Offensive Software
Exploitation

Summer 2020

Ali Hadi

Part #6



Jumping Strategies

The Art of Moving in Memory

This work is based on the work of Peter “CorelancOd3r”, Exploit Writing
(Jumping to Shellcode) article...



Jumping Strategies

Using “jmp esp” was an almost perfect scenario

Not that ‘easy’ every time!

Let’s check what other ways to execute/jump to shellcode
Also, what if you are faced with small buffer sizes!

www.ashemery.com



JMP (or CALL)

Cited [1]

jump (or call) a register that points to the shellcode.

Use a register that contains the address where the shellcode
resides and put that address in EIP.

www.ashemery.com



POP RET

Cited [1]

pop return

None of the registers point directly to the shellcode, but
further down the stack is an address that points to the
shellcode

Load that value into EIP by first putting a pointer to pop ret,
or pop pop ret, or pop pop pop ret (all depending on the
location of where the address is found on the stack) into EIP.

www.ashemery.com



PUSH RET

Cited [1]

push return
Slightly different than the “call register” technique

Can’t find a jmp r32 or call r32 opcode anywhere, then push
the address on the stack and then do a ret

Find a push r32 followed by a ret

www.ashemery.com



JMP [reg + offset]

Cited [1]

jmp [reg + offset]

Register that points to the buffer containing the shellcode
does not point at the beginning of the shellcode!

Find an instruction which will add the required bytes to the
register and then jumps to the register

www.ashemery.com



Blind Return

Cited [1]

blind return
ESP points to the top of the stack (by definition)

A ret instruction will pop the last value from the stack and
will put that address in EIP

www.ashemery.com



POPAD

Cited [1]

popad (pop all double)
Loaded order: EDI, ESI, EBP, EBX, EDX, ECX and EAX

As a result, the ESP register is incremented after each
register is loaded (triggered by the popad)

One popad will thus take 32 bytes from ESP and pops them
in the registers in an orderly fashion

www.ashemery.com



Short Jumps

Cited [1]

Need to jump over just a few bytes
Short jump (jmp) opcode is OxEB
Use a jmp instruction followed by the number of bytes

Example:
You want to jump 30 bytes, the opcode is OXEB,0Ox1E

www.ashemery.com

10



Conditional Jumps

Cited [1]

jump if condition is met

Technique is based on the states of one or more of the
status flags in the EFLAGS register (CF,OF PF,SF and ZF)

If the flags are in the specified state (condition), then a jump
can be made to the target instruction specified by the
destination operand

This target instruction is specified with a relative offset
(relative to the current value of EIP)

www.ashemery.com 11



Backward Jumps

Cited [1]

What if you want to perform a backward jump?

jump with a negative offset

Then, get the negative number and convert it to hex
Take the dword hex value and use that as argument to a
jump

OxEB or OxE9

Example #1: jump back 7 bytes
-7 = FFFFFFF9
so jump -7 would be "\xEB\xFS\xFF\xFF“

www.ashemery.com

12



Backward Jumps — Cont.

Cited [1]

Example #2: jump back 400 bytes
-400 = FFFFFE70
Then jump -400 bytes = "\xE9\x70\xFE\xFF\xFF”

Pay attention, this opcode is 5 bytes long!

Note: if you need to stay within a DWORD size (4-byte limit),
then you may need to perform multiple shorter jumps in
order to get where you want to be...

www.ashemery.com

13



Weird Relative Backward Jump ©

Cited [1]

"\X59\XFE\XCD\XFE\XxCD\XFE\XCD\xFF\XE1\XE8\xF2\xFF\xFF\xFF“

Explanation
\x59 POP ECX
\XFE\xCD DEC CH
\XFE\xCD DEC CH
\XFE\xCD DEC CH
\XFF\xE1 JMP ECX
\XE8\xF2\xFF\xFF\xFF CALL [relative -0D]

Could be adjusted to fit your needs

www.ashemery.com 14



References

[1] Peter “Corelanc0d3r”, Exploit Writing (Jumping to Shellcode),

[2] Memory Corruption 101, NYU Poly, Dino Dai Zovi

[3] Vulnserver, Stephen Bradshaw,

[4] Grayhat Hacking: The Ethical Hacker’s Handbook, 3™ Edition
[5] The Shellcoders Handbook

[6] Exploit-DB:

[7] The Art of Exploitation, 2" Edition

[8] Vulnerability Discovery,

[9] SEH Based Overflow Exploit Tutorial,

www.ashemery.com

15


https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
http://grey-corner.blogspot.com/
http://www.exploit-db.com/
http://www.thegreycorner.com/2010/01/introduction-to-vulnerability-discovery.html
http://resources.infosecinstitute.com/seh-exploit/

