ICE_TEA_BIOS/Insyde/InsydeModulePkg/Core/DxeIplPeim/DxeLoad.c
LCFC\AiXia.Jiang a870bff2f4 1.Frist commit
2022-09-30 14:59:06 +08:00

1069 lines
34 KiB
C

/** @file
Last PEIM.
Responsibility of this module is to load the DXE Core from a Firmware Volume.
;******************************************************************************
;* Copyright (c) 2013 - 2020, Insyde Software Corp. All Rights Reserved.
;*
;* You may not reproduce, distribute, publish, display, perform, modify, adapt,
;* transmit, broadcast, present, recite, release, license or otherwise exploit
;* any part of this publication in any form, by any means, without the prior
;* written permission of Insyde Software Corporation.
;*
;******************************************************************************
**/
/** @file
Last PEIM.
Responsibility of this module is to load the DXE Core from a Firmware Volume.
Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "DxeIpl.h"
#include <Uefi.h>
#include <Ppi/RomCorrupt.h>
#include <Guid/H2OCp.h>
#include <Library/H2OCpLib.h>
#include <Library/VariableLib.h>
#include <Library/PeiOemSvcKernelLib.h>
#include <Library/HobLib.h>
//
// Module Globals used in the DXE to PEI hand off
// These must be module globals, so the stack can be switched
//
CONST EFI_DXE_IPL_PPI mDxeIplPpi = {
DxeLoadCore
};
CONST EFI_PEI_PPI_DESCRIPTOR mDxeIplPpiList = {
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gEfiDxeIplPpiGuid,
(VOID *) &mDxeIplPpi
};
CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI mCustomGuidedSectionExtractionPpi = {
CustomGuidedSectionExtract
};
CONST EFI_PEI_DECOMPRESS_PPI mDecompressPpi = {
Decompress
};
CONST EFI_PEI_PPI_DESCRIPTOR mDecompressPpiList = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiDecompressPpiGuid,
(VOID *) &mDecompressPpi
};
CONST EFI_PEI_PPI_DESCRIPTOR gEndOfPeiSignalPpi = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiEndOfPeiSignalPpiGuid,
NULL
};
CONST EFI_PEI_PPI_DESCRIPTOR mPpiRomCorrupt = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gPeiRomCorruptPpiGuid,
NULL
};
CONST EFI_PEI_NOTIFY_DESCRIPTOR mMemoryDiscoveredNotifyList = {
(EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiMemoryDiscoveredPpiGuid,
InstallIplPermanentMemoryPpis
};
/**
Install End of PEI Phase PPI.
@retval EFI_SUCESS Install End of PEI Phase PPI successfully.
@retval Others Some error returned from PPI installation function.
**/
EFI_STATUS
InstallEndOfPeiPhasePpi (
VOID
)
{
EFI_STATUS Status;
if (FeaturePcdGet (PcdH2OPeiCpEndOfPeiBeforeSupported)) {
H2O_PEI_CP_END_OF_PEI_BEFORE_DATA CpEndOfPeiBeforeData;
CpEndOfPeiBeforeData.Size = sizeof (H2O_PEI_CP_END_OF_PEI_BEFORE_DATA);
CpEndOfPeiBeforeData.Status = H2O_CP_TASK_NORMAL;
DEBUG_CP ((DEBUG_INFO, "Checkpoint Trigger: %g\n", &gH2OPeiCpEndOfPeiBeforeGuid));
H2OCpTrigger (&gH2OPeiCpEndOfPeiBeforeGuid, &CpEndOfPeiBeforeData);
DEBUG_CP ((DEBUG_INFO, "Checkpoint Result: %x\n", CpEndOfPeiBeforeData.Status));
}
Status = PeiServicesInstallPpi (&gEndOfPeiSignalPpi);
if (FeaturePcdGet (PcdH2OPeiCpEndOfPeiAfterSupported)) {
H2O_PEI_CP_END_OF_PEI_AFTER_DATA CpEndOfPeiAfterData;
CpEndOfPeiAfterData.Size = sizeof (H2O_PEI_CP_END_OF_PEI_AFTER_DATA);
CpEndOfPeiAfterData.Status = H2O_CP_TASK_NORMAL;
DEBUG_CP ((DEBUG_INFO, "Checkpoint Trigger: %g\n", &gH2OPeiCpEndOfPeiAfterGuid));
H2OCpTrigger (&gH2OPeiCpEndOfPeiAfterGuid, &CpEndOfPeiAfterData);
DEBUG_CP ((DEBUG_INFO, "Checkpoint Result: %x\n", CpEndOfPeiAfterData.Status));
}
return Status;
}
/**
Entry point of DXE IPL PEIM.
This function installs DXE IPL PPI. It also reloads
itself to memory on non-S3 resume boot path.
@param FileHandle Handle of the file being invoked.
@param PeiServices Describes the list of possible PEI Services.
@retval EFI_SUCESS The entry point of DXE IPL PEIM executes successfully.
@retval Others Some error occurs during the execution of this function.
**/
EFI_STATUS
EFIAPI
PeimInitializeDxeIpl (
IN EFI_PEI_FILE_HANDLE FileHandle,
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
EFI_STATUS Status;
EFI_BOOT_MODE BootMode;
VOID *Dummy;
BootMode = GetBootModeHob ();
if (BootMode != BOOT_ON_S3_RESUME) {
Status = PeiServicesRegisterForShadow (FileHandle);
if (Status == EFI_SUCCESS) {
//
// EFI_SUCESS means it is the first time to call register for shadow.
//
return Status;
}
//
// Ensure that DXE IPL is shadowed to permanent memory.
//
ASSERT (Status == EFI_ALREADY_STARTED);
//
// DXE core load requires permanent memory.
//
Status = PeiServicesLocatePpi (
&gEfiPeiMemoryDiscoveredPpiGuid,
0,
NULL,
(VOID **) &Dummy
);
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Now the permanent memory exists, install the PPIs for decompression
// and section extraction.
//
Status = InstallIplPermanentMemoryPpis (NULL, NULL, NULL);
ASSERT_EFI_ERROR (Status);
} else {
//
// Install memory discovered PPI notification to install PPIs for
// decompression and section extraction.
//
Status = PeiServicesNotifyPpi (&mMemoryDiscoveredNotifyList);
ASSERT_EFI_ERROR (Status);
}
//
// Install DxeIpl PPI.
//
Status = PeiServicesInstallPpi (&mDxeIplPpiList);
ASSERT_EFI_ERROR(Status);
return Status;
}
/**
This function installs the PPIs that require permanent memory.
@param PeiServices Indirect reference to the PEI Services Table.
@param NotifyDescriptor Address of the notification descriptor data structure.
@param Ppi Address of the PPI that was installed.
@return EFI_SUCCESS The PPIs were installed successfully.
@return Others Some error occurs during the execution of this function.
**/
EFI_STATUS
EFIAPI
InstallIplPermanentMemoryPpis (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor,
IN VOID *Ppi
)
{
EFI_STATUS Status;
EFI_GUID *ExtractHandlerGuidTable;
UINTN ExtractHandlerNumber;
EFI_PEI_PPI_DESCRIPTOR *GuidPpi;
//
// Get custom extract guided section method guid list
//
ExtractHandlerNumber = ExtractGuidedSectionGetGuidList (&ExtractHandlerGuidTable);
//
// Install custom guided section extraction PPI
//
if (ExtractHandlerNumber > 0) {
GuidPpi = (EFI_PEI_PPI_DESCRIPTOR *) AllocatePool (ExtractHandlerNumber * sizeof (EFI_PEI_PPI_DESCRIPTOR));
ASSERT (GuidPpi != NULL);
if (GuidPpi == NULL) {
return EFI_OUT_OF_RESOURCES;
}
while (ExtractHandlerNumber-- > 0) {
GuidPpi->Flags = EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST;
GuidPpi->Ppi = (VOID *) &mCustomGuidedSectionExtractionPpi;
GuidPpi->Guid = &ExtractHandlerGuidTable[ExtractHandlerNumber];
Status = PeiServicesInstallPpi (GuidPpi++);
ASSERT_EFI_ERROR(Status);
}
}
//
// Install Decompress PPI.
//
Status = PeiServicesInstallPpi (&mDecompressPpiList);
ASSERT_EFI_ERROR(Status);
return Status;
}
/**
Validate variable data for the MemoryTypeInformation.
@param MemoryData Variable data.
@param MemoryDataSize Variable data length.
@return TRUE The variable data is valid.
@return FALSE The variable data is invalid.
**/
BOOLEAN
ValidateMemoryTypeInfoVariable (
IN EFI_MEMORY_TYPE_INFORMATION *MemoryData,
IN UINTN MemoryDataSize
)
{
UINTN Count;
UINTN Index;
// Check the input parameter.
if (MemoryData == NULL) {
return FALSE;
}
// Get Count
Count = MemoryDataSize / sizeof (*MemoryData);
// Check Size
if (Count * sizeof(*MemoryData) != MemoryDataSize) {
return FALSE;
}
// Check last entry type filed.
if (MemoryData[Count - 1].Type != EfiMaxMemoryType) {
return FALSE;
}
// Check the type filed.
for (Index = 0; Index < Count - 1; Index++) {
if (MemoryData[Index].Type >= EfiMaxMemoryType) {
return FALSE;
}
}
return TRUE;
}
/**
Main entry point to last PEIM.
This function finds DXE Core in the firmware volume and transfer the control to
DXE core.
@param This Entry point for DXE IPL PPI.
@param PeiServices General purpose services available to every PEIM.
@param HobList Address to the Pei HOB list.
@return EFI_SUCCESS DXE core was successfully loaded.
@return EFI_OUT_OF_RESOURCES There are not enough resources to load DXE core.
**/
EFI_STATUS
EFIAPI
DxeLoadCore (
IN CONST EFI_DXE_IPL_PPI *This,
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_HOB_POINTERS HobList
)
{
EFI_STATUS Status;
EFI_FV_FILE_INFO DxeCoreFileInfo;
EFI_PHYSICAL_ADDRESS DxeCoreAddress;
UINT64 DxeCoreSize;
EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint;
EFI_BOOT_MODE BootMode;
EFI_PEI_FILE_HANDLE FileHandle;
EFI_PEI_READ_ONLY_VARIABLE2_PPI *Variable;
EFI_PEI_LOAD_FILE_PPI *LoadFile;
UINTN Instance;
UINT32 AuthenticationState;
UINTN DataSize;
EFI_PEI_S3_RESUME2_PPI *S3Resume;
EFI_PEI_RECOVERY_MODULE_PPI *PeiRecovery;
EDKII_PEI_CAPSULE_ON_DISK_PPI *PeiCapsuleOnDisk;
EFI_MEMORY_TYPE_INFORMATION MemoryData[EfiMaxMemoryType + 1];
VOID *CapsuleOnDiskModePpi;
EFI_STATUS OemSvcStatus;
//
// if in S3 Resume, restore configure
//
BootMode = GetBootModeHob ();
if (BootMode == BOOT_ON_S3_RESUME) {
Status = PeiServicesLocatePpi (
&gEfiPeiS3Resume2PpiGuid,
0,
NULL,
(VOID **) &S3Resume
);
if (EFI_ERROR (Status)) {
//
// Report Status code that S3Resume PPI can not be found
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_S3_RESUME_PPI_NOT_FOUND)
);
}
ASSERT_EFI_ERROR (Status);
Status = S3Resume->S3RestoreConfig2 (S3Resume);
ASSERT_EFI_ERROR (Status);
} else if (BootMode == BOOT_IN_RECOVERY_MODE) {
REPORT_STATUS_CODE (EFI_PROGRESS_CODE, (EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_PC_RECOVERY_BEGIN));
Status = PeiServicesLocatePpi (
&gEfiPeiRecoveryModulePpiGuid,
0,
NULL,
(VOID **) &PeiRecovery
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Locate Recovery PPI Failed.(Status = %r)\n", Status));
//
// Report Status code the failure of locating Recovery PPI
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_RECOVERY_PPI_NOT_FOUND)
);
DEBUG_OEM_SVC ((DEBUG_INFO, "OemKernelServices Call: OemSvcHookWhenRecoveryFail \n"));
OemSvcStatus = OemSvcHookWhenRecoveryFail ();
DEBUG_OEM_SVC ((DEBUG_INFO, "OemKernelServices OemSvcHookWhenRecoveryFail Status: %r\n", OemSvcStatus));
if (EFI_ERROR (OemSvcStatus)) {
(*PeiServices)->ResetSystem ((CONST EFI_PEI_SERVICES **)PeiServices);
}
}
REPORT_STATUS_CODE (EFI_PROGRESS_CODE, (EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_PC_CAPSULE_LOAD));
Status = PeiRecovery->LoadRecoveryCapsule (PeiServices, PeiRecovery);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Load Recovery Capsule Failed.(Status = %r)\n", Status));
//
// Report Status code that recovery image can not be found
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_NO_RECOVERY_CAPSULE)
);
DEBUG_OEM_SVC ((DEBUG_INFO, "OemKernelServices Call: OemSvcHookWhenRecoveryFail \n"));
OemSvcStatus = OemSvcHookWhenRecoveryFail ();
DEBUG_OEM_SVC ((DEBUG_INFO, "OemKernelServices OemSvcHookWhenRecoveryFail Status: %r\n", OemSvcStatus));
if (EFI_ERROR (OemSvcStatus)) {
(*PeiServices)->ResetSystem ((CONST EFI_PEI_SERVICES **)PeiServices);
}
}
REPORT_STATUS_CODE (EFI_PROGRESS_CODE, (EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_PC_CAPSULE_START));
//
// Now should have a HOB with the DXE core
//
} else if (BootMode == BOOT_ON_FLASH_UPDATE) {
//
// If Capsule On Disk mode, call storage stack to read Capsule Relocation file
// IoMmmu is highly recommmended to enable before reading
//
Status = PeiServicesLocatePpi (
&gEdkiiPeiBootInCapsuleOnDiskModePpiGuid,
0,
NULL,
&CapsuleOnDiskModePpi
);
if (!EFI_ERROR(Status)) {
Status = PeiServicesLocatePpi (
&gEdkiiPeiCapsuleOnDiskPpiGuid,
0,
NULL,
(VOID **) &PeiCapsuleOnDisk
);
//
// Whether failed, still goes to Firmware Update boot path. BDS will clear corresponding indicator and reboot later on
//
if (!EFI_ERROR (Status)) {
Status = PeiCapsuleOnDisk->LoadCapsuleOnDisk (PeiServices, PeiCapsuleOnDisk);
}
}
}
if (GetFirstGuidHob ((CONST EFI_GUID *)&gEfiMemoryTypeInformationGuid) == NULL) {
//
// Don't build GuidHob if GuidHob has been installed.
//
Status = PeiServicesLocatePpi (
&gEfiPeiReadOnlyVariable2PpiGuid,
0,
NULL,
(VOID **)&Variable
);
if (!EFI_ERROR (Status)) {
DataSize = sizeof (MemoryData);
Status = Variable->GetVariable (
Variable,
EFI_MEMORY_TYPE_INFORMATION_VARIABLE_NAME,
&gEfiMemoryTypeInformationGuid,
NULL,
&DataSize,
&MemoryData
);
if (!EFI_ERROR (Status) && ValidateMemoryTypeInfoVariable(MemoryData, DataSize)) {
//
// Build the GUID'd HOB for DXE
//
BuildGuidDataHob (
&gEfiMemoryTypeInformationGuid,
MemoryData,
DataSize
);
}
}
}
//
// Look in all the FVs present in PEI and find the DXE Core FileHandle
//
FileHandle = DxeIplFindDxeCore ();
if (FileHandle == NULL) {
if (FeaturePcdGet (PcdH2OPeiCpDxeFvCorruptedSupported)) {
H2O_PEI_CP_DXE_FV_CORRUPTED_DATA CpDxeFvCorruptedData;
CpDxeFvCorruptedData.Size = sizeof (H2O_PEI_CP_DXE_FV_CORRUPTED_DATA);
CpDxeFvCorruptedData.Status = H2O_CP_TASK_NORMAL;
CpDxeFvCorruptedData.ResetSystem = FALSE;
CpDxeFvCorruptedData.FileHandle = NULL;
DEBUG_CP ((DEBUG_INFO, "Checkpoint Trigger: %g\n", &gH2OPeiCpDxeFvCorruptedGuid));
H2OCpTrigger (&gH2OPeiCpDxeFvCorruptedGuid, &CpDxeFvCorruptedData);
DEBUG_CP ((DEBUG_INFO, "Checkpoint Result: %x\n", CpDxeFvCorruptedData.Status));
if (CpDxeFvCorruptedData.Status == H2O_CP_TASK_SKIP_UPDATE ||
CpDxeFvCorruptedData.Status == H2O_CP_TASK_UPDATE) {
if (CpDxeFvCorruptedData.ResetSystem) {
(*PeiServices)->ResetSystem ((CONST EFI_PEI_SERVICES **)PeiServices);
}
if (CpDxeFvCorruptedData.FileHandle != NULL) {
FileHandle = CpDxeFvCorruptedData.FileHandle;
}
}
if (CpDxeFvCorruptedData.Status == H2O_CP_TASK_SKIP_UPDATE ||
CpDxeFvCorruptedData.Status == H2O_CP_TASK_SKIP) {
goto Skip;
}
}
Status = PeiServicesInstallPpi (&mPpiRomCorrupt);
}
Skip:
//
// Load the DXE Core from a Firmware Volume.
//
Instance = 0;
do {
Status = PeiServicesLocatePpi (&gEfiPeiLoadFilePpiGuid, Instance++, NULL, (VOID **) &LoadFile);
//
// These must exist an instance of EFI_PEI_LOAD_FILE_PPI to support to load DxeCore file handle successfully.
//
ASSERT_EFI_ERROR (Status);
Status = LoadFile->LoadFile (
LoadFile,
FileHandle,
&DxeCoreAddress,
&DxeCoreSize,
&DxeCoreEntryPoint,
&AuthenticationState
);
} while (EFI_ERROR (Status));
//
// Get the DxeCore File Info from the FileHandle for the DxeCore GUID file name.
//
Status = PeiServicesFfsGetFileInfo (FileHandle, &DxeCoreFileInfo);
ASSERT_EFI_ERROR (Status);
//
// Add HOB for the DXE Core
//
BuildModuleHob (
&DxeCoreFileInfo.FileName,
DxeCoreAddress,
ALIGN_VALUE (DxeCoreSize, EFI_PAGE_SIZE),
DxeCoreEntryPoint
);
//
// Report Status Code EFI_SW_PEI_PC_HANDOFF_TO_NEXT
//
REPORT_STATUS_CODE (EFI_PROGRESS_CODE, (EFI_SOFTWARE_PEI_CORE | EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT));
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "Loading DXE CORE at 0x%11p EntryPoint=0x%11p\n", (VOID *)(UINTN)DxeCoreAddress, FUNCTION_ENTRY_POINT (DxeCoreEntryPoint)));
//
// Transfer control to the DXE Core
// The hand off state is simply a pointer to the HOB list
//
HandOffToDxeCore (DxeCoreEntryPoint, HobList);
//
// If we get here, then the DXE Core returned. This is an error
// DxeCore should not return.
//
ASSERT (FALSE);
CpuDeadLoop ();
return EFI_OUT_OF_RESOURCES;
}
/**
Install FvInfoPpi For FV HOBs
@param Hob FV Hob
@retval EFI_SUCCESS Install FvInfo Ppi for this FV HOB.
@retval EFI_ALREADY_STARTED FvInfo Ppi has been installed for this FV HOB before.
**/
EFI_STATUS
InstallFvInfoPpiForFvHob (
EFI_PEI_HOB_POINTERS Hob
)
{
UINTN FvInfoInstance;
EFI_STATUS Status;
BOOLEAN IsFvInoPpiHasInstalled;
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI *FvInfoPpi;
EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
FvInfoInstance = 0;
IsFvInoPpiHasInstalled = FALSE;
while (TRUE){
Status = PeiServicesLocatePpi (&gEfiPeiFirmwareVolumeInfoPpiGuid, FvInfoInstance, NULL, &FvInfoPpi);
if (EFI_ERROR(Status)){
break;
}
if ((Hob.FirmwareVolume->BaseAddress == (UINT64)(UINTN) FvInfoPpi->FvInfo) && (FvInfoPpi->FvInfoSize == (UINT32) Hob.FirmwareVolume->Length)){
IsFvInoPpiHasInstalled = TRUE;
break;
}
FvInfoInstance++;
}
if (!IsFvInoPpiHasInstalled){
FvHeader = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) Hob.FirmwareVolume->BaseAddress;
PeiServicesInstallFvInfoPpi (
&FvHeader->FileSystemGuid,
(VOID*) (UINTN) Hob.FirmwareVolume->BaseAddress,
(UINT32) Hob.FirmwareVolume->Length,
NULL,
NULL
);
return EFI_SUCCESS;
}
return EFI_ALREADY_STARTED;
}
/**
Searches DxeCore in all firmware Volumes and loads the first
instance that contains DxeCore.
@return FileHandle of DxeCore to load DxeCore.
**/
EFI_PEI_FILE_HANDLE
DxeIplFindDxeCore (
VOID
)
{
EFI_STATUS Status;
UINTN Instance;
EFI_PEI_FV_HANDLE VolumeHandle;
EFI_PEI_FILE_HANDLE FileHandle;
EFI_PEI_HOB_POINTERS Hob;
EFI_PEI_FV_HANDLE FvHandle;
Instance = 0;
while (TRUE) {
//
// Traverse all firmware volume instances
//
Status = PeiServicesFfsFindNextVolume (Instance, (VOID **)&VolumeHandle);
//
// If some error occurs here, then we cannot find any firmware
// volume that may contain DxeCore.
//
if (EFI_ERROR (Status)) {
break;
}
ASSERT_EFI_ERROR (Status);
//
// Find the DxeCore file type from the beginning in this firmware volume.
//
FileHandle = NULL;
Status = PeiServicesFfsFindNextFile (EFI_FV_FILETYPE_DXE_CORE, VolumeHandle, (VOID **)&FileHandle);
if (!EFI_ERROR (Status)) {
//
// Find DxeCore FileHandle in this volume, then we skip other firmware volume and
// return the FileHandle.
//
return FileHandle;
}
//
// We cannot find DxeCore in this firmware volume, then search the next volume.
//
Instance++;
}
//
// Install FvInfo Ppi for FV HOBs
//
Hob.Raw = GetHobList ();
while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV, Hob.Raw)) != NULL) {
FvHandle = (VOID *)(UINTN) (Hob.FirmwareVolume->BaseAddress);
Status = InstallFvInfoPpiForFvHob (Hob);
Hob.Raw = GET_NEXT_HOB (Hob);
}
Hob.Raw = GetHobList ();
while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV2, Hob.Raw)) != NULL) {
FvHandle = (VOID *)(UINTN) (Hob.FirmwareVolume2->BaseAddress);
Status = InstallFvInfoPpiForFvHob (Hob);
Hob.Raw = GET_NEXT_HOB (Hob);
}
Hob.Raw = GetHobList ();
while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV3, Hob.Raw)) != NULL) {
FvHandle = (VOID *)(UINTN) (Hob.FirmwareVolume3->BaseAddress);
Status = InstallFvInfoPpiForFvHob (Hob);
Hob.Raw = GET_NEXT_HOB (Hob);
}
//
// Try to find DxeCore again
//
while (TRUE) {
//
// Traverse all firmware volume instances
//
Status = PeiServicesFfsFindNextVolume (Instance, (VOID **)&VolumeHandle);
//
// If some error occurs here, then we cannot find any firmware
// volume that may contain DxeCore.
//
if (EFI_ERROR (Status)) {
break;
}
ASSERT_EFI_ERROR (Status);
//
// Find the DxeCore file type from the beginning in this firmware volume.
//
FileHandle = NULL;
Status = PeiServicesFfsFindNextFile (EFI_FV_FILETYPE_DXE_CORE, VolumeHandle, (VOID **)&FileHandle);
if (!EFI_ERROR (Status)) {
//
// Find DxeCore FileHandle in this volume, then we skip other firmware volume and
// return the FileHandle.
//
return FileHandle;
}
//
// We cannot find DxeCore in this firmware volume, then search the next volume.
//
Instance++;
}
REPORT_STATUS_CODE (EFI_PROGRESS_CODE, (EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_CORE_EC_DXE_CORRUPT));
FileHandle = NULL;
return FileHandle;
}
/**
The ExtractSection() function processes the input section and
returns a pointer to the section contents. If the section being
extracted does not require processing (if the section
GuidedSectionHeader.Attributes has the
EFI_GUIDED_SECTION_PROCESSING_REQUIRED field cleared), then
OutputBuffer is just updated to point to the start of the
section's contents. Otherwise, *Buffer must be allocated
from PEI permanent memory.
@param This Indicates the
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI instance.
Buffer containing the input GUIDed section to be
processed. OutputBuffer OutputBuffer is
allocated from PEI permanent memory and contains
the new section stream.
@param InputSection A pointer to the input buffer, which contains
the input section to be processed.
@param OutputBuffer A pointer to a caller-allocated buffer, whose
size is specified by the contents of OutputSize.
@param OutputSize A pointer to a caller-allocated
UINTN in which the size of *OutputBuffer
allocation is stored. If the function
returns anything other than EFI_SUCCESS,
the value of OutputSize is undefined.
@param AuthenticationStatus A pointer to a caller-allocated
UINT32 that indicates the
authentication status of the
output buffer. If the input
section's GuidedSectionHeader.
Attributes field has the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID
bit as clear,
AuthenticationStatus must return
zero. These bits reflect the
status of the extraction
operation. If the function
returns anything other than
EFI_SUCCESS, the value of
AuthenticationStatus is
undefined.
@retval EFI_SUCCESS The InputSection was
successfully processed and the
section contents were returned.
@retval EFI_OUT_OF_RESOURCES The system has insufficient
resources to process the request.
@retval EFI_INVALID_PARAMETER The GUID in InputSection does
not match this instance of the
GUIDed Section Extraction PPI.
**/
EFI_STATUS
EFIAPI
CustomGuidedSectionExtract (
IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
IN CONST VOID *InputSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize,
OUT UINT32 *AuthenticationStatus
)
{
EFI_STATUS Status;
UINT8 *ScratchBuffer;
UINT32 ScratchBufferSize;
UINT32 OutputBufferSize;
UINT16 SectionAttribute;
//
// Init local variable
//
ScratchBuffer = NULL;
//
// Call GetInfo to get the size and attribute of input guided section data.
//
Status = ExtractGuidedSectionGetInfo (
InputSection,
&OutputBufferSize,
&ScratchBufferSize,
&SectionAttribute
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "GetInfo from guided section Failed - %r\n", Status));
return Status;
}
if (ScratchBufferSize != 0) {
//
// Allocate scratch buffer
//
ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
if (ScratchBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
}
if (((SectionAttribute & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) != 0) && OutputBufferSize > 0) {
//
// Allocate output buffer
//
*OutputBuffer = AllocatePages (EFI_SIZE_TO_PAGES (OutputBufferSize));
if (*OutputBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
DEBUG ((DEBUG_INFO, "Customized Guided section Memory Size required is 0x%x and address is 0x%p\n", OutputBufferSize, *OutputBuffer));
}
Status = ExtractGuidedSectionDecode (
InputSection,
OutputBuffer,
ScratchBuffer,
AuthenticationStatus
);
if (EFI_ERROR (Status)) {
//
// Decode failed
//
DEBUG ((DEBUG_ERROR, "Extract guided section Failed - %r\n", Status));
return Status;
}
*OutputSize = (UINTN) OutputBufferSize;
return EFI_SUCCESS;
}
/**
Decompresses a section to the output buffer.
This function looks up the compression type field in the input section and
applies the appropriate compression algorithm to compress the section to a
callee allocated buffer.
@param This Points to this instance of the
EFI_PEI_DECOMPRESS_PEI PPI.
@param CompressionSection Points to the compressed section.
@param OutputBuffer Holds the returned pointer to the decompressed
sections.
@param OutputSize Holds the returned size of the decompress
section streams.
@retval EFI_SUCCESS The section was decompressed successfully.
OutputBuffer contains the resulting data and
OutputSize contains the resulting size.
**/
EFI_STATUS
EFIAPI
Decompress (
IN CONST EFI_PEI_DECOMPRESS_PPI *This,
IN CONST EFI_COMPRESSION_SECTION *CompressionSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize
)
{
EFI_STATUS Status;
UINT8 *DstBuffer;
UINT8 *ScratchBuffer;
UINT32 DstBufferSize;
UINT32 ScratchBufferSize;
VOID *CompressionSource;
UINT32 CompressionSourceSize;
UINT32 UncompressedLength;
UINT8 CompressionType;
if (CompressionSection->CommonHeader.Type != EFI_SECTION_COMPRESSION) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
if (IS_SECTION2 (CompressionSection)) {
CompressionSource = (VOID *) ((UINT8 *) CompressionSection + sizeof (EFI_COMPRESSION_SECTION2));
CompressionSourceSize = (UINT32) (SECTION2_SIZE (CompressionSection) - sizeof (EFI_COMPRESSION_SECTION2));
UncompressedLength = ((EFI_COMPRESSION_SECTION2 *) CompressionSection)->UncompressedLength;
CompressionType = ((EFI_COMPRESSION_SECTION2 *) CompressionSection)->CompressionType;
} else {
CompressionSource = (VOID *) ((UINT8 *) CompressionSection + sizeof (EFI_COMPRESSION_SECTION));
CompressionSourceSize = (UINT32) (SECTION_SIZE (CompressionSection) - sizeof (EFI_COMPRESSION_SECTION));
UncompressedLength = CompressionSection->UncompressedLength;
CompressionType = CompressionSection->CompressionType;
}
//
// This is a compression set, expand it
//
switch (CompressionType) {
case EFI_STANDARD_COMPRESSION:
if (FeaturePcdGet(PcdDxeIplSupportUefiDecompress)) {
//
// Load EFI standard compression.
// For compressed data, decompress them to destination buffer.
//
Status = UefiDecompressGetInfo (
CompressionSource,
CompressionSourceSize,
&DstBufferSize,
&ScratchBufferSize
);
if (EFI_ERROR (Status)) {
//
// GetInfo failed
//
DEBUG ((DEBUG_ERROR, "Decompress GetInfo Failed - %r\n", Status));
return EFI_NOT_FOUND;
}
//
// Allocate scratch buffer
//
ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
if (ScratchBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Allocate destination buffer
//
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
if (DstBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Call decompress function
//
Status = UefiDecompress (
CompressionSource,
DstBuffer,
ScratchBuffer
);
if (EFI_ERROR (Status)) {
//
// Decompress failed
//
DEBUG ((DEBUG_ERROR, "Decompress Failed - %r\n", Status));
return EFI_NOT_FOUND;
}
break;
} else {
//
// PcdDxeIplSupportUefiDecompress is FALSE
// Don't support UEFI decompression algorithm.
//
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
case EFI_NOT_COMPRESSED:
//
// Allocate destination buffer
//
DstBufferSize = UncompressedLength;
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
if (DstBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// stream is not actually compressed, just encapsulated. So just copy it.
//
CopyMem (DstBuffer, CompressionSource, DstBufferSize);
break;
default:
//
// Don't support other unknown compression type.
//
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
*OutputSize = DstBufferSize;
*OutputBuffer = DstBuffer;
return EFI_SUCCESS;
}
/**
Updates the Stack HOB passed to DXE phase.
This function traverses the whole HOB list and update the stack HOB to
reflect the real stack that is used by DXE core.
@param BaseAddress The lower address of stack used by DxeCore.
@param Length The length of stack used by DxeCore.
**/
VOID
UpdateStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_PEI_HOB_POINTERS Hob;
Hob.Raw = GetHobList ();
while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw)) != NULL) {
if (CompareGuid (&gEfiHobMemoryAllocStackGuid, &(Hob.MemoryAllocationStack->AllocDescriptor.Name))) {
//
// Build a new memory allocation HOB with old stack info with EfiBootServicesData type. Need to
// avoid this region be reclaimed by DXE core as the IDT built in SEC might be on stack, and some
// PEIMs may also keep key information on stack
//
BuildMemoryAllocationHob (
Hob.MemoryAllocationStack->AllocDescriptor.MemoryBaseAddress,
Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength,
EfiBootServicesData
);
//
// Update the BSP Stack Hob to reflect the new stack info.
//
Hob.MemoryAllocationStack->AllocDescriptor.MemoryBaseAddress = BaseAddress;
Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength = Length;
break;
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
}