Offensive Software
Exploitation

Summer 2020

Ali Hadi

Part #5



Exploit Mitigation — Part #1

Preventing JMP/CALL ESP ...



Exploit Mitigation

Cited [2]

Finding and fixing every vulnerability is impossible

It is possible to make exploitation more difficult through:
Memory page protection
Run-time validation
Obfuscation and Randomization

Making every vulnerability non-exploitable is impossible

www.ashemery.com



Types of Mitigation

Compile Time Techniques
Stack Guards
SEH

Runtime Techniques
DEP
ASLR

Combination of both such as Control Flow Guard (CFG)

www.ashemery.com



Timeline of Mitigation

Cited [2]

Windows 1.0 - Windows XP SP1

Corruption of stack and heap metadata is possible

Windows Server 2003 RTM

Operating System is compiled with stack cookies

Windows XP SP 2
Stack/heap cookies, SafeSEH, Software/Hardware DEP

Windows Vista
Address Space Layout Randomization

www.ashemery.com



Visual Studio /GS Flag

Cited [2]

Place a random “cookie” in the stack
frame before frame pointer and
return address Saved EIP

Check cookie before using saved

frame pointer and return address
Saved EBP

Buffer[1024]

www.ashemery.com



Structured Exception Handling

Cited [2]

Supports try, except blocks in C and
C++ exceptions

Nested SEH frames are stored on the
stack

Contain pointer to next frame and
exception filter function pointer

Buffer[1024]

www.ashemery.com



Top of stack

Local vars

Exception handler code Saved EBP

catch {

| Saved EIP

Params

Address of exception handler

Bottom of stack

Figure originally from Peter “corelancOd3r”, http://www.corelan.be/

www.ashemery.com

This is the frame with

exception handling

> try {

}

>_ More frames




Pointer to next SEH record

Pointer to Exception Handler

2x 4 bvtes

Pointer to next SEH record

Pointer to Exception Handler

2% 4 hytes

Pointer to next SEH record

Pointer to Exception Handler

2x 4 bvtes

OxFFFFFF

Default exception handler

2 ¥ 4 hytes

Figure originally from Peter “corelancOd3r”, http://www.corelan.be/

www.ashemery.com

Exception handlerl()

Exception_handler2()

Exception_handler3()

MSVYCRT!lexhandler




TEB

Stack

FS[0] : 0012FF40

0012FF40:
0012FF44:

0012FFBO :
7C839ADS8 :

next SEH record
SE Handler

0012FFBO:
0012FFB4 :

O012FFEO :
0040109A :

next SEH record
SE Handler

O012FFEO:
O012FFE4:

FFFFFFFF
7C839ADS :

: next SEH record (end of chain)

SE Handler

Figure originally from Peter “corelancOd3r”, http://www.corelan.be/

www.ashemery.com




Visual Studio /SafeSEH

Cited [2]

Pre-registers all exception handlers in the DLL or EXE

When an exception occurs, Windows will examine the pre-
registered table and only call the handler if it exists in the
table

What if one DLL wasn’t compiled w/ SafeSEH?
Windows will allow any address in that module as an SEH handler

This allows an attacker to still gain full control

www.ashemery.com

11



References

[1] Peter “Corelanc0d3r”, Exploit Writing (Jumping to Shellcode),

[2] Memory Corruption 101, NYU Poly, Dino Dai Zovi

[3] Vulnserver, Stephen Bradshaw,

[4] Grayhat Hacking: The Ethical Hacker’s Handbook, 3™ Edition
[5] The Shellcoders Handbook

[6] Exploit-DB:

[7] The Art of Exploitation, 2" Edition

[8] Vulnerability Discovery,

[9] SEH Based Overflow Exploit Tutorial,

www.ashemery.com

12


https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
http://grey-corner.blogspot.com/
http://www.exploit-db.com/
http://www.thegreycorner.com/2010/01/introduction-to-vulnerability-discovery.html
http://resources.infosecinstitute.com/seh-exploit/

