
Offensive Software
Exploitation

Summer 2020

Ali Hadi
@binaryz0ne

Part #6

Jumping Strategies

The Art of Moving in Memory

This work is based on the work of Peter “Corelanc0d3r”, Exploit Writing
(Jumping to Shellcode) article…

www.ashemery.com

Jumping Strategies

• Using “jmp esp” was an almost perfect scenario

• Not that ‘easy’ every time!

• Let’s check what other ways to execute/jump to shellcode

• Also, what if you are faced with small buffer sizes!

3

www.ashemery.com

JMP (or CALL)

jump (or call) a register that points to the shellcode.

• Use a register that contains the address where the shellcode
resides and put that address in EIP.

4

Cited [1]

www.ashemery.com

POP RET

pop return

• None of the registers point directly to the shellcode, but
further down the stack is an address that points to the
shellcode

• Load that value into EIP by first putting a pointer to pop ret,
or pop pop ret, or pop pop pop ret (all depending on the
location of where the address is found on the stack) into EIP.

5

Cited [1]

www.ashemery.com

PUSH RET

push return

• Slightly different than the “call register” technique

• Can’t find a jmp r32 or call r32 opcode anywhere, then push
the address on the stack and then do a ret

• Find a push r32 followed by a ret

6

Cited [1]

www.ashemery.com

JMP [reg + offset]

jmp [reg + offset]

• Register that points to the buffer containing the shellcode
does not point at the beginning of the shellcode!

• Find an instruction which will add the required bytes to the
register and then jumps to the register

7

Cited [1]

www.ashemery.com

Blind Return

blind return

• ESP points to the top of the stack (by definition)

• A ret instruction will pop the last value from the stack and
will put that address in EIP

8

Cited [1]

www.ashemery.com

POPAD

popad (pop all double)

• Loaded order: EDI, ESI, EBP, EBX, EDX, ECX and EAX

• As a result, the ESP register is incremented after each
register is loaded (triggered by the popad)

• One popad will thus take 32 bytes from ESP and pops them
in the registers in an orderly fashion

9

Cited [1]

www.ashemery.com

Short Jumps

• Need to jump over just a few bytes

• Short jump (jmp) opcode is 0xEB

• Use a jmp instruction followed by the number of bytes

Example:

• You want to jump 30 bytes, the opcode is 0xEB,0x1E

10

Cited [1]

www.ashemery.com

Conditional Jumps

jump if condition is met

• Technique is based on the states of one or more of the
status flags in the EFLAGS register (CF,OF,PF,SF and ZF)

• If the flags are in the specified state (condition), then a jump
can be made to the target instruction specified by the
destination operand

• This target instruction is specified with a relative offset
(relative to the current value of EIP)

11

Cited [1]

www.ashemery.com

Backward Jumps

• What if you want to perform a backward jump?
– jump with a negative offset

• Then, get the negative number and convert it to hex

• Take the dword hex value and use that as argument to a
jump
– 0xEB or 0xE9

Example #1: jump back 7 bytes

• -7 = FFFFFFF9

• so jump -7 would be "\xEB\xF9\xFF\xFF“

12

Cited [1]

www.ashemery.com

Backward Jumps – Cont.

Example #2: jump back 400 bytes

• -400 = FFFFFE70

• Then jump -400 bytes = "\xE9\x70\xFE\xFF\xFF”

• Pay attention, this opcode is 5 bytes long!

• Note: if you need to stay within a DWORD size (4-byte limit),
then you may need to perform multiple shorter jumps in
order to get where you want to be…

13

Cited [1]

www.ashemery.com

Weird Relative Backward Jump ☺

"\x59\xFE\xCD\xFE\xCD\xFE\xCD\xFF\xE1\xE8\xF2\xFF\xFF\xFF“

• Explanation

\x59 POP ECX

\xFE\xCD DEC CH

\xFE\xCD DEC CH

\xFE\xCD DEC CH

\xFF\xE1 JMP ECX

\xE8\xF2\xFF\xFF\xFF CALL [relative -0D]

• Could be adjusted to fit your needs

14

Cited [1]

www.ashemery.com

References

[1] Peter “Corelanc0d3r”, Exploit Writing (Jumping to Shellcode),
https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-
exploits-a-quick-and-basic-tutorial-part-2/

[2] Memory Corruption 101, NYU Poly, Dino Dai Zovi

[3] Vulnserver, Stephen Bradshaw, http://grey-corner.blogspot.com/,

[4] Grayhat Hacking: The Ethical Hacker’s Handbook, 3rd Edition

[5] The Shellcoders Handbook

[6] Exploit-DB: http://www.exploit-db.com/

[7] The Art of Exploitation, 2nd Edition

[8] Vulnerability Discovery, http://www.thegreycorner.com/2010/01/introduction-
to-vulnerability-discovery.html

[9] SEH Based Overflow Exploit Tutorial, http://resources.infosecinstitute.com/seh-
exploit/

15

https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
http://grey-corner.blogspot.com/
http://www.exploit-db.com/
http://www.thegreycorner.com/2010/01/introduction-to-vulnerability-discovery.html
http://resources.infosecinstitute.com/seh-exploit/

