
Offensive Software
Exploitation

Summer 2020

Ali Hadi
@binaryz0ne

Vulnerability Identification

a quick road to bug hunting …

Part #1

ashemery.com 3

Outline – Bug Hunting

• Bug Hunting

• 4 Fun & Profit

• Taking Advantages of Bugs

• Exploits Language

• Bug Hunting Formal Process

• Common Techniques

ashemery.com 4

Wait …

• Before we proceed into exploitation, do you know
what we mean by a:

– “Vulnerability” or “Security hole” ?

• INFOSEC 101 …. ☺

ashemery.com 5

Bug Hunting

• “Bug hunting is the process of finding bugs in software or
hardware” [1]

• Security bugs (aka software security vulnerabilities and
security holes) allows attackers to:
– Remotely compromise systems

– Escalate local privileges

– Cross privilege boundaries

– Wreak havoc on a system!

ashemery.com 6

4 Fun & Profit

• Finding security bugs was done for fun and to get media
attention

• Today, organizations are paying for security researchers to
identify bugs
– Bounty programs (Google, FaceBook, Twitter, RedHat, etc)

– Zero Day Initiative (ZDI)

– iDefense

– Tipping Point

– Pwn2Own

– Others? Please add

ashemery.com 7

Taking Advantages of Bugs

• Software that take the advantages of a software vulnerability
are called “exploits”

• Exploiting a widely used application, OS, protocol, etc … will
lead to huge media attention and coverage
– Road to become a Hacking Star ☺

ashemery.com 8

Exploits Language

• No specific language for writing exploits

• Exploits can be written using any programming language
• C, C++, Perl, JavaScript, Assembly, and Python!

• I prefer Python for its simplicity and for the huge range of
libraries that could be used for creating a PoC or a working
exploit

ashemery.com 9

Bug Hunting Formal Process

• Writing software is a human art, and two different coders may
code the same function with the same requirements
differently!

• For that reason IMHO, Bug Hunting is a human art too!

• No formal process to finding bugs in SW, but there are a
couple of techniques that can be used for bug discovery

ashemery.com 10

Common Techniques

• Static Analysis
– Static Code Analysis

– Reverse Engineering

• Dynamic Analysis
– Debugging

– Fuzzing

• Each technique has its pros and cons
– Bug hunters mix it up

ashemery.com 11

Static Analysis

• Static Code Analysis
– Code is needed

– Tedious and time consuming

– Requires high knowledge and/or skills with given language

– Costs a lot (expensive)

• Reverse Engineering
– Code not needed

– Requires the binary file

– Time consuming

– High technical skill is needed (assembly!)

ashemery.com 12

Dynamic Analysis

• Will be covered while we progress through the course

Static Analysis and RE are out
of the scope of this course…

ashemery.com 13

General Bug Hunting Methodology

Understand the Application

• Read specs / documentation
– understand purpose or business logic

• Examine attack surface
– inputs, configuration

• Identify target components an attacker would hit
– think like an attacker to defend better:

• try to hit the Database for SQLi?

• try to upload a file?

• try to spawn a shell?

ashemery.com 14

What Leads to Bugs?

• Miscalculations

• Failure to validate input

• Programmer failure to understand an API

• Failure to validate results: operations, functions, etc

• Application state failures

• Complex protocols

• Complex file formats

• Complex encoding / decoding / expansion

• etc

ashemery.com 15

References

• A Bug Hunter’s Diary, Tobias Klein, No Starch Press
• Sam Bowne, Malware Analysis Course Slides, http://samsclass.info/126/126_F13.shtml
• Fuzz Testing, http://en.wikipedia.org/wiki/Fuzz_testing
• Fuzzing: Brute Force Vulnerability Discovery, Michael Sutton, et al, Addison-Wesely
• University of Wisconsin Fuzz Testing (the original fuzz project)
• Fuzzing 101, NYU/Poly.edu, Mike Zusman, http://pentest.cryptocity.net/fuzzing/
• Fuzzing for Security Flaws, John Heasman, Stanford University
• EVERYONE HAS HIS OR HER OWN FUZZER, BEIST (BEISTLAB/GRAYHASH), www.codeengn.com
• An Introduction to SPIKE, the Fuzzer Creation Kit, Dave Aitel,

http://www.docstoc.com/docs/2687423/An-Introduction-to-SPIKE-the-Fuzzer-Creation-Kit---PowerPoint
• Common Vulnerablities and Exposures, http://cve.mitre.org/
• Common Weakness Enumeration, http://cwe.mitre.org/
• Seven kingdoms of weaknesses Taxonomy,

http://cwe.mitre.org/documents/sources/SevenPerniciousKingdomsTaxonomyGraphic.pdf
• Common Configuration Enumeration, http://cce.mitre.org/
• National Vulnerability Database, http://nvd.nist.gov/home.cfm
• Exploit Database, http://exploit-db,com
• http://www.security-database.com/toolswatch/+-Fuzzers-+.html
• http://caca.zoy.org/wiki/zzuf
• https://code.google.com/p/ouspg/wiki/Radamsa

http://samsclass.info/126/126_F13.shtml
http://en.wikipedia.org/wiki/Fuzz_testing
http://pentest.cryptocity.net/fuzzing/
http://www.codeengn.com/
http://www.docstoc.com/docs/2687423/An-Introduction-to-SPIKE-the-Fuzzer-Creation-Kit---PowerPoint
http://cve.mitre.org/
http://cwe.mitre.org/
http://cwe.mitre.org/documents/sources/SevenPerniciousKingdomsTaxonomyGraphic.pdf
http://cce.mitre.org/
http://nvd.nist.gov/home.cfm
http://exploit-db,com/
http://www.security-database.com/toolswatch/+-Fuzzers-+.html
http://caca.zoy.org/wiki/zzuf
https://code.google.com/p/ouspg/wiki/Radamsa

