to that port to get control

• Problems:
– Firewalls

– Not Invisible

– Can’t distinguish between connections made to it 7



ashemery.com

Port Binding Shellcode – Cont.

8



ashemery.com

Reverse Shellcode

• AKA ‘callback shellcode”, solves bind shell problems

• Why connect to the target, were we can make the target connect to us?

• What it does:
– Create TCP socket

– Make socket connect back to the attacker on IP+Port (hardcoded and specified by the 
attacker)

– Connect to the IP and port

– Dup the socket onto stdin, stdout, and stderr

– Spawn command shell (bash, cmd.exe, etc)

• Problems
– Outbound Filtering

– Attacker must be listening on the specified port

– Attacker behind NAT

– Target behind some proxy

– Not invisible too

9



ashemery.com

Reverse Shellcode – Cont.

10



ashemery.com

Find Socket Shellcode

• Search for the file descriptor that represents attackers 
connection
– POSIX (File descriptors) 

– Windows (File Handlers)

• Query each descriptor to find which is remotely connected to 
the attackers computer

• Hardcode the outbound port into the shellcode, makes find 
much easier on target

• No new network connection (hard to detect)!

11



ashemery.com

Find Socket Shellcode – Cont.

• Steps:

– Find file descriptor for the network connection. 

– Duplicate the socket onto stdin, stdout, and stderr.

– Spawn a new command shell process (will use original 
socket for I/O).

• Problem:
– Attacker behind NAT device, can’t control the outbound port from 

which his connection originated (P.S. won’t know what file descriptor 
is used for his connection!)

12



ashemery.com

Command Execution Shellcode

• Why create a network session when all needed to do is run a 
command?
– ssh-copy-id to target

– Adding/modifying a user account

– Modify configuration file

• Steps:
– Assemble command name

– Assemble arguments required (if any!)

– Invoke system call to execute the command

• Often very small

13



ashemery.com

File Transfer Shellcode

• Very simple, all needed is to upload a file to the target

• Steps:
– Open new file on target

– Read data from the network connection, and write it to the opened 
file (Note: connection obtained using previous discussed network 
shellcodes)

– Repeat RW until file successfully transferred.

– Close the open file

• Can be combined with a CmdExec Shellcode

14



ashemery.com

Multistage Shellcode

• Vulnerability contains un-sufficient space for injecting 
shellcode

• Consist of 2 or more shellcode stages

• Steps:
– Stage1: 

• read more shellcode, 

• pass control to Stage2 shellcode

– Stage2: accomplish the functionality required

15



ashemery.com

System Call Proxy Shellcode

• AKA Syscall Proxy

• Technique first introduced by Maximiliano Caceres (CORE 
Impact creators) which can provide a real remote interface to 
the target's kernel

• Local process running 

has no idea it is running 

remotely!

• Syscall proxy payload can 

continue to run in the 

context of the exploited 

process.

16



ashemery.com

System Call Proxy – Cont.

• Use many tools without installing anything on the target 
machine

• Memory resident

• Kernel Interface

• Request Local, Execute Remote

• Remote Debugging

• Others? use your own imagination!

17

Means 
What?



ashemery.com

Process Injection Shellcode

• Loading libraries of code running under a separate thread of 
execution within the context of an existing process on the 
target.

• Host process can be:
– Process exploited.

– Migrate to a complete different process.

• Injected library might never get written to the hard drive and 
harness in memory (hard even for forensics to discover)
– Ex: Metasploit’s Meterpreter (later).

18



ashemery.com

Ultimate Goal

• Our goal in exploit development is always arbitrary code 
execution, so its time to get familiar with Windows shellcode
architecture.

• Windows shellcode is brutally complicated compared to Linux 
shellcode, so prepare for battle.



ashemery.com

Linux vs Windows Shellcode

The top image is an example of Linux hello world style shellcode, the lower image
is an equivalent example in Win32. Ouch!!!

20

Cited [1]



ashemery.com

I’m not finished yet !

• Never run shellcode from unknown sources!

• Test the code you’re running before using it!
– Who knows that the code won’t exploit your own system?!?!?!

• So always Disassemble
– Maybe running a backdoor !

• Encoding (you’re gona need this for sure  )
– Bad char(s) is chasing you!

21



ashemery.com

?

• How can we debug a shellcode?



ashemery.com

Summary

• What Shellcodes are, and problems that face shellcode 
developers

• Types of Shellcodes

• Why it’s important to disassemble a shellcode you didn’t write

• Why sometimes you need to encode your shellcode

• List of useful tools related to shellcode development

23



ashemery.com

References #1

1. Software Exploitation by Open Security Training

2. Stack Based Overflow, https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-
part-1-stack-based-overflows/

3. MEMORY CORRUPTION 101 , NYU by Dino Dai Zovi , @dinodaizovi

4. ShellCode, http://www.blackhatlibrary.net/Shellcode

5. Introduction to win32 shellcoding, Corelan, 
http://www.corelan.be/index.php/2010/02/25/exploit-writing-tutorial-part-9-introduction-to-
win32-shellcodeing/

6. Hacking/Shellcode/Alphanumeric/x64 printable opcodes, 
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/x64_printable_opcodes

7. Learning Assembly Through Writing Shellcode, 
http://www.patternsinthevoid.net/blog/2011/09/learning-assembly-through-writing-shellcode/

8. Shellcoding for Linux and Windows Tutorial, 
http://www.vividmachines.com/shellcode/shellcode.html

9. Unix Assembly Codes Development, http://pentest.cryptocity.net/files/exploitation/asmcodes-
1.0.2.pdf

10. Win32 Assembly Components, http://pentest.cryptocity.net/files/exploitation/winasm-1.0.1.pdf

https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
http://www.blackhatlibrary.net/Shellcode
http://www.corelan.be/index.php/2010/02/25/exploit-writing-tutorial-part-9-introduction-to-win32-shellcodeing/
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/x64_printable_opcodes
http://www.patternsinthevoid.net/blog/2011/09/learning-assembly-through-writing-shellcode/
http://www.vividmachines.com/shellcode/shellcode.html
http://pentest.cryptocity.net/files/exploitation/asmcodes-1.0.2.pdf
http://pentest.cryptocity.net/files/exploitation/winasm-1.0.1.pdf


ashemery.com

References #2

11. 64-bit Linux Shellcode, http://blog.markloiseau.com/2012/06/64-bit-linux-shellcode/

12. Writing shellcode for Linux and *BSD, http://www.kernel-
panic.it/security/shellcode/index.html

13. Understanding Windows’s Shellcode (Matt Miller’s, aka skape)

14. Metasploit’s Meterpreter (Matt Miller, aka skape)

15. Syscall Proxying fun and applications, csk @ uberwall.org

16. X86 Opcode and Instruction Reference, http://ref.x86asm.net/

17. Shellcode: the assembly cocktail, by Samy Bahra, 
http://www.infosecwriters.com/hhworld/shellcode.txt

18. Grayhat Hacking: The Ethical Hacker’s Handbook, 3rd Edition

19. The Shellcoders Handbook,

20. The Art of Exploitation, 2nd Edition,

21. Exploit-DB: http://www.exploit-db.com/shellcodes/

22. Shell Storm: http://www.shell-storm.org/shellcode/

23. BETA3 - Multi-format shellcode encoding tool, http://code.google.com/p/beta3/

24. X86 Opcode and Instruction Reference, http://ref.x86asm.net/

25. bin2shell, http://blog.markloiseau.com/wp-content/uploads/2012/06/bin2shell.tar.gz

http://blog.markloiseau.com/2012/06/64-bit-linux-shellcode/
http://www.kernel-panic.it/security/shellcode/index.html
http://ref.x86asm.net/
http://www.infosecwriters.com/hhworld/shellcode.txt
http://www.shell-storm.org/shellcode/
http://code.google.com/p/beta3/
http://ref.x86asm.net/

