Fast and Secure Root Finding for Code-based
Cryptosystems

Falko Strenzke!

! fstrenzke@gmx.de **,
2 Cryptography and Computeralgebra, Department of Computer Science,
Technische Universitdt Darmstadt, Germany

Abstract. In this work we analyze four previously published respec-
tively trivial approaches to the task of finding the roots of the error
locator polynomial during the decryption operation of code-based en-
cryption schemes. We compare the performance of these algorithms and
show that optimizations concerning finite field element representations
play a key role for the speed of software implementations. Furthermore,
we point out a number of timing attack vulnerabilities that can arise in
root-finding algorithms, some aimed at recovering the message, others at
the secret support. We give experimental results of software implemen-
tations showing that manifestations of these vulnerabilities are present
in straightforward implementations of most of the root-finding variants
presented in this work. As a result, we find that one of the variants
provides security with respect to all vulnerabilities as well as the fastest
computation time for code parameters that minimize the public key size.

Keywords: side channel attack, timing attack, implementation, code-
based cryptography

1 Introduction

Implementations of code-based cryptosystems like the McEliece [1] and Nieder-
reiter [2] schemes have received growing interested from researchers in the past
years and been analyzed with respect to efficiency on various platforms [3-7].
Furthermore, a growing number of works has investigated the side-channel se-
curity of code-based cryptosystems [8-12].

In this work, we will turn to an algorithmic task that arises in the decryption
operation of both Niederreiter and McEliece cryptosystems. This is the root-
finding algorithm. It deserves attention for two reasons: first of all, as addressed
already in previous work, it is in general the most time-consuming part of the
decoding algorithm [3, 5]. The second aspect is that of side-channel security of the
root-finding and has so far, to the best of our knowledge, only been considered in
[13]. We point out basically two types of timing side-channel vulnerabilities that

** To the most part, this work was done in the author’s private capacity, a part of the
work was done at?

can arise in the root-finding procedure. One is aimed at recovering the message
to a given ciphertext, the other at finding the support that is part of code-based
private keys.

Based on these considerations, we chose four different root-finding algorithms,
which we describe in Sec. 4 after providing some elementary preliminaries about
code-based cryptosystems in Sec. 2. In Sec. 5, we perform a timing side-channel
analysis of these algorithms including theoretical discussions and experimental
results. Afterwards, in Sec. 6, we give the results of a performance evaluation of
the chosen algorithms on modern x86 architectures.

As the main result from our work, we find that the root-finding variant ac-
cording to [14], which to the best of our knowledge has not been taken into
consideration for code-based cryptosystems so far, achieves both the shortest
running time and security with respect to all potential timing side-channel vul-
nerabilities in the root-finding. But we wish to stress that it is not the aim of
this work to give a definitive answer to the question which root-finding variant
is the best to use in a code-based cryptosystem. This is mainly for the reason
that the we are considering pure software implementations here, and the use of
crypto coprocessors might change the picture. We will come back to this in the
Conclusion in Sec. 7.

As the starting point for the implementation that the experimental results of
this work are based on, we used the HyMES open source implementation [15] of
the McEliece scheme presented in [3]. We added the countermeasure previously
proposed in [11], and removed some fault attack vulnerabilities, the latter is
addressed in App. B. Furthermore, we adopted the root-finding algorithm variant
given by the Berlekamp Trace Algorithm [16], as it is found in HyMES. However,
we performed some straightforward optimizations in the implementation of this
algorithm which are mentioned in Sec. 4.2, We added the remaining root-finding
variants that are presented in Sec. 4. In this context, we want to emphasize that
we do not take any credit for the choice of the Berlekamp Trace Algorithm for
the purposes of root-finding in code-based cryptosystems, the implementation
of this algorithm used for the results in this work, and its description as given
in this work, since all of this is adopted from [3] resp. [15].

2 Preliminaries

In the following, we describe those aspects of the encryption and decryption
of code-based cryptosystems as McEliece [1] and Niederreiter [2] schemes that
are relevant for the topics of this work. As these only depend on properties
common to both types of cryptosystems, it is possible for us to basically omit
any distinction between them.

Code-based cryptosystems build on error correcting codes. Specifically, the
only codes known to be secure for this use are Goppa Codes [17]. The parameters
of such a code are its length n, which is the length of the code words, n < 2™; the
dimension k (with k& < n), which is the length of the message words; and the error
correcting capability ¢ (all lengths refer to lengths of the binary representation).

For such a code, if a message word is encoded into a code word, up to ¢ bit flip
errors in the code word may be corrected by a corresponding error correction
algorithm, thus allowing to recover the message word. In the following, we will
also make use of the expression of “adding errors” to the code word, by which
we mean carrying out the “exclusive or” (XOR) operation with the code word
c and the error vector e, i.e. ¢ @ e.

In both McEliece and Niederreiter schemes, the encryption involves the cre-
ation of an error vector e, whose Hamming weight wt (e) is equal to the error
correcting capability ¢ of the employed code. The concrete realization of the en-
cryption is different in both schemes, but in either case, it is vital for the privacy
of the encrypted message that e remains secret.

In the McEliece and Niederreiter cryptosystems, syndrome decoding through
Patterson’s Algorithm [18] plays a key role. As the details of this algorithm are
irrelevant for purposes of understanding the topics of this work, we give only a
brief outline of this algorithm. In the McEliece cryptosystem, the syndrome is
computed from the ciphertext by multiplying the ciphertext with the so called
parity check matrix, in the Niederreiter scheme, the syndrome is the ciphertext
itself. The Patterson decoding algorithm takes as input the so called syndrome
vector s and outputs the error vector e that was added to the code word.

As already mentioned, this work deals with one part of the Patterson Al-
gorithm, this is the finding of the roots, i.e. zeros of the so called error locator
polynomial o(Y) € Fom[Y] which is computed in the course of the Patterson
Algorithm. In case of w = wt (e) < ¢ it holds that

o(Y) = IL;Z (a; = Y), (1)

where the ordered set I' = («vg, a1, . .., ap—1), is the so called support formed by
pairwise distinct elements of Fom . A lookup table representing the support is part
of the code-based private key. If it becomes known, the whole key is compromised
[12]. From the determination of the roots of o(Y'), the error positions, i.e. those
bits in e that have value one, are found: if ag, is root of o(Y), then ey, = 1.
In the following, we shall the use F;, i = 1,...,w to denote the indexes of
bits having value one in e in arbitrary ordering. If w > t, then o(Y") will have
degree less or equal than ¢, where the probability for the latter is very high,
but it will not be of the form given in Equ. (1). In Sec. 4, we will present four
different concrete algorithms for the task of finding the roots of the error locator
polynomial o(Y).

3 Remarks about the Fym Operations

Before we start with the descriptions of the root-finding algorithms we compare
in this work, we want to point out some details concerning the costs of the basic
Fym operations that are involved, i.e. addition and multiplication.

While Cgf_ada, the cost of an addition in Fom, is given by a simple XOR
operation, the multiplication in Fom is much more complex and has a number
of variants. An efficient software implementation of finite field arithmetics with

characteristic 2 and small extension degrees is realized by the use of one lookup
table for the logarithm of each non-zero element to the base of some primitive
element, and the corresponding anti-logarithm table.

The standard multiplication, as it is for instance implemented by the “C”
macro gf_mul() in HyMES [15], which is used throughout their code, takes
arguments in the normal representation and outputs the result in normal rep-
resentation. This type of multiplication, we refer to as mul_nnn . Its cost is
two conditional branches to check whether the arguments are zero, three ta-
ble lookups, one arithmetic ADD, and reduction of the result modulo the fields
multiplicative order, which in turn consists of several instructions. In the general
case, this multiplication is needed, as in most places in the algorithms involved in
the decoding with the Patterson Algorithm, multiplication and addition in Fom
are intermixed, and moreover, operands having value zero cannot be excluded.

However, when operands are known to be non-zero, and multiplications are
carried out subsequently, other forms of the multiplication, which have results (
a in the algorithm description mul_abc) or operands (b and ¢) in the logarithmic
representation, are more efficient:

— mul_lll consists only of one arithmetic ADD (a certain number of these mul-
tiplications can be carried out before a reduction modulo the multiplicative
order becomes necessary to avoid overflowing the register)

— mul_nin saves one conditional branch and one table lookup compared with
mul_nnn

This rough review of the finite field arithmetic implementations in software
makes it obvious that it is not sufficient to simply count the instances of multi-
plication in Fom, but it has to be considered how the multiplication is embedded
into the algorithm and what variant of the multiplication can be used.

4 Variants of Root Finding

In the following subsections we give brief descriptions of the root-finding algo-
rithm variants analyzed in this work.

4.1 Exhaustive Evaluation with and without Division

The most straightforward implementation of the root finding is to simply eval-
uate the polynomial o(Y") for each element of the code.
The complexity of this algorithm is given as

Ceval—rt = nt(cgf,add + Cmul,nln)

Remember that n is the code length and ¢ is the error correcting capability.
Taking a look at the Horner Scheme evaluation used here, we see that when
evaluating o(Y), we can transform z # 0 to the logarithmic representation,
avoiding some unnecessary table lookups, i.e. make use of mul_nin .

The algorithm can be sped up by dividing the polynomial o(Y) by each root
found. Such a division has basically the same complexity as the evaluation of
the polynomial for one single element of Fom. In the following, we will call these
two variants eval-rf and eval-div-rf.

4.2 Berlekamp Trace Algorithm

As stated in the introduction, our implementation is based on the HyMES imple-
mentation [3,15]. There, the root finding is achieved by the so called Berlekamp
Trace Algorithm [16]. For completeness, we provide the description of this algo-
rithm as originally given in [3] in Alg. 1. The initial call to this recursive algorithm
is given as BTA(o(Y'), 1), which we will refer to as bta-rf for the remainder of
this work. The trace function is defined as Tr(Y) =Y +Y?2 + Y24 4y
and {51, fa,...,Bm} is a standard basis of Fom.

Algorithm 1 The recursive Berlekamp Trace Algorithm BTA (o (Y'),4).

Require: the error locator polynomial o(Y")
Ensure: the roots & of o(Y)

1: if deg (o(Y) < 1) then

2 return root of o(Y)

3: end if
4: 0o(Y) + ged(o(Y), Tr(Bi, 2))

5)
6

Y
2 01(Y) < ged(a(Y), 1+ Tr(Bs, 2))
: return BTA(0o(Y),7+ 1)UBTA(01(Y),i + 1)

In [19], the complexity of the BTA is given as O(mt?). The concrete cost in
terms of Fom operations is not given there and cannot be easily derived.

In order to make fair comparison between in terms of performance , we opti-
mized the existing implementation of the algorithm by applying the more cost-
efficient versions of multiplication in Fam as discussed in Sec. 3 where possible.
As a result, the running time was reduced by about 10%.

4.3 Root Finding with linearized Polynomials

In this section, we explain a root-finding method based on decomposing a poly-
nomial in Fom[Y] into linearized polynomials [14]. The idea of this approach is
based on the fact that the exhaustive evaluation of a linearized polynomial can
be done with much less computational complexity than for general polynomials.

Definition 1. A polynomial L(Y') over Fam is called a linearized polynomial if
LY)=>, L;Y?, where L; € Fom.

As shown in [14], an affine polynomial of the form A(Y) = L(Y) + 8 with
B € Fam can be evaluated for the value Y = z; as

A(z;) = A(mi) + L(A), A; = 33 — 3y = oO@0mi-1), (2)

where {a”,al,...,a™ 1} is a standard basis of Fom and wt (z; ® x;_1) = 1, i.e.

their Hamming distance is 1. A generic decomposition of a polynomial f(Y) =
Sy fiY, also given in [14], is

[e-4)/51
FOY) = fY3 4 > YoA(Y), (3)
i=0
where
3 .
Ai(Y) = fsi+ Y Frigar V2. (4)
3=0

The evaluation of each A;(x;) is done efficiently according to Equ. (2). To this
end, the exhaustive evaluation of Equ. (3) is done with the z; being in Gray-
Code ordering, i.e. for all ¢ we have that x; and x;41 differ only in one single bit.
Specifically, we use the Gray Code generated by x; = (i >> 1) @4, where “>>”
denotes logical right shift. The actual computation cost is given by the sum of
the precomputations, i.e. the computation of the A;(Y"). This cost is given in
[14], it is however negligible for secure code parameters. The dominating cost is
that of computing f(Y) for all n code elements:

C’dcmp—rf == (nfl) (ZClook + CVmul,nll + ((t + 1)/5—| (QCgf,add + Omul,lll + Cmul,nln))

where Clook refers to the cost of looking up log(x?) resp. log(z®) from precom-
puted tables. This optimization we use to avoid the computation of log(z3) and
log(x®) has only a small benefit in speed, as the computation of these values
through subsequent mul_lll operations is also fast.

5 Security Aspects of the Root Finding in Code-based
Cryptosystems

In this section, we show that a dependency of the root finding algorithm’s run-
ning time on the number of the roots of the Error Locator Polynomial o(Y)
introduces vulnerabilities to timing attacks against the cleartext, and that other
effects threaten the secrecy of the secret support I'.

In order to be able to judge the relevance of the timing results provided in this
section, it is important to know that the syndrome decoding with the Patterson
Algorithm, which we consider to include the root-finding, is at least for the
McEliece cryptosystem the only source of variable running time, under some
assumptions: multiplication of the ciphertext with the parity check matrix is
either constant time of linear in the ciphertext’s Hamming weight (these are the
straightforward implementation choices) and the CCA2 conversion (necessary
for both the McEliece and the Niederreiter cryptosystem, see for instance [21])
is constant time (see for instance [20]).

5.1 Security against Message-aimed Attacks

The first important fact to know is that o(Y") output by Patterson’s Algorithm
has wt (e) roots in case wt (e) < ¢, and only a fraction of ¢ roots if wt (e) > ¢
(refer to Equ. (1)). For instance, for n = 2048 and t = 50, o(Y) typically has
less than five roots in the latter case.

A dependence of the running time on the number of roots thus potentially
creates the following problem: if the case w > t can be inferred from the running
time, an attack similar to that described in [9] is possible. In such an attack, the
attacker flips a bit in ciphertext he wishes to decrypt, observes the decryption,
and from the running time tries to guess whether ¢t + 1 or ¢ — 1 errors resulted
from his bit flip. This clearly gives him information about the error positions
piece by piece.

Note that the case of w < t is covered by the countermeasures proposed in
[11]. In the presence of these countermeasures, the decryption of a ciphertext
with wt (e) < ¢ also results in o(Y) with degree ¢ and very few roots. But it
is important to be aware that even if w < ¢t and w > t are not distinguishable
based on the timings, but w = ¢ can be distinguished from w # ¢, an attack is
still possible: by flipping two bits in a ciphertext and trying to find those cases
where w = t, the attacker will learn whenever he flipped one non-error and one
error position.

In the Patterson Algorithm of our implementation, the countermeasure pro-
posed in [11] is included, so that for w < ¢ we still have deg (c(Y)) = ¢, but the
number of roots of o(Y") is much less than ¢, as already mentioned. This happens
automatically for w > ¢ in Patterson’s Algorithm, so that we can expect to find
major differences in the running time of the root-finding algorithm only for the
cases w # t and w = t.

In Figures 1(b), 1(a), 1(c) and 1(d), we give plots of the running time of
the root-finding for the four different algorithms. The timings were taken on
an Atmel ATMegal284P Microcontroller. We chose this platform, as it provides
far more deterministic cycle counts than a modern x86 CPU, and thus is more
suited to identify possible timing vulnerabilities. We used a Goppa Code with
parameters n = 512 and ¢t = 33 for the syndrome decoding performed on the
microcontroller and created 30 different syndromes for each value of w between
20 and 40. The cycle counts apply to the running time of the respective root-
finding algorithm. For each value of w the center mark indicates the mean of the
set of the 30 different syndromes, and the bar shows the minimal and maximal
values from this set.

The eval-rf algorithm’s running time, depicted in Fig. 1(a), shows the mean
running time of w = t in line with the those of w # t. However, there seem to
be cases of w = ¢ with considerably lower running time than for w # ¢, as can
be seen by the depicted minimal value. Neither did we find the reason for this,
nor did we analyze whether this effect can be used for actual attacks. We justify
these omissions by the fact that, as already apparent from the results given in
this section, eval-rf is not a competitive candidate for root-finding in code-based
cryptosystems.

Fig. 1(b) shows clearly the speedup by a factor of two by eval-div-rf compared
to eval-rf. However, also the inherent timing vulnerability [13] of this algorithm
cannot be overlooked: the case w = t, where the benefit of the divisions has its
real impact, is almost twice as fast as for w # ¢. This renders it an insecure
choice.

The timing results of bta-rf, as implemented in HyMES, are shown in Fig.
1(c). Here, we can realize that already the mean of the running times for w = ¢
is below most of the minimal values of sets for w # t, clearly indicating a
vulnerability. We did however not find the reason for this effect.

Finally, Fig. 1(d) shows the results for demp-rf. There is no apparent differ-
ence between the cases w =t and w # t.

3.431e+06 . . . 3.66+06 . . .
3.43e+06 B 3.49+06»IITIIITIIIT IIITII
© 34290406 |] I 320406 ¢ I 1
© ° L)
S 3.4286+06 |] ER
8 34270406 | 3 2808y
g 54260406 S 26e+06 f
% -4cbe+ % 2.4e+06 |
8 34250406 2 220406 |
3 3
3 3.424e+06 | s 2e+06 |
3.423e+06 1 1.86+06
3.422¢+06 . . . 1.6e+06 . . .
20 25 30 35 40 20 25 30 35 40
error weight w error weight w
(a) eval-rf (b) eval-div-rf
2.35¢+06 . . . 1.1905e+06
2.3e+06 - 1 1.19e+06 |
€ 2.256+06 | 1 T 118950406 1
@
2 2oos] HWHH | H“] B resons |
> ©
2 2.15e+06 | 1 & 1.1885e+06 |
Q =4
§ 21406 f 1 ¢ 1.188e+06 |
8 205e+06 @ 11875406 |
o =
& 20406 | S 1.187e+06 |
1.95e+06 | 1 1.1865e+06 |
1.9e+06 . . . 1.186e+06 . . .
20 25 30 35 40 20 25 30 35 40
error weight w error weight w
(c) bta-rf (d) demp-rf

Fig.1: Cycle counts taken on an ATMegal284P for the various root-finding al-
gorithm variants with parameters n = 512 and ¢ = 33.

5.2 Security with respect to Attacks aiming at the secret Support

We now show that other vulnerabilities can arise in the root-finding algorithm,
which allow attacks against the secret support of the code-based scheme. This
is for instance the case, when the running time of the root-finding algorithm

depends on the values of the roots found. To understand that this is a vulnera-
bility one has to consider that an attacker can create ciphertexts with e known to
him. Then, according to Equ. (1) any information about the roots is information
about the support I'.

One possible vulnerability arises if in eval-div-rf, the evaluation of o(Y) is
done with Y being substituted in lexicographical order; in this case the found
roots are later mapped to the corresponding F; values by using a table for I'~1:
Fig. 2(a) and 2(b) in given in App. A show running times on the AVR platform of
the syndrome decoding with eval-div-rf for n—(t—1) error vectors created in the
following way: a random error pattern of weight ¢t — 1 was fixed, and the position
of the last error, F; was varied over the remaining free positions, resulting in an
error vector with Hamming weight ¢. On the x-axis, F; is shown. We will refer
to this type of plot as “support scan” henceforth. The result is a relatively clear
linear ascend, which is not surprising when considering the eval-div-rf algorithm:
Starting evaluation at Y = 0, the earlier a root is found, the more beneficial is
the reduction of the degree of o(Y) by one through the subsequent division.
Thus, the task for an attacker amounts to bringing the measured timings into
an ascending ordering, giving him I'. Obviously, there is some distortion of this
ordering in Fig. 2(a), which stems from other operations of variable duration in
the syndrome decoding. We leave it open whether in this manner the support I’
becomes known to the attacker in its entirety, it is however clearly obvious, that
a large amount of information about I'" becomes available.

This vulnerability can be avoided by performing the evaluation of o(Y) with
Y being substituted in the order ag, oy, ..., a,_1. Note however that the
vulnerable version is slightly faster, since there only ¢ table lookups in I'~*
for the found roots are done, whereas in the secure version n such lookups in I
are necessary. Thus the described problem is realistic.

We also wish to point out that an attack exploiting this vulnerability, in con-
trast to other previously published timing attacks [11,10], cannot be detected:
The ciphertext carries t errors and will pass the CCA2 integrity test. This is
important, because the other attacks, which cannot be carried out in a clandes-
tine manner in this sense, can be thwarted by countermeasures which detect the
irregularity of the ciphertext, and for instance add an enormous delay or enforce
constant running time if possible on the respective platform. In the presence of
the threat of power analysis attacks, however, such countermeasures would in
most cases not suffice as adding delays after the actual computation will most
likely be detectable in the power trace.

We also analyzed the demp-rf and bta-rf algorithms with respect to these
vulnerabilities. As one should expect from an algorithm that performs an ex-
haustive search, demp-rf does not exhibit any dependency of the running time
on the root values, except for a single pitfall that has to be avoided. This is dis-
cussed in some detail in App. A. Though for bta-rf no concrete attack could be
derived, the question of its security with respect to key-aimed attacks remains
unclear, we give the analysis also in App. A.

6 Performance of the Root-finding Variants

In this section, we give a comparison of the performance of eval-div-rf, bta-

rf, and demp-rf. We omit eval-rf as it is a hopeless candidate in terms of
running time as we have already seen in Sec. 5. The code was compiled with
GCC version 4.5.2 with the optimization options -finline-functions -03
-fomit-frame-pointer -march=1686 -mtune=i686 and run on a Intel(R) Core(TM)2
Duo CPU U7600 CPU.

Tab. 1 summarizes the results for two parameter sets based on the propo-
sitions given in [22], which are based on code parameter choices aiming at the
minimization of the public key size, which is known to be the most problem-
atic feature of code-based cryptosystems. The only deviation of our parameter
choices are with respect to the number of errors added during encryption: in [22],
List Decoding [23] which allows for the correction of more than t errors is as-
sumed during decryption. For the smaller parameter set, they choose t+ 1 errors
and for the larger ¢ + 2 errors. The reduction of security of our implementation
only using only ¢ errors, however, can easily be bounded by understanding that
an attacker can get from a ciphertext with ¢ + 1 errors to ¢ errors by guessing
one error position correctly, the success probability of which is (¢ +1)/n = 0.02.
Accordingly, the security of the scheme with ¢ errors cannot be smaller than
128 —log,(1/0.02) > 122 bits. An according calculation for the larger parameter
set gives a lower bound of 244 bits.

It is noteworthy that these parameter sets optimized for minimal public key
size for a given security level use codes with n < 2™, and that this has different
effects for our four candidate algorithms. eval-rf and eval-div-rf will both be
faster for n < 2™ in contrast to n = 2™, however for the latter the speedup
is less than for the former, as there the roots found at the end of the support
cause less effort. demp-rf also benefits from n < 2™, since also then support can
be build from a Gray Code. The bta-rf however has the same running time no
matter whether n < 2™ or n = 2™.

For these parameters, we clearly see that demp-rf is clearly the fastest choice.
bta-rf is second, for the smaller parameter set closely followed by eval-rf. For
the larger parameter set, the spread between them is larger.

However, it must be pointed out, that for parameter choices that realize a
given security level by choosing t as small as possible and m = 2", bta-rf clearly
wins against demp-rf. In Tab. 2, we give the root-finding running times for these
two algorithms for some parameter sets taken from the results given in [3]. Note
that there lower security levels are realized, the declaration of which in [3] are
deprecated by [22]. The drawback of such a parameter choice is a large public
key size.

7 Conclusion and Outlook

In this work we have evaluated four different root-finding algorithms with respect
to their performance and timing side-channel security in code-based cryptosys-
tems. We have shown that timing vulnerabilities can be present in all of these

parameters |security level‘root-ﬁnding algorithm‘running time / 10° cycles

eval-rf 16.22
B _ - . eval-div-rf 10.68
n = 2960, t = 56 ~ 128 bit bla-rf 8.89
demp-rf 6.45
eval-rf 141.86
B B N . eval-div-rf 71.48
n = 6624, t = 115| ~ 256 bit bta-rf 34.01
demp-rf 25.55

Table 1: Comparison of the average root-finding algorithm performance on an
x86 Intel Intel(R) Core(TM)2 Duo CPU U7600 for code parameters as suggested
n [22]. All given values are the average of 10 decryptions.

parameters |root-finding algorithm|running time / 10° cycles

~ B bta-rf 1.47
n = 4096, t = 21 demp-rf 5.34

~ B bta-rf 1.28
n=238192, ¢t =18 demp-rf 10.10

Table 2: Comparison of the root-finding algorithm performance on an x86 Intel
Intel(R) Core(TM)2 Duo CPU U7600 for code parameters with large m and
small ¢.

variants. The variant eval-rf and eval-div-rf can be ruled out as they are both
not competitive in terms of computation speed (which is a well known fact).
The latter, which has at least considerable performance advantages over the for-
mer, exhibits a timing side-channel vulnerability with respect to message-aimed
attacks, which is beyond repair.

Considering the remaining two candidates, we find that for code parameters
that minimize the public key size, decmp-rf is clearly faster than the bta-rf,
however the latter can achieve much faster results for code parameters with
small ¢ resulting large public keys. Since timing side-channel security of bta-
rf is problematic at least with respect to message-aimed attacks, and the fact
that the public key size is the much greater challenge in code-based encryption
schemes than the computation times, demp-rf can be seen as the winner of this
evaluation.

But as we stated in the introduction, we do not want to postulate this as the
definitive answer concerning the choice of root-finding algorithms in code-based
cryptosystems. If one would achieve a timing side-channel secure variant of the
bta-rf, running time advantages could be achieved at the expense of public key
size, which might be desirable in certain applications. Furthermore, the most
important task certainly is the implementation of code-based cryptosystems on
smart cards and related platforms. To achieve competitive performance on such
resource constrained platforms, hardware support certainly would have to be
present, as it is the case for RSA and elliptic curve based algorithms today.
Thus, the real question is that of an optimal choice of algorithms and hard-
ware support, achieving both good performance and side-channel security on
these platforms. In this context, among other aspects, it will become relevant
how easily an algorithm can be parallelized. Note that eval-rf, eval-div-rf, and
demp-rf can easily be parallelized by starting independent evaluations at 2%
different equally distant offsets into Fom (in the Gray-Code order for demp-rf).
However, the circuitry for any single instance of an eval-rf evaluator would be
considerably simpler than for demp-rf. The parallelization of bta-rf seems the
most complicated, it would have to be applied to the recursive structure of the
algorithm. In view of these open questions we encourage future research investi-
gating implementations with efficient hardware support on resource constrained
platforms. Pure software implementations on embedded systems, however, would
in the case of a widespread adoption of code-based encryption schemes also re-
main of great importance, as it is the case for RSA today. Thus the results of
this work clearly suggest the superiority of demp-rf at least in this context.

References

1. R. J. McEliece: A public key cryptosystem based on algebraic coding theory. DSN
progress report 42—44 (1978) 114-116

2. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. In:
Problems Control Inform. Theory. Volume Vol. 15, number 2. (1986) 159-166

3. Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and
Practice. In: PQCrypto. (2008) 47-62

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Heyse, S.: Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcon-
trollers. In Sendrier, N., ed.: Post-Quantum Cryptography. Volume 6061 of Lecture
Notes in Computer Science., Springer Berlin / Heidelberg (2010) 165-181
Eisenbarth, T., Glineysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for Em-
bedded Devices. In: CHES ’09: Proceedings of the 11th International Workshop
on Cryptographic Hardware and Embedded Systems, Berlin, Heidelberg, Springer-
Verlag (2009) 49-64

Shoufan, A., Wink, T., Molter, G., Huss, S., Strenzke, F.: A Novel Processor Ar-
chitecture for McEliece Cryptosystem and FPGA Platforms. In: ASAP ’09: Pro-
ceedings of the 2009 20th IEEE International Conference on Application-specific
Systems, Architectures and Processors, Washington, DC, USA, IEEE Computer
Society (2009) 98-105

Strenzke, F.: A Smart Card Implementation of the McEliece PKC. In: Information
Security Theory and Practices. Security and Privacy of Pervasive Systems and
Smart Devices. Volume 6033 of Lecture Notes in Computer Science., Springer
Berlin / Heidelberg (2010) 47-59

Molter, H.G., Stottinger, M., Shoufan, A., Strenzke, F.: A Simple Power Analysis
Attack on a McEliece Cryptoprocessor. Journal of Cryptographic Engineering
(2011)

Strenzke, F., Tews, E., Molter, H., Overbeck, R., Shoufan, A.: Side Channels in
the McEliece PKC. In Buchmann, J., Ding, J., eds.: Post-Quantum Cryptography.
Volume 5299 of Lecture Notes in Computer Science., Springer Berlin / Heidelberg
(2008) 216-229

Strenzke, F.: A Timing Attack against the secret Permutation in the McEliece
PKC. In: The third international Workshop on Post-Quantum Cryptography
PQCRYPTO 2010, Lecture Notes in Computer Science

Shoufan, A., Strenzke, F., Molter, H., Stottinger, M.: A Timing Attack against
Patterson Algorithm in the McEliece PKC. In Lee, D., Hong, S., eds.: Information,
Security and Cryptology - ICISC 2009. Volume 5984 of Lecture Notes in Computer
Science., Springer Berlin / Heidelberg (2009) 161-175

Heyse, S., Moradi, A., Paar, C.: Practical power analysis attacks on software
implementations of mceliece. In Sendrier, N., ed.: PQCrypto. Volume 6061 of
Lecture Notes in Computer Science., Springer (2010) 108-125

Strenzke, F.: Message-aimed Side Channel and Fault Attacks against Public Key
Cryptosystems with homomorphic Properties. Journal of cryptographic Engineer-
ing (2011) DOI: 10.1007/s13389-011-0020-0; a preliminary version appeared at
COSADE 2011 .

Federenko, S., Trifonov, P.: Finding Roots of Polynomials over Finite Fields. IEEE
Transactions on Communications 20 (2002) 1709-1711

Biswas, B., Sendrier, N.: HyMES - an open source implementation of the McEliece
cryptosystem (2008) http://www-rocq.inria.fr/secret/CBCrypto/index.php?
pg=hymes.

E. R. Berlekamp: Factoring polynomials over large finite fields. Mathematics of
Computation 24(111) (1970) 713-715

Goppa, V.D.: A new class of linear correcting codes. Problems of Information
Transmission 6 (1970) 207-212

Patterson, N.: Algebraic decoding of Goppa codes. IEEE Trans. Info.Theory 21
(1975) 203-207

Biswas, B., Herbert, V.. Efficient Root Finding of Polynomials over Fields of
Characteristic 2. WEWoRK (2009) hal.inria.fr/hal-00626997/PDF/tbz.pdf.

20. Overbeck, R.: An Analysis of Side Channels in the McEliece PKC
(2008) available at https://www.cosic.esat.kuleuven.be/nato_arw/slides_
participants/Overbeck_slides_nato08.pdf .

21. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC. Practice and Theory in Public Key Cryptography
- PKC ’01 Proceedings (2001)

22. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece
cryptosystem. Post-Quantum Cryptography, LNCS 5299 (2008) 3146

23. Bernstein, D.J.: List Decoding for binary Goppa Codes (2008)

A Further Results to the running Time Dependencies on
the Root Values

Fig. 2 shows the plots of the dependencies of the running time of the root-finding
on the position of a single error bit. See Sec. 5.2 for the discussion of the results
for eval-div-rf.

For bta-rf, we see some “clouding” effect in the running times, which is also
apparent for timings of the whole syndrome decoding, as shown in Fig. 2(c).
It is obvious, that these running times are neither constant nor random. There
seems to be a tendency to build “clouds”; by which we mean that it seems that
an attacker should be able to build hypotheses that if for two different values of
FE; and FE5 the timings are close to each other, then also ag, and ag, have close
values in their lexicographical interpretation as numbers.

Note for instance the values of E; below 100 in 2(c), which have consequently
lower timings than 3.04-10%. Though such a dramatic effect was not obvious in all
support scans we conducted, it corroborates the notion of “clouding” effects in
the timings for bta-rf. Thus we strongly suggest that the running time properties
of the bta-rf be subject to thorough analysis before considering its use in real
world implementations of code-based schemes.

The pitfall concerning the implementation of demp-rf mentioned in Sec. 5.2
is given through the multiplication by fs, i.e. o3, in Equ. (3). In our imple-
mentation, we precompute the logarithmic representation of o3 to subsequently
use mul_nll for the computation o3Y 3. In the unprotected variant of our imple-
mentation we cover the case 03 = 0 by a conditional branch that bypasses this
multiplication. However, in this case, the timings clearly allow identification of
a syndrome decoding where o3 = 0. This is shown in Fig. 3(a) and 3(b).The
information gained by such an observation is, according to Equ. (1):

0=o03 =ag,ag, .. .ap,_, Dagap,...ag, ,ap, D...,

i.e. the sum of products of all possible combinations of w — 3 different support
elements associated with the respective error positions, where w is the error
vector’s Hamming Weight, usually w = t. It is certainly not trivial to exploit
this information, however, in combination with other vulnerabilities it might be
useful to provide a means of verifying guesses for I'. The countermeasure to
protect against this vulnerability is trivial and comes at a low computational
cost, it is described in the following.

cycles taken by syndrome decoding

(a) Timing for the syndrome decoding with (b) Timing for the root-finding with

cycles taken by syndrome decoding

(c) Timings for syndrome decoding
bta-rf.

3.08e+06
3.06e+06
3.04e+06
3.02e+06

3e+06
2.98e+06

2.96e+06

cycles taken by root-finding

2.94e+06
0

600

cycles taken by root-finding

eval-div-rf.
3.18e+06 : : ‘ ‘ ‘
3.16e+06 | .]
3.14e+06 | .]
3.120+06 - R T 1
3.1e+06 | e g v 1
P s T ey
3.08e+06 - v +§é R . i }é' ff}
3.066+06 | tﬁg*’f}*ﬁ; Sy 1
3.040+06 [HEFT HETRL T - Tl]
3.026+06 FEI e -]
3e+06 | 1
2.986+06 ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500
E(

600

2.15e+06
2.14e+06
2.13e+06
2.12e+06
2.11e+06

2.1e+06
2.09e+06
2.08e+06
2.07e+06
2.06e+06
2.05e+06

div-rf.

2.24e+06
2.22e+06

2.2e+06
2.18e+06
2.16e+06
2.14e+06
2.12e+06

2.1e+06

2.08e+06
0

100

200 300
EI

400

500

600

eval-

with (d) Timings for root-finding with bta-rf.

Fig. 2: Running times of eval-div-rf and bta-rf for n — (t — 1) ciphertexts, where
t—1 error positions are fixed and the ¢t —th position varies, with code parameters
n =512 and t = 33.

The countermeasure is realized by assigning the precomputed value of the
logarithm of o3 a dummy value during the initialization phase of demp-rf if o3 =
0, and carrying out the multiplication Y33 with both operands in logarithmic
representation regardless of the value of o3. Afterwards, a logical AND operation
is performed on the result with a mask having all bits set in case of o3 #*
0 and having value 0 otherwise. The timings for support scans in these cases
are given in Fig. 3(c) and 3(d). The latter, showing the timings of only the
root-finding operation, shows a multi-level structure that we have not analyzed
further, but must be assumed to result from the precomputation phase of demp-
rf. Whether additional countermeasures are necessary to remove these timing

differences remains an open question.

2.04e+06 ‘ ‘ ‘ ‘ :
2.03¢+06 oo ——— 1
2.020+06 ¥
201e+06 | * - 1

26406 | 1
1.99e+06 1
1.986+06 T 1
1.97e+06 1
1.966+06 T 1
1.956+06 T 1
1.94e+06 1

.

1.93e+06 - - - - -
0 100 200 300 400 500 600

E

cycles taken by syndrome decoding
cycles taken by root-finding

1.16e+06

1.15e+06
1.14e+06 |
1.13e+06
1.12e+06
1.11e+06 |
1.1e+06
1.09e+06
1.08e+06
1.07e+06
1.06e+06 |

.

1.05e+06
0

100

200

300
Et

400

500

600

(a) Running times of the syndrome decod- (b) Running times of the root-finding with
demp-rf without countermeasures to
hide o3 = 0. The outlier with smallest
running time shows such a case.

ing without countermeasures to hide
o3 = 0 in demp-rf. The outlier with
smallest running time shows such a

case.
g 2080 [T
= A St e B
g coteews [Hinampaiedideng |
3 LAt R o £
8 20146406 [SO e 5
+ + + =
2 2012e+06 | ™ L et 1 =
£ 20fes0s .t T T -] 8
S 2008e+06 P LT 4 At LT oF z
e, + c
Z 2.006e+06 . N 8
[}
& 2004e+06 1 . L. 1 -
S 2002e+06 | : .] S
1% 5
e 20406 | .]
S
S 1.998e+06 ‘ ‘ ‘ ; ‘
0 100 200 300 400 500 600

E

1.1785e+06

1.178e+06

1.1775e+06

1.177e+06 1,

1.1765e+06
1.176e+06
1.1755e+06
1.175e+06
1.1745e+06

1.174e+06
0

600

(c) Running times of the syndrome decod- (d) Running times of the root-finding with
demp-rf with countermeasures to hide

ing with countermeasures to hide o3 =
0 in demp-rf.

0'3:0.

Fig.3: Running times of the syndrome decoding with demp-rf for n — (t — 1)
ciphertexts, where t — 1 error positions are fixed and the t-th position FE} varies.

B Further Vulnerabilities in HyMES Syndrome Decoding
Implementation

While working with the HyMES implementation [15], we encountered a number
of vulnerabilities, potentially enabling both timing and fault attacks. We list
them here, because this is good example showing what problems can arise when
the syndrome decoding is implemented without implementation security in mind
(which was not in the scope of that work).

All code relevant to the syndrome decoding in HyMES is found in the file
decrypt.c, all line numbers given in the following refer to this file. In line 270,
when deg (o(Y)) # t, decryption is aborted with an error. This is only a problem
if the countermeasures proposed in [11] are not implemented, in this case it allows
message-aimed fault-attacks of the type explained in Sec. 5.1 (highly likely that
w >t leads to deg (o(Y)) = t, and always that w < t leads to deg (o(Y)) = w).

In line 276, if the root-finding did not return ¢ roots decryption is also aborted
with an error. This is clearly allowing message-aimed fault attacks with the two-
bit-flip attack described earlier in Sec. 5.1, such a check must not be present in
a secure implementation.

In line 285, a Quick Sort algorithm is applied to the set of roots to sort the
array. Though we did not seek for attacks against this algorithm, it is certainly
clear that the running time of Quick Sort depends on the number of roots, and in
general also on their positions. As far as understood by the author, the sorting is
needed in HyMES for the constant weight word encoding®. We want to point out
that a real world implementation must ensure that such sorting is done without
giving information about the roots positions. The number of roots, however,
can be, as a countermeasure, artificially increased to ¢t before the algorithm is
applied, as a deviating number of roots indicates an irregular ciphertext anyway.

3 The constant weight word encoding (CWE) is needed in the implementation [15]
to encode additional information in the error vector; in this aspect their scheme
deviates from the original McEliece scheme [1]. Note, however, that in most CCA2
conversions proposed for the McEliece scheme, CWE is used [21]. Furthermore, CWE
is needed in the Niederreiter scheme [2].

