Offensive Software
Exploitation

SEC-300-01/CSI-301-02

Ali Hadi
@binaryz0One

Exploit Mitigation

Preventing memory corruption techniques!!!

Slides are modified from Memory Corruption 101, NYU
Poly, by Dino Dai Zovi

Exploit Mitigation — Part #2

Last session: SafeSEH, SEHOP, and Stack Guards
(Canaries)...

Data Execution Prevention (DEP)
/ No eXecute (NX)

WA X

Defeating Exploits using DEP

* No-eXecute CPU technology
— Intel = eXecute Disable (XD bit)
— AMD - Enhanced Virus Protection
— ARM -2 eXecute Never (XN)

* Has four modes: Optlin, OptOut, AlwaysOn, AlwaysOff

— Permanent DEP uses SetProcessDEPPolicy for all programs compiled
with /NXCOMPAT option

e Use bcdedit.exe to check your Windows DEP status

www.ashemery.com

Defeating Exploits — Past.

Shellcode

ﬁ

www.ashemery.com

Data Execution Prevention (DEP)

exclusively either
writable or
executable

Data Execution Prevention — Cont.

Worst Case:
DoS ?

Data Execution Prevention — Cont.

Cited [1]

Software DEP

* Makes sure that SEH exception handlers point to non-
writable memory (weak)

Hardware DEP

* Enforces that processor does not execute instructions from
data memory pages (stack, heap)

* Make page permission bits meaningful
— RI=X

* Fallback to software if hardware DEP isn’t supported
— Not too good!

Bypassing DEP

Cited [1]

Return-to-libc / code reuse

— Return into the beginning of a library function

— Function arguments come from attacker-controlled stack
— Can be chained to call multiple functions in a row

On XP SP2 and Windows 2003, attacker could return to a
particular place in NTDLL and disable DEP for the entire
process

www.ashemery.com 10

Return-to-libc (ret2libc)

Cited [1]

An attack against non-executable memory segments (DEP,
WAX, etc)

Instead of overwriting return address to return into shellcode,
return into a loaded library to simulate a function call

Data from attacker’s controlled buffer on stack are used as the
function’s arguments

— i.e. call system (bash or cmd)

Getting around non-executable stack (and fix)”, Solar Designer (BUGTRAQ,
August 1997)

www.ashemery.com 11

Return-to-libc (ret2libc) — Cont.

Cited [1]

Overwrite return address by address of a “/bin/sh”
libc function

* setup fake return address and -
e e

* ret will “call” libc function

&system()

No injected code! Caller’s EBP

Buffer
(# of bytes)

12

www.ashemery.com

Return Chaining

Cited [1]

Stack unwinds upward

Can be used to call multiple functions
In succession

First function must return into code to
advance stack pointer over function
arguments

— i.e. pop-pop-ret

Argument 2

— Assuming cdecl and 2 arguments Argument 1

&(pop-pop-ret)

Function 1

www.ashemery.com 13

A: Address

S: Space

L: Layout

R: Randomization

ASLR

Cited [1]

Almost all exploits require hard-coding memory addresses

If those addresses are impossible to predict, those exploits
would not be possible

ASLR moves around code (executable and libraries), data
(stacks, heaps, and other memory regions)

Windows Vista randomizes DLLs at boot-time, everything else
at run-time

www.ashemery.com 15

buf[63]

buf[O]

addr of buf
(Oxffffd5d8)

caller’s ebp

buf

Shellcode

Oxffffd618

Oxffffd5d8

www.ashemery.com

addr of buf
(Oxffffd5d8)

caller’s ebp

buf

Shellcode

Oxffffed28

Oxffffe3f§

16

ASLR

Traditional exploits need precise addresses

— stack-based overflows: location of shell code
— returnZ2libc: library addresses

* Problem: program’s memory layout is fixed
— stack, heap, libraries etc.

e Solution: randomize addresses of each region!

www.ashemery.com

17

Memory

Base address a Base address b Base address c

)))
[1 1 |

18

www.ashemery.com

ASLR Randomization

a +16 bitrand r,
)

b+ 16 bitrandr,

c + 24 bit rand r;

[

)
1

www.ashemery.com

)
1

19

Bypassing ASLR

Cited [1]

* Poor entropy

— Sometimes the randomization isn’t random enough or the attacker
may try as many times as needed

* Memory address disclosure

— Some vulnerabilities or other tricks can be used to reveal memory
addresses in the target process

* Using non-ASLR enabled module

* One address may be enough to build your exploit !!!

www.ashemery.com 20

Return-Oriented Programming

Cited [1]

Instead of returning to functions,
:) & mov eax, O0xc3084189

return to instruction sequences

followed by a return instruction

Can return into middle of existing ‘

!nstruct!onstoS|mulated|fferent 88 89 41 08 C3
instructions

All we need are useable byte

sequences anywhere in executable ‘

memory

— Forge shell code out of existing
application logic gadgets

mov [ecx+8], eax
ret

www.ashemery.com

R Eilr12:0r E1ied
PLOGrdMaginG

SAITIKEEIN A NE0ae

RONE, BUlI A SiFEp i cutinG
sUiARHERS £7Y0)) MERaZINE S,
‘LU ZGE cURtlG KN
MEAruURi e aS frOM MEYR:
M'Aqu

Return-Oriented Programming

Cited [1]

* Return into useful instruction sequences followed by return
instructions

* Chain useful sequences together to form useful operations
(“gadgets”)

Requirements:

* vulnerability + gadgets + some un-randomized code
(addresses of gadgets must be known)

ROP Programming

Cited [1]

1. Disassemble code
2. ldentify useful code sequences as gadgets
3. Assemble gadgets into desired shellcode

www.ashemery.com 25

Return-Oriented Gadgets

Cited [1]

* Various instruction sequences can be combined to form
gadgets

_ STORE
pop eax I pop ecx + [ecx] eax IMMEDIATE

ret ret

ret VA LU E

www.ashemery.com 26

After all that...

Bypassing DEP & ASLR makes you Mohammad Ali of Software
Exploitation ©

www.ashemery.com 27

Summary

Explained exploit mitigation techniques (Compiler/System)
Explained different mitigation techniques such as DEP and
ASLR

What is Ret2libc

What is Return-Oriented Programming and how to benefit
from it for software exploitation

www.ashemery.com 28

References

Memory Corruption 101, NYU Poly, Dino Dai Zovi

DEP Evasion Techniques, http://woct-
blog.blogspot.com/2005/01/dep-evasion-technique.html

SEHOP, http://www.sysdream.com/articles/sehop en.pdf
Shellcode Storm, http://shell-storm.org/shellcode/

Stack /GS, https://msdn.microsoft.com/en-
us/library/8dbf701c%28VS.80%29.aspx?f=255&MSPPError=-
2147217396

www.ashemery.com 29

http://woct-blog.blogspot.com/2005/01/dep-evasion-technique.html
http://www.sysdream.com/articles/sehop_en.pdf
http://shell-storm.org/shellcode/
https://msdn.microsoft.com/en-us/library/8dbf701c(VS.80).aspx?f=255&MSPPError=-2147217396

