New Algorithms for Generating Conway Polynomials over

Finite Fields

Lenwood S. Heath* Nicholas A. Loehrt

July 7, 1998

Abstract

Arithmetic in a finite field of prime characteristic p normally employs an irreducible
polynomial in Z,[X]. A particular class of irreducible polynomials, generally known
as Conway polynomials, provides a means for representing several finite fields of char-
acteristic p in a compatible manner. Conway polynomials are used in computational
algebra systems such as GAP and Magma to represent finite fields. The generation of
the Conway polynomial for a particular finite field has previously been done by an often
expensive brute force search. As a consequence, only a few Conway polynomials have
been generated. We present two new algorithms for generating Conway polynomials
that avoid the brute force search. We have implemented one of these algorithms in
Magma and present numerous new Conway polynomials that implementation gener-

ated.

1 Introduction

Every finite field F is characterized by two parameters — its prime characteristic p and its
dimension n over Z,, the integers modulo p. The field F has p™ elements and is isomorphic

to any other field having p" elements. The field F is often denoted GF(p, n) or just GF(p"),

*Department of Computer Science, Virginia Tech, Blacksburg, VA 24061-0106, heath@cs.vt.edu.
"Department of Computer Science, Virginia Tech, Blacksburg, VA 24061-0106, nloehr@vt.edu.

where GF is for Galois field. The multiplicative group of F is denoted F* and is always
cyclic. A primitive element of F* is any element that generates the multiplicative group.

In particular, if o € F* is a primitive element, then

n_
0 2l 2

are the elements of F*. As we will frequently need the cardinality p™ —1 of the multiplicative
group, let M,, ,, denote p" — 1.

Let Z,[z] be the polynomial ring in one unknown over Z,. A polynomial f € Z,[z] is
irreducible if f = gh implies that either ¢ or h is a constant. An irreducible polynomial f
of degree n is primitive if some root (and hence every root) of f is a primitive element of
GF(p™)*. Typically, the finite field GF(p") is represented as the quotient ring Z,[z]/(f),
where f is an irreducible polynomial of degree n. Moreover, if f is primitive, then a

* can be based on a root « of f. For an element

representation of the elements of GF(p™)
v € GF(p™)*, define the index of ¥ to be the smallest integer i > 0 such that o' = 7.
Alternatively, we can uniquely represent each element 5 € GF(p™) as a polynomial in « of

degree at most n — 1:

n—1
Bo= 3 b
=0

The index representation turns multiplication in GF(p™)* into addition modulo M, ,,, while
the polynomial representation makes for straightforward addition in GF(p™). As described
in Example 2.52 of Lidl and Niederreiter [5], an index table that provides the mapping from
the index representation to the polynomial representation is the key data structure that
completes the support for general arithmetic in GF(p").

Challenges arise when representing more than just the two fields Z, and GF(p™). Con-
sider the case of a chain of fields Z, C GF(p"') C GF(p™), where 1 < ny < ng. In this case,
ny divides ny. Suppose that oy and ay are primitive elements of GF(p™) and GF(p"?),

*

respectively. The cyclic group GF(p™)* is a subgroup of the cyclic group GF(p"2)*, and

the smallest power of oy that gives a generator v of GF(p™) is

,)/ _ aMP7"2 /Mp,nl
= 2 .

Arithmetic in this chain of fields, especially multiplication, will be most convenient if v = «;.

If f; and fy are the minimal polynomials of «y and a», respectively, then it is easy to see

M M . .
5 pona [Mp,ny 1mphes

that a; = «

fl (x) | f2 (xMPJQ /Mp,nl) .

We generalize these observations as follows. Suppose that for each of the subfields
GF(p”/) of a finite field GF(p™) we have chosen a primitive, irreducible polynomial f, ./ €

Z,[x] of degree n’. If whenever n; | ny and ny | n, we have

fpﬂh ($) | fp7n2 (xMPJQ /Mp,nl) ,

then we say that the polynomials chosen are compatible. Parker [7] inductively defines the
Conway polynomial C, ,, for each finite field GF(p"), giving a particular set of compatible

polynomials.! First define a lexicographic order <jey on polynomials of degree d in Z,[z]:
agr’ +ag 12T 4 b+ ap <pex bar® Fbg_12® by + b
if, for some 7 with d > ¢ > 0, we have
ag=by, ag_1 =bg_1,...,a; = b;
and
(1) a; < (=1)%;,
where the element order < in Z, is given by

0<l<---<p-—1.

!These Conway polynomials for finite fields are quite different from the Conway polynomials studied by
topologists in knot theory. The only similarity between these two families of polynomials is that both were

named in honor of the mathematician John H. Conway.

Cs1 x— 2

Cs2 22—z 42

Cs3 23422 -1

Cs 4 2t — 2342

Cs5 2° 422 — 2

Cse 2+ 2t 42— 42

Table 1: An illustration of the definition of Conway polynomial.

The base case of the definition of Conway polynomials is C,1(z) = « — v, where v is the
smallest primitive element of Z, with respect to the element order. For the general case,
choose C, ,, to be the lexicographically smallest monic, irreducible, primitive polynomial of

degree n such that, for every n’ < n satisfying n’ | n, we have
Cpnlz) | Cpu (pr,n/Mp,n,)‘

This definition yields the Conway polynomials in Table 1 for p = 3.

It is quite natural to require that the Conway polynomial C,, ,, be primitive and compati-
ble with the Conway polynomials C,, 4 for the proper divisors d of n, since this compatibility
allows easy conversions between the representations of elements in GF(p?) and the repre-
sentations of those elements in GF(p"). However, there is no compelling algebraic reason for
the requirement that the Conway polynomial be minimal with respect to the <j.x ordering.
This requirement only serves to make the Conway polynomial unique for each p and n and
to simplify the existing brute force algorithms used to generate the Conway polynomials.
These algorithms rely on an exhaustive search through the set of monic polynomials in
Zylz] of degree n considered in lexicographic order. For each such polynomial, it must be
checked whether it is irreducible, primitive, and compatible with “smaller” Conway poly-
nomials. The first polynomial found to pass these checks is C, ,. Clearly, the brute force

search is an inefficient algorithm, and, as a consequence, very few Conway polynomials are

actually known. Conway polynomials are used in the GAP [2] and Magma [4] computa-
tional algebra systems to represent finite fields, and tables of known Conway polynomials
can be constructed from their built-in functions for Conway polynomials. Scheerhorn [8]
also discusses compatible polynomials (which he calls norm-compatible polynomials) and
has implemented some algorithms in the AXIOM computational algebra system [3].

In this paper, we demonstrate that Conway polynomials for larger finite fields can often
be found much more efficiently than by the brute force search. We first develop some
fundamental results about compatible elements in a group in Section 2. Based on those
results, in Section 3, we propose two new algorithms for generating Conway polynomials
or, more generally, compatible sets of polynomials. One algorithm is based on computing
with elements of GF(p™), while the second algorithm is based on computing more directly
with the definition of compatible polynomials. After implementing the second of these
algorithms in Magma, we are able to generate a number of new Conway polynomials; these
are presented in Section 4. Finally, we suggest some additional directions for research in

Section 5.

2 Fundamental Results

From the definition of Conway polynomials, it is not even clear that C,, always exists.
Nickel [6] provides a proof of existence, and Scheerhorn [8] also proves the existence of a
parallel class of polynomials that he calls trace-compatible polynomials. In this section,
we develop some fundamental results that allow us to prove the existence of Conway poly-
nomials and of compatible polynomials, in general. More importantly, these results form
the basis and give the insights for the new algorithms we present in the next section. It
turns out that the existence of compatible polynomials only depends on the fact that the
multiplicative group of a finite field is cyclic. Consequently, we are able to develop results
in this section in the context of cyclic groups and their subgroups.

Fix a positive integer k. Let C be the cyclic group of order k, written multiplicatively.

For any element a € C}, denote the order of a by o(«).
A proof of the following lemma can be found, for example, in Lidl and Niederreiter [5],

Theorem 1.15.

Lemma 1. For a € C}, and i an integer, the order of o' is

o(a)
ged (i, o(a))’

The following lemma is easy to prove using group theoretic techniques.

Lemma 2. Let j and k be integers satisfying j | k. Let the function f : Cy — Cy/; be given
by f(z) = a?. Then f is a surjective group homomorphism. Moreover, for every y € Cr/js

there are precisely j elements x € Cy, satisfying f(z) = 2/ = y.

We now precisely develop the notion of compatible elements within a cyclic group. Let
div (k) be the set of divisors of k. A system of compatible generators for Cj is a partial

function
a @ div (k) = Ck,
defined on def (o) C div (k), satisfying these properties:
1. The function is defined on 1, that is, 1 € def («);
2. If i € def («), then o(a(t)) = 7; and
3. If i € def (o) and 7 | 4, then j € def (@) and a(i)/7 = a(j).

A system of compatible generators o' is an extension of « if def (o) C def (¢') and if
o'(i) = a(t) whenever 7 € def (a). If div (k) = def (o) then « is a complete system of
compatible generators.

The key result on systems of compatible generators asserts that a partial system can

always be extended to a complete one.

Theorem 3. Assume that o is a system of compatible generators for C'y,. Then there exists

a complete system o' of compatible generators for Cy, that extends «.

Proof: If k € def («), then the theorem immediately follows. Hence, we may assume that
k ¢ def (o). We first show how to extend def (o) by one element. That is, we show that
there exists a system of compatible generators o’ satisfying o/ (i) = «(i) whenever i € def («)
and |def (/) — def (a)| = 1. Let s = minT' be the smallest integer in div (k) — def («).
Observe that every proper divisor of s is in def («), for otherwise there would be a smaller
integer in div (k) — def («).

Let s = p{'p5? - --p5 be the unique prime factorization of s. For 1 < i < m, define
¢; = s/p;. By the observation above, each ¢; € def (a). Also, each of the a(g;) is in Cj, the
unique cyclic subgroup of Cy of order s.

First suppose that m = 1 and e; = 1. Define o to be a system of compatible generators
that extends a by the one element s, where o/(s) is chosen to be any one of the s — 1
generators of C.

Now suppose that m = 1 and e; > 1. Then oe(pil_l) has py distinct pyth roots in Cy; by
Lemma 1, each of these roots has order s and thus generates Cy. Define o to be a system
of compatible generators that extends « by the one element s, where o/(s) is chosen to be
any pith root of oe(pil_l).

Finally suppose that m > 1. Let v € ('} be an element of order s, that is, a generator
of C's. There exists r; satisfying

y

Y= alg),

for all 7 with 1 < ¢ < m. Since o(y) = s and o(«(¢;)) = ¢;, we know by Lemma 1 that

s

T eed(rs)

and hence that
pi = ged(ry,s).

Applying the generalized Chinese remainder theorem (see Bach and Shallit [1], Section 5.5),

we obtain an integer z satisfying the system of congruences

r = 5 (mod ¢;), (1)

i

provided that

r; T
— = — (mod gcd (g, q5)), 2
B2 L (mod ged (g.0))

for every pair 7, j, where 1 <7 < j < m. Furthermore, if z exists, it is unique modulo
lem ((]17(]27--- 7qm) = S

since m > 1.

To establish the congruences (2), fix ¢ and j satisfying 1 < ¢ < j < m. Eliminating ¢
and ¢; from the congruences (2), we obtain

r; T
— = — (mod s/(pip;)).
Eo= U (mod o/ ()

Now the element s/(p;p;) € def («), by the definition of s. Furthermore,
a(s/(pipj)) =" ="
It follows that
ripj = rip; (mod s)

and that

T ry

Pi P

(mod s/(pip;)).

as required. We obtain 2 satisfying the system of congruences (1). Equivalently, « satisfies

this system of congruences:
zp; = r; (mod s). (3)

We now define o’ to be a system of compatible generators that extends « by the one

element s, where o/(n) = 4. Since z is unique modulo s, ¥* is uniquely defined. We must

verify that o’ is also a system of compatible generators.

First note that

(@) = ()
= AP

r:

= v v
= a(qi)7

by the system of congruences (3) and the fact that o(y) = s.

Second we must show that o(a/(s)) = s. Observe that, for each ¢, o/(s)?* generates the
cyclic group of order ¢;. Since m > 1, the only subgroup of C; that contains all those cyclic
groups is C itself. Thus, o/(s) must generate C';. We conclude that o(d/(s)) = s.

By iteratively extending « for |div (k) — def («) | steps, we reach an extension o' that is

a complete system of compatible generators. The theorem follows. O

We also wish to count the number of extensions of « to a complete system of compatible
generators. For a prime p and an integer n, define v,(n) to be the highest power of p that
divides n; that is, v,(n) = p°, where p® | n and p°*! f n. For a prime p and a pair of integers

m and n such that m | n, define the p-contribution of m to n to be

¢(vp(n)) if p [m;

vp(n)/vp(m) if p|m.

(m,n) =

If M is a set of divisors of n, define the p-contribution of M to n to be

(M,n) = Trnneiﬁrp(m,n),

and define the contribution of M to n to be

T(M,n) = 1_[7'])(1\47 n),

pln

where p ranges over the prime divisors of n.

Theorem 4. If o is a system of compatible generators for C, then the number of exten-

sions of « to a complete system of compatible generators is T(def (a) , k).

10

Proof: Considering again the proof of Theorem 3, we see that there are three cases to
consider in extending « to a complete system of compatible generators, corresponding to

the three cases for defining o/ for elements of div (k) — def (o).

1. The first case is p € div (k) — def () for some prime p. Then in the extension step

that defines a value for o/(p), there are p — 1 possible values from which to choose.

2. The second case is p® € div (k) — def («) for some prime p and some e > 2. Then
in the extension step that defines a value for o/ (p©), there are p possible values from

which to choose.

3. The third case is s € div (k) —def () where s has two or more distinct prime factors.

In this extension step there is a unique choice for o/(s).

The total number of extensions of « to a complete system of compatible generators is the
product of the number of choices at each step. By examining the cases above, we see that
there is more than one choice only when defining the extension on a prime power. Hence,
to count the number of extensions, we may take the product of the contributions of the
prime factors of k. It is clear that each prime p contributes 7,(def («), k). Therefore, the

total number of extensions is 7(def (a) , k), as claimed. 0

We can now apply this result to finite fields. Fix a prime p and a positive integer n. A

system of (primitive) roots for GF(p™) is a partial function
g div(n) = GF(p"),

defined on def (3) C div (n), satisfying this property: If 7 € def (8), then o(3(:)) = M, ,,
that is, 3(i) is a primitive element of GF(p'). A system of roots 3’ is an extension of 3 if
def () C def (§') and if §'(i) = [(¢) whenever ¢ € def (3).

If 5 is a system of roots, then two roots §(i) and §(j) are compatible if one of these

holds:

11

1. Neither of 7 and j divides the other;
2. If 7 divides j, then ﬁ(j)MPJ/MPJ = ﬁ(@)7 or
3. If j divides 7, then 3(i)Mri/Mrs = 3(5).

If 5(¢) and B(j) are compatible for every pair ¢ and j, then § is a compatible system of

roots. If div (n) = def () then 3 is a complete system of compatible roots.

Theorem 5. Let p be a prime and let n be a positive integer. Then there exists a complete

system of compatible roots 5 for GF(p").

Proof: We show how to define each 3(7) by induction on 7. Define (1) to be any one of
the ¢(p — 1) primitive elements of the multiplicative group GF(p)*.

Now assume that ¢ > 1 and that 5(j) is defined for all j € div (n) with j < i. We need
to define 3(i) in G = GF(p')*. Now G is a cyclic group of order k = M, ;. We can define
a system of compatible generators « for GG as follows. For any t that divides k, choose
the smallest j < ¢ such that j | ¢ and ¢ | M, ;. If such a j exists, then by the inductive

hypothesis we know that 5(j) is defined. Define
aft) = BNl

To show that « is a system of compatible generators, we need to show that if t1,t, €
def (@) and t; | ty, then a(ty)2/" = a(t;). Let j; and jy be such that a(t;) is defined
to be B(j1)Mpit/M and «(ty) is defined to be §(jy)Mrs2/2. Then the smallest subfield
of GF(p') containing a(t;) is GF(p/1), while the smallest subfield of GF(p') containing

a(ty) is GF(p’2). Since t; | tz, we have that a(t;) is also in GF(p’2). This implies that

12
GF(p) C GF(p’2) and j | jo. Hence

alt2)? = (5o /)

as required.

Hence « is a system of compatible generators. By Theorem 3, o can be extended to a
complete system of compatible generators o for GG. Define §(i) = o/ (k). It is easily seen
that 8(7) is compatible with all 5(j) with 7 < 1.

The existence of 3 now follows by induction. O

Theorem 6. Let p be a prime, and let n be at least 2. Suppose 3 is a system of compatible
roots for all the subfields of GF(p™). Let M = {M,, : 1 < i < nandi | n}. Then the

number of choices for a primitive element of GF(p™) that is compatible with 3 is (M, M,).

Proof: As in Theorem 5, we construct a system of compatible generators a for f and
extend it to a complete system of compatible generators for GF(p"”)*. Theorem 4 tells us
that the number of such complete systems of compatible generators is 7(M, M,). Each
such system corresponds to a primitive element of GF'(p™) that is compatible with 5. The

theorem follows. O

Theorem 7. The Conway polynomial C), ,, exists for all primes p and all positive integers

n.

Proof: We fix a prime p and show that C,,, exists by induction on n. For n = 1, let

Cpi(z) = @ — v, where v is the smallest primitive element in GF(p). Note that v exists,

13

since GF(p)* is cyclic. Clearly C); is the lexicographically smallest, monic, irreducible,
primitive polynomial of degree 1.

Now suppose that n > 1 and that C,; is defined for all # < n. By induction on proper
divisors of n in increasing order, we may define a system of compatible roots 3 in GF(p™)

such that
1. For each ¢ < n dividing n, we have (i) is a root of C ;;
2. Whenever ¢ | 7, j | n, and j < n, we have that §(i) = ﬁ(j)MPJ/MPV".

By Theorems 5 and 6, we can extend 3 to a complete system of compatible roots by defining
B(n) to be any of a number of primitive elements of GF(p™). Of those values, we can choose
a primitive element with the lexicographically smallest monic minimal polynomial. (The
number of such primitive elements is 7(M, M, ;) > 0, where M is as defined in Theorem 6.)
Define ', ,, to be that polynomial.

The theorem follows by induction. O

3 New Algorithms

Building on the ideas in Section 2, we present two new algorithms for generating Conway
polynomials. To provide a point of comparison, we first review the brute force algorithm.

The following notation will be used throughout this section. Fix a prime p, and suppose
n is a positive integer. Let n have prime factorization n = ¢{* ---¢5*. For 1 < i < s, set

S

di = n/q; and m; = My, , /My g;. Finally, set g = ged; ;< ,{mi} and n; = m;/g.

3.1 An Algorithm Based on Exhaustive Search

We first describe the brute force algorithm currently used by GAP and Magma to compute
Conway polynomials. We present this algorithm here to contrast its performance with our

two new algorithms given later.

14

The simplest version of the brute force algorithm to compute C, ,, starts by looking up
or calculating C, 4 for all proper divisors d of n. Next, the algorithm enumerates the monic
polynomials of degree n over Z, in lexicographic order. Each polynomial is checked for
primitivity and for compatibility with the polynomials C, 4. The first polynomial passing
both checks is C,, ;.

Note that the search space for this algorithm has size p", since there are p possible coef-
ficients for each power of z from 0 to n — 1 inclusive. It will be shown in Theorem 9 that the
number of monic polynomials of degree n that are compatible with the lower order Conway
polynomials is g; moreover, by Theorem 6, the number of primitive candidates among the
g compatible candidates is 7(M, M, ,). In any case, there are no more than g primitive,
compatible polynomials in the search space. Hence, assuming that these polynomials are
distributed randomly (uniformly) in the lexicographic listing of all degree n polynomials,
we expect the brute force algorithm to test roughly p™ /g polynomials before finding the first
acceptable one. If n is composite and even moderately large (say, n > 40), then g << p"
in general, and the brute force algorithm is impractical.

One improvement to the naive algorithm is obtained by noting that the constant term
of C,,, must be (—1)"y, where 7 is the smallest primitive element of GF(p). This observa-
tion easily follows from the requirement that C,, be compatible with C, ;. Knowing the
constant term reduces the size of the search space by a factor of p. Unfortunately, there is
no analogous quick method for obtaining the higher order coefficients of C, ,,.

Another improvement to the algorithm involves the compatibility checks with lower or-
der polynomials. Recall that dy, ... ,ds are the maximal proper divisors of n. Suppose r(z)
is a particular candidate polynomial that is compatible with all the polynomials C, 4, ()

in the sense that
)| Cpa, (M) ()
Let d be any proper divisor of n. Then d divides some d;. By definition,

Cpa;(2) | Cpa (xM /Mp,d)

15

so that

M

p,d;
Cp d; (pr,n/Mp,d,‘) | Cp d ({pr,n/Mp,di} Mp.d) — Cp d (pr,n/Mp,d) .

Thus, if (4) holds for all maximal proper divisors d; of n, it follows that
r(a) | Cpa (M /Moa) (5)

for all proper divisors d of n. Of course, this observation reduces the number of compatibility

conditions to check per candidate polynomial.

3.2 An Algorithm Based on Elements

We present our first new algorithm for generating Conway polynomials. It is inspired by
the proofs of the results in Section 2. To find the Conway polynomial C,,, we must know
inductively the Conway polynomials C, 4;, for 1 <+ < s. First note that the cardinalities of
the multiplicative groups of the maximal subfields of GF(p") are f; = M, 4,. We choose a
root z; for each C, 4,. We know that o(z;) = f;. In the multiplicative group G = GF(p")*,
we can find an element 49 of order lem{ fi, fo} that is compatible with 2y and z,. In

another step, we can find an element 21 53 of order lem{ fy, f2, f3} that is compatible with

x1, T2, and x3. Iterating, we can find an element x5 . s of order

fIICm{fth,... 7f5}

that is compatible with 1, 29,...,2,. Note that ¢ = M, ,/f. Finally, all gth roots of
1,2, s that are primitive elements of GF(p”) are candidates for being the roots of the
Conway polynomial C,,,.

The algorithm appears in Figure 1. The time complexity of the algorithm is dominated
by the loop in steps 16-19 that searches through ¢ values in GF(p"). Hence the algorithm

is almost linear as a function of g.

16

GENERATECONWAY (p, n)

1

2

10
11
12
13
14
15
16
17
18
19

20

let n = g ---¢5* be the prime factorization of n
r«M,,
for i +— 1 to s
do d; « n/q;
Ji & M, 4,
m; <1/ f;
z; < a root of C, 4,
T 1
v fi
for i + 2 to s
do find «, such that v 4 gf; = ged{v, fi}
T xaxf
v« lem{w, f;}
g« r/v
min_poly ¢ oo
for z a gth root of 2 in GF(p")
do poly + minimum polynomial of z
if poly is primitive and poly < min_poly
then min_poly < poly

return min_poly

Figure 1: First algorithm for generating Conway polynomials.

17

3.3 An Algorithm Based on Polynomials

Recall that, by definition, the Conway polynomials must satisfy the compatibility conditions
Cpn(2) | Cpa (2Men /Mo (6)

for all proper divisors d of n. By the transitivity relation (5), it suffices to check the condition
(6) for the maximal proper divisors of n, namely dy,...,ds. Clearly, the compatibility
condition holds for all these divisors if and only if

Conlr) | ged (€ (7)) g
Thus, if we know C, 4,(z) for each 7, we can find C, ,(z) in principle by simply computing
the GCD of the polynomials C, 4, (2™¢), factoring the resulting polynomial, and picking
the lexicographically smallest primitive, irreducible factor of degree n. Unfortunately, the

degree of the polynomial

f(z) = ged {Cpa, (™)}

1<i<s
is typically very large compared to n, making it difficult to factor f.

To obtain a viable algorithm, we introduce a new unknown z = 29, where g =
gedy <<, {m}, as before. Note that each polynomial Cp g4 (2™¢) in @ can be written as
a polynomial C, 4, (2™/9) in z. Hence, f(z) = gedy <<, {Cp g, (2™)} can also be written
as a polynomial r(z) in the unknown z. The polynomial r(z) has some useful properties,
given by the following theorem.

In proving this theorem, we need the following result from finite field theory (pages

49-50 of Lidl and Niederreiter [5]).

Lemma 8. If f is an irreducible polynomial of degree d over GF(p), then all the roots of f
are in GF(p?). If a is one root of GF(p?), then all the roots of f are a, P, oep2, ces ,oepd_l

and these are all distinct.

In general, if o € GF(pd) but not necessarily primitive, then the elements oepi_l, where

0 <i<d~—1,are called the conjugates of a in GF(p?).

18

Theorem 9. Let n > 1. Using the notation above, the polynomial
r(z) = ged {Cpa (/%))
1<i<s
is a monic irreducible polynomial of degree n, provided that s, the number of distinct primes
dividing n, is at least 2. If s = 1, then we have r(z) = Cp /4, (7).
Moreover, if zo € GF(p") is any root of r(z), then zy has exactly g distinct gth roots

21,...,2, € GF(p"), and these roots satisfy the compatibility property
Cpa; (7)) =0for1 <i<sand1<j<yg.

Among these roots, one that is primitive and whose minimal polynomial is lexicographically

smallest has the Conway polynomial C), ,, as its minimal polynomial.

Proof: If s = 1, it is obvious that r(z) = C,,/, (2). So assume s > 1. Clearly, r(z) is
monic. Write r(z) as the product of t monic, non-constant, irreducible polynomials over

Zip, say

r(z) = filz) - fulz).

By the remarks preceding the theorem, we know that the Conway polynomial C,, ,(z) must
divide r(z) = r(2?). Thus, r(z) is non-constant, and ¢ > 0.
Next, since each polynomial C,, 4, (z) is irreducible, we have ged (Cp. 4, (2), £Cp 4, (2)) = 1

for all 7. Setting u = 2™/9 = 2™ we see that

d . . d
ged (G (o) 2-Cr ™)) = ed (o) miz™ ™ 2 1))

= 1

Thus, Cp 4,(2™) has no repeated factors, for each ¢, implying that r(z) cannot have any
repeated factors either. Thus, the factors f;(z) of r(z) are all distinct.
Fix j with 1 < j <, and let d be the degree of f;(z). Let z; be a root of p;(z) in the

extension field GF(p?) of Z,. Since r(z;) = 0, we have Cp,4,(27*) = 0. Thus, some power of

19

zj, namely 27, lies in the field GF(p®), so that GF(p?) C GF(p?) and hence d; | d. Since

s > 2, we have n = lem(d;) | d. Moreover, since

Mp,n _ (Z;ni/g)gMp,di —19=1,

z; € GF(p") and so d | n. Hence, d = n, and all irreducible factors of r(z) must have degree
n.

Finally, we claim that r(z) has only one such factor, i.e., that t = 1. To prove this claim,
by Lemma 8 it suffices to show that any two roots of r(z) are conjugates in GF(p™). So let
zp and z; be arbitrary roots of r(z). Note that both the elements z;* and =" have C, 4,
as their minimal polynomial; it follows that 2] must be a conjugate of zJ* in GF(p%), say
2 = (20" for some ¢; with 0 < ¢; < d;. We claim that there exists an integer ¢ such that
¢ = ¢; (mod d;) for all 7. This follows from the Extended Chinese Remainder Theorem,
provided that ¢; = ¢; (mod n/(¢q;)) for 1 <@ < j < s. To verify these congruences, fix ¢
and j satisfying 1 < ¢ < j < s, and define e = n/(g;¢;). Further define b; = M, 4,/M,, . and
b; = M, 4,/M, .. After computing
gMpq; My
gMp.q; My .

= n;bj,
we have that

nib; _ nyby
Z0 = %

is a primitive element of GF(p®) (because it is a root of C,), as is

niby njb;
] =z

20

We can now compute

Hence ¢; = ¢; (mod e), as desired.
We now have an integer ¢ such that 2% = (z7*)"" for all i. Since ged{ny,...,n,} =1,

there exist integers a; such that > 7_; a;n; = 1. Therefore, we obtain

s s @
nNGE nip©\
[T = H(Zo)
e _ Tl e
1 - 0 3
implying that
C
21 = 2

Hence, zp and z; are conjugates in GF(p"), forcing ¢ = 1. This completes the proof of the
first part of the theorem.
For the rest of the proof, we assume that s > 1. Let zy denote any fixed root of r(z) in

GF(p"). Since

Mpn/g _ (_m1/9\M _
Zopn _(ZO)p’dl—lv

the order of zy must divide M,, ,/g. By Lemma 2, zy has g distinct gth roots in GF(p"). If

x; is such a root, then for every ¢

Cpoa,(27) = Cpa(z577%) = 0,

J

21

so that the roots are compatible with previously chosen Conway polynomials. Conversely,
by the definition of r(z), any compatible field element z¢ must have a minimal polynomial
m(z) that divides r(z) = r(27); hence, z¢ appears among the gth roots of zy. It follows
immediately that one of the roots z; has C, ,,(2) as its minimal polynomial. The correct root
must clearly be the primitive root whose minimal polynomial is lexicographically smallest;

the existence of a primitive root is guaranteed by Theorem 7. ad

This theorem immediately leads to the following algorithm for finding the Conway
polynomial C,,,,. We begin by finding the prime factorization ¢j* - - - ¢5* of n. The algorithm
splits into three cases, depending on the number of distinct primes s in the factorization of

n.

o Casel: s> 2.

1. Look up (or recursively calculate) the Conway polynomials C, 4,(z) for each

maximal proper divisor d; = n/q;.

2. Find g = gedy i<, {Mpn/Mp g, }. Setting z = 29, compute

r(z) = ged {Cpa,(271)}
1<i<s

using any standard algorithm for finding polynomial greatest common divisors.

3. Let 2z denote a root of (z) in GF(p"). Find any gth root a of 2y in GF(p"), and
let ¢ be a primitive gth root of unity in GF(p™). Many well-known algorithms
exist to compute the field elements v and ; see, for example, Tonelli’s algorithm
in Section 7.3 of Bach and Shallit [1]. Since r(z) is an irreducible polynomial
of degree n over Z,[z] (by Theorem 9), it is convenient to perform the root

extraction algorithm using the field representation

It is easy to define GF(p”) in this way using Magma.

22

4. Observe that all the gth roots of zy in GF(p”) are of the form aC*, for 0 <
k < g. Consider each of these roots in turn. Compute the minimal polynomials
corresponding to each primitive root, and return the lexicographically smallest
polynomial so computed. By Theorem 6, there are exactly 7(M, M, ,) primitive
roots among the gth roots of zy; note that 7(M, M, ,) > 0.

More generally, we can obtain a compatible system of polynomials for any given
p by stopping the search through the gth roots of zy as soon as we find the
first primitive element that is compatible with the previously chosen primitive

elements (or polynomials). This possibility is discussed in more detail later.

e Case II: s = 1. This case is really a degenerate form of the previous one. Note
that n = ¢i', g = Mp /My ,/q,, and 1(2) = C,, /4, (2). As before, let 25 denote any
root of ¢, considered as an element of GF(p") D GF(p”/ql). Hence, as above, we
cycle through all ¢ of these roots, and return the lexicographically smallest minimal

polynomial of degree n that corresponds to a primitive root.

e Case III: s = 0, i.e., n = 1. In this case, we are simply looking for C,(z), the
Conway polynomial for the prime field Z,. We simply test each element 1,2,... of
Z, for primitivity until we find the first primitive element . (Testing an element for
primitivity can be done in polynomial time. See Bach and Shallit [1], Exercise 5.8.)

Then, by definition, C,1(z) = 2 — 7.

Theorem 9 proves the correctness of this algorithm for Cases I and 11, and the algorithm

is obviously correct for the last case.

Example 10. Suppose we wish to find Cyg(z). In this case, p =2, n =16, ¢1 =2, ¢2 = 3,
s=2,d =3, dy=2,m; = (2°-1)/(2°=1) =9, my = (2° - 1)/(22 - 1) = 21, and
g = ged(9,21) = 3. We look up Cy3(z) = 2°+ 2 + 1 and Cya(z) = 22 + x + 1. Setting

z = 22, we have

C273($9) = 2742941 = 224+2541
C272($21) — $42 _|_$21 _I_ 1 — 2,14 _I_Z7_|_ 1

23
The greatest common divisor of these two polynomials is
flz)= 14+ 2854+ = 1—|—22—|—z4—|—z5—|—26:r(z).
This is an irreducible polynomial in the unknown z, but factors as a polynomial in x as
flz)= (1—|—$—|—x3—|—x4—|—x6)(1—|—x5—|—$6)(1—|—x—|—$2—|—x5—|—x6).

Letting zo denote a root of r(z) in GF(2%), it is easy to check that the three irreducible
factors of f(z) are the minimal polynomials of the three cube roots of zp in GF(2°). The
smallest of these factors relative to <jey, namely 2° + 2* + 23 4+ 2 + 1, is Cyp(z). In this
case, since n was small, we found the candidate polynomials directly by factoring f(z). In
practice, of course, these polynomials are found one at a time by taking a cube root « of

zo in GF(29), and then checking the minimal polynomials of each primitive cube root of g

in this field.

Assuming n > 1, the running time of the root-checking phase of the algorithm clearly
grows linearly with ¢. In fact, for s < 3 the size of g determines those values of p and
n for which it is practical to compute C,, with this algorithm. Unfortunately, for any
fixed p, g grows in a highly irregular and choppy manner as n is increased. If n is itself a
prime power, ¢ is particularly “large”, and our algorithm is very slow. Ironically, the brute
force algorithm performs better in this case, since the search space contains more primitive,
compatible candidates (hence the first acceptable candidate will be found more quickly).

See Section 4.2 for a more detailed comparison.

4 Implementation and Results

Here we discuss the implementation of the second of our new algorithms in the computer
algebra system Magma and report on new Conway polynomials that we have obtained with
this implementation. We also discuss the challenges faced by the algorithm and compare

its performance to that of the brute force algorithm.

24

4.1 Implementation in Magma

Some subtleties arise when implementing the algorithm of Section 3.3 in computer algebra
systems such as Magma. In particular, when computing the Conway polynomial for GF(p"),
it is usually necessary to perform extensive arithmetic operations (taking roots, etc.) in the
finite field GF(p").?2 When n has two or more distinct prime factors, Theorem 9 furnishes
a very convenient representation for GF(p"), since we can define GF(p™) by adjoining a
root zg of r(z) to the prime field Z,. On the other hand, if n is a prime power ¢;*, the
polynomial 7(z) in the algorithm is simply C, /4, (2). In this case, we first define GF(p”/ql)
in Magma using this polynomial and then create a degree p extension of this field to obtain
a representation for GF(p").

Another subtlety arises in the computation of polynomial GCD’s in the first stage of
the algorithm. Ironically, for values of n with three or more distinct prime factors, our
algorithm often fails because there is not enough memory to store the huge polynomials
Cp.a,(2™/9) that occur when computing r(z). If n has two prime factors, the following
trick proves very useful when finding the polynomial GCD of g(z) = C,4, (2™/9) and
h(2) = Cp.a,(2™2/9). Assume that n = ¢{'¢5>, where q; < ¢o. Then the degree of g(z) will
be dramatically smaller than the degree of h(z). Indeed, for moderate n, we can factor
g(z) directly using standard polynomial factoring algorithms. For each irreducible factor
r(z) of degree n that divides g(z), we can indirectly test whether that factor also divides

h(z) as follows. Let zy be a root of r(z) in GF(p™). Since r(z) divides g(z), it must be the

case that the minimal polynomial of zg”/g is Cp 4, (2). However, the minimal polynomial
of ZgLQ/g equals Cy, 4,(2) if and only if r(z) divides h(z). Since large powers of finite field

elements, as well as their minimal polynomials, can be efficiently computed, we can now
compute r(z) without ever storing or using h(z), provided that we can compute and fully

factor g(z).

2This becomes quite awkward in GAP v3.4.4, since one cannot readily define or use finite fields whose

Conway polynomials are not known.

25

Unfortunately, although this technique can be generalized to more than two polynomials,
the exponents involved quickly become so large that even the polynomial dei(zmi/g) of
lowest degree is too big to store.

Table 2 lists a number of new Conway polynomials. Each of these polynomials cor-
responds to a gap in the list of known Conway polynomials in version 2.3-1 of Magma.
Appendix A contains the Magma routines used to compute the Conway polynomials in

Table 2. The initial call to find C,,(z) is conwaypol(p,n);.

4.2 Comparison of Old and New Algorithms

As discussed earlier, the time consumed by our new algorithms to determine a particular

Conway polynomial C,, depends critically on the quantity

M
= gcd P .
I 1gS;iSS { Mpﬂﬁqi }

If ¢ is reasonably small (say, eight digits or less), then C, ,, can be computed in a moderate

amount of time. For example, on a Sun Ultra Sparc 30 workstation we computed Cj 42 in
only 59 seconds.® In this case, g was only 5419; nearly all of the computing time was spent
calculating the polynomial GCD r(z). In contrast, the brute force algorithm in GAP for
computing Conway polynomials ran for days on Cy 42 without completing.

Table 3 contrasts the running time required by our new algorithm with that required
by the brute force search. We consider the computation of the Conway polynomials Cs ,,,
for 40 < n < 70. For each value of n, we tabulate the quantities ¢, ¢ = 7(M,M,,,),
h = p"/c (rounded to the nearest integer), and the amount of CPU time ¢ needed by
the Magma implementation of our algorithm to compute the Conway polynomial (when
available). Recall that ¢ is the number of field elements compatible with previously chosen
polynomials. Since our algorithm must check each of these elements for primitivity, the
time required by the algorithm increases at least linearly with g. The quantity ¢ gives

the number of compatible field elements that are also primitive. Thus, p”/c gives a rough

*Times cited refer to total CPU time, as reported by Magma at the end of each session.

Table 2: Selected Conway polynomials.

n Cpnl(z)
46 $46_|_ x23—|— 221 + x20—|— x17—|—x14 +1
50 | 259 —|—9629 —|—x28 —|—9€27—|- x19—|— x”—l— $16_|_ x14—|—x13 _I_x12
x10_|_$9_|_$8_|_$6_|_x4_|_x2_|_1
59 $52 + $28 + $27 + $26 + $25 + $23 + $21 + $17 + $15 + $14_|_
204 2"t 41
56 $56 _|_$33_|_ $30_|_ $26_|_ $22 + $19_|_ $14_|_$13 —|—$11 _|_$9
+a® +at ot a1
60 $60 + $45 + $44 + $42 + $41 + $39 + $36 + $34 + $33 + $32
—|—$30—|—$26—|—$25—|—$22—|—$19—|—$17—|—$12—|—$8—|—$5—|—$4—|—
242?41
26 220 4 213 4 2212 4 221 4 2219 4 229 4 228 4 227
42254 23+ 222 + 2 42
28 x28—|—29014—|—x13—|—x12—|—2x11 _|_$10_|_$9_|_$8
+226 4+ 221 4+ 23 4 2
34 234 4 218 —|—2x17—|— 2216 4 914 4 9212 4 411 4 9,9
+27 4 228 £ 224 4+ 2
36 | 256 4 221 4 2$20_|_$17_|_$16 4914 4 9218 L 9511 4 9,10

429 4+ 208 4205+ 225 P 4242+ 2

26

Table 2: Selected Conway polynomials (continued).

p|n Cpnl(z)

5 120 220 43212 4 4210 41329 4+ 228 + 325 + 42+ 2 4+ 2

5 |22 222 4 212 4 351l 4 429 4 328 4 228 4 245

+42°3 + 322+ 32 42
5 124 22 4 2216 4 4215 4 4213 4 9512 4 11 4 3510 4 4,8
4227 + 425+ 22* + 323+ 322 + 2 + 2
7 120 220 4 212 4 621t 42210 4 529 + 228 + 327
425+ 32>+ 323+ 2 +3
7 124 22 4 6215 4 51t 4 5213 4 212 4 221 4 10 4 3,8
+427 + 528 + 22° + 22 + 622 + 422 + 32+ 3

11|14 ' 4+ 227 4+ 925 4 62° 4 42* + 82% + 622 + 102 4 2

11|18 218 4+ 3212 821 4 10210 + 829 4 328 4 927 4 26
+32% + 92°% + 822 + 22 4 2

13 | 14 e 4+ 427 4+ 62° 4+ 112 + 72 + 1022 + 10z + 2

13|18 218 4 102 + 4210 4 112° 4+ 1128 4 927 4 526
+32° + 52t + 62° + 9z 4 2

17 |14 | 2" + 28 + 1127 + 2% + 82° + 162* + 1322 + 922 + 32+ 3

27

28

estimate of the number of elements that the brute force algorithm must check before it
finds the first primitive, compatible one. Using Theorem 6, it is easy to calculate ¢ given
values for p, n, and g¢.

It is instructive to compare the relative magnitudes of g and p™/c for different values of
n. If nis a prime, then ¢ = M,, ,/(p—1) and p”/c is quite small. In this case, the brute force
algorithm works quite well, since there are quite a few primitive, compatible polynomials
in the search space, so the first one will be found quickly. In contrast, our algorithm
performs horribly in this instance, since it must check all ¢ compatible candidates to find
the lexicographically smallest primitive one.

On the other hand, for composite n, the value of g tends to be small, often much smaller
than p" /c. For example, consider the cases n € {40,42,44,48,50, 52,54, 60, 66} from Table 3
for dramatic differences that favor our algorithm over the brute force algorithm. In this
case, our algorithm succeeds where the brute force algorithm fails. On the Sun Ultra Sparc
30 workstation, Conway polynomials can be computed in three days or less for values of ¢
up to 10%. Our algorithm is still viable, of course, for problems with nine-digit or ten-digit

¢’s, but the computation will take proportionately longer (weeks or months, respectively).

5 Alternative Directions

Consider the algorithm described in Section 3.3, which finds r(z) by finding the greatest
common divisor of several sparse polynomials of large degree. A major deficiency in this
algorithm is its inability to compute this polynomial GCD when p or n gets large. In
particular, this stage of the algorithm is especially prone to failure when n has three or
more prime factors. The version of the algorithm from Section 3.2 (which does computations
with field elements rather than polynomials) addresses this problem.

Assuming that enough memory is available to compute the polynomial GCD r(z), the
major time expense incurred by the algorithm occurs when it checks all g of the gth roots

of zg to find the primitive root whose minimal polynomial is lexicographically smallest.

Table 3: Comparison of the efficiency of two algorithms for computing C,, ,,.

29

n g c=1(M,M,,) h=p"/c CPU time ¢ (sec.)
(if available)

40 61681 61680 17826064 125
41 2199023255551 2198858730832 1 N/A
42 5419 5418 811747233 59
43 8796093022207 8774777333880 1 N/A
44 838861 836352 21034428 1947
45 14709241 14685300 2395890 34396
46 2796203 2796202 25165830 16336
47 140737488355327 140646443289600 1 N/A
48 65281 64512 4363141380 203
49 4432676798593 4432676798592 127 N/A
50 1016801 1012500 1111999907 2844
51 2454285751 2429105112 927007 N/A
52 13421773 13076544 344402896 38880
53 | 9007199254740991 9005653101120000 1 N/A
54 261633 261630 68854483467 1000
55 567767102431 566942112000 63549 N/A
56 15790321 15790320 4563403024 51350
57 39268347319 39267102096 3670125 N/A
58 178956971 175923744 1638382458 N/A
59 | 576460752303423487 | 576457548871463200 1 N/A
60 80581 79200 14557089704631 318

30

Table 3: Comparison of Algorithms’ Efficiency (continued).

n g c=¢(N)g/N h=p/c

61| 2305843009213693951 | 2305843009213693950 1

62 715827883 715827882 6442450950
63 60247241209 60246498816 153093909
64 4294967297 4288266240 4301678823
65 145295143558111 145295143558110 253921

66 1397419 1376496 53604933319703
67 | 147573952580676412927 | 147573951827644447920 1

68 3435973837 3407185152 86625144220
69 10052678938039 10052678938038 58720249

Because so many of the gth roots of zy are primitive, we can find a primitive root with a
compatible minimal polynomial very quickly, by stopping at the first primitive root we find.
The polynomial so obtained is not, in general, the Conway polynomial. However, it does
have all the desirable algebraic properties of the Conway polynomial, namely primitivity
and compatibility with previously chosen polynomials. Hence, for each p, one can quickly
generate a large set of compatible polynomials to represent fields of characteristic p.

Indeed, one can define a new set of polynomials via the modified version of our algo-
rithm. The only difficulty in postulating such a definition is that certain portions of our
algorithm — specifically, taking roots in finite fields — rely on randomized subroutines;
hence, the algorithm produces different polynomials each time it is executed. To obtain
one standard set of polynomials, it is necessary to remove all randomness from the algorithm
used to define these polynomials.

Appendix B contains the Magma code for this alternate algorithm that generates ran-

dom sets of compatible polynomials for p = 2. The routine that generates these polynomials

31

skips all values of » with three or more prime factors, since Magma tends to run out of
memory when computing the polynomial GCD r(z) for such n.

In summary, we have demonstrated two new algorithms for generating Conway polyno-
mials, or more general sets of compatible polynomials, over finite fields. These algorithms
are much more efficient for finding C, ,, than the brute force algorithm when the parameter
¢ is small compared to the parameter p™/c. We have also shown the practical significance of
these new algorithms by generating numerous Conway polynomials that had not previously

been identified.

32

References

[1]

[7]

[8]

E. BacH AND J. SHALLIT, Algorithmic Number Theory, The MIT Press, Cambridge,

Massachusetts, 1996.

Tae GAP Group, GAP - Groups, Algorithms, and Programming, Version 4,
Lehrstuhl D fiir Mathematik, RWTH Aachen, Germany and School of Mathematical

and Computational Sciences, U. St. Andrews, Scotland, 1997.

J. GRABMEIER AND A. SCHEERHORN, Finite fields in AXIOM, 1993. Online document

available at http://extweb.nag.co.uk/doc/TechRep/NP1513 . html.

C. JanseN, K. Lux, R. PARKER, AND R. WILSON, An Atlas of Brauer Characters,

Clarendon Press, Oxford, 1995.

R. Lipr. AND H. NIEDERREITER, Introduction to Finite Fields and Their Applications,

Cambridge University Press, Cambridge, 1994.

W. NickEL, Fndliche Kérper in dem gruppentheoretischen Programmsystem GAP.

Diploma thesis, RWTH Aachen, 1988.

R. PARKER, Finite fields and Conway polynomials, 1990. Attributed in [8] to a talk

given at IBM Heidelberg Scientific Center.

A. SCHEERHORN, Trace- and norm-compatible extensions of finite fields, Applicable

Algebra in Engineering, Communication and Computing, 3 (1992), pp. 199-209.

Appendices 33

A Magma Implementation of Algorithm

Here is the Magma source code for our implementation of the algorithm of Section 3.3.

// File "conway": Magma function to compute Conway polynomials.

load '"getroot";

load "tryallO";

// implements the "factor the smallest C_{p,d_i}(x"{m_i}) and check"
// technique to get the polynomial GCD q{z)

substitute := function(p,pr,x,exp)
// return polynomial p over polynomial ring pr with x replaced by x"exp

list := Coefficients(p);
answer := pr ! O;

j o= 1;
while (j le #list) do
if (1ist[j] ne 0) then
answer := answer + list[jl*x~((j-1)*exp);
end if;
ji= et
end while;

return answer;
end function;

conwaypol := function(p,n)
// return the Conway Polynomial for GF(p~n) if possible

// check validity of arguments

if (not IsPrime(p)) then
print "Error: ",p," is not a prime!";
return O;

end if;

if (n le 0) then
print "Error: ",n," is not positive!";
return O;

end if;

pr<x> := PolynomialRing(GF(p));

if (n eq 1) then // base case: GF(p)

Appendices

beta := 1;

while (not IsPrimitive(GF(p) ! beta)) do
beta := beta + 1;

end while;

return x - beta;

end if;
facs := Factorization(n);
s := #facs;

if (s eq 1) then // n is a prime power: special case
print "prime power n";

q := facs[1][1];
d := n div facs[1][1];
m:= (p’n - 1) div (p7d - 1);

g = m;
if (not ExistsConwayPolynomial(p,d)) then
//print "Finding polynomial with p=",p," d=",d," recursively.";

cpd := Self(p,d);
else

cpd := ConwayPolynomial(p,d);
end if;

// one more special case if d=1 (i.e., n itself is a prime)
if (d gt 1) then
gfpd<z> := ext< GF(p) | cpd >;
else
gfpd := GF(p);
z := gfpd ! (GF(p) ! -Coefficients(cpd)[1]);
end if;
gfpn := ext< gfpd | q >;
root, zeta := getanyroot(z, g, gfpn);
print "root = ",root," and zeta = ",zeta;
return tryall2(root,zeta,g,gfpn,p,n);
end if;

ii = 1; d:=[* *]; m:=[* *]; cpd:=[* *];
while (ii le s) do
d[ii] := n div facs[ii][1];
m[ii] := (p"n - 1) div (p~d[ii] - 1);
if (not ExistsConwayPolynomial(p,d[ii])) then
//print "Finding polynomial with p=",p," d=",d[ii]," recursively.";
cpd[ii] := Self(p,d[iil);
end if;

Appendices 35

cpd[ii] := ConwayPolynomial(p,d[ii]);
print "ii=",6ii,"; d[iil=",d[ii],"; m[ii]=",m[ii],"; cpdl[iil=",cpd[ii];
ii = ii + 1;

end while;

// Calculate the integer and polynomial GCD’s of interest.
g = m[1]; ii:=2;
while (ii le s) do
g:=GCD(g,m[ii]);
ii:=ii+1;
end while;
print "g=",g;

q := substitute(cpd[1],pr,x,m[1] div g);
plist := Factorization(q);
print "Have to check ",#plist," polynomial factors.'";

foundGCD := false;
ii := 1,
while (ii le #plist) and (not foundGCD) do
pcand := plist[ii][1];
if (Degree(pcand) eq n) then
gf<zz> := ext< GF(p) | pcand >;
if (p2comp(MinimalPolynomial(zz~(m[1] div g)),cpd[1]) ne 0) then
print "Bad factor!';
end if;
kk := 2; OK:=true;
while (kk le s) and OK do
if (p2comp(MinimalPolynomial(zz" (m[kk] div g)),cpd[kk]) ne 0)
then OK:=false; end if;
kk := kk + 1;
end while;
if (OK) then
q:=pcand;
foundGCD:=true;
end if;
end if;
ii = ii+1;
end while;

print "OK, g=",g,"; and q(x) [really z] =",q;

if (not IsIrreducible(q)) then // consistency check
print "Error: q(x) is reducible!!!";
return O;

Appendices 36

end if;

if (Degree(q) ne n) then
print "Error: q(x) does not have degree n!!";
return O;

end if;

gf<z> := ext< GF(p) | q >;
root, zeta := getanyroot(z, g, gf);
return tryall(root,zeta,g,gf,p,n);

end function;
// end of file '"conway"

LIHITTIITTTTTTE LD LT i i rr i i riiiiiiiiiiiiiiiieiieeiiigg

// File "getroot": Magma functions to take roots of field elements.

getroot := function(a,r,fq)

// Returns an r’th root of element a in field fq (if possible)
// along with a primitive r’th root of unity.

// This function implements a version of Tonelli’s algorithm
// as given in Chapter 7 of Bach and Shallit.

// Here, r must be prime; the function "getanyroot"

// later generalizes to non-prime r.

q := #fq;
// print P =n,a’n; r =n,r’n; q =n,q’n; fq =“,fq;
ii := 0;

if ((g-1) mod r) ne O then
print "Error: r does not divide q-1";
return 0,0;

elif (not IsPrime(r)) then
print "Error: r is not a prime";
return 0,0;

end if;

repeat
h:=Random(£q) ;
ii = ii + 1;

until (h ne 0) and ((h~((gq-1) div r)) ne 1);
// print "Found h =",h,"after",ii,"iteration(s).";

// print nn;
t := (q-1) div r;
s :=1;

while (t mod r) eq O do

Appendices

//
//
//
//

t
s =8 + 1;

t div r;

end while;

gg, alpha, beta := XGCD(t,r"s);

if (gg ne 1) then
print "Error: r”s and t were not relatively prime!";
return 0,0;

end if;

gg, rprime, tprime := XGCD(r,t);

print "q-1 = r°s t, for g-1 =",q-1,"; r =",r,"; s =",s,
print "r~(-1) modulo t is: ",rprime;
print "alpha *",t,"+ beta *",r"s,
"= 1 for alpha =",alpha,"and beta =",beta;
ar := a"t;
at := a~(r’s);
g :=h"t;
zeta := g~ ((q-1) div r);
e := 0;
ii := 0;
while (ii 1t s) do
jj =0
while ((g~(e+jj*r~ii))*ar) (r~(s-ii-1)) ne 1 do
SRR A IEIRY

if (jj eq r) then
print "Error: could not find digit ",ii;
return 0,0;
end if;
end while;

e := e + jj*rTii;
ii = 1i+1;
end while;

if (e mod r ne 0) then
print "Error: final value of e is not divisible by r'";

print " i.e., a is NOT an r’th power in the field!";
return O;

end if;

br := g~ (-(e div 1));

bt := at”"rprime;

b := (br~alpha)*(bt~beta);

return b,zeta;

sttt

37

Appendices 38

end function;

getanyroot := function(a,r,fq)
// "a" is a perfect "r"th power in the field '"fq"
// return an "r"th root of "a" in "fq" along with a primitive
// "r"th root of unity in "fq".
factors := Factorization(r);

pe := PrimitiveElement(fq);
zeta := pe” ((#fq-1) div r);
root := a;
ii:=1;
while (ii le #factors) do

3j=t;

while (jj le factors[iil[2]) do

rootl, zetal:= getroot(root,factors[ii][1],fq);

root := rootl;

jj =31y 1
end while;
ii:=ii+1;

end while;

return root, zeta;
end function;

// end of file "getroot"

LTI I LTI 0000707000007 000 7777 770700707777777010711717711717177
// File '"tryallO": routines to check all g g’th roots of z

// and pick out the best primitive one.

p2comp := function(pl,p2)
// uses ordering in "Brauer character" book
cl := Coefficients(pl);
c2 := Coefficients(p2);
if (#cl ne #c2) then
print "p2comp warning: polynomials are of unequal degrees!'";

return O;

end if;

ii := #cl; sign := +1;

while (ii gt 0) and (c1[ii] eq c2[ii]) do
ii = ii-1;
sign := -sign;

end while;

Appendices

if (
end

al:=
a2:=
if (
else
end

ii eq 0) then return O; // equal polynomials
if;

IntegerRing() ! (sign*c1[iil);
IntegerRing() ! (sign*c2[iil);
al gt a2) then return 1;
return -1;

if;

end function;

tryall

b
q :

best

:= function(root,zeta,r,fq,p,n)

root;
#fq;

:= MinimalPolynomial(b);

print "b =",b;

print "Minimal polynomial: ",best;

ispr

im := IsPrimitive(best);

print "Initially, isprim = ",isprim;

ii:=

whil
b
be
is
ii

end

if n
pr
re

end

prin

whil
b

1
e 1i 1t r and (not isprim) do
:= b *x zeta;
st:=MinimalPolynomial(b) ;
prim:=IsPrimitive(best);

= ii + 1,
while;

ot isprim then

int "Error: No polynomial was primitive!!!";
turn 0O;

if;

t "First primitive one:'",best;

e ii 1t r do
:= b *x zeta;
tp:=MinimalPolynomial (b) ;
if (p2comp(tp,best) eq -1) then
if IsPrimitive(tp) then best:=tp;
end if;
end if;

39

Appendices

ii = ii + 1;
if (ii mod 1000 eq 0) then
print "ii is now:",ii;
end if;
end while;

print "Best one was:'",best;

return best;
end function;

tryall2 := function(root,zeta,r,fq,prime,dd)

b
q :

root;
#fq;

best := MinimalPolynomial(b,GF(prime));
print "b =",b;

print "Minimal polynomial: ",best;

cc := Coefficients(best); print '"cc = '",cc;
if (#cc 1t (dd+1)) then isprim:=false;

else isprim := IsPrimitive(best);

end if;

print "Initially, isprim = ",isprim;

ii:=1;

while ii 1t r and (not isprim) do
b := Db * zeta;
best:=MinimalPolynomial(b,GF(prime));
if (#Coefficients(best) 1t (dd+1)) then isprim:=false;
else isprim:=IsPrimitive(best);
end if;
ii = ii + 1;
end while;

if not isprim then
print "Error: No polynomial was primitive!!!";
return O;

end if;

print "First primitive one:",best;

while i1 1t r do
b := Db * zeta;
tp:=MinimalPolynomial (b,GF(prime)) ;

Appendices

if (#Coefficients(tp) eq #Coefficients(best)) then

if (p2comp(tp,best) eq -1) then
if IsPrimitive(tp) then best:=tp;
end if;

end if;

end if;

ii = ii + 1;

if (ii mod 1000 eq 0) then
print "ii is now:",ii;

end if;

end while;

print "Best one was:'",best;
return best;

end function;

// end of file "tryallO"
y

41

Appendices

B Modified Algorithm

Here is the modified algorithm of Section 5.

// File '"compatible_sets":
// Magma code to generate a random set of mutually compatible
// polynomials that are not Conway polynomials.

load '"getroot";

load "tryall4";

// implement the "factor the smallest C_{p,d_i}(x"{m_i}) and check"
// trick to get the polynomial GCD q(z)

// Take the first primitive, compatible polynomial you can get

substitute := function(p,pr,x,exp)
// return polynomial p over polynomial ring pr with x replaced by x"exp

list := Coefficients(p);
answer := pr ! O;

j o= 1;
while (j le #list) do
if (1ist[j] ne 0) then
answer := answer + list[jl*x~((j-1)*exp);
end if;
ji= et
end while;

return answer;
end function;

compatiblepol := function(p,n,table)
// check validity of arguments
if (not IsPrime(p)) then
print "Error: ",p," is not a prime!";
return O;
end if;
if (n le 0) then
print "Error: ",n," is not positive!";
return O;
end if;

pr<x> := PolynomialRing(GF(p));

42

Appendices 43

if (n eq 1) then // base case: GF(p)
beta := 1;
while (not IsPrimitive(GF(p) ! beta)) do
beta := beta + 1;
end while;
return x - beta;

end if;
facs := Factorization(n);
s := #facs;

if (s eq 1) then // n is a prime power: special case
//print "prime power n'";

q := facs[1][1];
d := n div facs[1][1];
m:= (p’n - 1) div (p7d - 1);

g :=m;
cpd := tableld];

// one more special case if d=1 (i.e., n itself is a prime)
if (d gt 1) then
gfpd<z> := ext< GF(p) | cpd >;
else
gfpd := GF(p);
z := gfpd ! (GF(p) ! -Coefficients(cpd)[1]);
end if;
gfpn := ext< gfpd | q >;
root, zeta := getanyroot(z, g, gfpn);
//print "root = ",root,'" and zeta = ",zeta;
return tryall2(root,zeta,g,gfpn,p,n);
end if;

ii = 1; d:=[* *]; m:=[* *]; cpd:=[* *];
while (ii le s) do
dlii] n div facs[ii][1];
m[iil := (p°n - 1) div (p~d[iil] - 1);
cpd[ii] := table[d[iil];
// print "ii=",6ii,"; d[ii]=",d[ii],";
// mliil=",m[ii],"; cpd[iil=",cpd[ii];
ii = ii + 1;

end while;

// Calculate the integer and polynomial GCD’s of interest.
g = m[1]; ii:=2;

Appendices

while (ii le 8) do
g:=GCD(g,m[ii]);
ii:=ii+1;

end while;

//print "g=",g;

q := substitute(cpd[1],pr,x,m[1] div g);
plist := Factorization(q);
//print "Have to check ",#plist," polynomial factors.';

foundGCD := false;
ii := 1,
while (ii le #plist) and (not foundGCD) do
pcand := plist[ii][1];
if (Degree(pcand) eq n) then
gf<zz> := ext< GF(p) | pcand >;
if (p2comp(MinimalPolynomial(zz~(m[1] div g)),cpd[1]) ne 0) then
print "Bad factor!';
end if;
kk := 2; OK:=true;
while (kk le s) and OK do
mp := MinimalPolynomial(zz~ (m[kk] div g));
if (Degree(mp) ne Degree(cpd[kk])) then
OK:=false;
elif (p2comp(mp,cpd[kk]) ne 0) then
OK:=false;
end if;
kk := kk + 1;
end while;
if (OK) then
q:=pcand;
foundGCD:=true;
end if;
end if;
ii = ii+1;
end while;

//print "OK, g=",g,"; and q(x) [really z] =",q;
if (not IsIrreducible(q)) then // check answer
print "error: q(x) is reducible!!!";
return O;
end if;
if (Degree(q) ne n) then
print "error: q(x) does not have degree n!!";

44

Appendices

return O;
end if;

gf<z> := ext< GF(p) | q >;
root, zeta := getanyroot(z, g, gf);
return tryall(root,zeta,g,gf);

end function;

poltable := [* *];
P := 2;
u := 1;
print "Table of random compatible polynomials for p = ",p;
while (u le 200) do
fu := Factorization(u);
if (#fu le 2) then
/* don’t bother for n’s with 3 or more prime factors */
/* (Magma usually runs out of memory for those n.) */
poltable[u] := compatiblepol(p,u,poltable);

print "poltable[",u,"] := ",poltablelul;
else poltable[u] := 0;
end if;
u := utl;
end while;
quit;

// end of file "compatible_sets"

HTTTITITITI L1001 0 100077007 7707007777070147771717177171717171
// File '"tryall4": modified version of "tryallO" that

// stops at the first primitive g’th root of z.

p2comp := function(pl,p2)

// uses ordering in "Brauer character" book

cl := Coefficients(pl);

c2 := Coefficients(p2);

if (#cl ne #c2) then
print "p2comp warning: polynomials are of unequal degrees!'";
return O;

end if;

ii := #cl; sign := +1;
while (ii gt 0) and (c1[ii] eq c2[ii]) do
ii = ii-1;

45

Appendices 46

sign := -sign;
end while;

if (ii eq 0) then return O; // equal polynomials
end if;

al:=IntegerRing() ! (sign*c1[iil);
a2:=IntegerRing() ! (sign*c2[iil);
if (al gt a2) then return 1;
else return -1;
end if;

end function;

tryall := function(root,zeta,r,fq)
b := root;
q := #fq;

best := MinimalPolynomial(b);
// print "b =",b;
// print "Minimal polynomial: ",best;

isprim := IsPrimitive(best);
// print "Initially, isprim = ",isprim;
ii:=1;

while ii 1t r and (not isprim) do
b := Db * zeta;
best:=MinimalPolynomial(b);
isprim:=IsPrimitive(best);
ii = ii + 1;

end while;

if not isprim then
print "Error: No polynomial was primitive!!!";
return O;
end if;
// print "First primitive one:",best;
return best;
end function;

tryall2 := function(root,zeta,r,fq,prime,dd)

b := root;

Appendices

q := #fq;

best := MinimalPolynomial(b,GF(prime));
// print "b =",b;
// print "Minimal polynomial: ",best;
cc := Coefficients(best); //print "cc = ", cc;
if (#cc 1t (dd+1)) then isprim:=false;
else isprim := IsPrimitive(best);
end if;
// print "Initially, isprim = ",isprim;

ii:=1;
while ii 1t r and (not isprim) do
b := Db * zeta;
best:=MinimalPolynomial(b,GF(prime));
if (#Coefficients(best) 1t (dd+1)) then isprim:=false;
else isprim:=IsPrimitive(best);
end if;
ii = ii + 1;
end while;

if not isprim then
print "Error: No polynomial was primitive!!!";
return O;
end if;
// print "First primitive one:",best;
return best;

end function;

47

