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Exploit Mitigation — Part #1

Preventing JMP/CALL ESP ...



Exploit Mitigation

Cited [2]

Finding and fixing every vulnerability is impossible

It is possible to make exploitation more difficult through:
Memory page protection
Run-time validation
Obfuscation and Randomization

Making every vulnerability non-exploitable is impossible
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Types of Mitigation

Compile Time Techniques
Stack Guards
SEH

Runtime Techniques
DEP
ASLR

Combination of both such as Control Flow Guard (CFG)
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Timeline of Mitigation

Cited [2]

Windows 1.0 - Windows XP SP1

Corruption of stack and heap metadata is possible

Windows Server 2003 RTM

Operating System is compiled with stack cookies

Windows XP SP 2
Stack/heap cookies, SafeSEH, Software/Hardware DEP

Windows Vista
Address Space Layout Randomization

www.ashemery.com



Visual Studio /GS Flag

Cited [2]

Place a random “cookie” in the stack
frame before frame pointer and
return address Saved EIP

Check cookie before using saved

frame pointer and return address
Saved EBP

Buffer[1024]
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Structured Exception Handling

Cited [2]

Supports try, except blocks in C and
C++ exceptions

Nested SEH frames are stored on the
stack

Contain pointer to next frame and
exception filter function pointer

Buffer[1024]
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Top of stack

Local vars

Exception handler code Saved EBP

catch {

| Saved EIP

Params

Address of exception handler

Bottom of stack

Figure originally from Peter “corelancOd3r”, http://www.corelan.be/
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This is the frame with

exception handling

> try {

}

>_ More frames




Pointer to next SEH record

Pointer to Exception Handler

2x 4 bvtes

Pointer to next SEH record

Pointer to Exception Handler

2% 4 hytes

Pointer to next SEH record

Pointer to Exception Handler

2x 4 bvtes

OxFFFFFF

Default exception handler

2 ¥ 4 hytes

Figure originally from Peter “corelancOd3r”, http://www.corelan.be/
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Exception handlerl()

Exception_handler2()

Exception_handler3()

MSVYCRT!lexhandler




TEB

Stack

FS[0] : 0012FF40

0012FF40:
0012FF44:

0012FFBO :
7C839ADS8 :

next SEH record
SE Handler

0012FFBO:
0012FFB4 :

O012FFEO :
0040109A :

next SEH record
SE Handler

O012FFEO:
O012FFE4:

FFFFFFFF
7C839ADS :

: next SEH record (end of chain)

SE Handler

Figure originally from Peter “corelancOd3r”, http://www.corelan.be/
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Visual Studio /SafeSEH

Cited [2]

Pre-registers all exception handlers in the DLL or EXE

When an exception occurs, Windows will examine the pre-
registered table and only call the handler if it exists in the
table

What if one DLL wasn’t compiled w/ SafeSEH?
Windows will allow any address in that module as an SEH handler

This allows an attacker to still gain full control
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