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Abstract. A new algebraic approach to investigate the security of the McEliece cryptosystem has been
proposed by Faugère-Otmani-Perret-Tillich in Eurocrypt 2010. This paper is an extension of this work.
The McEliece’s scheme relies on the use of error-correcting codes. It has been proved that the private
key of the cryptosystem satisfies a system of bi-homogeneous polynomial equations. This property
is due to the particular class of codes considered which are alternant codes. These highly structured
algebraic equations allowed to mount an efficient key-recovery attack against two recent variants of the
McEliece cryptosystems that aim at reducing public key sizes by using quasi-cyclic or quasi-dyadic
structures. Thanks to a very recent development due to Faugère-Safey el Din-Spaenlehauer on the
solving of bihomogeneous bilinear systems, we can estimate the complexity of the FOPT algebraic
attack. This is a first step toward providing a concrete criterion for evaluating the security of future
compact McEliece variants.
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1 Introduction

One of the main goals of the public-key cryptography is the design of secure encryption schemes by ex-
hibiting one-way trapdoor functions. This requires the identification of supposedly hard computational
problems. Although many hard problems exist and are proposed as a foundation for public-key primitives,
those effectively used are essentially classical problems coming from number theory: integer factorization
(e.g. in RSA) and discrete logarithm (e.g. in Diffie-Hellman key-exchange). However, the lack of diversity
in public key cryptography is a major concern in the field of information security. This situation would
worsen if ever quantum computers appear because schemes that are based on these classical number theory
problems would become totally insecure.
Consequently, the task of identifying alternative hard problems that are not based on number theory ones
constitutes a major issue in the modern public-key cryptography. Among those problems, the intractability
of decoding a random linear code [7] seems to offer the most promising solution thanks to McEliece who
first proposed in [24] a public-key cryptosystem based on irreducible binary Goppa codes. The class of
Goppa codes represents one of the most important example of linear codes having an efficient decoding
algorithm [8, 27]. The resulting cryptosystem has then very fast encryption and decryption functions [10].
A binary Goppa code is defined by a polynomial g(z) of degree r ≥ 1 with coefficients in some extension
F2m of degree m > 1 over F2, and a n-tuple L = (x1, . . . ,xn) of distinct elements in F2m with n≤ 2m. The
trapdoor of the McEliece public-key scheme consists of the randomly picked g(z) with L which together
provide all the information to decode efficiently. The public key is a randomly picked generator matrix
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of the chosen Goppa code. A ciphertext is obtained by multiplying a plaintext with the public generator
matrix and adding a random error vector of prescribed Hamming weight. The receiver decrypts the message
thanks to the decoding algorithm that can be derived from the secrets.

After more than thirty years now, the McEliece cryptosystem still belongs to the very few public key cryp-
tosystems which remain unbroken. Its security relies upon two assumptions: the intractability of decoding
random linear codes [7], and the difficulty of recovering the private key or an equivalent one. The problem
of decoding an unstructured code is a long-standing problem whose most effective algorithms [20, 21, 29,
12, 9] have an exponential time complexity. On the other hand no significant breakthrough has been ob-
served during the past years regarding the problem of recovering the private key. Indeed, although some
weak keys have been identified in [22], the only known key-recovery attack is the exhaustive search of
the secret polynomial Γ (z) of the Goppa code, and applying the Support Splitting Algorithm (SSA) [28]
to check whether the Goppa code candidate is permutation-equivalent to the code defined by the public
generator matrix.

Despite its impressive resistance against a variety of attacks and its fast encryption and decryption, McEliece
cryptosystem has not stood up to RSA for practical applications. This is most likely due to the large size
of the public key which is between several hundred thousand and several million bits. To overcome this
limitation, a trend had been initiated in order to decrease the key size by focusing on very structured codes.
For instance, quasi-cyclic code like in [19], or quasi-cyclic codes defined by sparse matrices (also called
LDPC codes) [1]. Both schemes were broken in [26]. It should be noted that the attacks have no impact
on the security of the McEliece cryptosystem since both proposals did not use the binary Goppa codes of
the McEliece cryptosystem. These works were then followed by two independent proposals [6, 25] that
are based on the same kind of idea of using quasi-cyclic [6] or quasi-dyadic structure [25]. These two
approaches were also broken in [18] where for the first time an algebraic attack is introduced against the
McEliece cryptosystem.

Algebraic cryptanalysis is a general framework that permits to assess the security of theoretically all cryp-
tographic schemes. So far, such type of attacks has been applied successfully against several multivariate
schemes and stream ciphers. The basic principle of this cryptanalysis is to associate to a cryptographic
primitive a set of algebraic equations. The system of equations is constructed in such a way to have a corre-
spondence between the solutions of this system, and a secret information of the cryptographic primitive (for
instance the secret key of an encryption scheme). In the case of the McEliece cryptosystem, the algebraic
system that has to be solved has the following very specific structure:

McEk,n,r(X,Y) =
{

gi,0Y0X j
0 + · · ·+gi,n−1Yn−1X j

n−1 = 0
∣∣∣ i ∈ {0, . . . ,k−1}, j ∈ {0, . . . ,r−1}

}
(1)

where the unknowns are the Xi’s and the Yi’s and the gi, j’s are known coefficients with 0≤ i≤ k−1, 0≤ j≤
n−1 that belong to a certain field Fq with q = 2s. We look for solutions of this system in a certain extension

field Fqm . Here k is an integer which is at least equal to n− rm. By denoting X def
= (X0, . . . ,Xn−1) and

Y def
= (Y0, . . . ,Yn−1) we will refer to such an algebraic system by McEk,n,r(X,Y). This algebraic approach

as long as the codes that are considered are alternant codes. It is important to note that a Goppa code can
also be seen as a particular alternant code. However, it is not clear whether an algebraic attack can be
mounted efficiently against the original McEliece cryptosystem because the total number of equations is
rk, the number of unknowns 2n and the maximum degree r−1 of the equations can be extremely high (e.g.
n = 1024 and r−1 = 49).

But in the case of the tweaked McEliece schemes [6, 25], it turns out that is possible to make use of this
structure in order to reduce considerably the number of unknowns in the algebraic system. This is because
of the type of codes that are considered: quasi-cyclic alternant codes in [6] and quasi-dyadic Goppa codes
in [25]. In particular, it induces an imbalance between the X and Y variables. Moreover, it was possible
to solve efficiently the algebraic system thanks to a dedicated Gröbner bases techniques. Finally, it was
also observed experimentally in [18] but not formally proved that the complexity of the attack is mainly
determined by the number of remaining variables in the block Y.

The motivation of this paper is to revisit the FOPT algebraic attack [18] in view of the recent results on bi-
linear systems [16]. This permits to make more precise the dependency between the security of a McEliece
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(and its variants) and the properties of the algebraic system (1). This is a first step toward providing a
concrete criterion for evaluating the security of future compact McEliece variants.

Organisation of the paper. After this introduction, the paper is organized as follows. We briefly recall the
McEliece cryptosystem in the next section. In Section 3, we recall how we can derive the algebraic system
(1). We emphasize that these parts are similar to the ones in [18]. Section 4 is the core of the paper. We
explain how we can extract a suitable (i.e. affine bi-linear) system from McEk,n,r(X,Y). We then recall
new results on the complexity of solving generic affine bi-linear systems, which permit to obtain a rough
estimate of the complexity of the FOPT attack. Finally, in Section 6, we compare our theoretical bound
with the practical results obtained in [18].

2 McEliece Public-Key Cryptosystem

We recall here how the McEliece public-key cryptosystem is defined.

Secret key: the triplet (S,Gs,P) of matrices defined over a finite field Fq over q elements, with q being a
power of two, that is q = 2s. Gs is a full rank matrix of size k× n, with k < n, S is of size k× k and is
invertible, and P is permutation matrix of size n× n. Moreover Gs defines a code (which is the set of all
possible uGs with u ranging over Fk

q) which has a decoding algorithm which can correct in polynomial time
a set of errors of weight at most t. This means that it can recover in polynomial time u from the knowledge
of uGs + e for all possible e ∈ Fn

q of Hamming weight at most t.

Public key: the matrix product G = SGsP.

Encryption: A plaintext u ∈ Fk
q is encrypted by choosing a random vector e in Fn

q of weight at most t. The
corresponding ciphertext is c = uG+ e.

Decryption: c′ = cP−1 is computed from the ciphertext c. Notice that c′ = (uSGsP+e)P−1 = uSGs +eP−1

and that eP−1 is of Hamming weight at most t. Therefore the aforementioned decoding algorithm can
recover in polynomial time uS. This vector is multiplied by S−1 to obtain the plaintext u.
This describes the general scheme suggested by McEliece. From now on, we say that G is the public
generator matrix and the vector space C spanned by its rows is the public code i.e. C

def
=
{

uG | u ∈ Fk
q
}

.
What is generally referred to as the McEliece cryptosystem is this scheme together with a particular choice
of the code, which consists in taking a binary Goppa code. This class of codes belongs to a more general
class of codes, namely the alternant code family ([23, Chap. 12, p. 365]). The main feature of this last class
of codes is the fact that they can be decoded in polynomial time.

3 McEliece’s Algebraic System

In this part, we explain more precisely how we construct the algebraic system described in (1). As explained
in the previous section, the McEliece cryptosystem relies on Goppa codes which belong to the class of
alternant codes and inherit from this an efficient decoding algorithm. It is convenient to describe such
codes through a parity-check matrix. This is an r×n matrix H defined – over an extension Fqm of the field
where the code is constructed – as follows:

{uGs | u ∈ Fk
q}= {c ∈ Fn

q | HcT = 0}. (2)

r satisfies in this case the condition r ≥ n−k
m . For alternant codes, there exists a parity-check matrix with a

very special form related to Vandermonde matrices. More precisely there exist two vectors x=(x0, . . . ,xn−1)
and y = (y0, . . . ,yn−1) in Fn

qm such that V r(x,y) is a parity-check matrix, with

V r(x,y)
def
=




y0 · · · yn−1
y0x0 · · · yn−1xn−1
...

...
y0xr−1

0 · · · yn−1xr−1
n−1


 . (3)

We use the following notation in what follows.
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Definition 1. The alternant code Ar(x,y) of order r over Fq associated to x = (x0, . . . ,xn−1) where the xi’s
are different elements of Fqm and y = (y0, . . . ,yn−1) where the yi’s are nonzero elements of Fqm is defined
by Ar(x,y) = {c ∈ Fn

q | V r(x,y)cT = 0}.
It should be noted that the public code in the McEliece scheme is also an alternant code. We denote here
by the public code, the set of vectors of the form

{uG | u ∈ Fk
q}= {cSGsP | c ∈ Fk

q}.

This is simple consequence of the fact that the set {uSGsP | u ∈ Fk
q} is obtained from the secret code

{uGs | u ∈ Fk
q} by permuting coordinates in it with the help of P, since multiplying by an invertible matrix

S of size k×k leaves the code globally invariant. The key feature of an alternant code is the following fact.

Fact 1. There exists a polynomial time algorithm decoding an alternant code once a parity-check matrix
H of the form H =V r(x,y) is given.

In other words, it is possible to break the McEliece scheme once we can find x∗ and y∗ in Fn
qm such that

{xG | x ∈ Fn
q}= {y ∈ Fn

q | V r(x∗,y∗)yT = 0}. (4)

From the knowledge of this matrix V r(x∗,y∗), it is possible to decode the public code, that is to say
to recover u from uG+ e. Finding such a matrix clearly amounts to find a matrix V r(x∗,y∗) such that
V r(x∗,y∗)GT = 0. Let X0, . . . ,Xn−1 and Y0, . . . ,Yn−1 be 2n variables corresponding to the x∗i s and y∗i respec-
tively. We see that finding such values is equivalent to solve the following system:

{
gi,0Y0X j

0 + · · ·+gi,n−1Yn−1X j
n−1 = 0

∣∣∣ i ∈ {0, . . . ,k−1}, j ∈ {0, . . . ,r−1}
}

(5)

where the gi, j’s are the entries of the known matrix G with 0≤ i≤ k−1 and 0≤ j ≤ r−1.
The cryptosystems proposed in [6, 25] follow the McEliece scheme [24] with the additional goal to design
a public-key cryptosystem with very small key sizes. They both require to identify alternant codes having
a property that allows matrices to be represented by very few rows. In the case of [6] circulant matrices are
chosen whereas the scheme [25] focuses on dyadic matrices. These two families have in common the fact
the matrices are completely described from the first row. The public generator matrix G in these schemes is
a block matrix where each block is circulant in [6] and dyadic in [25]. The algebraic approach previously
described leaded to a key-recovery in nearly all the parameters proposed in both schemes [18]. The crucial
point that makes the attack possible is due to the very particular structure of the matrices and their block
form describing the public alternant codes. This permits to drastically reduce the number of variables in
McEk,n,r(X,Y).

4 On Solving McEk,n,r(X,Y)

Thanks to a very recent development [16] on the solving of bi-linear systems, we can revisit the strategy
used in [18] to solve McEk,n,r(X,Y). As we will see, this permits to evaluate the complexity of computing
a Gröbner bases of McEk,n,r(X,Y) for compact variants of McEliece such as [6, 25]. Before that, we recall
basic facts about the complexity of computing Gröbner bases [11, 13–15].

4.1 General Complexity of Gröbner Bases

The complexity of computing such bases depends on the so-called degree of regularity, which can be
roughly viewed as the maximal degree of the polynomials appearing during the computation. This degree
of regularity, denoted Dreg in what follows, is the key parameter. Indeed, the cost of computing a Gröbner
basis is polynomial in the degree of regularity Dreg. Precisely, the complexity is:

O

((
N +Dreg

Dreg

)ω)
, (6)
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which basically correspond to the complexity of reducing a matrix of size
(N+Dreg

Dreg

)
(2<ω ≤ 3 is the “linear

algebra constant”, and N the number of variables of the system). The behavior of the degree of regularity
Dreg is well understood for random (i.e. regular and semi-regular) systems [2, 4, 3, 5].

Proposition 1. The degree of regularity of a square regular quadratic system in X is bounded by:

1+nX , (7)

where nX is the number of variables in the set of variables X. Consequently, the maximal degree occurring
in the computation of a DRL Gröbner basis (Degree Reverse Lexicographical order see [13]) is bounded
by the same bound (7).

On the contrary, as soon as the system has some kind of structure as for McEk,n,r(X,Y), this degree is
much more difficult to predict in general. Typically, It is readily seen that McEk,n,r(X,Y) has a very specific
structure, it is bi-homogeneous (i.e. product of two homogeneous polynomials with distinct variables).

4.2 Extracting a Bi-Affine System from McEk,n,r(X,Y)

As explained, McEk,n,r(X,Y) is highly structured. It is very sparse as the only monomials occurring in the
system are of the form YiX

j
i , with 0 ≤ i ≤ k− 1 and 0 ≤ j ≤ r− 1. It can also be noticed that each block

of k equations is bi-homogeneous, i.e. homogeneous if the variables of X (resp. Y) are considered alone.
More precisely, we shall say that f ∈ Fqm [X,Y] is bi-homogeneous of bi-degree (d1,d2) if:

∀α,µ ∈ Fqm , f (αX,µY) = αd1 µd2 f (X,µY).

Note that the equations occurring in McEk,n,r(X,Y) are of bi-degree ( j,1), with j,0≤ j ≤ r−1.
We briefly recall now the strategy followed in [18] to solve McEk,n,r(X,Y). The first fundamental remark
is that there are k linear equations in the n variables of the block Y in McEk,n,r(X,Y). This implies that
all the variables of the block Y can be expressed in terms of nY ′ ≥ n− k variables. From now on, we will
always assume that the variables of the block Y′ only refer to these nY ′ free variables. The first step is then
to rewrite the system (1) only in function of the variables of X and Y′, i.e., the variables of Y \Y′ are
substituted by linear combinations involving only variables of Y′.
In the particular cases of [6, 25], the quasi-cyclic and dyadic structures provide additional linear equations
in the variables of X and Y′ which can be also used to rewrite/clean the system. In the sequel, we denote
by McEk,n,r(X′,Y′) the system obtained from McEk,n,r(X,Y) by removing all the linear equations in X and
Y.
This system McEk,n,r(X′,Y′) being naturally overdetermined, we can “safely” remove some equations. In
[6, 25], the system McEk,n,r(X′,Y′) is always defined over a field of characteristic two. It makes sense
then to consider the set of equations of McEk,n,r(X′,Y′) whose degree in the variables of X′ is a power
of 2, i.e. equations of bi-degree (2 j,1). We obtain in this way a sub-system of McEk,n,r(X′,Y′), denoted
BiMcEk,n,r(X′,Y′), having nX ′ and nY ′ variables and at most k · log2(r) equations. This system is a “quasi"
bi-linear system over Fm

2 as McEk,n,r(X′,Y′) viewed over F2 is bi-linear. Note that some constant terms can
occur in McEk,n,r(X′,Y′), so the system is more precisely affine bi-linear.

Proposition 2. Let BiMcEk,n,r(X′,Y′) ⊂ Fqm [X′,Y′] be the system from McEk,n,r(X′,Y′) by considering
only the equations of bi-degree (2 j,1). This system has nX ′ + nY ′ variables, at most k · log2(r) equations
and is affine bi-linear.

4.3 On the Complexity of Solving Affine Bi-Linear Systems

Whilst the complexity of solving general bi-homogenous system is not known, the situation is different for
bi-affine (resp. bi-linear) systems. In particular, the theoretical complexity is well mastered, and there is a
now a dedicated algorithm for such systems [16]. As already explained, our equations are “quasi" bi-linear
as we are working with equations of bi-degree (1,2 j) over a field of characteristic 2. The results presented
in [16] can be then extended with a slight adaptation to the context.
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A first important result of [16] is that F5 [15] algorithm is already optimal for “generic" (random) affine
bi-linear systems, i.e. all reductions to zero are removed by the F5 criterion. Another fundamental result is
that the degree of regularity of a square generic affine bi-linear system is much smaller than the degree of
regularity of a generic system. It has been proved [16] that:

Proposition 3. The degree of regularity of a square generic affine bi-linear system in X’ and Y’ is bounded
by:

1+min(nX ′ ,nY ′), (8)

where nX ′ and nY ′ are the number of variables in the blocks X′ and Y′ respectively. Consequently, the
maximal degree occurring in the computation of a DRL Gröbner basis is also bounded by (8).

Remark 1. This bound is sharp for a generic square affine bi-linear system and is much better than the
usual Macaulay’s bound (7) for a similar quadratic system (that is to say a system of nX ′ + nY ′ quadratic
equations in nX ′ +nY ′ variables):

1+min(nX ′ ,nY ′)� 1+nX ′ +nY ′

Since BiMcEk,n,r(X′,Y′) is a bilinear system it is reasonable to derive a bound for this system from the
previous result:

Proposition 4. Let BiMcEk,n,r(X′,Y′) be as defined below. The maximum degree reached when computing
a Gröbner basis of BiMcEk,n,r(X′,Y′) is smaller that:

1+min(nX ′ ,nY ′).

Remark 2. Note that the bound is not tight at all. In our situation the affine bi-linear systems are overdeter-
mined whilst [16] only considered systems with at most as many variables than the number of equations.

Finally, it appears [16] that the matrices occurring during the matrix version of F5 can be made di-
vided into smaller matrices thanks to the bi-linear structure. Let dim(Rd1,d2) =

(d1+nX ′
d1

)(d2+nY ′
d2

)
. More

precisely, the matrices occurring at degree D during the matrix F5 on a bi-linear systems are of size:(
dim(Rd1,d2)− [td1

1 td2
2 ]HS(t1, t2)

)
× dim(Rd1,d2) for all (d1,d2) such that d1 + d2 = D,1 ≤ d1,d2 ≤ D− 1,

where the notation [td1
1 td2

2 ]HS(t1, t2) stands for the coefficient of the term td1
1 td2

2 in the Hilbert bi-serie
HS(t1, t2) defined in the appendix.
As pointed out, these results hold for a bi-linear system. For an affine bi-linear, this can be considered as a
good (i.e. first order) approximation. The idea is that we have to “bi-homogenize" the affine bi-linear system
which corresponds to add some columns. We can then estimate the space/time complexity of computing a
Gröbner basis of BiMcEk,n,r(X′,Y′).

Proposition 5. Let D = min(nX ′ + 1,nY ′ + 1). The time complexity of computing a DRL-Gröbner basis
GDRL of BiMcEk,n,r(X′,Y′) is bounded from above by:


 ∑

d1 +d2 = D
1≤ d1 ,d2 ≤ D−1

(
dim(Rd1,d2)− [td1

1 td2
2 ]HS(t1, t2)

)ω
dim(Rd1,d2)


 , with ω,1≤ ω ≤ 2.

The space complexity is bounded by:

 ∑

d1 +d2 = D
1≤ d1 ,d2 ≤ D−1

(
dim(Rd1,d2)− [td1

1 td2
2 ]HS(t1, t2)

)
dim(Rd1,d2)


 ,

It is worth to mention that, for the cryptosystems considered in [18], the number of free variables nY ′ in
Y′ can be rather small (typically 1 or 2 for some challenges). We have then a theoretical explanation of
the practical efficiency observed in [18]. In addition, we have a concrete criteria to evaluate the security
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of future compact McEliece’s variants, namely the minimum of the number of variables nX ′ and nY ′ in the
blocks X′ and Y′ respectively should be sufficiently “big". This will be further discussed in the last section.
To conclude this section, we mention that the goal of the attack is compute the variety (i.e. set of solutions)
V associated to McEk,n,r(X′,Y′). As soon as we have a DRL-Gröbner basis GDRL of BiMcEk,n,r(X′,Y′), the
variety can be obtained in O

(
(#V )ω) thanks to a change of ordering algorithm [17]. We have to be sure

that the variety V has few solutions. In particular, we have to remove parasite solutions (corresponding
to Xi = X j or to Yj = 0). A classical way to do that is to introduce new variables ui j and vi and add to
McEk,n,r(X′,Y′) equations of the form: ui j · (Xi−X j)+ 1 = and vi ·Yi + 1 = 0. In practice, we have not
added all theses equations; but only few of them (namely 4 or 5). The reason is that we do not want to add
too many new variables. These equations and variables can be added to BiMcEk,n,r(X′,Y′) whilst keeping
the affine bi-linear structure. To do so, we have to add the vi to the block X′, and the variables ui j to the
block Y′. So, as we add only few new variables, the complexity of solving BiMcEk,n,r(X′,Y′) with these
new constraints is essentially similar to Proposition 5.

5 Application to Key Recovery Attacks of Compact McEliece Variants

The algebraic approach as described in Section 3 had been applied in [18] to two variants of the McEliece
cryptosystem [6, 25]. These two systems propose code-based public-key cryptosystems with compact keys
by using structured matrices. The BCGO cryptosystem in [6] relies on quasi-cyclic alternant codes whereas
the MB cryptosystem in [25] uses quasi-dyadic Goppa codes. The most important fact is that the introduc-
tion of structured matrices induces linear relations between the xi’s and the y j’s defining the secret code.
We briefly recall how they are built and we refer the reader to [18] for more details.
In both schemes, the public code C is defined over a field Fq = F2s which is considered as a subfield of Fqm

for a certain integer m.The length n and the dimension k of C are always of the form n = n0` and k = k0`
where ` divides qm−1 and n0 and k0 are integers such that k < n < qm. We now give the additional linear
equations that link the xi’s and the yi’s in order to describe how the codes are obtained.

BCGO Scheme. Let α be a primitive element of Fqm . Let ` and N0 be such that qm− 1 = N0` and let

β be an element of Fqm of order `, that is to say β def
= αN0 . The public code is an alternant code Ar(x,y)

such that rm = n− k = (n0 − k0)` and where x = (x0, . . . ,xn−1) and y = (y0, . . . ,yn−1) satisfy for any
b ∈ {0, . . . ,n0−1} and for any j ∈ {0, . . . , `−1} the following linear equations [18]:





xb`+ j = xb`β j

yb`+ j = yb`β je
(9)

where e is an integer secretly picked in {0, . . . , `− 1}. We are able to simplify the description of the sys-
tem McEk,n,r(X,Y) by setting up the unknown Xb for xb` and the unknown Yb for yb`. We obtain the
following algebraic system in which we assume that e is known:

Proposition 6 ([18]). Let G = (gi, j) be the k× n public generator matrix with k = k0` and n = n0`. For
any 0≤ w≤ r−1 and any 0≤ i≤ k−1, the unknowns X0, . . . ,Xn0−1 and Y0, . . . ,Yn0−1 should satisfy:

n0−1

∑
b=0

g′i,b,wYbXw
b = 0 where g′i,b,w

def
=

`−1

∑
j=0

gi,b`+ jβ j(e+w). (10)

Furthermore, one Xi can be set to any arbitrary value (say X0 = 0) as well as one Yi can be set to any
arbitrary nonzero value (say Y0 = 1). Finally, The system (10) has (n0 − 1) unknowns Yi and (n0 − 1)
unknowns Xi. It has k0 linear equations involving only the Yi’s and (r− 1)k/` = (r− 1)k0 polynomial
equations involving the monomials YiXw

i with w> 0.

We have then:

Corollary 1. The system (10) has nY ′ = n0− k0−1 free variables in the Yb’s.
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MB Scheme. The public code defined by the (public) generator matrix G can be seen as an alternant code
A`(x,y) (that is to say r = `) where for any 0≤ b≤ n0−1 and 0≤ i≤ `−1, we have the following linear
equations [18]: 




yb`+i = yb`

xb`+i = xb`+∑log2(`−1)
j=0 η j(i)(x2 j + x0)

(11)

where ∑log2(`−1)
j=0 η j(i)2 j with η j(i) ∈ {0,1} is the binary decomposition of i. This description enables to

simplify the unknowns involved in McEk,n,r(X,Y) to Yb`, Xb` with b ∈ {0, . . . ,n0−1} and to the unknowns
X2 j with j ∈ {0, . . . , log2(`−1)}We then obtain the following algebraic system:

Proposition 7 ([18]). Let G = (gi, j) be the k× n public generator matrix with k = k0` and n = n0`. For
any w, i such that 0≤ w≤ `−1 and 0≤ i≤ k−1, we have:

n0−1

∑
b=0

Yb`

`−1

∑
j=0

gi,b`+ j

(
Xb`+

log2(`−1)

∑
j=0

η j( j)(X2 j +X0)

)w

= 0 (12)

Furthermore, two Xi’s can be set to any (different) arbitrary values (say X0 = 0 and X1 = 1) as well as one
Yi can be set to any arbitrary nonzero value (say Y0 = 1). Finally, The system (12) has n0−1 unknowns Yi
and n0−2+ log2(`) unknowns Xi. Furthermore, it has n0−m linear equations involving only the Yi’s, and
(`−1)`(n0−m) polynomial equations involving the monomials YiXw

i with w> 0.

It holds then:

Corollary 2. The system (12) has nY ′ = m−1 free variables in the Yb’s.

6 Comparison of Theoretical complexity with Experimental Results

In the table below, we present the experimental results obtained in [18] for BCGO and MB schemes. For
the sack of comparaison, we include a bound on theoretical complexity of computing a Gröbner bases of
BiMcEk,n,r(X′,Y′):

Ttheo ≈


 ∑

d1 +d2 = D
1≤ d1 ,d2 ≤ D−1

(
dim(Rd1,d2)− [td1

1 td2
2 ]HS(t1, t2)

)
dim(Rd1,d2)


 , (13)

as obtained in Section 4. Regarding the linear algebra, this is a bit optimistic. However, as already pointed
our, we have been also rather pessimistic regarding others parameters. For instance, we are not using the fact
that the systems are overdetermined, and we have also only considered a sub-system of McEk,n,r(X′,Y′).
All in all, this bound permits a give a reasonable picture of the hardness of solving BiMcEk,n,r(X′,Y′).
It is of course not sufficient to set parameters, but sufficient to discard many weak compact variants of
McEliece.

52



Table 1. Cryptanalysis results for [6] (m = 2)

Challenge q ` n0 nY ′ Security [6] nX ′ Equations Time (Operations, Memory) Ttheo

A16 28 51 9 3 80 8 510 0.06 sec (218.9 op, 115 Meg) 217

B16 28 51 10 3 90 9 612 0.03 sec (217.1 op, 116 Meg) 218

C16 28 51 12 3 100 11 816 0.05 sec (216.2 op, 116 Meg) 220

D16 28 51 15 4 120 14 1275 0.02 sec (214.7 op, 113 Meg) 226

A20 210 75 6 2 80 5 337 0.05 sec (215.8 op, 115 Meg) 210

B20 210 93 6 2 90 5 418 0.05 sec (217.1 op, 115 Meg) 210

C20 210 93 8 2 110 7 697 0.02 sec (214.5 op, 115 Meg) 211

QC600 28 255 15 3 600 14 6820 0.08 sec (216.6 op, 116 Meg) 221

Table 2. Cryptanalysis results for [25].

Challenge q nY ′ ` n0 Security nX ′ Equations Time (Operations, Memory) Ttheo

Table 2 22 7 64 56 128 59 193,584 1,776.3 sec (234.2 op, 360 Meg) 265

Table 2 24 3 64 32 128 36 112,924 0.50 sec (222.1 op, 118 Meg) 229

Table 2 28 1 64 12 128 16 40,330 0.03 sec (216.7 op, 35 Meg) 28

Table 3 28 1 64 10 102 14 32,264 0.03 sec (215.9 op, 113 Meg) 28

Table 3 28 1 128 6 136 11 65,028 0.02 sec (215.4 op, 113 Meg) 27

Table 3 28 1 256 4 168 10 130,562 0.11 sec (219.2 op, 113 Meg) 27

Table 5 28 1 128 4 80 9 32,514 0.06 sec (217.7 op, 35 Meg) 26

Table 5 28 1 128 5 112 10 48,771 0.02 sec (214.5 op, 35 Meg) 27

Table 5 28 1 128 6 128 11 65,028 0.01 sec (216.6 op, 35 Meg) 27

Table 5 28 1 256 5 192 11 195,843 0.05 sec (217.5 op, 35 Meg) 27

Table 5 28 1 256 6 256 12 261,124 0.06 sec (217.8 op, 35 Meg) 27

Dyadic256 24 3 128 32 256 37 455,196 7.1 sec (226.1 op, 131 Meg) 229

Dyadic512 28 1 512 6 512 13 1,046,532 0.15 sec (219.7 op, 38 Meg) 28

We briefly discussed of the theoretical complexity obtained for the first row of the second column. As
explained, we have used the formula (13). We have computed the coefficient [td1

1 td2
2 ]HS(t1, t2) by using the

explicit formula of HS(t1, t2) provided in the appendix using the explicit values of nX ′ = 59 and nY ′=7,
and assuming that the system is square; in that case the degree of regularity is 8. For this parameter, the
sub-system BiMcEk,n,r(X′,Y′) has actually 288 equations (of degree 2,3 and 5). Hence, it is interesting to
compute [2, 4, 3, 5] the degree of regularity of a semi-regular system of the same size: we found a regularity
of 11 leading to a cost of 285.2 for the Gröbner basis computation (using (6), with ω = 2). It is expected that
a new results of the degree of regularity of generic overdetermined bi-linear systems would lead to tighter
bounds.
As a conclusion, one can see that the theoretical bound (13) provides a reasonable explanation regarding
the efficiency of the attack presented in [18]. In particular, it is important to remark that the hardness of the
attack seems related to d = min(n′X ,n

′
Y ). The complexity of the attack clearly increases with this quantity.

For the design of future compact variants of McEliece, this d should be then not too small. Regarding the
current state of the art, it is difficult to provide an exact value. Very roughly speaking, BiMcEk,n,r(X′,Y′)
can be considered as hard as solving a random (overdetermined) algebraic system with d = min(nX ′ ,nY ′)
equations over a big field. With this in mind, we can say that any system with d ≤ 20 should be within the
scope of an algebraic attack.
Note that another phenomena, which remains to be treated, can occur. In the particular case of binary dyadic
codes, the Gröbner basis of BiMcEk,n,r(X′,Y′) can be easily computed, but the variety associated is too big.
This is due to the fact that the Gröbner basis is “trivial" (reduced to one equation) and not provides then
enough information. This is typically due to the fact that we have used only a sub-set of the equations

(
of
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bi-degree (2 j,1)
)
. So, the open question is how we can use cleverly all the equations of McEk,n,r(X′,Y′) in

the binary case.
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A Hilbert Bi-Series

We say that an ideal is bihomogeneous if there exists a set of bihomogeneous generators. The vector space
of bihomogeneous polynomials of bi-degree (α,β ) in a polynomial ring R will be denoted by Rα,β . If I
is a bihomogeneous ideal, then Iα,β will denote the vector space I∩Rα,β .

Definition 2 ([16]). Let I be a bihomogeneous ideal of R. The Hilbert bi-series is defined by

HSI (t1, t2) = ∑
(α,β )∈N2

dim(Rα,β/Iα,β )t
α
1 tβ

2 .

For bi-regular bilinear systems, [16] provide an explicit form of the bi-series.

Theorem 2. Let f1, . . . , fm ∈ R be a bi-regular bilinear sequence, with m≤ nX ′ +nY ′ . Then

HSIm(t1, t2) =
(1− t1t2)m +NnX ′+1(t1, t2)+NnY ′+1(t1, t2)

(1− t1)nX ′+1(1− t2)nY ′+1 ,

where

Nn(t1, t2) = t1t2(1− t2)n
m−n

∑̀
=1

(1− t1t2)m−n−`
[

1− (1− t1)`
n

∑
k=1

tn−k
1

(
`+n− k−1

n− k

)]
.
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