
Interesting Examples on Maximal Irreducible
Goppa Codes

Marta Giorgetti

Dipartimento di Fisica e Matematica, Universita’ dell’Insubria

Abstract. In this paper a full categorization of irreducible classical
Goppa codes of degree 4 and length 9 is given. It is an interesting ex-
ample in the context of find the number of permutation non-equivalent
classical irreducible maximal Goppa codes having fixed parameters q, n
and r using group theory techniques.

Key words: Classical Goppa codes, Equivalent codes, Permutation groups.

1 Introduction

In this paper an interesting example is given in the context of finding an upper
bound for the number of permutation non-equivalent irreducible maximal Goppa
codes. This question was considered by several authors (see for example [1], [2],
[4], [5], [6], [8]). The study of classical Goppa codes is important: they are a very
large class of codes, near to random codes [3]; they are easy to generate; they
possess an interesting algebraic structure. For all these reasons they are used in
McEliece’s public key cryptosystem [11].

The article is structured as follows: Section 1 gives some notation and pre-
liminaries; Section 2 describes the approach to the problem of find the number
of non-equivalent maximal irreducible Goppa codes; in Section 3 the full classi-
fication of maximal irreducible classical Goppa codes of degree 4 and length 9 is
given, with several notes on polynomials.

2 Preliminaries

In this section we fix some notation and we recall some basic concept about
linear codes and in particular about Goppa codes.

We denote by Fq the finite field with q elements, where q = pm is a power
of a prime p; let N , k, n and r be natural numbers, k ≤ N . We consider two
extensions of Fq, of degree n and nr, Fqn and Fqnr respectively; Fqn [x] denotes
the polynomial ring over Fqn and ε is a primitive element of Fqn , F∗qn = 〈ε〉. We
refer to the vector space of dimension N over Fq as to (Fq)N .

In the following if H is an (N − k) ×N matrix with entries in Fq and rank
equal to N−k, the set C of all vectors c ∈ (Fq)N such that HcT = 0 is an (N, k)
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linear code over Fq, of length N and dimension k, i.e. a subspace of (Fq)N of
dimension k. The elements of C are called codewords and matrix H is a parity
check matrix of C. Any k ×N matrix G whose rows form a vector basis of C is
called a generator matrix of C. We use the notation [N, k]q to denote a linear
code of length N and dimension k over Fq.

Definition 1. Let C an [N, k′]qt code. The subfield subcode C = C|Fq of C with
respect to Fq is the set of codewords in C each of whole components is in Fq; C
is a [N, k]q code.

By abuse of notation we call parity check matrix also a matrix H with entries
in an extention field of Fq such that HcT = 0 for all c ∈ C. According to this
assumption, H1 and H2 may be parity check matrices for the same code even if
their entries are in different extension fields or they have different ranks.

Definition 2 ([9]). Let C1 and C2 be two linear codes over Fq of length N , let
G1 be a generator matrix of C1. Codes C1 and C2 are permutation equivalent
provided there is a permutation σ ∈ SN of coordinates which sends C1 in C2.
Thus C1 and C2 are permutation equivalent provided there is a permutation
matrix P such that G1P is a generator matrix for C2. They are monomially
equivalent provided there is a monomial matrix M so that G1M is a generator
matrix for C2 and equivalent provided there is a monomial matrix M and an
automorphism γ of the field Fq so that C2 = C1Mγ.

If code C2 is permutation equivalent to C1 with parity check matrix H1, we
can obtain a parity check matrix H2 for C2 by permuting columns of H1 (and
viceversa).

Definition 3. Let g(x) =
∑
gix

i ∈ Fqn [x] and let L = {ε1, ε2, . . ., εN} denote
a subset of elements of Fqn which are not roots of g(x). Then the Goppa code
G(L, g) is defined as the set of all vectors c = (c1, c2, . . ., cN ) with components in
Fq which satisfy the condition:

N∑
i=0

ci
x− εi

≡ 0 mod g(x). (1)

Usually, but now always, the set L = {ε1, ε2, . . ., εN} is taken to be the set of all
elements in Fqn which are not roots of the Goppa polynomial g(x). In this case
the Goppa code is said maximal. If the degree of g(x) is r, then the Goppa code
is called a Goppa code of degree r. It is easy to see ([12]) that a parity check
matrix for G(L, g) is given by

H =


1
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1
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. . . 1
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...

εr−1
1
g(ε1)
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 .
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Note that the code C = kerH is a subspace of (Fqn)N and the Goppa code
G(L, g) is its subfield subcode on Fq.

A Goppa code G(L, g) is called irreducible if g(x) is irreducible over Fqn .
In the following by Goppa code we mean maximal irreducible classical Goppa

code of degree r, so that N = qn. By Definition 3, a vector c = (c1, c2, . . ., cqn) ∈
(Fq)q

n

is a codeword of G(L, g) if and only if it satisfies (1). If α is any root
of g(x), α ∈ Fqnr , then g(x) =

∏r−1
i=0 (x − αqni

) and (1) is equivalent to the r
equations

qn∑
i=1

ci
αqnj − εi

= 0, 0 ≤ j ≤ r − 1. (2)

Hence G(L, g) is completely described by any root α of g(x) and we may
denote this code by C(α). From (2) we easily get a parity check matrix Hα ∈
Mat1×qn(Fqnr ) for C(α) (see [4]):

Hα =
(

1
α−ε1 ,

1
α−ε2 , . . .,

1
α−εqn

)
. (3)

It is important to stress that by using parity check matrix Hα to define C(α)
we implicitly fix an order in L. So, we set L = {ε, ε2, . . ., εqn−1, ε−∞}, where
ε−∞ = 0, εi = εi and the matrix Hα is

Hα =
(

1
α−ε ,

1
α−ε2 , . . .,

1
α−1 ,

1
α

)
.

We observe that the Goppa code C(α) is the subfield subcode of codes having
as parity check matrices both H and Hα. Moreover, there exist matrices having
structure different from H and Hα, which are parity check matrices for C.

We denote by

- Ω = Ω(q, n, r) the set of Goppa codes, with fixed parameters q, n, r;
- S = S(q, n, r) the set of all elements in Fqnr of degree r over Fqn ;
- P = P(q, n, r) the set of irreducible polynomials of degree r in Fqn [x].

3 The number of non-equivalent Goppa codes

This section briefly summarize actions on Ω already introduced in literature.
In [14] the action on Ω is obtained by considering an action on S of an

”semi-affine” group T = AGL(1, qn)〈σ〉 in the following way: for α ∈ S and
t ∈ T , αt = aαq

i

+ b for some a, b ∈ Fqn , a 6= 0 and i = 1 . . . nr. The action
gives a number of orbits over S which is an upper bound for the number of non
equivalent Goppa codes. The main result is the following:

Theorem 1. [14] If α, β ∈ S are related as it follows

β = ζαq
i

+ ξ (4)

for some ζ, ξ ∈ Fqn , ζ 6= 0, i = 1. . .nr, then C(α) is equivalent to C(β).
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In [8] the action of a group FG isomorphic to AΓL(1, qn) on the qn columns
of the parity check matrix Hα is considered. We point out that columns of Hα

are in bijective correspondence with the elements of Fqn . The group FG induces
on Ω the same orbits which arise from the action introduced in [14]. This action
does not describe exactly the orbits of permutation non equivalent Goppa codes,
since in some cases the number of permutation non-equivalent Goppa codes is
less than the number of orbits of T on S.

The group FG acts faithfully on the columns of Hα: it can be seen as a sub-
group of the symmetric group Sqn . In [5] it has been proved that it exists exactly
one maximal subgroup M (isomorphic to AGL(nm, p)) of Sqn (Aqn) containing
FG (q = pm). This suggests that one could consider the action of M on codes
to reach the right bound. From this result one could hope that, when it is not
possible to reach the exact number s of permutation non-equivalent Goppa codes
by the action of FG, s is obtained by considering the group AGL(nm, p). Unfor-
tunately, this is not always true as it is shown in the next section. The following
examples were introduced by Ryan in this PhD thesis [14]. In the next section
we thoroughly analyze them, pointing out the group action of AGL(nm, p).

4 Interesting examples

In this section we present a complete classification of the maximal irreducible
Goppa codes Ω(3, 2, 4). We show another example when the bound proposed in
[14] is not reached and the action of the maximal subgroup, isomorphic to AGL,
is not sufficient to unify disjoint orbits of permutation equivalent codes.

Classification of Ω(3, 2, 4) Let q = 3, n = 2, r = 4; let ε be a primitive
element of F32 with minimal polynomial x2+2x+2; let L = [ε, ε2, . . . , ε3

2−2, 1, 0];
let P = P(3, 2, 4) be the set of all irreducible polynomials of degree 4 in F9,
|P| = 1620 and let S = S(3, 2, 4) be the set of all elements of degree 4 over F9,
|S| = 6480. Let Γ (g, L) be a maximal irreducible Goppa code of length 9 over
F3, g ∈ P. We denote by SS the symmetric group on S. We consider the action
of T , T ≤ SS, on S: there are 13 orbits on S. It means that there are at most
13 classes of maximal irreducible Goppa codes. We choose a representative for
each class. We note that these codes have dimension k = 1, so that they have
two not trivial codewords.

Table 1 shows the thirteen classes: for each representative code Γi, we give
the corresponding Goppa polynomial gi(x), the code parameters [n, k, d] and the
generator matrix M . The analysis of parameters [n, k, d] and generator matrices
shows that these 13 code representantives can not be equivalent, since they have
different minimum distances. By analyzing thoroughly the code representatives
we can observe that:

– Γ1 is permutation equivalent to Γ3;
– Γ2 and Γ10 are permutation equivalent to Γ7;
– Γ11 is permutation equivalent to Γ6;
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Γi gi(x) [n, k, d] M

Γ1 x4 + f3x3 + fx+ f5 [9, 1, 9] [112212212]
Γ2 x4 + f7x3 + x2 + f5x+ f3 [9, 1, 5] [010222010]
Γ3 x4 + f5x+ f [9, 1, 9] [122221112]
Γ4 x4 + f5x2 + f6x+ f2 [9, 1, 6] [120101202]
Γ5 x4 + f7x2 + f2x+ f5 [9, 1, 6] [112001011]
Γ6 x4 + fx3 + f5x2 + f3x+ f6 [9, 1, 7] [001111122]
Γ7 x4 + f6x3 + f2x2 + 2x+ f5 [9, 1, 5] [001220110]
Γ8 x4 + 2x3 + 2x2 + 2x+ f7 [9, 1, 6] [121120200]
Γ9 x4 + f5x3 + f2x2 + f3 [9, 1, 6] [010021112]
Γ10 x

4 + 2x3 + f3x2 + f6, [9, 1, 5] [120201200]
Γ11 x

4 + fx3 + fx2 + fx+ f2, [9, 1, 7] [120220221]
Γ12 x

4 + f3x3 + f2x2 + 2x+ f3, [9, 1, 6] [101012012]
Γ13 x

4 + f3x3 + f5x2 + x+ f6 [9, 1, 6] [011101202]

Table 1. Representatives of the 13 classes obtaining in the action of T over S.

– Γ4 is permutation equivalent to Γ8;
– Γ9 and Γ12 are permutation equivalent to Γ13.

We can conclude that the number of different classes of permutation non
equivalent codes is 6 and not 13 (Γ5 composes a permutation equivalence class).

Moreover Γ5, Γ4, Γ8, Γ9, Γ12 and Γ13 are monomially equivalent, so there are
only 4 equivalence classes of non equivalent Goppa codes.

In Table 2 we summarize the results of the group actions as follows. The
action of T on S, T ≤ SS, creates 13 orbits: we report the number of elements
in each orbit |ST | and we count the number of Goppa codes corresponding to
these elements (by abuse of notation we write |ΓTi |). For each representative
Γi, we consider its permutation group P(Γi): we obtain the number of codes
permutation equivalent to it by computing |S9|

|P(Γi)| ; the number of codes which are
permutation equivalent to Γi under the actions of FG (and AGL = AGL(2, 3)) is
obtained as |FG|

|FG∩P(Γi)| (and |AGL|
|ALG∩P(Γi)| , respectively). We use symbols ♣, ♦, ♥

and ♠ to denote the four monomial equivalence classes and symbols ⊕, �, ⊗
to denote the permutation classes when they are different from the monomial
classes. We write P.E. to say Permutation Equivalent.

In this example, the action of the only maximal permutation group AGL ≤
Sqn , which contains FG, is not sufficient to unify disjoint orbits of non equiva-
lent codes. Only the whole symmetric group Sqn gives the right number of non
equivalent Goppa codes.

Remark 1. It is interesting to analyzing polynomials in P. We denote by P♣ the
set of polynomials corresponding to Goppa codes in the ♣ equivalence class, and
so on for the others, hence P = P♣ ∪ P♦ ∪ P♠ ∪ P♥. We denote by P∗,Γi

, the
set of polynomials in P∗, ∗ ∈ {♣, ♦, ♥,♠}, corresponding to the codes in ΓTi . It
is easy to check that if g ∈ P♣, g has the following shape x4 + εix3 + εjx + εk
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Γi |ST | |ΓTi | |P(Γi)| |S9|
|P(Γi)|

|FG|
|P(Γi)∩FG|

|AGL|
|P(Γi)∩ALG|

Γ1 ♣ 144 18 2880 126 18 54
Γ3 ♣ 576 72 2880 P.E.Γ1 72 72

Γ2 ♦ 576 144 288 1260 144 432
Γ10 ♦ 576 144 288 P.E.Γ2 144 216
Γ7 ♦ 576 144 288 P.E.Γ2 144 432

Γ6 ♠ 576 144 480 756 144 216
Γ11 ♠ 288 72 480 P.E.Γ6 72 108

Γ5 ♥ ⊗ 576 144 720 504 144 216
Γ4 ♥ ⊕ 576 144 432 840 144 432
Γ8 ♥ ⊕ 576 144 432 P.E.Γ4 144 216
Γ9 ♥ � 288 72 288 1260 72 108
Γ12 ♥ � 576 144 288 P.E.Γ9 144 216
Γ13 ♥ � 576 144 288 P.E.Γ9 144 216

6480 1530 4746 1530 2934

Table 2. Different group actions

for some i, j, k ∈ [1, . . . , qn,−∞], so that the x2 coefficient is equal to zero. We
know that |P♣,Γ1 | = 36 and |ΓT1 | = 18: more than one polynomial generates the
same code. We can show that couples of polynomials in P♣,Γ1 generate the same
code. Moreover if g1, g2 ∈ ΓT1 generate the same Goppa code then they have
the same coefficients except for the constant term: we can obtain one constant
term from the other by arising to the q-th power. For example polynomials
x4 + ε6x3 + ε2x + ε2 and x4 + ε6x3 + ε2x + ε6 generate the same Goppa code.
A similar argument can conduce us to say that polynomials in P♣,Γ3 are 576,
but they generate 72 different Goppa codes. We have that 4 polynomials create
the same Goppa code and we find the following relation: given a polynomial
g ∈ P♣,Γ3 , g = x4 +εix3 +εjx+εk, then the following tree polynomials generate
the same Goppa code: g′ = x4 + εiqx3 + εjqx + εkq, g′′ = x4 + εjx3 + εix + εk

and g′′′ = x4 + εjqx3 + εjqx+ εkq. Analogous arguments can be used to describe
set of polynomials in P♦, P♥ and P♠.

Codes in Ω(2, 5, 6) Let us consider the codes studied in [13]. Let q = 2, n = 5
r = 6 and let f be a primitive element of Fqn with minimal polynomial x5+x2+1;
let L = [f, f2, . . . , f32−2, 1, 0]. We consider the following two polynomials p1 :=
x6+f22x5+f2x4+f25x3+f10x+f3 and p2 := x6+f20x5+f19x4+f19x3+f12x2+
f4x + f28. They generate equivalent Goppa codes Γ1(L, p1) and Γ2(L, p2), but
their roots are in different orbits under the action of T over S = S(2, 5, 6). To
know how many codes are in each orbits we take a representative code and we
construct its orbit under the permutation group FG ≤ S32. We verify that the
action of the maximal subgroup AGL(2, 5) containing FG does not unify the
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two orbits. Also in this case, the only permutation group which gives the right
number of non equivalent Goppa code is the whole symmetric group Sqn .
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