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Jumping Strategies

The Art of Moving in Memory

This work is based on the work of Peter “Corelanc0d3r”, Exploit Writing 
(Jumping to Shellcode) article…
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Jumping Strategies

• Using “jmp esp” was an almost perfect scenario

• Not that ‘easy’ every time!

• Let’s check what other ways to execute/jump to shellcode

• Also, what if you are faced with small buffer sizes!
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JMP (or CALL)

jump (or call) a register that points to the shellcode.

• Use a register that contains the address where the shellcode 
resides and put that address in EIP.
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POP RET

pop return

• None of the registers point directly to the shellcode, but 
further down the stack is an address that points to the 
shellcode

• Load that value into EIP by first putting a pointer to pop ret, 
or pop pop ret, or pop pop pop ret (all depending on the 
location of where the address is found on the stack) into EIP. 
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PUSH RET

push return

• Slightly different than the “call register” technique

• Can’t find a jmp r32 or call r32 opcode anywhere, then push
the address on the stack and then do a ret

• Find a push r32 followed by a ret
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JMP [reg + offset]

jmp [reg + offset]

• Register that points to the buffer containing the shellcode
does not point at the beginning of the shellcode!

• Find an instruction which will add the required bytes to the 
register and then jumps to the register
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Blind Return

blind return

• ESP points to the top of the stack (by definition)

• A ret instruction will pop the last value from the stack and 
will put that address in EIP
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POPAD

popad (pop all double)

• Loaded order: EDI, ESI, EBP, EBX, EDX, ECX and EAX

• As a result, the ESP register is incremented after each 
register is loaded (triggered by the popad)

• One popad will thus take 32 bytes from ESP and pops them 
in the registers in an orderly fashion
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Short Jumps

• Need to jump over just a few bytes

• Short jump (jmp) opcode is 0xEB

• Use a jmp instruction followed by the number of bytes

Example:

• You want to jump 30 bytes, the opcode is 0xEB,0x1E
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Conditional Jumps

jump if condition is met

• Technique is based on the states of one or more of the 
status flags in the EFLAGS register (CF,OF,PF,SF and ZF)

• If the flags are in the specified state (condition), then a jump 
can be made to the target instruction specified by the 
destination operand

• This target instruction is specified with a relative offset 
(relative to the current value of EIP)
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Backward Jumps

• What if you want to perform a backward jump?
– jump with a negative offset

• Then, get the negative number and convert it to hex

• Take the dword hex value and use that as argument to a 
jump
– 0xEB or 0xE9

Example #1: jump back 7 bytes

• -7 = FFFFFFF9

• so jump -7 would be "\xEB\xF9\xFF\xFF“
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Backward Jumps – Cont.

Example #2: jump back 400 bytes

• -400 = FFFFFE70

• Then jump -400 bytes = "\xE9\x70\xFE\xFF\xFF”

• Pay attention, this opcode is 5 bytes long!

• Note: if you need to stay within a DWORD size (4-byte limit), 
then you may need to perform multiple shorter jumps in 
order to get where you want to be…
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Weird Relative Backward Jump ☺

"\x59\xFE\xCD\xFE\xCD\xFE\xCD\xFF\xE1\xE8\xF2\xFF\xFF\xFF“

• Explanation

\x59 POP ECX

\xFE\xCD DEC CH

\xFE\xCD DEC CH

\xFE\xCD DEC CH

\xFF\xE1 JMP ECX

\xE8\xF2\xFF\xFF\xFF CALL [relative -0D]

• Could be adjusted to fit your needs
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