Offensive Software
Exploitation

Summer 2020

Ali Hadi

Intro. to Software Exploitation

Prepared by:
Ali Hadi
Shadi Naif,

Part #2

Outline

Introduction Functions, Low Level View
CPU Instructions & Understanding the Process
Registers Call Types

Functions, High Level View Assembly Language

General Trace
Stacks and Stack Frames L

Code Optimizations
Memory Addressing Stack Reliability

Managing Stack Frames

ashemery.com

Software Exploitation Intro.

A program is made of a set of rules following a

certain execution flow that tells the computer what
to do.

Exploiting the program (Goal):

Getting the computer to do what you want it to do, even if

the program was designed to prevent that action [The Art
of Exploitation, 2" Ed].

First documented attack 1972 (US Air Force Study).

Even with the new mitigation techniques, software
today is still exploited!

ashemery.com

What is needed?

To understand software exploitation, we
need a well understanding of:

Computer Languages
Operating Systems
Architectures

ashemery.com

What will be covered?

What we will cover is:
CPU Registers
How Functions Work

Memory Management for the IA32 Architecture
A glance about languages: Assembly and C

Why do | need those?

Because most of the security holes come from memory
corruption!

ashemery.com

CPU Instructions & Registers

The CPU contains many registers depending on its model &
architecture.

In this lecture, we are interested in three registers: EBP, ESP,
and EIP which is the instruction pointer.

Instruction is the lowest execution term for the CPU, while
Statement is a high-level term that is compiled and then
loaded as one or many instructions.

Assembly language is the human friendly representation of
the instructions machine code.

ashemery.com

CPU Registers Overview

Accumulator

Base Index
Counter

Data

Base Pointer
Stack Pointer
Instruction Pointer

Source Index Pointer

Destination Index Pointer

Some registers can be accessed using there lower and higher words.
For example, AX register; lower word AL and higher word AH can be
accessed separately.

The above is not the complete list of CPU registers.

ashemery.com

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered: %s\n", Xx);

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

int main (int argc, char *argv([]) {
if (argc > 1)
myfunl (argv[1l]);
else printf (“No arguments!\n");

ashemery.com

Functions: High Level View

void

myfun? fjchar *x) {

printf (“You entered: $s\n", x);

}

void

myfunl f(jchar *str) {

char buffer[lo];

A function consist of:

Name

strcpy (butfer, str);
myfun2 (buffer);

Parameters (or arguments)

}

int|main|ant argc, char *argv([]])

Body

if

(argc > 1)
myfunl (argv[1l]);

else printf (“No arguments!\n") ;

Local variable definitions

Return value type

ashemery.com

10

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered: %s\n", Xx);

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

int main (int argc, char *argv([]) {
if (argc > 1)
myfunl (argv[1l]);
else printf (“No arguments!\n");

ashemery.com

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

11

Functions: High Level View

void myfun2 (char *x) {

printf (“You entered: %s\n",

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]);

else printf (“No arguments!\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

12

Functions: High Level View

void myfun2 (char *x) {

printf (“You entered: %s\n",

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv([1l]);

else printf (“No arguments!\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

13

Functions: High Level View

void myfun2 (char *x) {

printf (“You entered: %s\n",

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

PUSH position into
the Stack

myfunl (argv[1l]);

14

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered:

}

void|myfunl (char *str)

char buffer[lo];
strcpy (buffer, str);
myfun2 (buffer);

}

$s\n",

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

myfunl (argv[1l]);

15

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered:

}

void myfunl (char *str)
char buffer[lo];
strcpy (buffer, str);

myfun2 (buffer);
}

$s\n",

{

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

myfunl (argv[1l]);

16

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered:

}

void myfunl (char *str)
char buffer[lo];

strcpy (buffer, str);

myfun2 (buffer);
}

$s\n",

{

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

myfunl (argv[1l]);

17

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered:

}

void myfunl (char *str)
char buffer[l6];
strcpy (buffer, str);

myfun2 (buffer);

}

$s\n",

{

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

myfunl (argv[1l]);

18

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered:

}

void myfunl (char *str)
char buffer[l6];
strcpy (buffer, str);

myfun2 (buffer);

}

$s\n",

{

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!'\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

PUSH position into
the Stack

myfun2 (buffer);

myfunl (argv[1l]);

19

Functions: High Level View

void|myfun2 (char *x) | {

printf (“You entered:

}

void myfunl (char *str)
char buffer[l6];
strcpy (buffer, str);

myfun2 (buffer);

}

$s\n",

{

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!'\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

myfun2 (buffer);

myfunl (argv[1l]);

20

Functions: High Level View

void myfun? (char *x) {

printf (“You entered:

$s\n",

X) 7

}

void myfunl (char *str)
char buffer[l6];
strcpy (buffer, str);

myfun2 (buffer);

}

{

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!'\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

myfun2 (buffer);

myfunl (argv[1l]);

21

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered:

}

void myfunl (char *str)
char buffer[l6];
strcpy (buffer, str);

myfun2 (buffer);

}

$s\n",

{

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!'\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

myfun2 (buffer);

myfunl (argv[1l]);

Py

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered:

}

void myfunl (char *str)
char buffer[l6];
strcpy (buffer, str);

myfun2 (buffer);

}

$s\n",

{

X) 7

int main (int argc, char *argv([])

if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!'\n");

ashemery.com

{

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

POP Position out of
the Stack

myfun2 (buffer);

myfunl (argv[1l]);

23

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered: %s\n", Xx);

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

int main (int argc, char *argv([]) {
if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!\n");

ashemery.com

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

myfunl (argv[1l]);

24

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered: %s\n", Xx);

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

int main (int argc, char *argv([]) {
if (argc > 1)

myfunl (argv[1l]) ;

else printf (“No arguments!\n");

ashemery.com

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

POP Position out of
the Stack

myfunl (argv[1l]);

25

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered: %s\n", Xx);

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

int main (int argc, char *argv([]) {
if (argc > 1)
myfunl (argv[1l]);

else printf (“No arguments!\n");

ashemery.com

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

26

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered: %s\n", Xx);

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

int main (int argc, char *argv([]) {
if (argc > 1)
myfunl (argv[1l]);
else printf (“No arguments!\n");

ashemery.com

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return Positions

27

Functions: High Level View

void myfun2 (char *x) {
printf (“You entered: %s\n", Xx);

}

void myfunl (char *str) {
char buffer[l6];
strcpy (buffer, str);
myfun2 (buffer);

}

int main (int argc, char *argv([]) {
if (argc > 1)
myfunl (argv[1l]);
else printf (“No arguments!\n");

ashemery.com

A stack is the best
structure to trace the
program execution

End of Execution

Saved Return Positions

28

Stack & Stack Frames

There is no physical stack inside the CPU. Instead; the CPU
uses the main memory to represent a logical structure of a
stack

The operating system reserves a contiguous raw memory
space for the stack

This stack is logically divided into many Stack Frames

The stack and all stack frames are represented in the memory
upside-down

ashemery.com 29

Stack & Stack Frames — Cont.

A stack frame is represented by two pointers:
Base pointer (saved in EBP register):

the memory address that is equal to (EBP-1) is the first
memory location of the stack frame.

Stack pointer (saved in ESP register):

the memory address that is equal to (ESP) is the top memory
location of the stack frame.

ashemery.com

30

Stack & Stack Frames — Cont.

When Pushing or Popping values, ESP register value is
changed (the stack pointer moves)

Base Pointer (value of EBP) never changes unless the current
Stack Frame is changed.

The stack frame is empty when EBP value = ESP value.

ashemery.com 31

Memory Addressing

User Space

— | Start of Memory
0x00000000

Main Memory

Top of Stack >

Stack

Start of Stack>

Top of Memory
OxFFFFFFFF

ashemery.com

—— o - ——— ————

e e e e e e

32

Stack & Stack Frames inside the
Main Memory

Main Memory
Start of Memory

Top of Stack >

Empty memory of the

___ Stack

Note 1:

The newest stack frame is Newest Stack Frame
_indexed as , Stack

. the older one , | tac

And the Oldest

Stack Frame is indexed ... Stack Frame

Oldest Stack Frame

Start of Stack > —

Top.of Memeory

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

ESP points to the top
of the current Stack
Frame. And it points
to the top of the
Stack as well.

Whenever a function
is called, a new Stack
Frame is created.
Local variables are
also allocated in the
bottom of the created
Stack Frame.

Start of Memory

Stack Frame O

Top.of Memeory

Main Memory

Empty memory of the
Stack

34

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

To create a new Stack
Frame, simply change

EBP value to be equal
to ESP.

Main Memory
Start of Memory

Empty memory of the
Stack

Stack Frameo|

Top.of Memeory

35

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

Now EBP = ESP, this
means that the

Newest Stack Frame
is empty. The
previous stack frame
now is indexed as
Stack Frame 1

Start of Memory

Stack Frame O

Stack Frame 1

Top.of Memeory

Main Memory

Empty memory of the
Stack

36

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

Now EBP = ESP, this
means that the

Newest Stack Frame
is empty. The
previous stack frame
now is indexed as
Stack Frame 1

Let’s try again. This time
we should save EBP value
before changing it.

Start of Memory

But WAIT!
Stack Frame 1
base is lost!

Stack Frame O

Stack Frame 1

Top.of Memeory

Main Memory

0ty memory of the
Stack

37

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

First, PUSH value of
EBP to save it.

Main Memory
Start of Memory

Empty memory of the
Stack

Stack Frameo|

Top.of Memeory

38

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

First, PUSH value of
EBP to save it.

Now change the value
of EBP.

Main Memory
Start of Memory

Empty memory of the
Stack

Stack Frame O

Top.of Memeory

- — -
y

39

Managing Stack Frames

The Current Stack

Frame is always the
Newest Stack Frame

First, PUSH value of
EBP to save it.

Now change the value
of EBP.

PROLOGUE is:
Creating new Stack

Frame then allocating
space for local
variables.

Start of Memory

Stack Frame O

Stack Frame 1

Top.of Memeory

Main Memory

Empty memory of the
Stack

Managing Stack Frames

Main Memory
The Current Stack Start of Memory

Frame is always the
Newest Stack Frame

PUSH and POP
operations affect ESP Empty memory of the
value only. Stack

We don’t need to save

ESP value for the
previous stack frame, Stack Frame 0

because it is equal to

Stack Frame 1

the current EBP value

Top.of Memeory . 41

Managing Stack Frames

Main Memory
The Current Stack Start of Memory

Frame is always the
Newest Stack Frame

To empty out the

current Stack Frame, Empty memory of the

ESP value should be Stack

set to the same value
of EBP

Stack Frame O

Stack Frame 1

Top.of Memeory . 42

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

To empty out the
current Stack Frame,
ESP value should be
set to the same value
of EBP

To delete the current
Stack Frame and
return back to the
previous one, we
should POP out the
top value from the
Stack into EBP.

Start of Memory

Stack Frame O

Stack Frame 1

Top.of Memeory

Main Memory

Empty memory of the
Stack

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

To empty out the
current Stack Frame,
ESP value should be
set to the same value
of EBP

To delete the current
Stack Frame and
return back to the
previous one, we
should POP out the
top value from the
Stack into EBP.

Start of Memory

EPILOGUE is:
Emptying the
current stack

frame and

deleting it, then
returning to the
calling function

Stack Frame O

Top.of Memeory

Main Memory

Empty memory of the
Stack

44

Functions: Low Level View
- Understanding the Process -

A simple
function
call in a
high level
language is
not a
simple
operation

as it seems.

add(x, y):

p—

PUSH arguments
(if any)

Call the function

PROLOGUE

Execute the function

EPILOGUE

POP arguments

PUSH arguments
(if any)
PUSH EIP

Jump to function’s
first instruction

PUSH EBP
Set EBP = ESP

PUSH local variables
(if any)

Execute the function

POP out all local
variable

POP EBP
POP EIP
POP arguments

Functions: Low Level View
- Understanding the Process -

Each PUSH operation must be
reversed by a POP operation
somewhere in the execution

Performing (PUSH arguments) is
done by the caller function.

Arguments are pushed in a
reverse order.

Performing (POP arguments) can
be done by the caller or the callee
function. This is specified by the
(call type) of the callee function

Return value of the callee is
saved inside EAX register while
executing the function’s body

~—

ashemery.com

PUSH arguments
(if any)
PUSH EIP

Jump to function’s
first instruction

PUSH EBP
Set EBP = ESP

PUSH local variables
(if any)

Execute the function

POP out all local
variable

POP EBP

POP EIP
POP arguments

Functions, Low Level View
- Call Types -

Programming languages provide a mechanism to specify
the call type of the function.

(Call Type) is not ().
The caller needs to know the call type of the callee to
specify how arguments should be passed and how Stack
Frames should be cleaned.
There are many call types; two of them are commonly used
in most programming languages:
cdecl: the default call type for C functions. The caller is
responsible of cleaning the stack frame.

stdcall: the default call type for Win32 APIs. The callee is
responsible of cleaning the stack frame.

ashemery.com 47

Other(s)

Some call types use deferent steps to process the function
call. For example, fastcall send arguments within Registers
not by the stack frame. (Why?)

ashemery.com

48

Functions: Low Level View
- Assembly Language -

Each of these steps are processed by one
or many instructions.

As like as other programming languages;
assembly provides many ways to perform
the same operation. Therefore, the
disassembled code can vary from one
compiler to another.

Now we are going to introduce the
default way for performing each of these
steps using assembly language.

ashemery.com

PUSH arguments
(if any)
PUSH EIP

Jump to function’s
first instruction

PUSH EBP
Set EBP = ESP

PUSH local variables
(if any)

Execute the function

POP out all local
variable

POP EBP

POP EIP
POP arguments

L)

callee caller

caller

Functions: Low Level View
- Assembly Language -

push
push

call

push
mov
push

cdecl

<arg2>
<argl>

<callee>

ebp

ebp, esp
<default
value of
local
variable>

pop
pop

ecx
ecx

push
push

call

push
mov
push

stdcall

<arg2>
<argl>

<callee>

ebp

ebp, esp
<default
value of
local
variable>

<args size>

ashemery.com

PUSH arguments
(if any)
PUSH EIP

Jump to function’s
first instruction

PUSH EBP
Set EBP = ESP

PUSH local variables
(if any)

Execute the function

POP out all local
variable

POP EBP

POP EIP
POP arguments

o

Functions: Low Level View
- General Trace -

cdecl

push <arg2> CEIP

push <argl>

1 1

1 1

1 1

1 1

l l

EIP register always i i
call <callee> points to the NEXT i i
instruction to be : |

push ebp d h [:
mov S, e executed. Once the i |
push <default CPU executes the i i
value of instruction, it i i

local automatically moves i i
variable> EIP forward. i i

1 1

Caller Stack Frame

pop ecx _EcP_JI— 4
1
1

pop ecx E

ashemery.com

push
push

Functions: Low Level View
- General Trace -

cdecl

<arg2>
<argl>

call <callee>

push
mov
push

ebp

ebp, esp
<default
value of
local
variable>

pop
pop

ecx
ecx

(i

ashemery.com

Functions: Low Level View
- General Trace -

cdecl

push <arg2> (call) actually
push <argl> pushes EIP value

call <callee> =T then performs an

unconditional jump i i

push ebp to the callee (by
mov ebp, esp

push <default
value of
local
variable>

changing EIP value)

pop ecx
pop ecx

ashemery.com

push
push

Functions: Low Level View
- General Trace -

cdecl

<arg2>
<argl>

call <callee>

push
mov
push

ebp

ebp, esp
<default
value of
local
variable>

pop
pop

ecx
ecx

EIP

ashemery.com

Caller EIP
<argl>
<arg2>

push
push

call <callee>

push
mov
push

Functions: Low Level View
- General Trace -

cdecl

<arg2>
<argl>

ebp

ebp, esp
<default
value of
local
variable>

pop
pop

ecx
ecx

EIP

ashemery.com

EBP value
Caller EIP
<argl>

<arg2>

push
push

call <callee>

push
mov
push

Functions: Low Level View
- General Trace -

cdecl

<arg2>
<argl>

ebp

ebp, esp
<default
value of
local
variable>

pop
pop

ecx
ecx

EIP

Let’s say we have
one local variable of
type int.

EBP value
Caller EIP
<argl>

<arg2>

ashemery.com

Functions: Low Level View
- General Trace -

cdecl Start of Memory

push <arg2> ESP may change inside the
push <argl> callee body, but EBP does

not change. Therefore, EBP
call <callee> location is used to locate

push ebp variable and arguments.

mov ebp, esp m
push <default m
value of
local
variable>

Zero

EBP value

Caller EIP
<argl>

<arg2>

pop
pop

ecx
ecx

ashemety.cd@p of Memory

Functions: Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>

push ebp

mov ebp, esp

push <default
value of
local
variable>

pop ecx
pop ecx

Start of Memory

ESP can change in the callee
body, but EBP does not
change. Therefore, EBP
location is used to locate
variable and arguments.

EBP -4
Remember that -33_

each row of this

stack graph is
: __EBP+8
32bits (4 bytes) P>

EBP + 12

ashemety.cd@p of Memory

Zero

EBP value

Caller EIP
<argl>

<arg2>

Functions: Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>

push ebp

mov ebp, esp m Zero

push <default m EBP value
value of
local At the end of the Ca ler EIP
variable> callee, <argl>

8] | EPILOGUE is <arg2>
processed.

Cleaning variable
pop ecx space is made by | | 1

) e
pop s a POP operation. i .

ashemery.com

Functions: Low Level View
- General Trace -

cdecl

<arg2>
<argl>

call <callee>

push ebp

mov ebp, esp

push <default
value of
local
variable>

push
push

EIP

ecx
ecx

pop
pop

Now caller base
EBP should be
retrieved

ashemery.com

EBP value
Caller EIP
<argl>

<arg2>

Functions: Low Level View
- General Trace -

cdecl

push <arg2>
push <argl> Here comes the deference

between cdecl and stdcall

push ebp
mov ebp, esp
push <default

ret instruction
simply pops a value
from the stack and

value of save it in EIP, that m Caller EIP
local :
: should direct the < 1>
variable> . S—
execution back to <arqg?2>
the caller =
EIP

pop ecx _EcP_JI— 4
1) 1
1 . 1

pop ecx

ashemery.com

push
push

- General Trace -

cdecl

<arg2>
<argl>

call <callee>

push
mov
push

ebp

ebp, esp
<default
value of
local

variable>

Here comes the deference
between cdecl and stdcall

Now the caller is
responsible of
cleaning the stack
from passed
arguments using
POP operations.

pop
pop

ecx
ecx

ElP B=»

ashemery.com

Functions: Low Level View

push
push

- General Trace -

cdecl

<arg2>
<argl>

call <callee>

push
mov
push

ebp

ebp, esp
<default
value of
local

variable>

Here comes the deference
between cdecl and stdcall

Now the caller is
responsible of
cleaning the stack
from passed

POP operations.

pop
pop

ecx
ecx

arguments using

EIP

ashemery.com

Functions: Low Level View

push
push

Functions: Low Level View

- General Trace -

cdecl

<arg2>
<argl>

call <callee>

push
mov
push

ebp

ebp, esp
<default
value of
local
variable>

pop
pop

ecx
ecx

Here comes the deference
between cdecl and stdcall

ashemery.com

push
push

call <callee>

push
mov
push

Functions: Low Level View
- General Trace -

<arg2>
<argl>

ebp

ebp, esp
<default
value of
local
variable>

Here comes the deference
between cdecl and stdcall

ret instruction
proceeded by an
integer value will
add that value to

ESP immediately m
after performing
POP EIP

ashemery.com

Caller EIP
<argl>
<arg2>

Functions: Low Level View
- General Trace -

push <arg2>
push <argl> Here comes the deference

between cdecl and stdcall

push ebp Now EIP is

mov. ebp, esp changed, but the

pushiicdecault CPU did not finish
valuelof executing the
HeEEl instruction. It will
LB G add <args size>

value to ESP.

In this example, we

have two 32bits | | |

arguments (8 bytes)
l l

ashemery.com

<args size>

Functions: Low Level View
- General Trace -

push <arg2>
push <argl> Here comes the deference

between cdecl and stdcall

push ebp

mov ebp, esp

push <default
value of
local
variable>

cleaned by the
callee. Now
execution is back to
the caller.

The stack has been i i

<args size>

ashemery.com

Functions: Low Level View
- Code Optimization -

Compilers do not generate the default code like
previous example. They use intelligent methods
to optimize the code to be smaller and faster.

For example, instructions mov and xor can be
used to set EAX register to zero, but xor is
smaller as a code byte. Therefore, compilers use
xor instead of mov for such scenarios:

mov eax, O - code bytes: B8 00 00 00 00

XOr eax, eax - code bytes: 3C 00
Discussing code optimization is out of the scope
of this course, but we are going to discuss few

tricks that you will see in the code generated by
GCC for our examples.

ashemery.com 68

Functions: Low Level View
- Code Optimization -

cdecl
ebp

ebp, esp
<default
value of
local

variable>

EIP

These instructions are going
to be executed by the callee.
Let’s assume that callee is
going to make another call
to a function foo that require
1 integer argument. callee
will set it’s local integer
variable to 7 then send
double it’s value to foo

ashemery.com

Functions: Low Level View
- Code Optimization -

cdecl

mov
mov
add

[ebp-4], 7/

ecx,
ecx,

[ebp-4]
ecXx

call _<foo> \CL

pPop

ecx

void callee(int argl)
int vl;
vl = 7;
foo(vl*2);

I

{

Before we continue;
let’s take a look on
the stack memory

ashemery.com

Functions: Low Level View

- Hint about Endianness -

o e = = = -]

o e = = = -]

o e = = = -]

71

—-————

-

ashemery.com

o e = = = -]

Functions: Low Level View
- Hint about Endianness -

Start of Memory

little-endian big-endian

In little-endian
architect (like intel
processors); multi-
byte values are
filled starting from
the least
significant byte. In
big-endian (like
SPARC processors)
they are filled in a
reverse order
(starting from most
significant byte).

nldaValaaValaVlalal

Functions: Low Level View
- Code Optimization -

cdecl

mov
mov
add

[ebp-4], 7/
ecx, [ebp-4]
ecx, ecx

<E'P

We can see that the default
value O that was pushed in
the epilogue section was not
used. Compilers (like in C)
do not push a default value.
Instead; they reserve the
space by moving ESP
register

Also, instead of performing
POP to clean local variables
space; we can move ESP to
empty the stack frame

QC alaalaladVialal
7

Functions: Low Level View
- Code Optimization -

cdecl

mov
mov
add

[ebp-4], 7/
ecx, [ebp-4]
ecx, ecx

call _<foo> \CL

pPop

ecx

ESP will move to reserve
space for the local variable,
but that space is still not
initialized.

Now you know exactly why
uninitialized variables in C
will contain unknown
values (rubbish) ;)

Another thing we can do is
using the instruction
leave which do exactly like
these two instructions

ashemery.com

Functions: Low Level View
- Code Optimization -

cdecl

Compilers read the code in i i

many passes before [[

generating object-codes. One i i

of the thing the compiler do i i

mov [ebp-4]1, 7 is calculating needed space | ! :
i i

a a

a a

l l

mov ecx, [ebp-4] || for all arguments of called
add ecx, ecx functions. In our example,

foo needs 4 bvytes.
call <foo> NG

pop ecx

leave
ret push is a slow instruction. |pF======---
Therefore, the compiler |77 77 7777
reserves the arguments

mlda¥alaaVaTdVilalal
7

Functions: Low Level View
- Code Optimization -

cdecl

mov [ebp-4], 7/
mov ecx, [ebp-4]
add ecx, ecx

If foo takes two arguments,
then EBP-8 is the first one,
and EBP-12 is the second.
(same as performing push
for 274 then 1St argument)

mov [ebp-8], ecx

call <foo> \CL

leave

ret

[ebp-8]

is for sure the

argument to passed. But we
can replace it with [esp] in

mlda¥alaaVaTdVilalal
7

Functions: Low Level View
- Code Optimization -

cdecl cdecl

mov [ebp-4], 7/ mov [ebp-4], 7/
mov ecx, [ebp-4] mov ecx, [ebp-4]
add ecx, ecx add ecx, ecx
mov__lespl,_ecx

leave Pop ecx

ret

ashemery.com 77

Functions: Low Level View
- Example from GCC -

void myfunl (char *str) |
push ebp

mov ebp, esp

char buffer[16];

sub esp,

strcpy (buffer, str);

mowv eax, DWORD PTR [ebp+8]
mov DWORD PTR [espt4d],eax
lea eax, [ebp-16]

mov DWORD PTR [esp],eax
call 0x80482c4 <strcpylplt>

myfun’? (buffer);

lea eax, [ebp-16]

mov DWORD PTR [esp],eax
call 0x80483b4 <myfun2>
/

leave

ret

ashemd

The function myfun1 require
16 bytes for the local array.

strcpy require 8 bytes for it’s
arguments

myfun2 require 4 bytes for it’s
arguments

The compiler made a

reservation for 24 bytes (0x18)
which is 16 for array + 8 for
maximum arguments space

Functions: Low Level View
- Example from GCC -

void myfunl (char *str) |
push ebp

mov ebp, esp

char buffer[16];

sub esp, 0x18

strcpy (buffer, str);

By default, EBP+4 points to
the saved EIP of the caller
(main in this example).
EBP points to the saved
EBP by epilogue section.

mov eax, DWORD PTR [ebp+8] |Strcpy takes two
mov DWORD PTR [esp+4],eax |arguments, ESP +4
lea eax, [ebp-16] destination dst
mov DWORD PTR [esp],eax then source src.
call 0x80482c4 <strcpylplt> < EIP EBP - 8
myfun’? (buffer) ;] ' EBP -4
lga cax, [ebp-16] EBP+8 is the sent EBP_2

' value by the caller EBP g
mov DWORD PTR [esp],eax ,
call 0x80483b4 <myfunz> |M2in to thecallee |RAdE&
; Y myfunl that is EBP + 8
legve named str in this

code.

ret

ashemery.com

dst
src

"'r'
|
[
.

79

Functions: Low Level View
- Example from GCC -

void myfunl (char *str) |
push ebp

mov ebp, esp

char buffer[16];

sub esp, 0x18

strcpy (buffer, str);

mowv eax, DWORD PTR [ebp+8]

mov DWORD PTR [espt4d],eax src
lea eax, [ebp-16]

mov DWORD PTR [esp]l,eax

call 0x80482c4 <strcpylplt>
myfunZ (buffer) ;

lea eax, [ebp-16] . EBP |

mov DWORD PTR [esp] y €aX

call 0x80483b4 <myfun2> <EIP

}

leave myfun?2 takes one argument x | L - - I
ret i i

ashemery.com

Functions: Low Level View
- Example from GCC -

void myfunZ (char *x) {

push ebp TUESP ¥
mov ebp, esp
sub esp, 0x8

printf (" You entered: %s\n", x);

mov eax, DWORD PTR [ebp+8]
mov DWORD PTR [espt4d],eax
mov DWORD PTR [esp], 0x8048520
call 0x80482d4 <printf@plt> EIP

}

IRSERVS

ret

EBP+8 points to the first argument sent to the current
function. EBP+12 points is the second and so on. But only
one argument used by myfun2. Therefore, EBP+12 points to
an irrelevant location as myfun2 can see.

mlda¥alaaVaTdVilalal

Can you guess what is currently saved in [EBP+12] ?

.\)x

~
0]
Uy
Uy
>
Q

Functions: Low Level View
- Example from GCC -

int main(int argc, char *argv/[]){

push ebp : : . ! '
nov ebp, esp main is a function like any i i
sub esp, 0x4 other function. [:
if (argc > 1) E E
cmp DWORD PTR [ebp+8],0x1 ! !
jie .
myfunl (argv/[1]) ; i i
mov eax, DWORD PTR [ebpt+12] Can you tell : :
add eax, 0x4 I I
mov eax, DWORD PTR [eax] What th?se . ESP I I
instructions do?
mov DWORD PTR [esp],eax m
call 0x80483cf <myfunl> EIP
jmp 0x804841e <ml>
else printf (“"No arguments!\n"), <m2>
DWORD PTR [esp],0x8048540 T
call 0x80482d4 <printf@plt>
} What do these memory E_ _ _i
leave locations contain <m1>, i_ - _i
1 1
1 1

ret <m2>, and <m3>?

QCthDI"\I lalalaal
7

Functions: Low Level View
- Example from GCC -

int main(int argc, char *argv/[]){

push ebp : : : H !
nov ebp, esp main is a function like any i i
sub esp, 0x4 other function. [:
if (argc > 1) E E
cmp DWORD PTR [ebp+8],0x1 ! !
Jjle i i
myfunl (argv[1]) ; : [
mov eax, DWORD PTR [ebp+12] Can you tell i i
add eax, 0x4 I I
mov eax, DWORD PTR [eax] What th?se . ESP I I
mov DWORD PTR [esp],eax instructions do? “Egp
call 0x80483cf <myfunl> EIP
jmp 0x804841e <ml>
else printf (“No arguments!\n"); <m2>
DWORD PTR [esp],0x8048540 vy
call 0x80482d4 <printf@plt>
} What do these memory E_ _ _i
leave locations contain <m1>, i_ - _i
1 1
mer Assignment #1 :jg‘g;n,mand <m3>? ' '

Functions: Low Level View
- Stack Reliability -

Start of Memory

Think with me please:

e What if we can locate Caller EIP in
the stack and change it using mov or

any other instruction?

« What if the new value is a location of m

another block of code?

e What if the other block of code is
harmful (security wise)?

Bad for the user running the program,
but good for the Exploit developer ©

ashemery.dorlOP of Memory

zZero

EBP value

Caller EIP
<argl>

<arg2>

References

Open Security Training, Introductory Intel x86: (Architecture, Assembly,
Applications, & Alliteration) by Xeno Kovah,

“Professional Assembly Language by Blum, page. 163

Learned about the basic hardware registers and how they’ re used
Learned about how the stack is used

Saw how C code translates to assembly

Learned basic usage of compilers, disassemblers, and debuggers so that
assembly can easily be explored

Learned about Intel vs AT&T asm syntax

ashemery.com

85

http://www.opensecuritytraining.info/IntroX86.html

