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Part I
Introduction

In 1948 Claude Shannon founded communication and coding theoryh@ldefined three different kinds
of coding mechanisms: coding for encryption purposes, source cadihgrror control coding.

Source coding means compressing messages before transmission, afusindgeded redundancy is
removed and the communication system has to transmit less data.

Error control coding is about the opposite: the sender adds informatioressages. The redundant
information shall enable the receiver to decode the message, even wnentmnsmission errors have
occurred.

The codes used for error control coding are typically so called linedgs;avhich are just vector spaces
over some finite field. At first glance, the rich algebraic structure of thedes seems to prevent an applica-
tion in cryptography, but in his pioneering paper [21], Robert J. Mc€lieombined the algebraic approach
of linear error-correcting codes and public-key cryptosystems.

The basic idea is to hide the algebraic structure of the linear code and to geeri$ error-correcting
capabilities, i.e. its decoding mechanism, as trapdoor for the public-ketosgtpm. The hidden structure
makes it intractable for an outsider to find such a decoder [6]. Thusg® s injected into a message by
the sender can be corrected only by the receiver, who knows thelyinddinear code and therefore knows
how to decode in the presence of errors.

Using proper parameter settings, no praticable attack is known againdie®k’E original scheme [21],
although it has been introduced more than 30 years ago. Despite its commltaffaciency it never at-
tracted so much attention like RSA or Diffie-Hellman, mainly due to its relatively big iz the public
keys, typically some 100kB for reasonable parameter settings.

Things changed in995, when Peter W. Shor [32] showed that prime number factorization would be
practical on the quantum computer. On the other hand, there is no quatgarithen known for the
McEliece scheme in order to attack it, which makes it a promising candidate $brgpantum cryptog-
raphy.

One of the approaches to reduce the scheme’s public key size via bimgsiydyadic Goppa codes will
be presented in this thesis [23]. The basic idea is to use separable bimgpga Godes, which can be rep-
resented by a highly structured generator matrix without revealing too méamiation of the underlying
Goppa code.

The thesis is intended as exposition of all the necessary facts concéinary quasi-dyadic Goppa
codes and how to use these codes for an implementation of the McEliece schtewi# also shortly
address the issue of a recent structural attack against McEliecedrafiegse codes [12].

The goal of the implementation is not to be as efficient as possible, but to neakeath ideas accessible
for the reader at source code level. Writing all the necessary detailsl\lwaue gone beyond the scope of
a bachelor thesis. Parts of the source code are therefore basedwiESHY29, 30], a recent librafyfor
a hybrid McEliece scheme using irreducible binary Goppa codes. It willlvays clearly visible when
source code stems from HYMES.

The thesis is written in literate programming style using the CWEB system [17]ditibnal program-
ming the source code comes before the documentation. In literate programmidgciimentation comes
first, fleshed out with code later. Each section of this thesis is started with Isackground information,
followed by a real implementation in C.

!Released under the GPL license.



Part IV
The Algebraic Setup

1 Finite fields

Linear codes are subspacedi{jf wherel,, is the finite field with order;. Hence, codewords are vectors of
lengthn over the alphabel,. We summarize some important facts of finite fields. Further details can be
found in the Appendix or in [1, 14, 19].
Let IF denote a finite field. Because it is finite, its characteristic must be finite. Byititlafira field does
not have zero-divisors. Therefore, the characteristic must be a piiméerp. The canonical example of a
finite field of orderp is
F,:={0,...,p—1},

where addition and multiplication is taken moduylo Each finite fieldF with characteristigpp contains an
isomorphic copyP of IF,, as subfield. Therefor€, is called theprime fieldof characteristip. A finite field
IF with characteristi@ is canonically a finite-dimensional vector space dver

Theorem 1.0.1.LetF a finite field.
(1) There exists a prime numbgrandn € N such thaiF| =

(ii) Every two finite fields with™ elements are isomorphic.

Proof. See [1], p. 140, Cor. (3.1.4) and p. 153, Thm. (3.2.10). O
For the classical construction l’ﬁg = Fpn, let f € F,[X] a monic, irreducible polynomial of degree
degn.? LetI(f) := {fg | g € F,[X]} the principal ideal generated kfyandF,[X]/I(f) the factor or
residue class rmg df,, modulo( f ) »[X]/1(f) is afield withp™ elements,
n—1
FplX1/1(f) = {g +1(f) | deg(g) <n}={>_ a:X'+I(f)]|a;i€Fp},
1=0

where addition and multiplication are explicitly given as

(g+1(f) + (h+1I(f)) = (g+h)+1(f)
(g+1(f) - (h+I(f)) := gh + I(f).

Leta := X + I(f), f =30, fiX". Fora; € Fp,i € {0,...,n — 1} we have

n—1 n—1 n—1 n—1 n—1
D aX)+I(f) =D (X' +I(f) =Y ai(X"+1(f) = > a(X +I(f)" =) aic,
=0 1=0 =0 i=0 i=0
and

=S fiaf = X 1) = £+ I(F) = I(f) = 0 € By [X]/I(f).
1=0 1=0

2Such a polynomial always exists for every degree n.



Hence,{1 = a° a,...,a" !} is a generating system &f,[X]/I(f) anda is a root of f, which is called
theminimal polynomiabf « overF,%. The generating systefl = a°, a,...,a" 1} is actually a basis of
F,[X]/I(f) overF,. Indeed, if

n—1
9= bia' € Fp[X], g(e) =0,
1=0

then the minimal polynomiaf dividesg, henceg = 0 for degree reasons. Summarizing, we have

n—1
FplXJ/1(f) = { ) wia' | a; € Fp}.
1=0

Remark 1.0.2. Up to isomorphism, fields are uniquely determined. In the sequel, weedtheofield with
q = p™ elements by, (m, ¢ € N, p a prime number).

For computations in software it is often more convenient to use anothesesgation of field elements.
Rather than expressing them as linear combinations they are represeertqubaentials via the generating
system{1 =% a,...,a""1}.

Definition and Theorem 1.0.3(Primitive elements, primitive polynomials)
(4) The multiplicative groufir;* of a finite fieldF, is cyclic.
(i) A generator of F* is calledprimitive elemenofF,.
(#i7) Minimal polynomials of primitive elements are callpdmitive polynomials

Proof. See [1], pp. 151-152. O

2 Linear codes

Letq,m,n € N, ¢ = p™, p a prime number.

The set of all n-tuples with componentslip will be denoted by :
Fy ={x = (w0,...,Zn-1) : 20, .., Tn—1 € Fy}
Forz,y € Fj anda € F, define

r+y = (0, s Tp-1)+ (Yo, - Un—1) = (Lo+Y0,--»Tn-1+Yn—1)

oz = afxg,...,Tp-1) = (azg,...,aTp_1) ’

which givesky the structure of an n-dimensional vector space @yer

3The polynomialf is monic, irreducible oveF, and hasx as root. Using the division theorem it is easily shown that these
three conditions determinguniquely.



2.1 Encoding messages

Messages can be seen as membe]’é%o*fvherek is thelengthof the message arig, is the underlying
alphabet. Because these messages are to be transmitted over a noig}, dmne redundancy has to be
added, which can then be used by the receiver to recognize or terrecs. Technically, this is done by
embeddinghe messages into a bigger vector spégen > k.* This procedure is also known ascoding
the message.

Definition 2.1.1(Encoder, linear codq. Letk, m,n,q € Nwithn > k andq = p" for a prime numbep.
(1) Anencodeiis an injective linear mapg from IF’; into Iy :
.k mn
g:Fy = Fy.
(#i) The image of the encoder
C = g(Fh),

is anF,-subspace oF, which is isomorphic td?’;. C is called alinear [n, k]-codeor briefly an
[n, k]-codeoverF,.

(7i7) The numbek is the dimension of the code and the numbeés called theblock lengthor just the
lengthof the codeZ.®

(iv) Vectors inC are calledcodewordsor code vectorswhereas vectors i]ﬁ’(j are calledmessagesvhich
is whyIF’; is also referred to asnessage space

(v) Codes over the fiell; := {0, 1} of two elements are callduinary codes

Following the row-convention (writing vectors as row-vectors), the dacaan be expressed as multi-
plication by a matrixG of rank k.

g:Fi > Fpx e 2G (2.1.1)
C=g(Fi) = {zG | = € F}} (2.1.2)

Definition 2.1.2(Generator matrix). The matrixG in (2.1.1) which is in general not uniquely determined,
is called agenerator matrixf the code. Its rows form abasisof C.

It is easily shown that generator matrices are related by regular matrices:
Theorem 2.1.3.The set of all generator matrices of a linear code with generator mé&gris
{BG | B € GLy(F,)},

whereG Ly (F,) is the set of all regulak x k matrices.

“It would be possible to allow. > &, but without redundancy there is no error correcting capability.
*The numbetk/n is called theinformation rateof the codeC. By design, it shall be as close tas possible.
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Proof. Let B € F:** a regular matrix oveF,, i.e. {xB | € F}'} = FF. It follows that BG is also a
generator matrix. ]

Remark 2.1.4. An[n, k]-codeC can be considered either as the image of an injective Iineargr:a[E{; —
F? or as the kernel of a surjective linear map F — Fz—".

Proof. Indeed, letG a generator matrix af of rankk, and let {xq, . .., x,_r_1} be a basis of the solution
space of the homogenous linear sys@m’ = 0, wherez ¢ Iy . Define

hiFp = FrF oz aH,

where
o
H=| "' |emnro
Lpn—k—1
rg(H) =n —k, (2.1.3)

which proves that is surjective. The rows dd& form a basis of the codg, thereforeC is by construction
a subspace dfer(h). On the other hand we hadém(C) = k = dim(ker(h)), which givesC = ker(h). O

In other words,
ceC < cH! =0, (2.1.4)

which makes it easy to check if a vectore [y is a codeword or not. The matriid is therefore called a
check matrix

Definition 2.1.5(Check matriceg. Letk,m,n,q € Nwithn > k andg = p™ for a prime numbep. Let
C be an[n, k|-code oveiF,.
Then there exists afn — k) x n matrix H overF,, which is of rankn — k and satisfies

C =ker(h) = {w € F) | wH" =0},

whereH” denotes the transpose of the matFk Any such matrixH is called(parity) check matriof C.

n

Remark 2.1.6. LetC be an[n, k]-code overF, with generator matrixG' < IE";X" andH < IF((I”*’“)X a
check matrix of. Then there are equivalent:

(1) H is a check matrix fo€.
(i1) GHT = 0.

Proof. Letu € FF arbitrary,c = uG.
(i) = (i): 0 = cH? = (uG)HT = w(GHY). Aswu is arbitrarily chosenGH” = 0 follows.
(i) = (): cH" = (uG)H" = u(GH") = 0. O

Just like generator matrices (Theorem (2.1.3)), parity check matrices gemeral not uniquely deter-
minded.

11



Theorem 2.1.7.The set of all parity check matrices of a linear code with parity check m&dris
{SH | S € GL,_(F,)},
whereGL,,_(F,) is the set of all regulatn — k) x (n — k) matrices ovet,.

Proof. Let H € F{"~™*" a parity check matrix an@ € Fk*" an associated generator matrix of some
linear codeC overF,, i.e. GH' = 0.
Let S € F""*("F 4 regular matrix and leE’ := SH. Since

GH'" = (GH")ST =0,

H' will be another parity check matrix. O

2.2 Decoding messages

As we have shown, messages are encoded into codewords usingatgematrix (2.1.1). The code-
wordsc are sent over an unreliable channel. However, actually receiveekatersy € Iy, i.e. we have
y = ¢ + e with some error vectoe € ;. The question that now arises is howdecodethe correct.

In practice, one relies on the so-callethximum-likelihood-principl®r in other words, one assumes
that with high probability not too many errors have occurred. The dedoids to find the codeword
which is closest to the received vectgrand hands the message! (c) over to the receiver, wherg ! is
the inverse of the injective encoding map }F’q“ — Fy.

In order to make sense, we will now define a notiomlistanceon IF; and give conditions under which
a successful decoding process is possible.

Definition and Theorem 2.2.1(Hamming metric, Hamming weightletm,n,q € N with ¢ = p™ for a
prime numbep. The function

d:Fg xFg = N:(u,v) = {i €{0,...,n— 1} u; # v}
is @ metric only, the so-calledHamming metric It follows thatd satisfies

0 <<= u=w
= d(v,u)
d(u,v) < d(u,w)+d(w,v)

=
£
S

~—
I

forall w,v,w € Fy.
The nonnegative integéfu, v) is called theHamming distanceetween the vectors, v € ;. Hence,
the pair (Fy, d) is a metric space, thelamming spacef dimensiom overF,.
The Hamming distance is invariant under translation and multiplication by ersralars: Foru, v, w €
(H,Fy)andX € Fy, X #0,
du,v) = du+ w,v+ w)
d(u,v) = d(\u,\v)

For a vectorv € Iy, its Hamming weights defined as

w(v) :=d(v,0). (2.2.1)

12



Proof. The equivalencé(u,v) = 0 <= wu = v and the symmetryi(u,v) = d(v,u) are trivial. It
remains to show the triangle equality.

Letw,v,w € Fy. Suppose; # v; for theith component. Then; # w; or v; # w;, which establishes
the triangle equality. Using the linear structureiyfwe haved(u,v) = d(u — v,0) = d(u + w — w —
v,0) = d(u+w, v+w). Similarly, for\ # 0, d(u, v) = d(u—v,0) = d(A(u—"v),0) = d(Au—Av,0) =
d(A\u, Av), which completes the proof. O

Definition 2.2.2(Packing radius, minimum distancg. Letn,t € N, C a linear code ovelf;, andx € Fy.
By (z,t) :={y € Fy | d(z,y) <t} (2.2.2)
denotes the ball of radiusaroundz.

(1) Thepacking radiuf C is the largest integet, such that balls of radiug around codewords do not
intersect:
pr(C) := mcax;”é {teN|B,(c,t)NB,(c,t) =0} (2.2.3)
c,c/eCietc
(7¢) Theminimum distancefC is defined as

d := dist(C) := min{d(c,c') | e, €C, c # '}. (2.2.4)

Remark 2.2.3. Using the linear structure dfy, i.e. d(u,v) = d(u — v,0) for u,v € Fy, we see that the
minimal distance of a linear codgis equivalent with its minimal weight:

min{w(c) | ¢ € C,c # 0} = dist(C). (2.2.5)

Note that an, k]-codeC with minimal weightd is also denoted &, k, d]-code. Such a code is also
known as of typén, k, d].

Theorem 2.2.4. The check matrixd of an [n, k, d]-code overF, with 0 < k& < n has the following
properties:

(i) Hisan(n — k) x n matrix overF, of rankn — k.
(ii) Anyd — 1 columns are linearly independent.

(7i7) There exist! columns that are linearly dependent.
Conversely, any matrifl satisfying these properties is a check matrix ofank, d)-code oveitt,,.

Proof. (i): See (2.1).

(43): Assumes < d columns ofH linear dependent. In matrix form this means that theredsalFy
such thacH? = 0 andw(c) = s < d. By definition of H it follows thatc € C. Contradiction.

(731) By assumption, there is a codewatde C, ¢ # 0, w(c) = d. Because: € C, it follows that
cH™T = 0, and therefore exist linear dependent columns.

Conversely, letH € F""¥*™ with rankn — k. This means, that the sét := {x € Fr | xH” = 0}
is a subspace oﬂ’g with dimensionk. As before, we conclude thdtis the minimum distance af . O

As an immediate consequence of Theorem (2.2.4) we get:

Corollary 2.2.5. Every(n — k) x k matrix overF,, in which anyd — 1 columns are independent, is a check
matrix of somén, k]-codeC overF, with minimal distancelist(C) > d.

13



Figure 1: The maximum-likelihood-decoding method

Maximum likelihood-decoding Note that the minimal distancé of a linear code’ is a measure
for the quality of the code, i.e. for its error-correcting capabilitiesd I 2t + 1, a decoder using the
maximume-likelihood principle can correct up t@rrors.

It is possible to correct up to
t=(dist(C) —1)/2] (2.2.6)

errors in the following way [1]:

(1) Using maximum-likelihood-decoding vectory € Iy is decoded in a codeword € C, which is
closest toy with respect to the Hamming metric. In formal termg:is decoded into a codeword
c € [y, such that
d(e,y) < d(c,y), V' € C.

If there are severat € C with this property, one of them is chosen at random.

(74) If the codeworde € C was sent and no more thamrrrors occured during transmission, the received
vector is
y=c+ecky,

wheree denotes therror vector. It satisfies
d(c,y) =d(e,0) <t

and hencec is the unique element ofC which lies in a ball of radiug aroundy. A maximum
likelihood decoder yields this elemesitand so we obtain the correct codeword.

Remark 2.2.6. The packing radius of a linear codeC is | (dist(C) — 1)/2]. O

14



2.3 Equivalence of codes and information sets

Definition 2.3.1(Isometry, equivalencg. Let(Fy, d) the Hamming space with Hamming meti¢» € N).
(i) Abijective linear map : F — Fy with d(u,v) = d(i(u), «(v)) Yu,v € F? is calledisometry®
(i7) Let. be anisometry. Twfn, k|-code<C, C’ over[F, are calledequivalentf .(C) = C’.

Remark 2.3.2. The Hamming weight of a vectere Fy is invariant under an isometry.
Indeed, lety € Fy. Thenw(v) = d(v,0) = d(.(v),(0)) = d(¢(v),0) = w(i(v)).

Let. : Fy — Fy be an isometry. Like any other linear map Bj), it is uniquely determined by the
images of the unit vectors. By remark (2.3.2), isometries do not changestimeniihg weight. Hence, units
vectors are mapped to multiples of unit vectors. Conversely, each lineawitiathis property is clearly an
isometry.

Remark 2.3.3. Isometries ori; are expressed by those invertifi¢*" matrices, which contain in each
row and column precisely one elementigf

Let J € F;*" an isometry in matrix formG € IF’;X" a generator matrix of &, k|-codeC overF,.
Hence GJ is justG with some columns permutated and/or multiplied by some non-zero field element. On
the other, hand we can also multighy from the left by some invertibld < }F’qf without leaving the codé.

It follows that we can apply t6 theGaussian algorithmMultiplication with someB will generate unit
vectors in certain colums, which can be shifted afterwards by multiplication fihe right with isometries.

Definition and Theorem 2.3.4(Systematic encoding, information set&pr each[n, k]-codeC with gener-
ator matrixG there exists an equivaleft, k]-codeC’ with generator matrixG’ of the form

G' = (I;|A), (2.3.1)
wherel;, € F’;X’f denotes thé: x k identity matrix andA € IF’;X("_’“). The corresponding encoding
vi—vG (v e IF’;) is calledsystematic encodingnd G’ a systematic generator matrat C’.

The firstk coordinates of codewords € C’ are called itsinformation setthe remaining. — k places
are known asedundancy sét

Remark 2.3.5. When using systematic encoding— vG’ = v(I;|A) = w, the firstk coordinates
simply repeat thé: components of the message However, errors may also have occured in the first
coordinates, so decoding by simply reading out the firgibordinates values does not work. But if we
are given the values of a codeword on these firsbordinates, then the remaining— k coordinates are
uniquelydetermined. For lefd’ a corresponding check matrix, i.&' H'" = 0. It follows by inspection
that H' = (—AT|I,_;). Two codewordg, ¢’ which coincide in the firsk coordinates must therefore be
equal in the last: — k coordinates as well.

80bvious isometries are the permutations of the coordinates.
"They are also calledheck bitssince they may be used for error correction and error detection.
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2.4 Generalized Reed Solomon codes

Notation 2.4.1.8 For 1 < k < n € N denote the subspaces of all polynomials dvgof degree strict less
thank by

k—1
Fg[X]cr = PF X"
=0
Letn < g € N, L = (Ly,...,L,—1) an n-tuple of pairwise distinct elements Bf and 3 =
(Bo, - - -, Bn—1) an n-tuple on nonzero elementslf.

Definition 2.4.2 (Generalized Reed-Solomon codeFor 1 < k < n € N we define theseneralized
Reed-Solomon-Codé RSk (L, 3) as

GRSk(L,B) := {(f(Lo)Bos - -+ f(Ln-1)Bn-1) | F(X) € Fg[X]<r}. (2.4.1)

We add an equivalent, more explicit formulation of (2.4.1). Consider theWoilp notations:

@) == (Lh)o<i<k, 0<j<n
[ 1 1 o 1
Lo Ly ... Lp_1
— |z L3 ... L2, c Fhxn,
kot A
By 0 ... 0
0 B ... 0
A@) =|. | emmn, (2.4.2)

_(l) 0 0 ﬁnl—l
F(X)®@wy == (fo,- s fim1)®@y = (f(Lo)s - -+, f(Ln-1)),

Bo b1 Br—1
LofBo L1 ... Lp_1Bn-1
2 2 2
T .= LO_BO Ll_ﬁl . Lnfl.ﬁn—l = (I)(L)A(,B) S ngn
LEgy LA g o0 LFTlg,

Using these notations we see tliaR S, (L, 3) is formally generated in the following way:
GRSp(L, B) = {f(X)T | f(X) € Fg[X]<r}. (2.4.3)

Remark 2.4.3. As® () is a submatrix of the Vandermonde matrix addg3) is invertible,® 1) andT" do
have rankk.

An important point to note here is that the sequefiaan be replaced by a polynomiglX ) € F,[X],
which later will be used to define so-called Goppa codes. To this end, stedaall some definitions and
well-known facts.

Let R and.S commutative rings with 1.

8For the following explanations, see [1].
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Definition 2.4.4 (Ideal, principal ideal, relatively prime ideals).
(7) A subgroup (I,+) of (R,+) is calleddealiff az € I forall a € Randz € I.

(1) Fora € R theprincipal ideal(a) generated by: is defined as
(a) :== (a) := {ar|r € R}.
(7i7) Letly,s, I, ideals in R(n > 2). They are calledelatively prime(or coprimg iff I, + I; = R for
k1.
Theorem 2.4.5.Let¢: R — S a surjective ring homomorphism. The induced homomorphism
h:R/ker¢ — S (a+keré — ¢(a))
is a ring isomorphism.
Proof. [18], (6.11). O

Theorem 2.4.6.Let 1y, ..., I, relatively prime ideals in Rn > 2). The canonical ring homomorphism
a:R— R/I} x --- X R/I,

re—(r+n,...,7r+ 1)
is an epimorphism with kernel

n
ker a = ﬂ I;.
=1

Proof. [18], (6.24). O
Combining (2.4.6) and (2.4.5) yields:

Theorem 2.4.7(Chinese Remainder Theorem (CRT).

R/ (I ~R/Ii x -+ x R/, (2.4.4)
k=1

n
(r+ ﬂlk&—>(r+11,...,r+ln)).
k=1

In other words, theorem (2.4.7) states that for pairwise relatively prinedsde, ..., I,,, n > 2 and

arbitrary elements,, ..., r, € R, there is always a solution for the system
X = r modly

: (2.4.5)

X = r, mod I,

and that for a particular solutianthe set of all solutions i8 + (;;_; Ij.
We finally note:
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Lemma 2.4.8.Acosetr + I € R/IisaunitofR/I if and only ifI(r) = (r) andI are relatively prime.

Proof. [18], (6.32). Ol
Consider now )
hX) =[] (X - Ly, (2.4.6)
=0

and denote byh) the principal ideal irf,[X] generated by:(X):
n—1

(h) = {hg|g € Fg[X]} = () (X — L),
=0

AstheL; (0 < i < n)are pairwise distinct, th& — L; are relatively prime if", X | and theorem (2.4.7)

states:
Fo[X]/{h) 2 F[X]/(X — Lo) % ... x Fo[X]/{X - Lo_1).

Polynomial division gives foi € {0,...,n — 1} and f(X) € F,[X] a unique representation as:

f(X) = q(X)(X = L) + f(Li),

whereq(X) € F,[X]. Thus we have afi,- algebra isomorphism
®: Fo[X]/(h) = F

f + <h> = (f(L0)7 e "f(Ln—l))

This map restricts to an isomorphism between the two groups of units, whicthengolynomials
9(X) € Fy[X]/(h) with g(L;) # 0 for 0 < i < n on one side (due to lemma (2.4.8)) afit}’ )", the se-
quences of length overF, whose entries are all non-zero, on the other side (where we have tizertdad

product resp. componentwise multiplication):
" (2.4.7)

g+ (h) = (g(Lo),- -, 9(Ln-1))- (2.4.8)
In the other direction, given a sequence= (co, ..., c,—1) With ¢; # 0 for 0 < i < n, we obtain the
inverse image under the m&pvia Lagrange’s interpolation formula. Namely, we have

O (Fy)™ — Fq[X]/(R) (2.4.9)

n—1 - n—1
c=(Coy.rnscnit) = G : (2.4.10)

wherel(X) is the unique polynomial of degree less thawith

n—1

WL) == [[(Li — Ly), (2.4.11)
7=0
J#i
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and is given by Lagrange in explicit form as

— ? Ol(X Lj ) n—1n—1

_ Z 4 #% - Z H (X - Lj) (2.4.12)
Jj= O(L J) =0 j=0
J# J#

By construction, the residue clakss- (k) is a unitinF,[X]/(h). It serves in the following as a normal-
izing factor. For each uni + (h) we build the following linear code (which is isometric@R Sy (L, 1,,),
wherell :=(1,1,...,1) € F}).

Definition 2.4.9.

GRSk(L,g) := GRSk(L, B) (2.4.13)
whereg = (f, ..., Bn—1) is the sequence whose entries gre= ?((fz))
Theorem 2.4.10.
c19(Lo) Cn—lg(Ln—1)>
GRSL(L,g) = ( € GRS,(L, 1, 2.4.14
Proof. Letc € GRS(L, d ( 0) 9(Ln-1)
k(Lg)andB = [z Loy )
Using the notations (2.4.2), there exigisX) € F,[X] such that
c = f(X)r
= f(X)ow)A(B)
= dA(B),
wheref(X)¢r) =: ¢’ € GRSy(L, 1,,). This shows (2.4.14). O

The following theorem will show extremely useful characterization&' &Sy (L, g) codes. They will
be used below for the definition of alternant and Goppa codes.

Theorem 2.4.11.letl1 <k <n<qge€N.

LetL = (Lo,..., L,—1) be a sequence of pairwise distinct element8 cénd
n—1
hMX):=[[(X - L)
=0

Letg(X) € Fy[X]<pn with g(L;) # 0forall 0 < i < n.

GRSy(L,g) = {c eF} | 3f(X) € Fg[X]ck: Z H = fg mod <h>} (2.4.15)

If deg g(X) = n — k, then

GRSi(L,g) = {CGIFZ | 3f(X) € Fy[X]<k: Zc, H (X —Lj)=0 mod (g >} (2.4.16)
ﬁfz
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GRSk(L, g) can also be characterized as the set ofat IF; which satisfies

|
—

n

(X —L)t=0 (2.4.17)

S
I
o

in Iy [X]/(9)-

Proof. Letc € Fy.
As in the proof of (2.4.14) we see thatt GRSy (L, g) if and only if there exists a polynomigl( X)
F,[X]< such that

_ (f(Lo)g(Lo) f(Ln—l)g(Ln—l))
(Lo) 7 U(Ln_y)

Recall that on(F )" the multiplication is defined componentwise, see (2.4.7). Therefore, we get

(col(Lo), s en1l(Ln-1)) = (f9(Lo),---, f9(Ln-1)) = ¢(fg + (h))

249)

fo+ () = ¢ (col(Lo), .-, cn1l(Ln-1))

2.4.10 n n—
O fg = Sl — Ly) mod (k)
J#
Letdegg(X) =n — k ande € GRSk(L, g) a codeword. According to the last shown equation, there
exist polynomialsf (X) € F,[X] < ands(X) € F,[X] with

n—1
> o JI(X = Ly) = F(0)g(X) + s(X)h(X).

Becauseleg f(X) < k, it follows thatdeg f(X)g(X) < n = deg h(X), which implies

S e TH0r - 1) = 1(x)g().
: J:
JFi

and which is finally equivalent to

'M‘

~
Il
o

H =0 mod (g).
7=0
JF

Using (2.4.8), it follows that + (g) is a unit inF,[X]/(g). Multiplication by its inverse yields therefore in
Fq[X]/(9)

n—1
Z CZ(X - Li)_l =0.
1=0
Since these arguments can be reversed, we obtain the assertion. O
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2.4.1 Alternant codes

The class of alternant codes is obtained by restriofiifi)S-codes to subfields which means we now start
with an extension field

Definition 2.4.12 (Subfield subcodg. Consider the field extensidf,~ /F,. Let C C (F,~)" be a code
overFym

Clr, :==CNFy (2.4.18)
is called thesubfield subcodef C (or therestrictionof C to IF,).

Remark 2.4.13. Note that the dimension @f is its dimension as a vector space oWy, whereas the
dimension ofC|, is the dimension as a vector space oFgr®

Proposition 2.4.14. Restricting codes defined over an extension figld reduces in general the code di-
mension:
dimClg, < dimC.

Proof. The inequality follows from the fact that a basis 6fr, over[F, is also linearly independent over
Fym [35]. Indeed, let(a;)i=1,...., be aFF,-basis of C|r, and} ! a;o; = 0, wherea; € Fym. To show is
thata; =0foralli=1,...,n

Let(B;)j=1,..m be aF,-basis off ,» anda; = T.’”‘:l b;B;, withb; € Fy.

O:Zaiai:ZZb]ﬁj X:ZbaZ
i=1

=1 j=1 7j=1 =1
Becaus€;);—1....m iS a basis, it follows tha} ;" ; bja; = 0forall j = 1,...,m. As theb; are inF, and
(ci)i=1,...n Is anlF,-basis, this meansy = O forall j = 1,...,m. Henceg; =Oforalli=1,...,n. O

Definition 2.4.15(Alternant code). The restriction ofGRSy(L, g) overF, - to the subfieldF, is called
alternant code oveF,, denoted as

Alty (L, g) := GRSy(L, g) NFy. (2.4.19)

2.4.2 Goppa codes

Definition 2.4.16(Goppa codg. The restriction of a5 RSk (L, g) code ovelF,~ withdeg g(X) =n — k
toIF, is called a g-ary Goppa code. Itis a special alternant code and indicaye@O,(L, g):

GOy(L,g) := GRSk(L, g) N Fy, (2.4.20)
wheredeg g(X) =n — k.
Remark 2.4.17. According to Theorer(2.4.11) the Goppa codé&O, (L, g) has the form

GO4(L,g) = {CEF”‘ZCZHX Lj)=0 mod(>}
=0 j=0
JF

n—1

{CEF”‘ ZX T =0 m0d<>}

wheredeg g(X) = n — k.

%See [35].
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Lemma 2.4.18. Supposé an arbitrary field, L € F, g(X) € F[X], degg(X) =t > 0andg(L) # 0.
Then there exists a uniquely determindéd’) € F[X], deg h(X) < ¢, such that

(X —L)h(X)=1 mod g(X). (2.4.21)
Proof. Indeed, using division by remainder, it follows thatl) — g(X) = a(X)(X — L) + r(X), where
a(X),r(X) € F[X]. InsertingL on both sides giveg(X) = 0. Hence X — L dividesg(L) — g(X) and
we can definé(X) € F[X] as
9(L) — 9(X)
g(L)(X — L)
Sincedeg g(X) = t, it is immediate thatleg h(X) < ¢t. We apply division with remainder again to the
polynomial(X — L)h(X) — 1. For degree reasong X ) has to be a constant:

h(X) =

(X —LD)h(X)—1=aX)g(X)+r(X)=ag(X) +r(X).

Using the definition ofh(X) gives —r(X)g(L) = (ag(L) + 1)g(X). Becausedegg(X) = ¢, but
degr(X) < t, we concludeag(L) + 1 = 0 and finally becausg(L) # 0, thatr(X) = 0. This
proves (2.4.21).

For the uniqueness, assume thaX ), »'(X) solve (2.4.21). Thug(X) divides(X — L)h(X) — 1 and
(X — L)h/(X) —1 and consequently also their differencé — L)(h(X) — h'(X)). Butg(X) and (X — L)
are relatively prime, which means thgtX) divides (h(X) — h/(X)). Becauseleg(h(X) — W' (X)) < t
anddeg g(X) = t, it follows thath(X) = 1/(X). O

Remark 2.4.19. Under the assumptions of Lemitta4.18)we write

1 g(L)—g(X)
XL~ (DX -I) (2.4.22)

but this notation is a bit sloppyL/(X — L) is not a polynomial. Rather, we identify a polynomidlX')
F[X] and its residue class iR[X]/(g). In this sensel /(X — L) can be considered as polynomial, as long
as we work modulo a polynomia( X ), which does not have as root.

2.4.2.1 Parity check matrix of a Goppa code. The check matrix of a code that restricts to a Goppa code
GO,(L, g) can be obtained in the following waif
According to remark (2.4.17) and lemma (2.4.18)can [y, is contained inGO, (L, g) if and only if

g -l o
; a9 =0 (2.4.23)
in By [X]/(g). AS
(9(X) — g(Ls))
(X — Ly

equation (2.4.23) can be considered as an equatiBp-ifX]:

deg < degg(X),

n—1
3 cng(Li)*l ~ 0. (2.4.24)
=0

10126], pp. 390 — 393, with minor corrections by the author.
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Letg(X) = 3t g: X" with g; # 0. Then!?

. - i—1
9(X) —g(Li) _ N~ X =L} N~ pioieuy
— S =N g S Ly
X—L; ]Z%QJX—Li ;g];) i

The left hand side of (2.4.24) is therefore, by changing the orderrofrstion,

n t =1 " 1 . |
SIOID I e O FIARE SEIARD S (D D A BY
i=1 i=0  u=0 P =\ =
t—1 n t -
- (Zcig(Li)_l > gl _“>Xu.
u=0 “i=1 j=u+1
Hencec € GOy(L,g) ifandonlyifforall0 <u <t —1
n t -
= ZCig(Li)_1< > gl “)
i=1 j=u+1
[e1/9(La)
t , t ' es/9( L
=| 2wl X gjL%_l_u} / .( :
J=utl Jj=u+1 :
_Cn/g(Ln)
_1/9([/1) 0 . 0 1
- t . t . 7] O 1 g L2 ‘e 0 Co
IS it S o] |0 MR .
Sj=utd j=u+1 E . : 0
L0 0 0 1/g(Ln)] [en
- t ‘ i
= Z gj[/i_]-_u7 e Z g]L‘;Lflfu . D . c’
TJ=utl j=u+1 d
where
1/9(Ly) 0 0
0 1/g9(L2 0
Do J9(L2)
: 0
0 0 0 1/g(Ly)
Furthermore,
1 1 1
‘ t r _ Ll L2 o .. Ln
o o : : :
[ Z gjLJllu,..., Z gngLlu]: Gusl gt 0---0 L7 Ly .. 12
j=u+l ) i | : 5 :
AR A Lt
= gu+1gt00 ,V’

WX D)X - L) =X+ X724 ..+ LI°X + LN
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whereV resembles in structure the Vandermonde ma#ix,

Ll L2 e Ln
vo|n B .. o
Ltl—l La—l . szl

Summarizing, this means that (2.4.24) holds if and only if fofall v <t —1
gu+1...gt0...0 .V.D-C:O’

that is, if and only if

g 0 0 --- 0
gi—1 gt o -~ 0
gt—2 gi—1 g+ -+ 0| . v.D.e=0.
g1 g2 g3 - Gt

The canonical parity check matr#f for a GRS code, which restricts to a Goppa code, has therefore the
following form:

g 0 0 - 0 1 1 ... 1 g(Lo)~! 0 0
gt—1 gt 0o --- 0 L() Ll . Ln—l 0 g(Ll)il 0
H= |92 91 9 - 0| Lg LI ... Li, 0 0 0
Z Z Do : : : : : : . 0
o g2 g3 - g LG LT LA 0 0 0 g(Ln)™!
(2.4.26)
As the Toeplitz matrix on the left is invertiblg,(+# 0), this is equivalent to
VDc=0.
Hence, a parity check matrikd takes also the following form:
1 1 ... 1 o(Lo)~! 0 0
Lo Ly ... Ly 1
H=vD=|Ly Li ... Ly, , , , . (2.4.27)
PRI Y 0 0 0 g(Ln_1)
Lyt Lt i "

With proposition (2.4.14) in mind, the following theorem is not surprising:

Theorem 2.4.20.The Goppa codé/Oz(L, g), wheredeg g(X ) =t < n, has lengthh = |L|, dimensionk
satisfying
n—mt<k<n-—t (2.4.28)

and minimum distancé > ¢t + 1.

12The Vandermonde matrix is quadratic, and transposdd.tdlote also the similarity with (2.4.2).
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Proof. See [26], Thm. (8.3.2), p. 393. O

We consider now a special class of Goppa codes, so-daithedy Goppa codes.e. Goppa codes with
g = 2. As it will turn out, they have a fundamental property, which is of crucialangnce for the security
of cryptosystems based on quasi-dyadic Goppa codes.

2.4.3 Binary Goppa codes

Definition 2.4.21(Binary Goppa codg. The restriction of &5 RSy (L, g) code ovelfym with deg g(X) =
n — k = t to s is called a binary Goppa code. It is a special alternant code and indichyg@O2 (L, g):

Because of its importance, let’'s write down the above definition (2.4.21) ékplithe ingredients of a
binary Goppa code are the following:

(z7) A monic polynomialg(X) of degreet =n — k,

t
9(X) => g X" € Fam[X]. (2.4.29)
1=0

(ii) Atuple L of n pairwise distinct elements
L= (Lo,...,Lp_1) € F5n, (2.4.30)

such that
g(L;)) #0, i€{0,...,n—1}. (2.4.31)

Then the binary Goppa cod&0 (L, g) is

n—1

GOs(L, g) = {c = (e ren 1) €FF[ Y =0 mod g(X)}. (2.4.32)
i=0 v

Remark 2.4.22. The element$y, ..., L,,—1 € Fom are also calledcode supportwhereasy(X) € Fom[X]
is referred to asoppa polynomial

Se(X) ;:_S ¢i 9(X) —g(Li)

o) X—1I, mod g(X) (2.4.33)
—0 i i

is known as thesyndrome polynomiabf ¢. The binary Goppa codéOs(L, g) consists of alle =
(coy-..,cn—1) € Fy such that

n—1
Ci

Se(X) = Z_: %I, = 0 mod g(X). (2.4.34)
i=0 ’
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Consider now a codeword = (co,...,cn—1) € GO2(L, g) with some Hamming weight(c) = w,

i.e.c, =--- = ¢, = 1, whereas the other coordinates argee [26], with some additions by the author).
If
j=1

then the formal derivative of.(X) is

fc(X)/ = Z H(X - sz)7 (2.4.36)
k=1 £k
and further
Se(X) fe(X) = fo(X). (2.4.37)

Note thatf.(X) andg(X) are relatively prime: because gfL;) # 0, they have no common roots in
any extension. Hence,

c € GOs(L,g) <= g(X)|Se(X) == g(X)|fo(X)" (2.4.38)

Remark 2.4.23. Because we are in characteristic g,(X)" = 31, if;X*~! contains only even powers of
X. Furthermore, it is a perfect square, i.g.(X)' = h(X?) = k(X)? for some polynomiala(X), k(X) €
Fom [ X].

Proof. The mapFyn — Fom, a — a? is the Frobenius automorphism @a~. Therefore, each element
a € Fom has a unique square root. GiveaX) = Y- a, X2* € Fom[X], definek(X) = 3 \/ap X*. Then
E(X)? = h(X). O

Lemma 2.4.24.Let g(X) the perfect square with smallest degree, which is divisible(¥), i.e. g(X) =
a(X)g(X) for somen(X) € Fam[X]. Then

IO fe(X) = g(X)|fe(X)" (2.4.39)

Proof. =: fo(X) = v(X)g(X) = v(X)a(X)g(X) for somev(X) € Fom[X]. <: Let g(X) =
a(X)g(X), g(X) a perfect square. BecaugéeX)|f.(X)', it follows thatdeg g(X) < deg fo(X)" (be-
causef.(X)' is a perfect square according to (2.4.23) and the minimality(&f)). Thereforef.(X)’ =
B(X)§(X) 4+ r(X) = B(X)a(X)g(X) + r(X). By assumption, we havg X) = 0, which finally gives
(X)) fe(X). O

The next theorem will summarize the latest results:

Theorem 2.4.25.Let GO2(L, g) be a binary Goppa code. {f X ) is the polynomial of smallest degree that
is a perfect square and is divisible gyX), then

GOs(L,g) = GOs(L, §). (2.4.40)

In particular, GO2(L, g) has a minimum distance at leastg g(X) + 1.
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Proof. Letc € GO2(L, g).

c€ GOy(L,g) 2L Se(X)=0 mod g(X)
%22 9(X)|fe( XY
=" g(X)[fe(X)
#2439 ¢.(X)=0 mod §(X)
EL e GOy(L, )
For the statement about the minimum distance, see (2.4.20). O

Corollary 2.4.26. 3 Let GOy (L, g) be a binary Goppa code and suppose that the Goppa polyngiiia)
has no multiple roots in any extension field. Then

GOs(L,g) = GOo(L, g°). (2.4.41)

In particular, the minimum distance 6fO2(L, g) is at least2 deg g(X ) + 1. Hence GOz (L, g) can correct
at leastdeg g(X) errors.

Definition 2.4.27(Irreducible Goppa code, separable Goppa code

(i) A binary Goppa code with a Goppa polynomial irreducible o¥gris called airreducible Goppa
code.

(7i) A binary Goppa code whose Goppa polynomial has no multiple roots inxdapson field is called
a separabl€&soppa code.

Remark 2.4.28.The crucial meaning of Cof2.4.26)is the fact that separable binary Goppa codes have two
different representations wittlifferenterror correcting capabilities. In other words, an alternant decoder
based ony(X)? can correct twice as much errors as a decoder based(d9).

2.4.4 Examples for binary Goppa codes

2.4.4.1 Example Let ¥ g(X) = 2% + = + 1 and the supporL. = {0,1,w,...,w®} = Fg. Thus
m = 3,t = 2,n = 8 andw is a primitive element off's. The zeros of;(X ) are not inFg, butin Fy. If we
write Fy asF4 = {0, 1, z, 2%}, then the zeros areand:?, as is easily calculated.

The parity check matrid’ of the Goppa cod&'O,(L, g) is obtained from the matrix

_ [1/9(0) 1/9(1) 1/g(w) ... 1/g(w6)]
0/9(0) 1/g(1) w/g(w) ... w%/g(w®)
1 1 w? ot W w w Wt

- lO 1 wP Wb W W WS w31’

BNicola Sendrier calls it the binary miracle. It will be the key of the quasidityaryptosystem, as will be shown below.
14
[26], p. 394.
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which can be seen by using a field tablelaf. As the Goppa code is a subfield subcode, we need to express
the entries off as vectors: = (ag, a1, az) with a; € Fy ([20], Ch. 7, p. 207).

110000 0 0
000101711
, oo 111001
H=lo 111111 1]
00101101
0001111 0]

Since the rank off’ is 6, dim GO, (L, g) = 2 and with some calculation it follows that
GOs(L, g) = {00000000, 11110100, 11001011, 00111111},

hence the Goppa code has a minimum distance of

2.4.4.2 Example Let® g(X) = 22 + 1 and the supporL = {0,w,w? w3, w’®,wb} C Fg. Thusm =
3,t = 2,n = 6 andw is again a primitive element dfg. As charFg = 2, it holds thatg(X) = (X + 1)2.
Using corollary (2.4.26) we see th&0,(L, g) = GO2(L, X + 1). By theorem (2.4.20), we conclude the
dimensionk to be greater than — mt = 6 — 3 - 1 = 3. Furthermore,

_{ 1 1 1 1 1 1
Cl0+1 wH1l w241 w1l w4l Wi+l

:{1 wtw Wb WP wﬂ,

and thus a parity check matrix f6tO2 (L, g) is

110101
H=/01101 1],
0 00111
and we see that Oz (L, g) has minimum distancg. O

2.4.5 Parity check matrix generated byg(X)? in case of a binary, separable Goppa codes

LetZ ={z,...,2-1} C Fom andL = {Ly, ..., L,—1} C Fom, where all the members di are distinct.
Let Z N L = () and define the Goppa polynomiglX ) without multiple roots as

9(X) = (X —20) (X — 2-1) € Fam [X],

wheret < n.
Using (2.4.27), we see that a parity check mafid% for the Goppa cod&'O, (L, g?) is given as:

15[26], p. 395.
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1 1 1 ]
Ly Ly - Lpa
2 2 2
Lj Ly -~ Li_, g(Lo)~2 0 ) e 0
: : : : 0 g(Ly)~ 0
H=-VD=| /., /1 = /. _ ( _1) _ (2.4.42)
Lot th L?—1 : : " 0
Ly Ly Ly 0 0 0 g(Lp1)?
L v

As in (2.4.26), it is also possible to add the corresponding Toeplitz matrix defthef coursé®.

2.4.6 Parity check matrix generated byg(X)? in Tzeng-Zimmermann form

To derive another form (see [36]) for the parity check mafid#kfor the Goppa cod&'Os (L, g%) generated

by
9(X)? = (X —20)* - (X — z-1)%,

apply (2.4.27) tay;(X) = (X — )%, where0 < [ <t — 1. Because it is allowed to add a row of a parity
check matrix, multiplied by a common factor, to any other row of the matrix, we faavg (X ) as a parity
check matrixH:

o — (Lo — 2) 2 (L1 —2)2 (Lp—1 — 2) 72
! Lo(Lo — )72 Li(Ly — )72 Ly—1(Lp—1 — 2)72 ]
- (Lo — 2) 72 (L1 — 2)2 (L1 —2)"2 |
| (Lo —2)(Lo — 2)72 (L1 —2) (L1 — )72 (Lp—1 — 2)(Lp—1 — )72 ]
- (Lo — 2)72 (L1 — 2)72 (L1 —2)"2 |
(Lo —2)7t (L1 —z)7t (Lp—1—2)7 ! ]
- (Lo —2)7 ¢ (L1 — )7t (L1 —2)"t |
(Lo — 2) 2 (L1 —2)2 (Lp—1—2)72 ]

It is easily seen that the Goppa codé (L, ¢?) is the intersection of the Goppa cod&6)s(L, g;),

t—1
GOs(L,¢%) = () GO2(L, ¢1).
=0

Hence, we have

18These two matricedd and H' are leading to slightly different key equations, however. For the decedewill use the
Toeplitz-formH .
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[(Lo—20)""  (Li—2)"" (Ln—1—20)"" ]
H, (Lo — Zo)j (L1 — Zo)j (Ln—1— Zo)j
I% (Lo — 21) (L1 —21) (Ln-1 — 21)
H=|""|=| @Lo—2)? (Li—z)? (Lp—1—21)7" (2.4.43)
Het (Lo —ze—1)"" (L1 —z—1)7 " (Ln—1— 2e-1)7 "
(Lo — z-1)"2 (L1 — 2z-1)72 (Ln—1 — 24-1) 2

More general, we have:

Theorem 2.4.29.The Goppa code generated by a monic polynomial ) without multiple zerog(X) =
(X —20)...(X — z-1) admits a parity-check matrix of the forld = C'(z, L), i.e. H;; = 1/z — L;,
0<i<t0<j<n.

Proof. See [20], Ch. 12, p. 345, Problem 5. or [36], p. 713. O

Remark 2.4.30. Goppa codes in Tzeng-Zimmermann form turn out to be special casescafledSrivas-
tava codesSee [20] (Chap. 12, §6) or [25].

2.4.7 Goppa codes in Cauchy and dyadic form
Definition 2.4.31(Dyadic matrix, quasi-dyadic matrix, signature [3]). Letr = 2* for somek € N.

(7) Given a ringR and a vectorh = (hyg,...,hy—1) € R, the dyadic matrixA(h) € R"™™" is the
symmetric matrix with components;; = h;q;, where® stands for the bitwise exclusive-or. Such a
matrix is said to have ordet. The sequenck is called itssignature The set of dyadie x » matrices
overR is denotedA (R"*").

(ii) A quasi-dyadignatrix is a (possibly non-dyadic) matrix, whose elements are dyadicaubes, i.e.
an element oH (R").

Remark 2.4.32. It is easy to check that the signature of a dyadic matrix is nothing more thdinsitsow
(column). By the definition of dyadic matrices, the signature is enougtbtoldethe whole matrix. Hence,
such a matrix allows a very compact represenation.

We give a visualization of such a matrix for= 3:

A B CDE F G H
B A DC F E H G
C D A B GHE F
D C B A HG G F E
H(h)=(hiej) =\p p ¢ W A4 B ¢ D
F EH G B A D C
G HEF CD A B
H G F E D C B A

w

0



In the sequel, we will give the definition of a so-calléduchy matrixand a theorem about Goppa codes
having a Cauchy matrix as generating matrix. Afterwards, we will see hoartoert Cauchy matrices and
dyadic matrices.

Definition 2.4.33 (Cauchy matrix). Letz = (z0,...,2-1) € F, and L = (Lo,...,L,—1) € F} two
disjoint sequences of distinct elements.

. . L 1
TheCauchy matrixC(z, L) is the matrix with elements;; = 7 € [Fy:
zZi — Ly

1 1 1

zo—Lo zo—L1 e 20—Ln_1
1 1 1
L —L; —Lne

C(z,L)=(Cy)=| = = AT | e (2.4.44)
1 1 ' 1
zt—1—Lo  z—1—L1 7" z—1—Lna

The question now is if there are Cauchy matrices in dyadic form. The answyes, thereby having the
additional property of a very compact representation.

Theorem 2.4.34(Cauchy matrices in dyadic form [23]). Let H € Fy*" withn > 1 be simultaneously a
dyadic matrixH = A (h) for someh € I and a Cauchy matriHl = C'(z, L) for two disjoint sequences
z € Fy and L € Fy of distinct elements. Thef), is a binary field,h satisfies

1 1 1 1

== 4 — 4+ 2.4.45
hi@j h; + hj + ho’ ( )

andz; = 1/h; +w, Lj = 1/hj + 1/hg + w for somew € F,.

Remark 2.4.35. Dyadic matrices allow a very compact representation. Parity check neatiic Cauchy
form can be generated by Goppa polynomials of the form

9(X) = (X = 20)(X —21) -+ (X = z-1).

Due to theoren{2.4.34) the intersection between dyadic matrices and Cauchy matrices is not:ewgpty
have to use values and L; satisfying equatiot(2.4.45)

As noted in [23], a cryptosystem based on a parity-check matrix in Cawrhy fould immediately
reveal the Goppa polynomial as there would be an overdefined line@nsys— L; = 1/H;; consisting
of tn equations irt + n unknowns. Hence, additional techniques will have to be applied, in plntithe
use of quasi-dyadic subfield subcodes as the most important. We willssdslvene of these points in the
implementation section.

2.4.8 The fast Walsh-Hadamard transform and the dyadic convolution

By saving only the necessary signatures, dyadic and quasi-dyadic esadtiow a substantial reduction of
the public key size. Instead of keeping a whole generator méirix IF’;X”, for a purely dyadic code we
would only need its first row. The encryption of a message IE"; into the codeword € [y is done by the
vector-matrix product = uG.
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This raises the question of how to perfownds efficiently in terms of time and space. If it would be
necessary to expand the signatiréto the matrixG, then the scheme would be less useful. As it turns
out, uGG can be done without expanding the signatinesing the Walsh-Hadamard transform [3, 15]

The following is taken from [3]. We make the same assumptions as for (2,4n3dgrticular we always
assume = 2%,

Definition 2.4.36 (Dyadic convolution). The dyadic convolution of two vectots v € R is the unique
vector denoted by A v € R such thatA(u A v) = A(u)A(v). The dyadic inverse of a vectare R,
which exists whenevelet A (u) # 0, is the vector21 such thatA (ul1) = A(u) L.

Definition 2.4.37 (Sylvester-Hadamard matrix). Let F be a field with characteristicha([F) # 2. The
Sylvester-Hadamard matrikl ;. € F" is recursively defined as

Ho =1
(2.4.46)
H, = [H’f—l H’H] , k> 0.
H, , —-Hjy
Remark 2.4.38. It is easily seen that
Hy' = [1]
= — _1 - y .

g 2 |H., -H

Lemma 2.4.39.Let I be a field with characteristicharF) # 2. If M € F"*" is dyadic, thenH ;' M H,
is diagonal.

Proof. We describe the proof as given in [3] for ease of reference. Téertign is obviously true fok = 0.
Letk > 0, and write

AB
-3

where A and B are dyadic. It follows that

1 |H;! H ' | |[AB| |H,_ H;,_
-1 _ k—1 k—1 k—1 k—1
Hy MHy =5 H! —H!||BA||H,, —H,
el A (2.4.48)
_ [HeaM H 0 o
0 H];,llM—Hk—l ’

and because bothf; = A+ BandM_ = A — B are dyadicH, ' M H; ; andH, '\ M_Hj_,
are diagonal by induction, soH,;lMHk. O

Remark 2.4.40. Lemma(2.4.39)suggests an efficient way to multiply two dyadic matrid¢ésand N using
the diagonal formdZ; ' M H and H, ' N H}, as

(H,'MH,)(H,'NH;) = H,'(MN)H,.

However, it is not necessary to carry cHt,;lMHk completely in order to diagonaliz&7, as the following
lemma(2.4.41)shows.
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Lemma 2.4.41.Let IF be a field with characteristicha(F) # 2. The diagonal form of a dyadic matrix
M € F™*" is the first line ofM H . In other words,H ;' A (h) H}, = diag(hH},).

Proof. The statement is true fdr = 0. Therefore, let: > 0, M = [48], M, = A+ BandM_ =
A — B as before. By (2.4.48) the diagonal H,;l(M)Hk is the concatenation of the diagonals of
H. ' M Hy  andH; ' M_H_;. Similarly, since
MH, - A B||Hy. Hp.,|_|M{H,, M _Hj,
B A||Hp.1 —Hjp M H, 1 —M _Hy 1|’

the firstline ofM H ;, is the concatenation of the firstlines®df . H;_, andM _ H_,, which by induction
are the diagonals off; '\ M . Hy_; andH,; ', M _H_, respectively. O

Corollary 2.4.42. Computingw such thatA (u) A (v) = Aw involves only three multiplications of vectors
by Sylvester-Hadamard matrices.

Proof. By Lemma (2.4.41),

diag(uHy)diag(vHy) = (H, ' A(u)Hy)(H) ' Av) Hy,)
= H; /' (A(w)A(v) Hy
= H,'A(w)H},
= diag(wHy).

Now retrievew from the vectorz = wH;, asw = zH,;1 =2 kzH,. O

Remark 2.4.43. The structure of Sylvester-Hadamard matrices leads to an efficientiddgoto compute
uwH,, foru € F", which is known as the fast Walsh-Hadamard transform.
Let [ug, u1] be the two halves af. Then

Hy . Hp,

’qu = [’u,(),uﬂ [Hkl —kal

] = [(wo +w1)Hy-1, (o — w1)Hp-1], (2.4.49)

which is a recursive algorithm of complexi(r log r).

The reader may have noticed that the general assumption for the conslasiove was always a field
not having characteristic 2. At first glance, this fact seems to excludé/sifeh-Hadamard transform as an
efficient tool in the context of binary Goppa codes, but there is a solfiothe problem. It consists of
lifting the algorithm to characteristi@¢, namely fromFy, = 7Z/27Z to Z. What actually happens is that all
the bits involved in the calculations are seens as integers. By the end ofrtipeitzdion, the result will be
reduced modul@, see section (8.1) for details.

Another approach may be to compute the produkf ;. directly using only the signature d;, for
proper parameter settings. That means that during the multiplication prabessyrrent row ofH, is
computed on the fly. It might be good choice due to its small memory footprinsexdion (8.1) as well.
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Part V
Code-based cryptosystems

3 The classical McEliece cryptosystem

The original McEliece cryptosystem was introduced by R. McEliece in 1818 irreducible binary Goppa
codes [21].

3.1 Setup

The system parameters drem, n,t € N, wherek < n, t < n. For the public and private keys, generate
the following matrices:

> A secret generator matri&’ € F5x™ of an irreducible binaryn, k, d] Goppa coderOs(L, g) with
minimum distancel > 2t 4+ 1 and a fixed, public suppo#t.

> A secret random binary non-singular matixe F5x*.
mXn

> A secret random permutation matdX € Fy..".

> A public generator matril§G’'P = G € IE“’;X” for a code equivalent t&/Oy (L, g).

The pair(G,t) is the public key whereas therivate keyconsists of the tripléS, Do, (), P). Here
Dgo,(L,g) 1S an efficient decoding algorithm fe¥O, (L, g) *7.

3.2 Encryption
To encrypt a plaintextn € F, choose a vector € F3 of weightt randomly and compute the ciphertext as
follows:
c=mG P z.
3.3 Decryption
To decrypt a ciphertext € F3 calculate
cP7 ' =mSG ¢ zP 1.

Apply the decoding algorithmD¢o, (L 4) for GOs(L,g). SincecP~' has a Hamming distance ofto
GOs(L, g), we obtain the codeword

mSG’ = Dgo,r,q)(cP™Y)

LetJ C {1,...,n} be asetsuch that is invertible. Then we compute the plaintext=mSG’ ;(G';,)~*S~L.

Typical choices for the parameters arec t < (2™ — 1)/m, m € {10,11,12} andmt 4+ 1 < n < 2™ [8].
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4 A modern McEliece cryptosystem

The private key for the McEliece scheme as described above consists Goppa polynomiay(X), S

and P. The supportL is fixed and public. From an implementation point of view, it is more suitable to
work with a permuted, secret support and to transform the métfito systematic form. As mentioned
in [11], Section (3.1),S has no cryptographic function in hiding the secret polynomi& ). The net effect

is therefore that we can get rid of the matriceand P [2].

4.1 Setup

The system parameters are as in section (3), except the supfmsecret and permuted.
For the public and private keys, generate the following matrices:

> A secret generator matri@’ € F5x" of an irreducible binanyn, k, d] Goppa cod&iOs (L, g) with
minimum distancel > 2t + 1 and a secret, permuted suppbrt

> A public generator matritG' € IF’;X” for a code equivalent t&'Oy (L, g) in systematic form.

Set theprivate keyKpriv = (L, g) and thepublic keyKpyp = (G, t).

4.2 Encryption

To encrypt a plaintexin € F5, we proceed as in the classical case, choosing a vectoir} of weightt
randomly and computing the ciphertext:
c=mG o z.

4.3 Decryption

The decryption of a ciphertext € 4 is considerable simpler than in the classical case: we just apply the
decoding algorithnDgo,(z ) for GO2(L, g). Sincec has a Hamming distance ofto GO2(L, g), we
obtain the codeword

MG’ = Dgo,(L,g)(C)

No permutation is necessary, since it is hidden in the secret supparhich is only used for the key
generation process. Sin€gis in systematic form, no multiplication with an invers matfix ! is necessary
as well. All what remains to be done is to read the infobitsrdr.
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5 McEliece based on binary quasi-dyadic codes

As already mentioned above, the original McEliece scheme [21] suffarsd major drawback: the size of
the public keys, which is typically several 100kB or even above the megdibyit.

The canonical way in solving this dilemma is to use generator matrices with a highraig, even
crystalline structure for the underlying Goppa codes. This has to bevdtimgreat care, because a potential
adversary might use exactly that additional structure for launching attegainst the modified scheme, just
what the algebraic attack [12] aims to do.

An advantage of the McEliece scheme compared to other PKC-schemes likR®4gis its compu-
tational simplicity. The necessary operations for the encoding step arbyjiestevel operations likeor
and the like. Consequently, McEliece is quite fast, encryption has time comptéxityn?) over a code of
lengthn, where RSA withn-bit keys has time complexitg (n?) [23].

Saving space might have the drawback of loss in speed. So even whasntpactification of the code
representation would be successful, this point should be addressed, to

In the sequel we show how to design generator matrices for Goppa albalsgg a compact represen-
tation. We follow the construction in [4, 23].

5.1 System parameters

The (effective) system parametdrsn, n,t € N, wherek < n, t < n, are again as in section (4), but the
generation process of the public and private keys as given in [23] ie mmmplicated due to techniques
used to hide the code structure. For instance, the generated code \awealthtially a code length olv,
whereN > n. It would be shortened afterwards to a code of length

For simplicity however, we assume here that a permuted sugdpettffices to hide the quasi-dyadic
structure'®

5.1.1 Generating the public and private keys

The generation process of the public and private keys requires toesmlizgion (2.4.45) of theorem (2.4.34),
1 1 1 1

= —+—+—.
hig;j  hi hj ho
It will yield the necessary; andL; to construct a dyadic Cauchy matrix as

zi=1/hi+w
Lj = l/h]——l-l/ho—i—w

for somew € F,,.

18See also section (12).
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5.1.2 Generating the public generator matrix

The first step generates a binary Goppa code. This is done accordiogrtstruction given in [4], Algorithm
2. The results of this algorithm (see section (7.1)) are twosets{ zg, ..., z;—1 } andL = {Lq, ..., L,—1}.
Using these two sets, set up the a Cauchy matrix (2.4.44).

1 1 1

zo—Lo zo—L1 e 20—Ln—1
1 1 1
z1—Lo z1—1L1 Tt z21—Lnp_1
H= "t e F,
1 1 1
zt—1—Lo  z—1—L1 " z—1—Lna

By the construction of Algorithn2, H is also in quasi-dyadic form. The next step consists in co-tracing
the matrixH € ]FZX”. Co-tracing describes a process to transfdifime Ff]x” into a matrixH' € Ty,
while keeping its dyadic structure. We give a visual example for the ce-tasstruction.
Letuy = (1,1,0,1),u; = (0,1,0,1) € Fya and
T = [uo ul] € F32,
U

a dyadic matrix. Then the usual trace construction, i.e. writing the individtsjust below each other,
would destroy the dyadic structure:

| S|
I
— O R O RO R -
_ O === O = O

To keep the structure, the individual bits have to be used in an interleasiih, which is what the co-trace
construction does (see Fig. (2)).

Finally, computeH < F3"*", the systematic form off’ € F5"*". Note that this step might fail a&’
might possibly not have full rank, in which case the procedure has tediarted to generate a new code.
If H' does have full rank, i.e. its of the forlH’ = [R' | I,,,;] € F5"*", a respective generator matrix in
systematic form i&F = [I,,_.: | R] (see (11.1.1)).

5.1.3 Generating a private parity check matrix

Since binary Goppa codes are subfield subcodes, a procedure dbletie; RS-codes is able to decode
binary Goppa codes as well. It is therefore possible to use parity chelcesaH over Fom to build a
decoder for binary Goppa codes.
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(1, 1,0, 1) = Uup Uy = (0, 1,0, 1)

BN
\/

PR |o|lo|r|kr|~|lo

R r|o|o|lr|r|lo|r

Figure 2: The co-trace construction.

Because of remark (2.4.26), it is possible to choose as private paritl oferix anH’ € Fao"" = VD
as given in (2.4.42):

1 1 1 ]
Lo Ly - Lpq
Ly L - Lig| gLy 0 - 0
o | oo 0 g(L1)~? 0
et oLt o L : A 0
Ly Ly - Ly 0 0 0 g(Ln_y)2
gt ]

Note that the Goppa polynomig{X') was gained as part of building the public generator matrix (5.1.2),
9(X) = (X —20) -+ (X = 2-1),

and that the suppotit is secret. Hencell’ is actually a secret matrix. Note thBE in (5.1.1) is also a parity
check matrix. Due to the key equation (5.3.7) is actually the parity check matkinghe decoder.

Lo Ly - Lpa
g OO O RE 1R B2 Ty(Lg) 2 0 o 0
g2t—1 g 0 -~ 0 . . . _9
: : : : 0 9(L1) T 0
H=|92t—2 920—1 g2t -+ 0 1 i 1 _ _
: . : . Lot th L?—1 : : 0
' ' ' ' Ly Ly - Ly, 0 0 0 Y
g1 92 g3 0 92 . : . " 9(Ln-1)
L e =
(5.1.1)
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5.2 The encryption step

To encrypt a plaintexin € F%, we proceed again as in the classical case, choosing a vectoF} of
weightt randomly and computing the ciphertext:

c=mG o z.

Note that because the redundant parGbis a quasi-dyadic matrix, the vector-matrix produwetG' can be
done using the fast Walsh-Hadamard transform and the dyadic convo{aée section (2.4.8)).

5.3 The decryption step

The decryption step is again as outlined in section (4.3). To be more spétcifiatticular for the imple-
mentation, we give more details about the construction of the syndrome jpailgino

5.3.1 The setup

Suppose we are given a separable binary Goppa code with Goppamidyp(X) € Fom [X] and support
L= (Ly,...,L,—1) € F3, where the degreeof ¢g(X) is evendeg g(X) = r = 2¢t. Suppose further the
codewordu € F5 has been received. It can be writtereas- ¢ + e, wherec € FY is the correct codeword
ande € F3 is an error vector. 1&; # 0, we say that an error has occurred in positiqri22].

The decoding problem now consists in computing the error vect@ubstracting it from the received
vectoru results in finding the correct code woed The syndrome polynomial of the received vectois
given as

n—1
Wi
S(X)= : mod g(X)
o X —Li
- (5.3.1)
€;
= d g(X

and the set of all error locations will be denotedlby= {L; : e; # 0}. As we are in the binary case, having
€ B as error location is equivalent tg = 1. Using this notation, the syndrome polynom#LX') can be
defined as

Definition 5.3.1(Syndrome polynomial).

S(X) = % mod g(X). (5.3.2)
HX

We further define the error locator polynomia|X') and the error evaluator polynomial X'). Once
they are computed, they will solve the decoding problem.

39



Definition 5.3.2 (Error locator polynomial ). 19

o(X):=[[(X-8) (5.3.3)

BeB

Definition 5.3.3(Error evaluator polynomial ). 20

wX):=> ez [[(X =) (5.3.4)
peEB vEB
v#B

The zeros ot (X) are clearly the error positions, whereas the values(df ), when evaluated at those
positions, are the actual error values. Again, because we are in thg bass, those values areé*

Theorem 5.3.4. The following equations hold [22]:

dego(X) = |B|, degw(X) < |B|, (5.3.5)
ged(o(X),w(X)) =1, (5.3.6)
w(X)=0(X)S(X) mod g(X), (5.3.7)

Proof. Equation (5.3.5) is an immediate consequence of (5.3.3) and (5.3.4). €@ it holds that

w(B)=[(B—-7) #0, (5.3.8)
BF#Y

and therefore (5.3.6) follows. Finally, we get

503 = (X 525) Tx -5

BeB BeB
=Y e [[(X =)
peB v€B
V#B

w(X) mod g(X).

Remark 5.3.5(Key equation.). The equatior{5.3.7)
w(X)=0(X)S(X) mod g(X)

is also known as key equation. Solving this equation giv€s) and w(X) and thus in turn solves the
decoding problem as well.

®Note the similarity to (2.4.6)
#*Not the similarity to (2.4.12). In the binary caséX) = >, [T-er (X — 7).
Y#B

ZThe definition ofw(X) can also be used in non-binary cases, and here the error valuest arpnior known.
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5.3.2 Solving the key equation using the Euclidean algorithm

The Euclidean algorithm is typically used for computing greatest common diyiea. of two integers or
polynomials. We give a quick reminder [26].

Let F an arbitrary field f(X), h(X) € F[X] with deg h(X) < deg f(X). Furthermore, let_;(X) :=
f(X) andrg := h(X). The steps of the algorithm consist of a division by remainder. As theede@f the
remainders strictly decrease, the algorithm continues until the last remawetgually becomes and the
greatest common divisor ¢gf( X') andh(X) becomess(X), see (5.3.9):

r1(X) = q(X)ro(X)+ri(X), deg(ry) < deg(ro)
Pea(X) = (X (X) +7u(X),  deg(ry) < deglri )
5 (5.3.9)
rs1(X) = qer1(X)rs(X)
rs(X) = ged(f(X),9(X)).

In each step of the process it is possible to write the current remaipdg in terms of the two previous
remainders. Moreover, it can be shown that it is possible to write all reraesnohcludingrs(X), in terms
of f(X) andh(X). The fact is stated in the following theorem, see [26], Thm. (8.3.5).

Theorem 5.3.6.The remainders;(X), k > —1, in the Euclidean algorithm satisfy
k(X)) = ar(X)F(X) + be(X)h(X), where

ak(X) = — qk(X)ak,l(X) +ak,2(X), k Z 1
be(X) = = qre(X)bp—1(X) + bp—2(X), k=1 (5.3.10)
a()(X) =0
bo(X) = 0
a_l(X): 1
boy(X)= 1
O

To solve the key equation (5.3.7), run the Euclidean algorithm yitki) replaced by the Goppa poly-
nomialg(X) andh(X) replaced by the syndrome polynomial. As is also shown in [26], the algoridsn h
to be applied untf®

deg(ry) < t/2, deg(ri—1) >t/2, (5.3.11)

wheret = deg g(X) is the degree of the Goppa polynomial. Then the error locator polynemi) and
the error evaluator polynomial(X') can be computed as

b
oy (5.3.12)

O]

220One might speak of running the extended Euclidean algorithm partially [25]
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5.3.3 Finding the roots of the error locator polynomial

In the binary case, finding the actual roots of the error locator polyndmthk last remaining step. Typi-
cally, it is done using Chien search [9] or using the Berlekamp trace algofith

However, for the test example below, we can evaluate the error localgrgmoial using brute force
since the chosen parameter values are quite §maH 32, m = 6,¢t = 4).
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Part VI
Algebraic attacks against quasi-dyadic McEliece

In 2010, new algebraic attacks against the quasi-cyclic and quasiedyadant of McEliece have been
proposed [12]. The attack aims to use the highly symmetric structure of thexlyimgy matrices, and in
almost all cases succeeds. In case of quasi-dyadic binary Gopes, tmivever, the attack fails.

The reason for this failure lies in the fact that separable, binary Gopgescallow two different repre-
sentations based gi{.X) or g(X)?, respectively (see (2.4.26) and (2.4.41)):

GO?(L)g) = GO?(L792)

The encoding step is done via the weak representation basefXon i.e. on a generator matri&
gained via a parity check matrild < FL:" like (see (2.4.27))

1 1 ... 1 -
Lo Ly ... L, 9(Lo) ! 0 S 0
H Ly I3 L2, 0 g(L1)~ 0
= ... n— . ’
. : : : 0
Léfl in;l ' L.till 0 0 0 g(Ln—1>7
RN

but for the decoding step a version based;OR )? is used (see (2.4.42)):

1 1 1
Ly Ly - Lpa
Ly L o Ly gLy 0 - 0
: : : : 0 g(L1)72 0
, R : : :
H=vVD= ngl Lﬁ;l Lz;ll : : 0
Ly Ly - Ly 0 0 0 g(Ln_1)72
Ea R =1

The algebraic attack [12] is not against the Goppa polynogtiial) itself. Rather it exploits the quasi-
dyadic structure of the Goppa code and is able to come up with a generahtdtdecoder, which is able to
correct|t/2| errors. But the decoder based on the private trapdoor is able tattwiee as much errors.
The attack is therefore able to find a general alternant decoder, batGappa decoder.

One approach for an attacker might be to simple guess the remaining erowsveéf, the workload is
as high as(t72)/(t;2), which is prohibitive for proper parameter settings [5].

Another approach would be to launch an attack to find the Goppa polynonei) iigt to the author’s
knowledge, there is no source available describing such an attack.
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35

36

Part VII
Implementation

The implementation is written with CWEB [17], a tool which contains two main programs
> cweavdor generating thegX documentation.

> ctanglefor generating the corresponding C source.

Thus, runningctanglewith the *.w file of this document will produce C sources which can be compiled

by a usual C compiler, yielding an executable program. On the other hamuing cweavewith *.w will
produce a *.tex file, which can then be compiled into a *.dvi or *.pdf file.
The following implementation is in parts based on HYyMES [29].

6 Finite field implementation

The field implementation is taken form HyMES [29]. Some comments have beewedraad some vari-
ables renamed. The implementation deals with field extensigps: F,| of degreen for p = 2.

(gf .h 35)=
#ifndef G-_H_| NCLUDED
#define G-_H | NCLUDED

( Exportedfield declarations36)

( Exportedfield macros39)

( Exportedfield functions 37)

( Exportedfield variables3s)
#endif

For the currentimplementation we chose a maximal extension degtéeléch field element &, can
be therefore represented by maximalybits. The necessary datatypmtl6 tis contained irinttypesh,
renamed t@f_t and added to the external interface.

( Exportedfield declarations3s) =

#include <i nt t ypes. h>

#define MAX_EXT_DEG 16
typedef uintl6.t gf t;

This code is used in section 35.
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For initializing and releasing the internally used memory we add two functgniit andgf_free to the
external interface of the field implementation.

( Exportedfield functions37) =
extern void gf_init(int extdeg;
extern void gf_freq));
extern gf_t gf_powgf_tz,int 3);
extern gf_tgf_randint (xu8rnd)());

This code is used in section 35.

( Exportedfield variables3s) =
extern int gf_extd /* extension degree/
extern int gf _card, /x cardinality x/
extern int gf_ord,; /* multiplicative ordersx/
extern gf_txgf log;
extern gf_txgf_exp

This code is used in section 35.

( Exportedfield macros39) =
#definegf_unit() 1
#definegf_zerd) 0
#definegf_addz,y) ((z) ® (v))
#define _gf_modqg_Wd) (((d) & gf_ord) + ((d) > gf_extd)
#define gf_mul_fastx,y) ((y) 7 of_exg_gf _modqg_1gf_log[z| + gf_log[y])] : 0)
#definegf_mulz,y) ((x) 7 gf_mul_fasfz,y) : 0)
#define gf_squaréx) ((z) ? gf_exg_gf_modqg_1gf logz] < 1)] : 0)
#definegf_sqari(z) ((z) ? gf_exd_gf_modq_1gf logz] <« (gf_extd—1))] : 0)
#define gf_div(z,y) ((x) ? gf_exg_of_modqg_19f_logz] — gf_log[y])] : 0)
#define gf_inV(z)gf_exp [gf_ord — gf_log[z]]

This code is used in section 35.

~— —~

(gf .c 40)=
#include <st di 0. h>
#include <st dl i b. h>
#include " gf . h"
Definefield variables41)
Staticfield variables43)
Staticfield functions 50)
field functions 46)

o~ o~~~

( Definefield variables41) =

int gf_extd= 0; /* extension degree/
int gf_card = 0; /* cardinality =/
int gf_ord = 0; /* multiplicative orderx/
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43

44

46

of txgf log=A;
of_txgf_exp=A;
This code is used in section 40.

Static field variables are meant for internal use only. The gorag_polycontaines th&/AX EXT_DEG
primitive polynomials which can be used in the implementation. They are decodb&ubiry. For instance,
07 = 111, means the polynomiaX? + X + 1, used for an extension degreeraf= 2 and013 = 1011,
stands forX? + X + 1 for an extension degree of = 3. Extension degrees. = 0 andm = 1 are not
used.

( Staticfield variables43) =
static unsignedprim_poly{MAX_EXT_DEG+ 1] = {°1,°3, /* not usedx/
°7,°13,°23,°45,°103, °203, °435, °1041, °2011, °4005, °10123, °20033, °42103, °100003, °210013};
See also section 44.
This code is used in section 40.

( Staticfield variables43) +=
static int init_done= 0; /* flag for intialization check«/

6.1 Initialize the field

As outlined above, in software we work with the multiplicative representatiotheffield. Initializing
therefore involves creating the exponential and logarithmic tables. Thie siagameter ofyf init is the
chosen extension degree for the field.

(field functions 46) =
void gf_init(int extdeg
{
if (extdeg> MAX_EXT_DEG) {
fprintf (stderr, " Ext ensi on_degr ee_%l_not _i npl enented_!\ n" , extdeg;
exit(EXI T_FAI LURE);
}
if (init_done# extdeg { /* check for a previous field usage/
if (init_done
of_freg); /x release the field tables/
init_done= gf_extd= extdeg /* initialize the field parameters/
of _card= 1 < extdeg
of ord=gf card— 1;
of_init_exg); /* initialize the exponential table /
of_init_log(); /* initialize the logarithmic tablex/
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}
}

See also sections 48 and 54.
This code is used in section 40.

6.2 Release the field tables.

Releasing the field tables involves only releasing the internal memory.

48  (field functions46) +=
void gf_freq()
{
if (gf_exp
free(gf_exp;
if (gf_log)
free(gf _log);

6.3 Initialize the exponential table

«is chosen as root of a primitive polynomigl As outlined abovey does have the explicit fornY + I( f).
Multiplying by « means therefore multiplying byX’ moduloI( f), which in turn in binary means a right
shift by one bit position. By successively multiplying the previous field eldrimetihe exponential table by
«, we generate the whole fieldf_exgi — 1]-a = o',

50  (Staticfield functionss0) =
static void gf_init_exq)

{ int g
gf_exp= malloc((1 <« gf_extd * sizeof (xgf_exp); /* fetch some memory/
gf_exp0] = 1;

for (i =1; i < gf_ord;, ++i) {
of_exgi] = gf_expgi — 1] < 1; /* multiply by o x/
if (gf_expgi — 1] & (1 < (gf_extd—1))) /* modulo(f),i.e. x/
of_expi] @@= prim_polygf_extd; /* substractf for powers too highs/
}

of_expgf _ord = 1; /* should be 0: hack for the multiplication/

}

See also section 52.
This code is used in section 40.
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6.4 Initialize the logarithm table

Initializing the logarithmic tablgf_logis done usingyf_expand applying the formulgf_loga!] = 1.

52  (Staticfield functionss0) +=
static void gf_init_log()
{ int i;
of_log = malloc((1 < gf_extd = sizeof (xgf_log)); / fetch some memory/
gf_log[0] = ¢f_ord; /* log of 0 isgf_ord by conventions/
for (i =0; i < gf_ord; ++1)
of_log[of_exdi]] = i;

6.5 Powers of field elements

For the gf_pow procedure we assume>= 0. By conventior)® = 1

54 (field functions46) +=
of_tgf _powgdf_tz,int )
{
if (i =0)
return 1;
else if (x = 0)
return 0;
else {
while (i > gf_extd
i = (i & gf_ord) + (i > of_extd;
i *= gf_log[x];
while (i > gf_extd
i = (i & gf_ord) + (i > gf_extd;
return gf_exgil;
}
}

7 Building a binary Goppa code in quasi-dyadic form

The first step in generating a quasi-dyadic binary Goppa code is toajerbe dyadic submatrices.
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57

58

59

60

61

7.1 Constructing a purely dyadic Goppa code

(bi nary- quasi - dyadi c- goppa- code. h 57) =
#ifndef Bl NARY_QD_GOPPA _CODE_H I NC
#define Bl NARY_QD_GOPPA_CODE_H_| NC

( Exporteddyadicfunctions58)
#endif

( Exporteddyadicfunctions58) =
void binary_quasi_dyadic_goppa_codent32_tm, uint32_tn, uint32_tt, int xb, gf_t « A,
of t x omegaint *bc, int debug;
This code is used in section 57.

(bi nary- quasi - dyadi c- goppa- code. c 59) =
#include <st di o. h>
#include <mat h. h>
#include <stdl i b. h>
#include <stri ng. h>
#include " gf . h"
#include "util s. h"
( Staticdyadicmacroseo)
(dyadicfunctions 62)

( Staticdyadicmacroseo) =

#define REMOVE_FROM _U(elt)
for (int Il =k; I <q; ++1) {

if (U[l] =elt) {
Ull] = 0;
break;

}

}

See also section 61.
This code is used in section 59.

( Staticdyadicmacroseo) +=
#definel NI T_U_RANDOM()

U[0] = 0;
for (int uw=1; u < ¢; +u) {
Ulu] = gf_exgul;

for (intu=1; u<qg—1; +u) {
register int v = (rand( ) % (u + 1));
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of_ttmp= Ulu];

Ulu] = Ulv + 1];

Ulv + 1] = tmp;
}

To construct a binary dyadic code, we follow the description as gived]inAlgorithm 2. The corre-
sponding C code is given ibinary_quasi_dyadic_goppa_codéputs are the extension degreg code
lengthn, error capabilityt. Output is a dyadic sighatufe w and the sequende of all consistent blocks of
columns. For simplicity, we use a codelengtk< ¢/2 and a designed error numbewhich is a power op.

62 (dyadicfunctionsé62) =

void binary_quasi_dyadic_goppa_caodent32_tm, uint32_tn, uint32_t¢, int «b, gf_t x h,
gf t x omegaint xbc,int debug
{ of_txU;
unsigned inte, k;
intconstg =1 <« m;
int const C' = ¢/t;

(Check ift is a power of2; exitin case itis not or in case> (2" — 1)/m 63);

(g « 2™; exitin case code length > ¢/2; initialize underlying field buffer/: U «+ I, \ {0} 64);
( Generate consistent root and support set$;

(return h, bc andw. Free used bufferz4);

}

This code is used in section 59.

63 (Check ift is a power of2; exitin case it is not or in case> (2™ —1)/m 63) =

c=1 /* count the bits contained inst/

c = (c& #55555555() + ((¢ > 1) & #55555555

¢ = (c&#33333333y) +

¢ = (c & #OFOFOFOF y) +
)+
)+
t>

)

( u);i
(> 2) & #33333333y);
((c > 4) & *OFOFOFOF );
= (¢ & *00FFOOFF 7) + ((¢ > 8) & *00FFOOFF y);
¢ = (c & #0000FFFF ) + (
if (c£1)V(E=1)V(E>1
fprintf (stderr,
"ERROR_t (%l) _i s_not _a_power _of 2 or _bigger_than_%\n" ¢ (¢—1)/m);
exit(—1);
}

This code is used in section 62.

(¢ > 16) & *0000FFFF y);
28) V (¢t > ((double)(q — 1)/m))) {

To implement Algorithm2, we first initialize the field cardinalityg := 2™. In casen > ¢, we print an
error message and exit. Otherwise we allocate memory for the underlyifey bubf the finite fieldF,.

64 (g« 2™; exitin case code length > ¢/2; initialize underlying field buffel: U < I, \ {0} 64) =
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65

66

67

if (n>q/2) {
fprintf (stderr," ERROR n( %) _>_q/ 2(%d)\ n" ,n,q/2);
exit(—1);
}
U = malloc(q = sizeof (xU));
This code is used in section 62.

In order to construct consistent root and support sets for the Gagpaomial, the next step is to initialize
U with the elements df', \ {0} and to pick randomly ah, € U. The remaining entries of the signature
are determind inn steps. Per step, we generat@ew entriesh,,, where2® < n < 25t1and0 < s < m.
It is possible that not all of thé,, will receive a value different from zero. Depending on the number of
consistent support blocks and the value,éf might be necessary to re-initialize the field and to repeat those
m steps. However, the probability for this case is quite low.

After the signaturér has been calculated, we need to check its consistency. We also need &0 find
properw to use in equation (2.4.45), theorem (2.4.34). To prevent spuriouseantEnss between the root
set and the support set,has to be chosen with care. Firstly, reSeto F,. While checking for the root and
support set consistency, continuously remove elements out of thodeosets. w can be chosen from the
remainingU.

( Generate consistent root and support set3.=
do {
(SetU « F,;\ {0} 66);
(Sethy < U, U+ U\ {ho} 67);
( Determine the remaining signature entritgs(1 <n < g — 1) 68);
(ResetU : U « F, for findingw 71);
( Check for consistent root and support 3e};
} while (cxt < n);
This code is used in section 62.

Initialize U with the elements df, \ {0}. By construction, the exponential talgé_expof the field does
not contain zero, therefore we just cogly expinto U. As the algorithm proceeds, used element& afill
be reset to zero. After the copy, both the first and the last positiéhadntainl, soU[0] is not needed. By
settingU [0] to zero, it is marked as already used. Finally, entrie§ ekceptU [0] are permuted randomly.
(SetU «F,\ {0} 66) =

srand((unsigned) rdtsq());

(ResetU : U « F, for findingw 71);

This code is used in section 65.

Since the entries aboVé[1] have been permuted randomly in the previous step, we justiake U|1].
Removingh, from U is done by setting/[1] to zero.
(Sethg U, U «+ U\ {ho} 67) =

hl0] = U[1];

U[l] =0;
This code is used in section 65.
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68

69

70

71

In m steps, we determine thig, for 1 < n < ¢. For each step, we update the read positipwhich means
thatU[n] = 0 for n < k. The value at the read position is taken toihewherei = 2° and0 < s < m. The
hi+j, wherel < j < i — 1, are computed according to equation (2.4.45) in theorem (2.4.34).

( Determine the remaining signature entrigs(1 <n < ¢ —1) 68) =
k=1;

for (int s =0; s <m; ++s) {

while (U[k] =0Ak < qg—1) /* move to the next read position/
++k;
(i4-2% h; & U, U< U\ {h;} 69)
(Generate next; . for1 < j <i—1; U« U \ {hit;} 70)
}

This code is used in section 65.

Use forh;, i = 2%, the value at current read positi@nand delete the value @f from U.
(2% hi U, U<« U\ {h;} 69) =

intconsti =1 < s;

hli] = UTk];

REMOVE_FROM_U(h[i]);

This code is used in section 68.

Onceh; is found, we calculate the value féx ;, wherel < j < ¢ — 1. To apply equation (2.4.45),
theorem (2.4.34), we need to check far# 0, h; # 0 and1/h; + 1/h; + 1/hg # 0. In case all three
checks succeed, we set, ; = 1/(1/h; + 1/h;j + 1/ho) and remove its value frori. Otherwiseh;; is
an undefined entry and set to zero.

(Generate nexXt; - for1 < j <i—1; U <~ U\ {hiy;} 70) =
for (int 7 =1; j <i; ++j) {
hli+j] = 0;
it (R[i] A R[j]) {
hli + j] = gf_addgf_inv(h[i]), gf_inv(A[j]));
hli+ j] = of_addh[i + j], gf_inv(h[0]));
}
it (h[i+7]) {
hli + 7] = of_inv(h[i + j]);
REMOVE_FROM _U(R[i + j]);
} else if (debug> 5)
fprintf (stderr," | NFO. _undefi ned_entry_at %\ n", i+ j);
¥

This code is used in section 68.

(Resetl : U <« I, for findingw 71) =
I NI T_U_RANDOM );
This code is used in sections 65, 66, and 72.
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Theorem (2.4.34) shows that the root set is consistetgif{ ho, . .., hs—1 }, and that elements; of the
root set are defined ag = 1/h;, 0 < ¢ < t — 1. If the root set is consistent, al] will be removed fronlJ.
To prevent spurios intersections between the root seid the support sdt, we also remove the elements
of the form1/h; + 1/hg. Finally, check for consistent support blocks.

72 (Check for consistent root and support 3e} =

c=0;

int consistent_root_set 1;

for (int ¢ = 0; @ < t; ++1)

consistent_root_set= (h[i] # 0);

if (consistent_root_sgt{

k=1,

memsefh, #00, C'  sizeof (xb));

(ResetV : U « I, for findingw 71)

b[0] = 0;

c=1;

REMOVE_FROM _U(gf_in\(h[0]));

for (inti=1;i<t; ++i) {
REMOVE_FROM_U(gf_addgf_inv(R[:]), gf_inv(k[0])));
REMOVE_FROM_U(gf_in(h[4]));

}

( Determine consistent support blocks;q, . .., h¢ji1)—1} 73)

}

This code is used in section 65.

As with the root set, a support block is consistend iz {hj, ..., h(jp1y—1} for 1 < j < |g/t], in
which case we remove the corresponding elements ffomccording to theorem (2.4.34), those element
are characterized byl /h; + 1/ho |i = jt,...,(j + 1)t — 1}, wherel < j < |¢/t|. The positions of the
consistent blocks is saved for later use.

73 (Determine consistent support blocks;;, . .., h(j11y—1} 73) =
for (int j=1; j < C; +j) {

while (U[k] =0Ak < q—1) ++k;

int consistent_support_block 1;

for (inti=jxt; i< (j+1)=t; ++i) consistent_support_blodk= (h[i] # 0);

if (consistent_support_blork{
ble] = J;
+c;

for(inti=jxt;i<(j+1)=t; +ri) {

REMOVE_FROM _U(gf_addgf_inv(h[i]), gf_inv(k[0])));
}

}
}

This code is used in section 72.
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74

76

77

Return a signaturg, an arraybc desribing the positions of consistent blocks (with the root set block on
position0) and the field elemenimega, which is needed for building the final root set and support set
values (see again theorem (2.4.34)). Finally, free the buffer used.

(return h, bc andw. Free used bufferz4) =
xbCc = ¢;

for (inti=0; i <q; ++i) {

it (UL)
xomega= U [i];
}
free(U);
This code is used in section 62.

7.2 Constructing the binary quasi-dyadic Goppa code

( main build quasi-dyadic Goppa codes) =
int done_building_goppa_code
do {

done_building_goppa_code 0;

( Call binary_quasi_dyadic_goppa_code)
(Computez 78)

( Compute the suppoid3)

( Checkz for consistencyr9)

( CheckL for consistencyso)

(Checkzn L =() 81)

(ComputeH € Fix" g4)

( Compute the co-trace matrss)

(UseH' to build parity check matri¥] € F5"*™ in systematic forms7)
(UseH to build generator matriks in systematic formoe2)
done_building_goppa_code 1;

} while (—done_building_goppa_coge

This code is used in section 174.

Calling binary_quasi_dyadic_goppa_codklivers a consistent root set and consistent support blocks
to construct the matriXA (¢, h) =: H € FZXN, buf® it will be necessary to hide the purely dyadic code
structure, which is done in a next step.

( Call binary_quasi_dyadic_goppa_codg) =
binary_quasi_dyadic_goppa_cade, n,t, b, h, &omega&bc, debug;

This code is used in section 76.

2To stay consistent with [23], denote By = n the code length, and assume for simplicity thiata power of2.
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As given in theorem (2.4.34), we have:= 1/h; + w.
78 (Computez 78) =
for (int i =0; i <t; ++i) {
z[i] = of_addgf_inv(h[i]),omega;
if (debug> 3)
printf (" z[ %] _=_%04x\ n" i, z[i]);
}

This code is used in section 76.

79 (Checkz for consistencyr9) =
for (int i = 0; @ < t; ++1i)
for (int j =0; j <t; ++7)
it ((i # ) A (2li] = 2[5]) {
fprintf (stderr," ERROR: _z[ %] =%04x _==_z[ ¥d] =9%04x\ n" 4, z[i], 7, L[j]);
continue;

}

This code is used in section 76.

80 (CheckL for consistencyso) =
for (int i = 0; i < mn; ++17)
for (int j =0; j <mn; ++7)
it (i # j) A (L[] = L[j) {
fprintf (stderr," ERROR: _L[ %] =%04x_==_L[ %d] =9%®04x\ n" |4, L[i], j, L[j]);
continue;

}

This code is used in section 76.

81 (CheckzNL =0 81) =
for (int i = 0; @ < t; ++1i)
for (int j =0; j <n; ++j)
it (=i = L{j]) {
fprintf (stderr," ERROR: _z[ %] =9%04x _==_L[ %d] =9%04x\ n" 4, z[7], 7, L[j]);
continue;

}

This code is used in section 76.

A(t,h) = He IE‘gXN can be seen as an array/éft dyadic blocks of sizéxt: H = [BO e BN/t_J,
whereBy = A(hy,...,h1) is the root block. The calculation of the rooisof the Goppa polynomial
g(X) € F,[X] is done as prescribed by theorem (2.4.34):

zi = 1/h; + w,
t—1
9(X) == [1(X = z).
i=0
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82 (mainassemble the Goppa polynomid) =
g = poly_alloq1);
poly_set_coeffg, 0, z[0]);
poly_set_coeffg, 1,1);
poly_calcule_defy);
poly_tp = poly_copYg);
poly calcule_defp);
for (inti=1;i<t; ++i) {

poly_set_coefip, 0, z[7]);
poly_tp_old= g;
g = poly_mulg, p);
poly_fredp_old);
}
poly_fredp);
poly_calcule_dey);
g2 = poly_mulyg, g);

This code is used in section 174.

Using the consistent root set and consistent support blocks, thersupjs again computed using theo-
rem (2.4.34).

Lj = 1/h]’+1/h0—|—w.

83 (Compute the suppo#3) =
for (int j =0,k =0; k < bc; ++k) {
for (int i =0; i <t; ++i) {
it (j <n) {
gf_ta0= gf_inv(h[0]);
a0 = gf_add a0, omega;
gf_tal= gf_inv(h[b[k] = t +i]);
L[j] = of _adda0,al);
if (debug> 3)
printf (" L[ %] _=_%04x\ n",j, L[j]);
++J;
}
}
}

This code is used in section 76.

g4  (ComputeH € F{*" 84) =
for (int i =0; ¢ < t; ++1)
for (int j =0; j <n; ++j)
Hli *n + j] = of_in(gf_add(z[i], L[;]));
This code is used in section 76.
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85 (Compute the co-trace matrps) =
if (Hbin # A) mat_fre€Hbin);
Hbin = mat_ini(m * ¢, n);
if (Hbin=A) {
fprintf (stderr,” | NFO. _mat _i ni _failed\n");
continue;
¥
mat_set_to_ze(dibin);
for (int i =0; i <mn; i++)
for (int j=0; j <t; j++) {
constgf_ty = H[j xn +i;
for (int k =0; k <m; k++) {
if (y&(1<k)) {
const intidx = (¢ x k + j) = Hbin-rwdcnt+ i /Bl TS_PER_LONG;
Hbin-elenidx] &= (1yr < (i % Bl TS_PER_LONG));
}
}
}
if (debug> 5)
( Print co-traced matrix6)
This code is used in section 76.

86 (Print co-traced matrixe) =
print_bin_matrixX'm x t, n, Hbin," Hbi n_AFTER_CO TRACI NG " );

This code is used in section 85.

To transformHbin into systematic form, thelyMESfunction mat_rref is used. Because it is possible
that a co-traced matrix does not have the full rank mt, an explicit check is necessary.

87 (UseH' to build parity check matri¥] € F5"*™ in systematic forms7) =
int xperm= mat_rref(Hbin);
if (perm=A) {
if (debug> 5)
fprintf (stderr," | NFO:. _mat _rr ef _FAI LED_FOR_Hbi n\ n" );
continue;

}

free(perm); /* permutation not used/
int Hbin_in_systematic_forra 1;

( Check Hbin for systematic forrag)
if (Hbin_in_systematic_forn

( Change row ordeB9)
else {

if (debug> 5)

fprintf (stderr,” | NFO _co-traced_nat ri x_not _of full _rank.\n");
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continue;

}

This code is used in section 76.

Despite returning a valid pointgrerm, the HyMESfunctionmat_rref spuriously does not convethin
into systematic form. Using such atbin leads to segfaults afterwards, such that an explicit check is
necessary.

88 (Check Hbin for systematic formag) =
for (int j =0; j < m=x*t; +7)
for (int ¢ = 0; i < n; ++i)
it (i +7) = (n— 1)
Hbin_in_systematic_forre= (mat_coeffHbin, j,i) = 1);

This code is used in section 87.

When returningHbin in systematic form, the corresponding matdin [ R”|.J] has the form
0 0 0 1
0 0 1 0
J =

so we permute the rows to get RT|I].
89 (Change row ordes9) =

{
for (int i = 0; i < (Hbinrrown+ 1)/2; ++4)
for (int 7 = 0; j < Hbin~rwdcent, ++5) {
unsigned longe = Hbin~eleny: « Hbin-rwdcnt + j];
Hbin~elendi « Hbin-rwdcnt+ j] = Hbin~elen(Hbin-rown — 1 — ) * Hbin-rwdcnt+ j];
Hbin-elen|(Hbin-rown — 1 — i) * Hbin~rwdcnt + j] = e;
}
if (debug> 3)
( Print parity check matrix Ho)

}

This code is used in section 87.

90  (Print parity check matrix Ho) =
print_bin_matrixX'm = t, n, Hbin," Hbi n_I N_SYSTEVMATI C_FORM " );
This code is used in sections 89 and 91.
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91 (CheckGHT =0 91) =
for (int i =0; i <n—mxt; ++i)
for (int k =0; k <mxt; +k) {

int x = 0;

for (int j =0; j <n; ++j)
x += mat_coeffGbin, i, j) x mat_coeffHbin, &, j);

if (x&1) {
fprintf (stderr," ERROR. _.GH'T_! =_0_(%d, %d) \ n" ,i, k);
( Print parity check matrix Ho)( Print generator matrix @3)i = n — m x* t;
k=m=xt;
continue;

}
}

This code is used in section 92.

As the parity check matrix has fordil = [R”|I,_n,,] € FS*™™*" the public generator matrix in
systematic form has for@' = [I,,,;|R] € F5"*". The redundant pa® F?tx("_mt) is a quasi-dyadic
matrix.

92 (UseH to build generator matris in systematic fornme2) =
if (Gbin# A) mat_fre€Gbin);
Gbin = mat_ini(n — m = t,n); Jx n-mt=Kx/
if (Gbin#A) {
mat_set_to_zef&bin);
for (int i =0; i <n—mxt; ++i)
for (int j = 0; j <n; ++7)

if (i =)
mat_set_coeff_to_of@bin, i, j);
else

if (j>n—m=xt)
if (mat_coeffHbin, j —n + m xt,1))
mat_set_coeff_to_of(@bin, i, j);
(CheckGHT =0 91);
if (debug> 3)
( Print generator matrix @3);

}

else {

fprintf (stderr,” | NFO. _mat _i ni _FAI LED_FOR_Goi n\ n");
continue;

}

This code is used in section 76.

93 (Print generator matrix @3) =

print_bin_matriXn — m * t,n, Gbin," Gbi n_| N_SYSTEMATI C_FORM " );
This code is used in sections 91, 92, and 183.
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8 The encryption step

8.1 The fast Walsh-Hadamard transform (FWHT) and the dyadic cawvolution

As noted in section (2.4.8), remark (2.4.43) provides an efficient wayrfonpe a vector-matrix product in
the form ofuH, for u € F". The algorithm is shown ifwht. For the purposes of this thesis, a datatype
of int provides enough space for the liftingZo In case the datatype has to be extendett will be more
complicated as well.

Besidedwht, a more direct way to computeH ;. is given with thevm-functions (see section (8.1.2)).
Although onlyvm4is used in the actual implementation, other versions for other datatypeseneagiwell
to clarify the pattern underlying them-functions.

96 (fwht.h 96)=

#ifndef FWHT_H_| NCLUDED

#define FWWHT _H_| NCLUDED

#include <i ntt ypes. h>
typedef int fwht_t;
extern fwht_t «fwht(unsigned &, fwht_t xu);
extern uint8_t vm4uint8_tv, uint8_tm);
extern uint8_t vm2x4uint8_twv, uint8_tm);
extern uint8_t vm&uint8_tv, uint8_tm);
extern uintl6.t vm1guintl6_t v, uintl6_t m);
extern uint32_t vm32uint32_tv, uint32_tm);

#endif

8.1.1 wH| viathe fast Walsh-Hadamard transform

98 (fwht.c 98) =
#include <st di 0. h>
#include <stdl i b. h>
#include " f wht . h"

(fwht functions 99)

The fastWalsh — Hadamard transformtakes as input € N, u € F" with r = 2* and is done in
characteristie 2. fwht is a straight-forward implementation of (2.4.49).

99 (fwhtfunctions99) =
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fwht_t «fwht(unsignedk, fwht_t xu)

{
register unsigned constr = (1 < k);
register unsignedi, j, h, s=k+1;
register unsignedd = 1;

while (—s) {
h =d;
d <=1,

for(i=0;i<7ri+=4d) {
for (j =0; j < h; ++j) {
register fwht_t «xp = v + i + 7;
register fwht_t xg = u+1i+ j + h;
register fwht_t constv = xp;
register fwht_t constw = x¢;

*p = v+ w;
*q =V — W;
}
}
¥
return u;
¥

See also sections 101, 102, 103, and 104.
This code is used in section 98.

8.1.2 wH| directly via vm-functions

To illustrate the idea of them-functions, consider the dyadic mattf;, with & = &:

TQT =N
QAQUrTQATEY
e QEIEA
QU

T AQAm e
QENETQU =W
HTEHmQEIETQ
HTHQEEIQU

If we interpret the characters as bits, we see that the second row issthenfér, where the bits have been
swapped. The third row is like the first one, where fijgsave been swapped. The fourth one is like the
third one, where the bits have been swapped. Finally, the fifth row is agaithidirst one, where nybbfes
have been swapped, and all the previous steps are repeated.

%Groups of two bits.
SGroups of four bits.

61



To compute the produat H; we store the current row. In case the corresponding bit is set the
current row is added to the end result. The same pattern applies for thevatfanctions. The only
difference is how much must be swapped when crossingtfi2).th row.

101 (fwhtfunctions99) +=
uint8_t vm&uint8_tv, uint8_tm)

{
int 4;
uint8_tres= 0;
for (i=0;i<8; ++i) {

int n =4
uint8_tr = m; /x save signature in &/
if (n>4){
r=(((r&#0F) < 4) | ((r & #F0) > 4)); /+ swap nybblest/
n=mn—4;
¥
if (n>2){
r=(((r&#33) < 2)| ((r&#*CC) > 2)); /* swap nypss/
n=n-—2
¥
if (n=1) {
r=(((r&#55) < 1) | ((r&*AA) > 1)), /* swap bitsx/
¥
if (v>(7T—1i))&1) { /* bitsetinv, addrow =/
res=resor;
}
}
return res,

}

102  (fwhtfunctions99) +=
uint8_t vm4uint8_twv, uint8_tm)

{
int ;
uint8_tres= 0;
for (i =0; i <4; ++i) {

int n = ;

uint8_trow= m;

if (n>2){
row = (((row & #33) < 2) | ((row & #CC) > 2)); /* swap nyps*/
n=mn-—2;

}

if (n=1) {

row = (((row & #55) < 1) | ((row & #AA) > 1)); /* swap bitsx/

62



103

104

}

}

t
if (0> (3—1))&1) {
res = reso row;

}

return res;

(fwht functions 99) +=
uintl6_t vmilGuintl6_t v, uintl6_t m)

{

}

int 4;
uintl6_t res = 0;

}

for (i =0; i <16; ++i) {

int n =
uintlé_t r = m;
if (n>8) {
r = (((r & #00FF) <« 8) | ((r & #FF00) > 8));

<
I
—~
~ =

(r & #5555) < 1) | ((r & *AAAA) > 1));

if (v>(15—1)&1) {
res=resdr;

}

return res,

(fwht functions 99) +=

{

uint32_t vm32uint32_tv, uint32_tm)

int ¢;
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uint32_t res= 0;
for (i =0; 7 <32; ++i) {
int n =4
uint32_tr =m
if (n>16) {
r = (((r & #0000FFFF) < 16) | ((r & #*FFFF0000) > 16)); /* swap half words«/
n =n — 16;

!
if

n=8) {
= (((r & #00FFOOFF) <« 8) | ((r & #*FFOOFFO00) > 8)); /* swap bytes«/
= 8;

n —

4) {

(((r & #*OFOFOFOF) <« 4) | ((r & #FOFOFOF0) > 4)); /* swap nybblesx/
— 4,

( (r & #33333333) < 2) | ((r & #*CO00CCCC) > 2));  /* swap nypss/

(((r & #55555555) < 1) | ((r & *AAAAAAAA) > 1));  /+ swap bitss/

if (v>(31—i)&1) {
res=resodor;

}
}

return res;

}

8.1.3 The dyadic convolution

Let A(u) andA(v) dyadic matrices. Then the dyadic convolution computés)) = A(u)A(v) using the
signatures: andwv only. There is no need to unfold the dyadic matrices in memory.

106  (dyadic-convol ution.h 106) =
#ifndef DYADI C_CONVOLUTI ON_H_| NCLUDED
#define DYADI C_CONVOLUTI ON_H_I NCLUDED
#include " f wht . h"

extern fwht_t xdyadic_congnsignedk, fwht_t xu, fwht_t xv);
#endif
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107  (dyadic-convol ution.c 107) =
#include " dyadi c- convol ution. h"
(dyadic convolutiorfunctions 108)

The input for the dyadic convolution is € N, u,v € F” with » = 2¥ and chafF) # 2. The output is
w € F, such thatA (w) = A(u)A(v).
108 (dyadic convolutiorfunctions108) =
fwht_t xdyadic_conwnsignedk, fwht_t su, fwht_t xv)
{
register fwht_t const xconstr = &u[l < k;
register fwht_t xp = fwht(k, u); /xcomputet = uwH, via FWHTx/
register fwht_t xq = fwht(k, v); /xcomputev = vH via FWHTx/
while (p <) { [ ; = U0 x/
P K= X
++p;
+q;
}
p = fwht(k, u); /xcomputew = wH, via FWHT %/
while (p < r) { [xw = 2"Fwx/
*p >= k;
+p;
}

return wu; /xreturn w x/

}

This code is used in section 107.

9 The decryption step

The original McEliece scheme was based on binary irreducible Goppescoin efficient decoder for
codes of this kind is based on Patterson’s algorithm [24]. Howeversdparable binary Goppa codes
Patterson’s algorithm is not directly usable, and only recently a gendratizs#f Patterson’s algorithm has
been published [5{®. Because Goppa codes are special alternant codes, alternadédecan be used to
decode them. The classical decoder presented now turns out to be slower than Patterson’s, but it is
still in widespread use. As MacWilliams and Sloane quote ([20], p. 369):

"Nevertheless, decoding using the Euclidean algorithm is by far the simplestigrstand, and is cer-
tainly at least comparable in speed with the other methods:(for10°) and so it is the method we prefer.”

The following exposition is according to [20, 26].

ZWhich is beyond the scope of this thesis.
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111

113

(al ternant -decode. h 110) =
#ifndef ALTERNANT _DECODE_H_| NCLUDED
#define ALTERNANT_DECODE_H | NCLUDED
#include " gf . h"

#include "pol y. h"

extern gf_txcons_parity_chedlint n,int ¢, poly_t g2 constgf_txL,int debug;
extern poly_t cons_syndrome_polynongiat n,int tt, constgf_txcw, constgf_t«H2T);
extern void solve_key_equatigpoly_t « sigma poly_t « omegapoly_t.S, poly_tg2int ¢);

#endif

(al ternant -decode.c 111) =
#include <st di 0. h>
#include <mat h. h>
#include <st dl i b. h>
#include <stri ng. h>
#include " al t er nant - decode. h"
#include"utils. h"

( decodefunctions 113)

9.1 The setup

Construct the parity check matrix as desribed in (5.1.3). Inputs are the siiomen and2t, the square of
the Goppa polynomia}(X) and the supporL. OutputisH’ = H2T.

(decodefunctions 113) =

gf txcons_parity chedint n,int tt, poly tg2 constgf t«L,int debug
{
of_teln], c[n];
of_t « H2 = calloc(tt x n, sizeof (xH2));
gf_t « H2T = calloc(tt * n, sizeof (xH2T));
if (H2 AH2T) {
for (int 7 =0; j <n; ++j) {
e[j] = poly_evalg2, L[j]);
elj] = gf_inv(e[j]);
clj] = 0;
¥
for (int i =0; i <tt; ++i) {
for (int j =0; j <n; ++j5) {
clj] = gf_mulc[j], L[5]);
clj] = of_add(c[j], poly_coeffg2, tt — i));
}

for (int j =0; j <n; ++j)
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115

116

H2[i + n + j] = gf_mule[5], c[4]);
}
for (int ¢ = 0; ¢ < tt; ++4)
for (int j =0; j <n; ++7)
H2T[j «tt + ] = H2[i x n + j];
free(H2);
if (debug> 3) {
( Print parity check H2T114);
}
}
return H2T;
}
See also sections 116 and 118.
This code is used in section 111.

( Print parity check H2T114) =
print_matrix(tt, n, H2T," H2T" );
This code is used in section 113.

Call cons_parity_check themainfunction.

( main construct parity check matrbd2T for the private decoder1s) =
H2T = cons_parity_chedl, 2 x t, g2, L, debug;
This code is used in section 174.

9.2 Construct the syndrome polynomial

The syndrome polynomial of a received vectoe F3 can be computed either directly using the definition,

I
—

n—1 n
Usg €;

X-L, “—=X-1L

A mod g(X)

)

Il
=)
~
I
o

or, as we do, using the canonical parity check makiix see (2.4.26). The received vecterhas to be
multiplied from the left ontaH 7 € F3x2,

uHT =[Sy _1,...,50] (9.2.1)

where theS; with 0 < i < 2t — 1 represent the coefficients of the syndrome polynomial.
(decodefunctions 113) +=

poly_t cons_syndrome_polynonfiat n, int tt, constgf_t«u, constgf_t«H2T)
{ of_ts[tt];
poly_tS = poly_alloqtt — 1);
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118

119

for (int ¢ = 0; 7 < tt; ++3)
sli] = 0;
for (int ¢ = 0; 7 < tt; ++3)
for (int j =0; j <n; +j) {
gf_te = gf_mulu[j], H2T[j * tt + 7]);
sli] = gf_add(s[i], c);

for (int ¢ = 0; 7 < tt; ++4)
poly_set_coeffS,tt — 1 — i, s[i]);

poly_calcule_de(f);
return S;

}

( main compute the syndrome polynomial7) =
SyM = cons_syndrome_polynomial, 2 « ¢, cw, H2T);
This code is used in section 185.

9.3 Solve the key equation
w(X)=0(X)S(X) mod g(X)

(decodefunctions 113) +=
void solve_key_equatigpoly_t « poly_sigmapoly_t « poly_omegapoly_t.S, poly_t g2 int t)

{
poly_eeaugpoly_sigmapoly_omegas, g2, t);
}

( mainsolve the key equation(X) = 0(X)S(X) mod g(X) 119) =
solve_key_equatig&poly_sigmad&poly_omegaSyM, g2, t);
This code is used in section 185.

9.4 Find the error positions and correct codeword

Finding and correcting the error positions as done inntfaén function using the suppot. Note that
in general much more sophisticated methods are deployed like Chien s@pociBEriekamp’s trace algo-
rithm [7].
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121 (maincorrect errorsi21) =
poly_calcule_defpoly_sigmg;
poly_calcule_defpoly omegx
for (int ¢ = 0; i < n; ++1i)

if (poly_eva(poly_sigmalLli]) = 0)
cwi] = (ew[i] =1) 7 0: 1;
This code is used in section 185.

10 Additional source code

Sections (10.1) and (10.2) are taken from HyMES [29] with minor corrastio

10.1 Polynomials

124 (poly.h 124)=
#ifndef POLY_H_| NCLUDED
#definePOLY_H_| NCLUDED

typedef struct polynome{
int deg
int size
gf_t« coeff;
} *poly_t;
#define poly_dedp) ((p)-deg)
#define poly_sizép) ((p)-size
#define poly_set_def, d) ((p)-deg= (d))
#define poly_coefip, i) ((p)-coeff[i])
#define poly_set_coeffp,i,a) ((p)-coeffli] = (a))
#define poly_addto_coeffp, i,a) ((p)-coeff[i] = gf_add (p)-coeff|i], (a)))
#define poly_multo_coeffp,i,a) ((p)-coeffli] = gf_mul(p)-coeff[i], (a)))
#define poly_tetdp) ((p)-coeff[(p)-deg)
extern int poly_calcule_defpoly_t p);
extern void poly_sefpoly_t p, poly_t ¢);
extern void poly_set_to_zeilgoly_t p);
extern poly-t poly_alloqint d);
extern poly_t poly_copypoly_t p);
extern void poly_fregpoly_t p);
extern poly_t poly_mu(poly_t p, poly_t ¢);
extern gf_t poly_evalpoly-t p, gf ta);
extern void poly_eeaufpoly_t *xu, poly_t xv, poly_t p, poly_t g, int t);
#endif
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125 (poly.c 125)=

#include <st di 0. h>
#include <stdl i b. h>
#include <stri ng. h>
#include " gf . h"
#include "pol y. h"

( Staticpoly functions 133)

( Exportedpoly functions 126)

126 ( Exportedpoly functions126) =

poly_t poly_alloqint d) { poly-t p;
p = (poly_t) malloc(sizeofstruct polynome));

prdeg= —1;
p-size= d + 1; p~coeff = ( gf_t ) calloc(p-size sizeof(gf_t));
return p; }

See also sections 127, 128, 129, 130, 131, 132, 134, and 135.
This code is used in section 125.

127 (Exportedpoly functions 126) +=

void poly_fredpoly_t p)
{

free(p-coeff);

free(p);
¥

128  (Exportedpoly functions 126) +=

void poly_sefpoly_t p, poly_t ¢)
{  /xcopyqinps/
int d = p-size— ¢size
if (d<0){
memcpyp-coeff, ¢-coeff, p-sizex sizeof(gf_t));
poly calcule_defp);
}

else {
memcpyp-coeff, ¢-coeff, ¢-sizex sizeof (gf_t));
memsep-coeff + ¢-size 0, d x sizeof (gf_t));
prdeg= ¢-deg
}
¥

70



129 ( Exportedpoly functions126) +=
void poly_set to_zeioly_t p)
{
memsetp-coeff, 0, p-sizex sizeof (gf_t));
prdeg= —1;

}

130 (Exportedpoly functions126) +=

poly-t poly_copypoly-t p) { poly_t ¢;
q = (poly-t) malloc(sizeofstruct polynome));
¢deg= p-deg
¢sSize= p-size ¢-coeff = (gf_t « ) calloc(¢-size sizeof(gf_t));
memcpYq-coeff, p-coeff, p-sizex sizeof (gf_t));
return ¢; }

131 ( Exportedpoly functions126) +=
int poly_calcule_defpoly_t p)
{ int d = p-size— 1;
while ((d > 0) A (p-coeffld] = gf_zerd))) —d;
p-deg= d;
return d;

}

132 (Exportedpoly functions 126) +=

poly_t poly_mu(poly_t p, poly_t q)
{

int i, j, dp, da;

poly_t r;

poly_calcule_detp);
poly_calcule_defy);
dp = poly_dedp);
dg = poly_dedg);
r = poly_alloqdp + dq);
for (i =0; « <dp; ++i)
for ( =0; 7 <dqg; ++7) poly_addto_coeffr,i + j, gf_mulpoly_coefip, i), poly_coefiq, 7)));
poly calcule_defr);
return (r);
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133 (Staticpoly functions 133) =
of_t poly_eval_aufgf_t « coeff, gf_ta,int d)
{
of _tb;
b = coeffld—I;
for (; d>0; —d)
if (b+#df _zerd)) b= gf_addgf_mulb, a), coeff[d]);
else b = coeff[d];
return b;

}

This code is used in section 125.

134 ( Exportedpoly functions126) +=

of_t poly_evalpoly_t p, gf _ta)
{

return poly_eval_augp-coeff, a, poly_dedp));

}

The extended Euclidean algorithm. General assumptieny > deg p.
135 ( Exportedpoly functions126) +=
void poly_eeaufpoly_t xu, poly_t xv, poly_t p, poly_t g, int t)
{
int 4, j, dr, du, delta;
of ta;
poly_t aux, r0, rl, u0, ul;
dr = poly_dedy); [x70 = g,T1 1= p,ug := 0,uy = 1%/
r0 = poly_alloqdr);
rl = poly_allogdr — 1);
u0 = poly_allogdr — 1);
ul = poly_allogdr — 1);
poly_setr0, g);
poly_sefrl, p);
poly set to_zefmO);
poly_set _to_zefml);
poly_set_coefful, 0, gf_unit( ));
poly_set_de@ul,0);
/xinvariantsir; = uj x p + vy % grog = ug * p + v * g anddeg u; = deg g — degry. It stops
whendegry < t (degrg > t). And thereforelegu; = degg — degrg < degg — tx/
du=0;
dr = poly_dedrl);
delta= poly_dedr0) — dr;
while (dr > ¢) {
for (j =delta; j > 0; —j) {
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a = gf_div(poly_coeffr0,dr + j), poly_coeffrl,dr));
if (a #df_zerd)) { /% Uu0(2) <-u0(z) + a* ul(z) %’ */
for (i =0; i <du; ++i) {
poly_addto_coeffu0, i + j, gf_mul_fasta, poly_coefful,q)));
} /% 10(z) <-10(z) + a*rl(z) *z7 =/
for (i =0; i <dr; ++i) poly_addto_coeffr0, i + j, gf_mul_fasta, poly_coefrl,q)));

}
} /* exchangex/
aux = ro0;
r0 =rl;
rl = aux
aux = uo;
u0 = ul;
ul = aux
du = du + delta;
delta=1;
while (poly_coeffrl,dr — delta) = gf_zerq)) delta++;
dr —= delta;

}

poly_set_de@ul, du);

poly_set_deg1l,dr); /* returnul and rlx/
*xu = Ul;

*xv = Il;

poly_fredr0);

poly_fregu0);

10.2 Matrix functions

137 (matrix.h 137) =
#ifndef MATRI X_H_| NCLUDED
#define MATRI X_H_I NCLUDED
#defineBl TS_PER_LONG (8 * sizeo{unsigned long)
#define mat_coeff A, i, j)
(((A)-elem(i) * A-rwdent+ (7)/Bl TS_PER_LONG| > (j % Bl TS_PER_LONG)) & 1)
#define mat_set_coeff_to_on4, i, )
((A)-elen(i) * A-rwdent+ (j)/BI TS_PER_LONG| |= (1ut, < ((4) % BI TS_PER_LONG)))
#define mat_change_coeff4, i, j)
((A)-elen(i) x A-rwdent+ (5)/BI TS_PER_LONG] @= (1y1, < ((j) % Bl TS_PER_LONG)))
#define mat_set_to_zef®R)memsef(R)-elem 0, (R)-alloc_size;
typedef struct matrix {
int rown, /* number of rowsx/
int coln; /* number of columnsk/
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int rwdcnt, /* number of words in a row/
int alloc_size /* number of allocated bytes/
unsigned longxelem /* row index x/

} «binmat_t;

extern binmat_t mat_ini(int rown, int coln);

extern binmat_t mat_ini_from_stringint rown, int coln, const unsigned charxs);
extern void mat_fredbinmat_t A);

extern binmat_t mat_copybinmat_t A);

extern binmat_t mat_rowxofbinmat_t A, int a,int b);

extern int xmat_rref(binmat_t A);

extern void mat_vec_muylnsigned longCR, unsigned charxx, binmat_t A);
extern binmat_t mat_mu(binmat_t A, binmat_t B);

#Hendif

138 (matrix.c 138) =
#define _GNU_SOURCE
#include <st di 0. h>
#include <stdl i b. h>
#include <er r no. h>
#include <stri ng. h>
#include <assert . h>
#include "matri x. h"
( Exportedmatrix functions139)

139 (Exportedmatrix functions139) =
binmat_t mat_ini(int rown, int coln)
{ binmat_t A;
A = (binmat_t) malloc(sizeof (xA));
if (A#£A) {
A-coln = coln;
A-rown = rown;
A-rwdent= (1 + (coln—1)/BlI TS_PER_LONG);
A-alloc_size= rown x A-rwdcnt sizeo{unsigned long;
A-elem= (unsigned longx*) malloc( A~alloc_size;

}

return A;

}

See also sections 140, 141, 142, 143, 144, 145, and 146.
This code is used in section 138.

140 (Exportedmatrix functions139) +=
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binmat_t mat_ini_from_stringint rown, int coln, const unsigned charxs)
{ /x assumes s has the proper allocated size

binmat_t A;

A = (binmat_t) malloc(sizeofstruct matrix ));

A-coln = coln;

A-rown = rown;

A-rwdent= (1 + (coln—1)/Bl TS_PER_LONG);

A-alloc_size= rown x A-rwdcnt* sizeo{unsigned long);

A-elem= (unsigned longx) s;

return A;

141 (Exportedmatrix functions139) +=
void mat_freg€binmat_t A)

{

free( A-elem);
free(A);
}

142 (Exportedmatrix functions139) +=

binmat_t mat_copybinmat_t A)
{ /* copying matrix (for the formiG | I]...) %/

binmat_t X;

int

X = mat_ini(A-rown, A~coln); /* initialize the matrixs/

for (i = 0; i < ((A~rwdcnt) x (A-rown)); i++) X-elen(i] = A-elenfi];
return (X);

143 ( Exportedmatrix functions139) +=
binmat_t mat_rowxokbinmat_t A int a,int b)

{
int
asserta > 0A b > 0);
assertA A a < A-rown A b < A-rown);
for (i = 0; i < A-rwdent, i++) A-elena x A-rwdent+ i] = A-elenib « A-rwdcnt+ i;
return A;

mat_rref transforms the matrid into systematic form. It contains a fix by the author checking for valid
array indices. Otherwise the function did overwrite the poipgamin some cases.
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144 (Exportedmatrix functions139) +=

int xmat_rref(binmat_t A)
{ /* the matrix is reduced from LSB... (from righ#)/
int 4, j, failent, findrow, idx, max= A-coln — 1;

int xperm
perm= malloc(A-~coln x sizeof(int));
if (perm) {
for (i =0; i < A~coln; i++) permi] = ; /* initialize permutationx/
failcnt = 0;
for (i = 0; i < A~rown; i++, max—) {
findrow = 0;

for (j =1; j < A-rown; j++) {
if (mat_coeffA, j,max) { /x A— > elem[(j * A— > coln) + max] x/
/% max—; %/
if (i #75) /* not needed as ith row is 0 and jth row is 4/
A = mat_rowxoK 4,1, j); /* Xor to the row. (swap)?/
findrow = 1;
break;
} /* largest value found (end if}/ /* break; x/
}
if (—findrow) {
/* if no row with a 1 found then swap last column and the column with no 1 deywn.
idx = A-coln — A-rown — 1 — failcnt; /= bug fix: check idxx/
if (idx < 0Vidx > A-coln) {
free(perm);
return A;
}
permidx] = max;
failent++;
if (-max) {
free(perm);
return A;
}
i
}
else {
idx = 7 + A-coln — A~rown;
if (idx < 0Vidx > A-coln) {
free(perm);
return A;
}

permjidx] = max;
for (j=1i+1; j < Arown; j++) { /* fill the column downwards with 0’s</
if (mat_coeff A, j, (max))) /x A— > elem[j x A— > coln + max + 1] x/
A = mat_rowxof 4, j,1); /*check the arg. ordet/
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}

for (j=i—1;j>0; j—) { /* fill the column with 0’s upwards toe./
if (mat_coeffA, j, (max))) /x A— > elem[j x A— > coln + max + 1] x/
A = mat_rowxof A4, j,i);
}
}

} /= end for(i) «/
}

return (perm;

}

145 (Exportedmatrix functions139) +=
void mat_vec_muylnsigned long*cR, unsigned charxz, binmat_t A)

{ .
int ¢, j;
unsigned longsxpt;
memsefcR, 0, A~-rwdcnt« sizeof(long));
pt = A-elem
for (i = 0; i < A~rown; i++) { /* extract the first column in the form of char array.
if ((z[i/8] > (1%8))& 1)
for (j =0; j < A-rwdent, ++5) cR[j] &= *pt++;
else pt += A-rwdcnt;
}
}

146 (Exportedmatrix functions139) +=
binmat_t mat_mu(binmat_t A,binmat_t B)

{
binmat_t C;
int i, j, k;
if (A~coln # B-rown) exit(0);
C' = mat_ini(A~rown, B~coln);
memsetC-elem 0, C~alloc_sizg;
for (i = 0; i < A~rown; i++)
for (j =0; j < B-coln; j++)
for (k= 0; k < A-coln; ++k)
if (mat_coeffA, i, k) A mat_coeff B, k, j)) mat_change_coeft’, i, j);
return C;

}
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10.3 Utilities

148  (utils.h 148) =

#ifndef UTI LS_H _| NCLUDED

#defineUTI LS_H_| NCLUDED

#include " gf . h"

#include "matri x. h"

#define MAX_LI NE 80
( Staticutils inline functions149)
extern int read_inpufchar «fnameint xm,int *n,int *¢, int «xdebug;
extern void print_matrix(int h,int w, constgf_t«mat const charxname;
extern void print_bin_matriXint A, int w, const binmatt mat const char«name;
extern void next_error_vectofconst int xe_old int xe_newint «src, int xrndm, int xperm int n);

#endif

149 ( Staticutils inline functions149) =

inline static unsignedrev(unsignedx)
{ /* reverse the bits containedin [37], p. 102/
x = (x & #55555555) <« 1 | (z & #AAAAAAAA) > 1;
= (z & #33333333) <« 2 | (z & #CCCCCCCC) > 2;
= (z & #OFOFOFOF) <« 4 | (x & #*FOFOFOFO) > 4;
= (z & #O0OFFOOFF) <« 8 | (z & #FFOOFF00) > §;
x = (x & #0000FFFF) < 16 | (x & #FFFF0O000) >> 16;
return x;
}
See also sections 150, 151, and 152.
This code is used in section 148.

150  (Staticutils inline functions149) 4=

inline static unsignedpop(unsignedx)

{ /* count the 1 bits contained in, [37], p. 65/
x = (x & #55555555 ) + ((z > 1) & #55555555 4
x = (z & #33333333y) + ((x > 2) & #33333333y
x = (x & #*OFOFOFOF y) + (( > 4) & #OFOFOFOF y);
z = (z & #*00FFOOFFy) + ((x > 8) & #0O0FFOOFF y);
x = (x & #*0000FFFFy) + ((z > 16) & #0000FFFFy);
return x;

}

7

7
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151  (Staticutils inline functions149) 4=

inline static unsigned long longrdtsc() {
unsigned long longz;
__asm__volatile (". byt e_0x0f, 0x31":"=A"(x));
return z; }
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152

153

154

( Staticutils inline functions149) +=
static inline void swap(gf_t* x, gf_txy)

{ of_tt = xx;
*T = *;
*y =1

}

(utils.c 153) =
#define_ GNU_SOURCE
#include <st di 0. h>
#include <stdl i b. h>
#include <errno. h>
#include <stri ng. h>
#include "util s. h"

( Staticutils functions 154)

( Exportedutils functions 156)

Procedurepen_inputopens the input filéilename In case of an error, an error message will be printed
on the terminal including some additional information and the application be termir@teerwise, a valid
file pointer will be returned.

( Staticutils functions 154) =
static FILE xopen_inpufchar «filenamg

{

FILE *xf = A;

ermo = 0;

if (flename= A) /+ fopensometimes has problems with null pointeks.
filename="\ 0" ;

if ((f = fopenfilename"r"))=A) {
fprintf (stderr," %s(\ "%\ ") _fail ed: %\ n",__ func__.filenamestrerror(errno));
exit(EXI T_FAI LURE);

}

return f;

}

See also section 155.
This code is used in section 153.

The procedurelose_filecloses the file pointef. In case an error is detected, the error cause is printed
on the terminal and the application terminated.

155 ( Staticutils functions 154) +=

static int close_fil§FILE xf)

{

int s;
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156

157

158

if (f=A) return 0;

errno = 0;

s = fclosgf); /* fclose returns EOF if an error is detected,

if (s=EOF) { /* otherwise it returns zeros/
fprintf (stderr," % _fai |l ed: _%\ n",__ func__, strerror(errno));
exit(EXI T_FAI LURE);

}

return s;

The procedureead_inputreads the input file of the application. Entries in the input file consist of
key=value pairs, one per line. Comments start witii . Empty lines are allowed. After closing the
input file, a check of the read parameters will be done. In case the paranage not in valid ranges, the
application will be terminated.

( Exportedutils functions 156) =
int read_inputchar «fname int «m, int xn,int x¢,int xdebug

{
FILE xinput = open_inputfname; /* open input filex/
(Read input file157)
close_fildinput); /* close input filex/
return 1;
}
See also sections 163, 164, and 165.
This code is used in section 153.

(Read input file157) =
char x line = mallo(MAX_LI NE);
while ( fgets(line , MAX_LI NE, input) ) {
( Skip C comments58)
( Terminate each line with#' 159)
( Fetch the contents of the current line before the figst 160)
(Splitthe line at =" and search fokey = valuepairs 161)
Hree(line);
This code is used in section 156.

CWEB produces section numbers with the following format /*<number>:*/.

( Skip C commentsls8) =
if (line[0]="/" Aline[1] ="+ )continue;
This code is used in section 157.
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159  (Terminate each line with#’ 159) =
sizeit constlen = strnlen(line , MAX_LI NE) ;
line len—1]="#";
This code is used in section 157.

160  (Fetch the contents of the current line before the fitst 160) =
char xdata= strchr (line ,” #' );
xdata="\0";
This code is used in section 157.

161 (Splitthe line at =" and search fokey = valuepairs 161) =
char xsp = strchr (line ,’ =" );
if (sp) {
xsp="\10";
char xkey= line ;
char xval = sp+ 1;

( Search fokey — valuepairs. Initialize parametera62) }
This code is used in section 157.

162 (Search fokey— valuepairs. Initialize parametera62) =
if (strstr(key," ext ensi on- degr ee-ni'))
xm = (unsigned int) strtol(val, (char xx) A, 10);
else if (strstr(key," code- | engt h-n"))
«n = (unsigned int) strtol(val, (char xx) A, 10);
else if (strstr(key," correct abl e-errors-t"))
«t = (unsigned int) strtol(val, (char xx) A, 10);
else if (strstr(key, " debug" ))
«xdebug= (unsigned int) strtol(val, (char *x) A, 10);
This code is used in section 161.

163  (Exportedutils functions 156) +=
void print_matrix(int m, int n, constgf_t«mat const charxname

{
printf ("\ n%s\ n" , name); /* print mat € F"™>" %/
for (int i =0; ¢ <m; ++i) {
if (i%m =0) printf("\ n");
for (int j =0; j <n; +j) {
if (joom=0) printf("+_");
printf (" 904x ", matfi x n + j));
}
printf ("\ n");
}
}
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164

( Exportedutils functions 156) +=
void print_bin_matriXint m, int n, const binmatt mat const charxname

{
printf ("\ n%\ n" ,name;  /« print mat € F5"*" «/
for (int i =0; i <m; ++i) {
if (i%m =0) printf("\ n");
for (int j =0; j <n; +j) {
if (j%m=0) printf("+_");
printf ("% d_" ,mat_coeffmat, i, j));
}
printf "\ n");
}
}

e_oldis an array of length, staring witht 1’s, followed byn — ¢ O’s:

eoa =[1,1,...,1,0,0,...,0].

t n—t

Each new error vecta_newis just a random permutation ef old To perform this random permutation,
next_error_vectors an implementation of Algorithn® (see [16], p. 145) in itsxside—out version [10, 13].

165 ( Exportedutils functions 156) +=

166

void next_error_vectofconst int xe_old int xe_newint xsrc, int «r, int *p, int n) { static int init = 0;

int
if (init=0) {
init = 1;

for (i =0; i <n; ++i) srcfi] = i;
srand((unsigned) rdts());
r[0] = 0;
for (i =1;i<mn; ++i) rli] =rand() % (i + 1);

}

( Shuffle permutatiorni66)

for (i =0; i < n; ++i) /* Update error vectok/
e_newi:] = e_oldp[i]];

}

( Shuffle permutatioriée) =

p[0] = src[0];

for (i=1;i<mn; ++i) {
register int j = r[i — 1];
pli] = pljl;
plj] = srelil;

}
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for (i =0; i <n; ++i) /* Update source vector for next rourg
sreli] = plil;
This code is used in section 165.

10.3.1 Inputfile

The input file containgey — valuepairs. It is written byCWEB, resp.cweave

168  (input.txt 168) =
extension- degree— m = 6
code— length— n = 32
correctable— errors —t = 4
debug= 0

11 Putting everything together

11.1 The main program

170 #define GNU_SOURCE
#include <st di o. h>
#include <st dl i b. h>
#include <i nt t ypes. h>
#include <mat h. h>
#include <stri ng. h>
#include " gf . h"
#include "matri x. h"
#include " pol y. h"
#include "util s. h"
#include " al t er nant - decode. h"
#include " f wht . h"
#include " dyadi c- convol uti on. h"
#include " bi nary- quasi - dyadi c- goppa- code. h"
int main(int argc, char xxargv)

{
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171

172

(maindefine variables71)

(mainread the application parameters)
(maininitialize data173)

( main generate binary Goppa code of typek, t] 174)
( main perform the encode/decode cydles)
(mainfree resources90)

return (EXI T_SUCCESS);

(maindefine variables71) =

int m, gq; /= extension degree,= 2" x/

int n; /* code length/

int N; /* code length, for future use/

int ¢, /*number of correctable errokg

int debug= 0; /+debug flag:/

int xb = A; /*auxiliary array, se®inary_quasi_dyadic_goppa_codgé

of txh=A; /xauxiliary array, se®inary_quasi_dyadic_goppa_codé
gf_tomega /xauxiliary variable, sebinary_quasi_dyadic_goppa_cogg

int C, /xauxiliary variable, sebinary_quasi_dyadic_goppa_codgé

int bc; /*auxiliary variable for block count, sd#nary_quasi_dyadic_goppa_codge
of t«H=A; /* auxiliary parity check matrix. used to bui@ */

of t«H2T =A;  /«private parity check matriH € F2.<™ x/

of txz=A; /* root set for the Goppa polynomia/

of txL=A; /*support of the binary Goppa codg

binmat_t Hbin = A; /+auxiliary binary parity check matriff € F5"**" in sys. froms/
binmat_t Gbin=A;  /binary generator matrig € Fy" """ x/

poly_t poly_sigma= A; /= error locator polynomiat (X) € Fom[X] %/
poly_t poly_omega= A; /*error evaluator polynomiab(X) € Fom[X] %/
poly_t g = A; /*the Goppa polynomig}(X) € Fom[X] */

poly_t g2 = A; /*square of the Goppa polynomig|X)? € Fom[X] x/
poly_t SyM= A; /*the syndrome polynomiaf (X') € Fom [X]*/

of txcw=A;

gf t xdyadic_cw= A;

of t xdirect_cw= A; /*auxiliary arrays for testing the encode/decode cy¢le
int xmsg= A; /* auxiliary message array for testing the encode/decode €ycle
int xe_old= A;

int xe_new= A;

int xsrc = A;

int xrndm = A;

int xperm= A; /= auxiliary arrays for generating the error vectgr

This code is used in section 170.

( mainread the application parameters) =
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if (argc#2) {
fprintf (stderr," usage: _%_<cnd-fil e>\n" argv(0));
exit(—1);

}

if (read_inputargv[l], &m, &n, &t, &debug) {
if (debug>1) {

printf (" ext ensi on-degree-m,. . . .. _9%d\ n" ;m);

printf ("code-length-n_.......... L9%Bd\ n"  n);

printf ("correctabl e-errors-t_... _%d\n" ¢);

printf ("debug_. . ....... ... ... .. _9%d\ n" ,debug;
}

}

This code is used in section 170.

For demonstration purposes fix the valuesifar andn.

173 (maininitialize data173) =
#define DEGREE 6
#defineCL 32
#define TN 4
N =CL;
n = CL;
t=TN,;
m = DEGREE;
q = 1 < DEGREE;
C = (int) floor(q/t);
cw = calloc(n, sizeof (xcw));
dyadic_cw= calloc(n, sizeof (xdyadic_cw);
direct_cw= calloc(n, sizeof (xdirect_cw));
msg= calloc(n — m x t, sizeof (xmsg));
e_old = calloc(n, sizeof (xe_old));
e_new= calloc(n, sizeof (xe_new);
src = calloc(n, sizeof (xsrc));
rndm = calloc(n, sizeof (xrndm));
perm= calloc(n, sizeof (xperm));
H = calloc(t * n, sizeof (xH));
h = calloc(q, sizeof (xh));
b = calloc(C, sizeof (xb))
z = calloc(t, sizeof (xz));
L = calloc(N, sizeof (xL));
gf_init(m); /*initialize the underlying finite fieldym */
This code is used in section 170.

?

Run Algorithm2 from [4] to getz and L, then assemble the Goppa polynomjak ) and build H2T,
which will be used in the private decoder.
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174

175

176

(maingenerate binary Goppa code of tyjpek, t| 174) =

( main build quasi-dyadic Goppa codss )

(mainassemble the Goppa polynomigd)

( main construct parity check matrbd2T for the private decoder1s)
This code is used in section 170.

For the chosen parametdrs = 6,¢ = 4, n = 32) there ar&® = 256 possible messagea. Encode and
decode all of them for a randomly generated binary Goppa code. Tesvoodsm G have errors om = 4
positions.

( main perform the encode/decode cydes) =
( main generate codewordss3)
( maindecode forged codewordss)
return 0;

This code is used in section 170.

Reverse the bits ifine. This is due to the data layout 6fyMES Additionally, little endian format is
assumed.
( mainreverse signature bits bhe 176) =

line.l=rev(line.l);
This code is used in sections 177 and 178.

For some values of and depending on the available hardware, it might be more convenientijoute
the productmG directly using one of them-functions.

[10000000[(2102[2111/0010[2001[1010[010 1]
010000001110 1111 0001 0110 0101 1040
001000000111 1111 1000 0110 1010 0101
000100001011 1111 0100 1001 0101 1040
UlOOlHlO“H' 00001000[0001[0110[1011[21000[0110[1110
m 000001000010 1001 0111 0100 1001 1101
000000100100 1001 1110 0010 1001 104
000000011000 0110 1101 0001 0110 0111

G

(11.1.1)

[EEN

For the producinG only the parts of the two lines @ indicated by the boxes are necessary. Ther@are
such boxes for these two lines, wheredenotes the extension degree. Due to the data layadybfES
the bits of the lines have to be reversed, however. The mesadgalso seen as two blocks obits. Using
vm4 (because of = 4) allows now to performmG directly without the need to unfol@ first.

177 (maincompute codeword directly usingn4 177) =

union {
unsigned int/;
unsigned charc[4];
}line ;
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unsigned charmesg

unsigned int codeword= k < 24;

for (int j =0; j <2; ++j)

{ line . I = (unsigned int)(Gbin-eleny;j « t]);

( mainreverse signature bits 6he 176)

mesg= ((unsigned chan(k) > ((j & 1) 70 : 4)) & #0F; /* pick 4 bits of mesg«/
for (int ¢ = 1; i < m; ++i) /* loop over the blocks of the line/
{ codeword®= vm4(mesgline . c[(m —1i)/2] > ((1& 1) 74:0) & #0F ) <« (24 — i % 4); }

}

for (int ¢ = 0; i < 32; ++1i) /* savecodewordfor following equality checks/

direct_cwji| = (codeword> (31 — 7)) & 1;
This code is used in section 183.

The productm G can also be computed using the Walsh-Hadamard transform. As with therdigwobd
(see (11.1.1)), only two lines @ are necessary. However, because we have characteritte transform
can not be directly applied, but has to be liftedtoThis costs some extra memory.

178 (maincompute codeword usingalsh— Hadamard transfornanddyadic convolution178) =

for (int i = 0; ¢ < n; ++i) /* first 8 bist of the codeword are knowsy
dyadic_cwi] = (i < 8) ? (k> (7T—1i)) & 1) : 0;
for (int 7 =0; j <2; ++j) {
line . I = (unsigned int)(Gbin-eleny;j « t]);
( mainreverse signature bits the 176)
mesg= ((unsigned chan(k) > ((7& 1) 70: 4)) & #0OF;
( mainhandle blocks via Walsh-Hadamard transfotmne) }
for (int i = 0; ¢ < n; ++i) /* reduce the result frord to Fy */
dyadic_cwi] &= 1,

This code is used in section 183.

The vectorsu andwv receive4 bits of the message and one block of the current line, respectively. Then
the Walsh— Hadamardtransfornis applied to deliver the vectap such thatA (w) = A(u)A(v).

179 (mainhandle blocks via Walsh-Hadamard transfotme) =
fwht_t u[4], v[4], *w;
unsigned charmtrx;
for (inti=1; i <m; ++i) { /= loop over the blocks of the line/
mtrx =line . ¢[(m —4)/2] > ((i & 1) 74 : 0) & #0F;
for (int ix = 0; iX < 4; ++ix) { u[3 —ix] = (mesg> iX) & 1; v[3 —ix] = (Mtrx > ix) & 1; }
( main compute dyadic convolution via Walsh-Hadamard transfase)
for (int ix = 0; ix < 4; ++ix) dyadic_cwWd + i x 4 + ix] += w[ix]; }
This code is used in section 178.

Input: k € N, u, v € F” with » = 2¥ andchar(F) # 2.
Output:w = u A v € F” such thatA (u)A(v) = A(u A v).
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180 (maincompute dyadic convolution via Walsh-Hadamard transfase) =
w = dyadic_cony2, u, v);
This code is used in section 179.

Perform the produddG using the unfoldedx.

181 (maincompute codeword explicitly as vector-matrix produet) =
for (int i = 0; i < 8; ++1i)
msd7 —i| = (1 < i) & k) > i;
for (int i = 0; ¢ < n; ++i)
cwli] = 0;
for (int ¢ =0; i <n—mxt; ++i)
if (msdsi])
for (int j = 0; j <n; ++7)
cw]j] = (ew[j] + mat_coeffGbin, i, j)) & 1;
This code is used in sections 183 and 185.

182 (maincheck equality of codewordss2) =
for (int i = 0; i < n; ++i)
if ((direct_cwi] # dyadic_cwi]) Vv (direct_cwji| # cw(i]))
fprintf (stderr," ERROR_i n_cw. _conp. : %l %X, %X, %X" ,, direct_cwji], dyadic_cw],
cw(i));
This code is used in section 183.

For demonstration purposes, the three different methods of perfomm@gre shown.

183 (maingenerate codewords3) =

if t=4An=32Am=6){
( Print generator matrix @3)

for (int £k =0; k < 256; ++k) {
{ main compute codeword directly usingn4 177)
{ main compute codeword explicitly as vector-matrix produst )
( main compute codeword using/alsh— Hadamard transfornranddyadic convolution17s)
{ main check equality of codewordss2)

}

}

This code is used in section 175.

184 (maingenerate next error vectas4) =
next_error_vectofe_old e_newsrc, rndm, perm n);
This code is used in section 185.
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185 (maindecode forged codewordss) =
for (int k =0; k <t; ++k)
e_oldk] = 1;
if t=4An=32Am=6){
(maingenerate next error vectas4)
for (int k = 0; k < 256; ++k) {
( main compute codeword explicitly as vector-matrix prodaset )
( main print error positionsi86)
(mainadd some errorss?)
( main compute the syndrome polynomial7)
( main solve the key equation(X) = o(X)S(X) mod g(X) 119)
(maincorrect errorsi21)
(main check for correct decodingss)
(mainfree polynomials189) }

}

This code is used in section 175.

186 (main print error positionsi8é) =
if (debug> 3) {
for (int £k =0; k <n; ++k) {
if (e_newk]) printf ("% _" , k);
}
printf ("\ n");
¥

This code is used in section 185.

187 (mainadd some erroras7) =
for (int ix = 0; iX < n; ++ix)
cw(ix] = (cw[ix] + e_newix]) & 1;
This code is used in section 185.

188 (maincheck for correct decodingss) =
for (inti=0; i <n—msx*t; ++i)
if (msg:] # cwli])
fprintf (stderr, " ERROR_decoded_wr ong_nessage_nsg[ %] =%, _cw %] =%\ n" , 1,
msdi|, i, cwli]);
This code is used in section 185.

189 (mainfree polynomialsig9) =
poly_fregSyM);
poly_fredpoly_sigma;
poly_fregpoly_omeg¥

This code is used in section 185.
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190 (mainfree resourcesoo) =
if (e_old# A) free(e_old);

if (e_news# A) free(e_new;

(src # A) free(src);

(rndm# A) free(rndm);

(perm=£ A) free(perm);

(cw # A) free(cw);

(dyadic_cw+# A) free(dyadic_cw;

(direct_cw=# A) free(direct_cw);

(msg# A) free(msg;

(

(

(

(L

(b

(h

(H

(

if
if
if
if
if
if
if
if (Hbin # A) mat_fre€Hbin);
if (Gbin# A) mat_fre€Gbin);
if (z ;A A) free(z);

if A) free(L);

if ;é A) free(b);

if (h# A) free(h);

if # A) free(H);

if (H2T # A) free(H2T);

of freq);

This code is used in section 170.

12 Known issues and further improvements

In order to hide the dyadic code structure, there are some measuresndk8h To be compliant, the
Goppa code generated bjnary_quasi_dyadic_goppa_codbould have code lengtN, where N > n.
To arrive at a code with length, blocks would have to be selected, rearranged and permuted usinig dyad
permutations. However, we skip this step and rely completely on the secrgeamuted suppotk. As
already mentioned, one of the reasons for this practice is simplicity. Anabtrfwas the structural attack
against the scheme (see part (VI)). The attack was successfulihimary cases, so it is not clear if those
code hiding techniques could be more effective in the binary case.

Furthermore, the algorithm implementedidimary _quasi_dyadic_goppa_codpuriously yields an er-
roneous suppotL, in which case the code generation is restarted. It is at the moment notfdlaars a
bug in the code or a design error of the algorithm itself.
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Part VIII
Appendix

13 Basic algebraic structures

Coding theory is concerned with the transmissionma&ssagesver an unreliable channel. Transmission
errors can occur and the question arises how to possibly recognizerocerrect them.

The messages to be sent are seen as fixed-length sequences of syrabaldixed alphabet. As we
will work with so-calledlinear (block) codesthe messages will be seen as elements of a k-dimensional
subvector space over the finite fidl‘q.27 Thus, eaclencodednessage will consist of a fixed number of
symbols offy.

The algebraic structure of linear codes is utilized for efficemmtodinganddecodingtechniques. Alge-
bra is therefore the most important tool when dealing with linear codes.

For convenience, we will recall some definitions and facts in the Appemdiich will be used below.
Details can be found for example in [27, 28, 34, 33].

13.1 Monoid, group and field
Definition 13.1.1(Semigroup, monoid, group)
(1) A set(M,x) together with an associative operatiens called asemigroup
(73) If the operation does have a neutral elementhen(M, ) is called amonoid
(731) A subsetV’ C M, e € M’', which is closed under the monoid operation is cabethmonoicbf M.
)

(iv) A groug® is a monoid in(M, %) in which every element € M is invertiblg i.e. for alla € M
there exists am’ € M such thata x «’ = o’ * a = e. Additionally, it holds for alle € M that
axe=e*xa=a.

(v) AgroupM, x such that for alle,’ € M it holds thataxa’ = a'xa is called acommutativeor abelian
group. It is usually denoted b, +).

Definition 13.1.2(Ring). Let (A, +,-) be a set together with two operations calladditionand multipli-
cation A is called a ring with respect to these operations if the following conditions hold:

(1) (A,+) is an abelian group, called thadditive groupof A.

2"Frequently the scalar ring denoted alsa&5(q), theGalois fieldwith ¢ elements, named aft&variste Galois
2The namegroupgoes back again to Galois [28].
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(i) (A,-)is a monoid, called thenultiplicative monoidof A.%°
(z3i) Forall a,b,c € Ahold

1. a(lb+c)=ab+ac

2. (b+c)a=ba+ca
(7v) Thering A is calleccommutativef (A4, -) is abelian.

Definition 13.1.3(Subring, ring extension)Let A be a ring. A subsel/ C A is called asubringof A if
(U,+,-) is itself a ring. We writeS < A to express that/ is a subring ofA and also call[A: U] aring
extension|f 14 € U then we callA: U] a unital ring extension

Definition 13.1.4(Characteristic) Let A be a ring. Thecharacteristic chad of A is the smallest number
n € N such that: - 1 = 0. If no suchn exists, we say thatharA = 0.

Definition 13.1.5(Units, unital group) Let A be aring.
Invertible elements € (A, -) are calledunits They form theunital groupof A, denoted byl ~.

Definition 13.1.6(Zero-divisor) Let A be aring.
An element. # 0 in A is called azero-divisorif there is an elemerd # 0 such thatrs = 0 or sr = 0.

Definition 13.1.7(Integral domain, field, subfieldlet A be a commutative ring.

(1) Ais anintegral domainf it has no zero-divisors.

(73) An integral domain is called &eld if a|b for any two elements € A ~ {0} andb € A.
(7i7) Is a subringU of aring A a field, we say thal/ is a subfieldof A.

Remark 13.1.8. We will deal only with so-callefinite fields i.e. fields with a finite number gfelements
(¢ € N). It will be denoted by,. The number of elementsBf is called itsorder. As can be shown [27],
the characteristic of a finite field is always a prime numper

13.2 Direct product and direct sum

Definition 13.2.1(Direct product) Let ! # () a non-empty index set and 1&f;, : € I a system of sets with
M; # Oforalli € I. LetM := J;c; M;. The set of familie§f : I — M | f; := f(i) € M;foralli e I }
is called thedirector cartesian produaf the 1/;.%° It is denoted by[],.; M;.

If the M; are monoids for alf € I, thenM is a monoid relative the following operatiod? x M — M,
((ai)ier, (bi)ier) — ((a;bi)ier). Itis called theproduct monoidf the ;.

If all M; = M for asetM, then[[,c; M; = M! = {f | f: I — M}, the set of all mappings frothto
M. ltis called thel-fold productof M.

2Hence rings as defined here will always have a multiplicative neutralegiemmdenoted ad.
3°A common notation for such a familfis (f:)icr
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Definition 13.2.2(Direct sum) Let I an arbitrary set,M; monoids for alli € I, and lete; denote the
neutral element of\; for all i € I. T[;c; M; := {(ai)ier € [Lic; Mi | a; # e; for finitely manyi € I}
is a submodule of[,c; M;. Is is called thedirect sumof the monoids\/; and denoted byp,.; M; or
Hiel Mi-31

Remark 13.2.3.Let M a monoid,/ an arbitrary set. Thefi],; M is denoted by/ () and called thd-fold
direct produciof the monoids\/. It is a submonoid ofi//, the direct product of the monoidg. In case
I={1,...,n}, thenM’ = M) = M™.

13.3 Module and vector space

Definition 13.3.1(Module, vector space)Let A be a ring. An abelian group V together with a (mulipica-
tively denoted) operatidf of A on V is called an Anoduleif for all a,b € A andz,y € V hold:

(i) 1a -z =zx.
(i1) a(bx) = (ab)x.
(i17) a(z +y) = ax + ay.
(iv) (a+b)x = ax + bx.
If the underlyingscalarring A is a field, then V is called @ector space

Remark 13.3.2(Direct product and direct sum of moduled)et (V;);c; a family of A-modules. The direct
product][;c; V; and the direct sundp,c; Vi = [1;c; Vi are A-modules byt(x;)icr := (ax;)icr fora € A
and (x;);er. The addition in[[;c; V; resp. @,c; Vi is defined agx;)icr + (vi)ier == (xi + yi)ier. If all

V; = V for an A-moduléV, then[],c; = VI and@,c; Vi = V. If T = {1,...,n}, thenV! = V1) =
vn.

Remark 13.3.3(n-dimensional vector spaceletF a field,n € N. F" is then canonically arff-module,
i.e. an n-dimensiondf-vector space. For, y € F"” anda € F we have

:B—HU = (x07"'7$n—1)+(yov'”7yn—1) = (CCO"'?JO,--w»Tn—l"‘yn—l)
azx = afxo,...,Tp-1) = (awo,...,aTn-1)

*Uf I'is finite, then clearh [, M = 1, M.
32An operationof a setM on a setX is amapM x X — X.
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13.4 Polynomials

Let A a ring andM a monoide with neutral element Themonoid ring A[M] is defined as follows: the
underlying set is the\/-fold direct sumA™) of A. For eachv € M denote bye, the canonical basis
element(dy, - )renr Of the A-module A(M), wheres denotes the Kronecker symbol.dfr € M, a,b € A,
then define

(aes)(ber) := abeyr

and distributively extend this to get a multiplication diM/]. Hence, a ring structure is introduced 4pV/ |
with e, asl.

Indeed, leta, b € AM witha = Y .y aves andb = 3y bo€s = S crs bre,. Clearly,a + b =
> wem(ao + bs)es, Whereas for the multiplication id[M] we haveab = (3, cps bo€s) (D e brer) =
Y(or)eMx M dobreor. Finally,ae, = (3, car ao€o)e, = > ,cpr ae, = a, as desired.

M — A[M]: 0 — e, andA — A[M]: a — ae, are injective monoid homomophisms and ring
homomorphisms, respectively. Therefore, we idenfifywith a submonoid of A[M],-) and A with a
subring ofA[M]. Note that the elements ef commute with the elements of the standard bagief A[1/]:
ae, = (ae,)(le,) = (a-1)ee, = (1-a)e,e, = (ley)(ae,) = eqa.

Let now A be arbitrary ring(A # 0), I a set andN() the I-fold direct sum of the additive monoide
(N, +). Lete; € N() the I-tupel, whose-th component i, and whose other components éréHence, a
v € N can be written as = >, vie;.

In AINU)] we define

X,L' = €,
and conclude
v;
€ = eZiEI viei He’/iei = H ezy, € HXl :
el el * el

The elementg, of the standard basis are therefore powers of the elendénts< I. Note again that
X; commutes withX; (i # j) anda € A:

XiXj =€ c; = €cite; = €cjte; = €€, = XjX;

aX; = ae,, = (aeg)(leg,) = (al)(ee,) = (La)(e.,) = (le,)(aeq) = e.a = X;a
The X; are calledndeterminatesver A.

Definition 13.4.1(Polynomial ring, polynomials)The monoid ringA[N(I)] is called thepolynomial ring
in theindeterminatesX; (i € I) over A. Itis denoted byA[X;: i € I] or A[X;];cs. Its elements are called
polynomialsin the indeterminateX; over A.

Remark 13.4.2. 1t is common to writee,, = X" for the basis elements, = [],.; X,". Each polynomialf
can be written then in the form
f= Z a, X"

veN{)
with uniquely determined, € A anda, # 0 for only finitely many. A polynomial is therefore a finite

sum of elements of the form X* which are calledmonomials Finally note thatr € NU) is a called a
multi-index33

33y runs througiN rather than through.
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If g =3, cnw by XY is another polynomial id[N()], we have

f+g= Z (ay +b,) X"
veNW)

fa= > ox?

AeNW)

with ¢y := 3, , a,b,,, where), i, v run throughN(),

v+

Remark 13.4.3. Let | a set with one element. In the above construction, one has thenmaindetermi-
nate, denoted just h¥, and we have:

= Za,,XV:ao—ﬁ—ale—i—--'—i—anX",
v>0

g=> b, X" =by+ b X"+ +bp X",
n>0

A
fg= Z XX with ¢ = Zajbk—j = agby + - - + a)by,
A>0 §=0

ifa, =b,=0forv>n,u>m.
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Index

Here is a list of the identifiers used, and where they appear. Underlimedsindicate the place of defini-

tion. Error messages are also shown.

__asm_: 151.

__func_: 154, 155.

_gof modg_1 39.

_GNU_SOURCE: 138, 153, 170.

Ar 137,139, 140, 141, 142, 143, 144, 145, 146.
a. 137, 143

add: 101

alloc_size 137, 139, 140, 146.

ALTERNANT _DECCDE_H_| NCLUDED: 110.

argc. 170, 172.

argv: 170, 172.

assert 143.

aux 135.

a0: 83.

al. 83.

B: 137, 146.

b. 58, 62, 137, 143, 171.

bc: 58, 62, 74, 77, 83,171.

Bl NARY _QD GOPPA CODE H | NC: 57.

binary_quasi_dyadic_goppa_cade58, 62,
77, 191.

binmat_t: 137, 139, 140, 141, 142, 143, 144,
145, 146, 148, 164, 171.

bit: 101.

BI TS PER LONG: 85,137, 139, 140.

C: 62, 146, 171.

c. 62, 177.

calloc: 113, 126, 130, 173.

CL: 173.

close file 155, 156.

code 168.

codeword 177.

coeff: 124, 126, 127, 128, 129, 130, 131,
133, 134.

coln: 137, 139, 140, 142, 144, 146.

cons_parity_check 110, 113, 115.

cons_syndrome_polynomial 110, 116, 117.

consistent_root_set 72.

consistent_support_block 73.

correctable 168.

cR 137, 145.
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cw: 110, 117, 121, 171, 173, 181, 182, 187,

188, 190.

cweave 167.

CWEB: 167.

data: 160.

debug 58, 62, 70, 77, 78, 83, 85, 87, 89,
92, 110, 113, 115,148, 156, 162, 168,
171, 172, 186.

deg 124, 126, 128, 129, 130, 131.

degree 168.

DEGREE: 173.

deltas 135.

direct_ cw 171, 173, 177, 182, 190.

done_building_goppa_code 76.

dp: 132.

dg: 132.

dr: 135.

du: 135.

dyadic_conv 106, 108, 180.

DYADI C_CONVOLUTI ON_H_| NCLUDED:
106.

dyadic_cw 171,173,178, 179, 182, 190.

e. 89.

e_new 148,165,171, 173, 184, 186, 187, 190.

e_old 148, 165,171, 173, 184, 185, 190.

elem 85, 89,137, 139, 140, 141, 142, 143,

145, 146, 177, 178.

60.

155.

154, 155.

elt:
ECF:
errno:
errors. 168.

exit. 46, 63, 64, 146, 154, 155, 172.
EXIT_FAI LURE: 46, 154, 155.

EXI T_SUCCESS: 170.

extdeg 37, 46.

extension 168.

fr 154, 155.

failent: 144.

fclose 155.

fgets 157.



flename 154.

findrow. 144.

floor: 173.

fname 148, 156.

fopen 154.

fprintf: 46, 63, 64, 70, 79, 80, 81, 85, 87, 91,
92, 154, 155, 172, 182, 188.

free: 48, 74, 87,113,127, 141, 144, 157, 190.

fwht: 95, 96, 99, 108.

FWHT_H | NCLUDED: 96.

fwht_t: 96, 99, 106, 108, 179.

g: 124, 135, 171.

Gbin: 91, 92,93171, 177,178, 181, 190.

of add 39, 70, 72, 73, 78, 83, 84, 113, 116,
124, 133.

gf card 38, 41, 46.

of div. 39, 135.

of exp 38,39,41,48,49,50,51,52,54,61, 66

of extd 38, 39,41, 46, 50, 52, 54.

of free 37, 46, 48, 190.

G-_H_| NCLUDED: 35.

of_init: 37, 45,46, 173.

gf init_ exp 46, 50.

of_init_log: 46, 52.

of inv. 39, 70, 72, 73, 78, 83, 84, 113.

of log. 38, 39, 41, 48, 51, 52, 54.

of_mut 39, 113, 116, 124, 132, 133.

gf mul_fast 39, 135.

of ord: 38, 39,41, 46, 50, 52, 54.

gf pow 37, 53, 54.

of rand 37.

of sqgrt 39.

of _square 39.

of t 36,37, 38, 41,54, 58, 61, 62, 8385, 110,
113,116, 124, 126, 128, 129, 130,33, 134,
135, 148, 152,163, 171.

gf_unit 39, 135.

gf zero 39, 131, 133, 135.

g2: 82,110, 113, 115, 118, 11971.

h: 99, 148.

Hadamard 99, 179.

Hbin: 85, 86, 87, 88, 89, 90, 91, 9271, 190.

Hbin_in_systematic_form 87, 88.

HyMES 87, 88, 176, 177.

H2: 113.
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H2T: 110, 113,114, 115116, 117, 171, 190.
1. 37, 50, 52, 54, 69, 72, 73, 74, 78, 79, 80,

178, 179, 181, 182, 188.

idx: 85, 144.
in: 101.
init:  165.

init_done 44, 46.

NI T_U RANDOM 61, 71.

input. 156, 157.

inside 165.

inttypes 36.

ix: 179, 187.

j. 70,73, 79, 80, 81, 83, 84, 85, 88, 89, 91,

k: 62, 85, 91, 96, 99, 106, 108, 146, 183,

key. 161, 162, 167.

L: 110, 113.

I: 60, 177.

len: 159.

length  168.

m. 96, 103, 148, 156, 163, 164, 171.

main: 115, 121,170.

malloc. 50, 52, 64, 126, 130, 139, 140,
144, 157.

mat 148, 163, 164.

mat_change_coeff 137, 146.

mat_coeff 88,91, 92137, 144, 146, 164, 181.

mat_copy 137, 142.

mat_free 85, 92,137, 141, 190.

mat_ini 85, 92,137, 139, 142, 146.

mat_ini_from_string 137, 140.

mat_mul 137, 146.

mat_rowxor 137, 143, 144.

mat_rref. 87, 88,137, 144.

mat_set_coeff_to_one 92, 137.

mat_set to_zero 85, 92,137.

mat_vec_mul 137, 145.

matrix : 137, 140.
MATRI X _H | NCLUDED: 137.
max 144.



MAX_EXT_DEG: 36, 42, 43, 46.

MAX LI NE: 148, 157, 159.

memcpy 128, 130.

memset 72, 128, 129, 137, 145, 146.

mesg 177, 178, 179.

msg 171, 173, 181, 188, 190.

mtrx:  179.

N: 171.

n: 101, 102, 103, 104, 110, 113, 116, 148,
156, 163, 164, 165, 171.

name 148, 163, 164.

next_error_vector 148, 165, 184.

omega 58, 62, 74, 77,78, 83, 110, 171.

open_input 154, 156.

out. 165.

p: 99, 108, 124, 126, 127, 128, 129, 130, 131,
132, 134, 135, 165.

p_old: 82.

permt 87, 88,144, 148, 171, 173, 184, 190.

poly_addto_coeff 124, 132, 135.

poly alloc 82,116,124, 126, 132, 135.

poly_calcule_deg 82, 116, 121,124, 128,
131, 132.

poly_coeff 113,124, 132, 135.

poly copy 82,124, 130.

poly_deg 124, 132, 134, 135.

poly eeaux 118,124, 135.

poly eval 113, 121, 124, 134.

poly _eval _aux 133, 134.

poly free 82,124, 127, 135, 189.

POLY_H | NCLUDED: 124.

poly mul 82,124, 132.

poly_multo_coeff 124.

poly omega 118, 119, 121]171, 189.

poly_set 124, 128, 135.

poly set coeff 82, 116,124, 135.

poly_set_deg 124, 135.

poly_set to_zero 124, 129, 135.

poly sigma 118, 119, 121171, 189.

poly_size 124.

poly_t: 82,110, 113,116, 118,124, 126, 127,
128, 129, 130, 131, 132, 134, 135, 171.

poly tete 124.

polynome: 124, 126, 130.

pop. 150.

prim_poly. 42, 43, 50.

print_bin_matrix 86, 90, 93,148, 164.

print_matrix 114,148, 163.

printf: 78, 83, 163, 164, 172, 186.

pt: 145.

q. 62,99, 108, 124, 128, 130, 132, 171.

r: 99, 103, 108, 132, 165.

rand: 61, 165.

rdtsc. 66, 151, 165.

read_input 148, 156, 172.

REMOVE_FROM U: 60, 69, 70, 72, 73.

res. 101, 102,103, 104.

rev. 149, 176.

rndm:; 148, 171, 173, 184, 190.

row: 101, 102.

rown: 89, 137, 139, 140, 142, 143, 144,
145, 146.

rwdent 85, 89,137, 139, 140, 142, 143, 145.

ro: 135.

rl: 135.

s 68,99, 137, 140, 155.

set 101.

sigma 110.

size 124, 126, 128, 129, 130, 131.

solve_key equation 110, 118, 119.

sp: 161.

srand 66, 165.

src. 148, 165, 166,171, 173, 184, 190.

stderr. 46, 63, 64, 70, 79, 80, 81, 85, 87, 91,
92, 154, 155, 172, 182, 188.

strchr: 160, 161.

strerror: 154, 155.

strnlen  159.

strstr:  162.

strtol:  162.

swap 152.

Sym: 117, 119,171, 189.

t: 110, 118, 124, 135, 148, 156, 171.

tmp: 61.

TN: 173.

transform 99, 179.

tt: 110, 113, 114,116.

u: 61,96, 99, 106, 108, 116, 124, 135, 179.

uintl6_t: 36, 96, 103.

uint32_t 58, 62,96, 104.




v. 61, 96, 99, 103, 106, 108, 124, 135, 179.
val: 161, 162.

value 167.

vm. 95, 101, 177.
vmlgé 96, 103.

vm2x4 96.

vm32 96, 104.

vm4 95, 96, 102, 177.
vm8& 96, 101.

w: 99, 148, 179.

Walsh 99, 179.

X 142

x: 91, 137, 145, 149, 150, 151.
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List of Refinements

(2% hi U, U<« U\ {h;} 69) Used in section 68.

(g « 2™; exitin case code length > ¢/2; initialize underlying field buffe/: U « F, \ {0} 64) Used
in section 62.

( Call binary_quasi_dyadic_goppa_cod&) Used in section 76.

(Change row ordeB9) Used in section 87.

(CheckGHT =0 91) Used in section 92.

( CheckL for consistencyso) Used in section 76.

(CheckznN L = () 81) Used in section 76.

( Checkz for consistency79) Used in section 76.

( Check Hbin for systematic forrag) Used in section 87.

( Check for consistent root and support 32t  Used in section 65.

(Check ift is a power of2; exitin case it is not or in case> (2™ — 1)/m 63) Used in section 62.

(Computez 78) Used in section 76.

(ComputeH € F.*™ 84)  Used in section 76.

( Compute the co-trace matrBs) Used in section 76.

( Compute the suppol3) Used in section 76.

( Definefield variables41)  Used in section 40.

( Determine consistent support blocks;q, . .., h¢jy1)—1} 73) Used in section 72,

( Determine the remaining signature entrigs(l <n < ¢ — 1) 68) Used in section 65.

( Exporteddyadicfunctions58) Used in section 57.

( Exportedfield declarations3s) Used in section 35.

( Exportedfield functions37) Used in section 35.

( Exportedfield macros39) Used in section 35.

( Exportedfield variables3g) Used in section 35.

( Exportedmatrix functions 139, 140, 141, 142, 143, 144, 145, 146 Used in section 138.

( Exportedpoly functions 126, 127, 128, 129, 130, 131, 132, 134, 335 Used in section 125.

( Exportedutils functions 156, 163, 164, 165 Used in section 153.

( Fetch the contents of the current line before the filst 160) Used in section 157.

( Generate consistent root and support set3. Used in section 62.

(Generate next;;; for1 < j <i—1; U <~ U \ {hi4;} 70) Used in section 68.

( Print co-traced matrix86) Used in section 85.

( Print generator matrix @3) Used in sections 91, 92, and 183.

( Print parity check H2T114)  Used in section 113.

( Print parity check matrix H0) Used in sections 89 and 91.

(Read input file157)  Used in section 156.

(ResetU : U « F, forfindingw 71) Used in sections 65, 66, and 72.

( Search fokey — valuepairs. Initialize parametera62) Used in section 161.

(SetU « F,\ {0} 66) Used in section 65.

(Sethg <~ U, U « U \ {ho} 67) Used in section 65.

( Shuffle permutatiornié6) Used in section 165.

( Skip C comments58)  Used in section 157.

(Splitthe line at =" and search fokey = valuepairs 161) Used in section 157.

( Staticdyadicmacroseo, 61) Used in section 59.
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( Staticfield functions50,52)  Used in section 40.

( Staticfield variables43, 44)  Used in section 40.

( Staticpoly functions 133)  Used in section 125.

( Staticutils functions 154, 155  Used in section 153.

( Staticutils inline functions 149, 150, 151, 152  Used in section 148.

( Terminate each line with#' 159) Used in section 157.

(UseH to build generator matri in systematic forme2)  Used in section 76.

(Use H' to build parity check matri¥] € F5"*™ in systematic formg7) Used in section 76.

(al ternant - decode.c 111)

(al ternant - decode. h 110)

(bi nary- quasi - dyadi c- goppa- code. ¢ 59)

(bi nary- quasi - dyadi c- goppa- code. h 57)

(dyadi c- convol ution.c 107)

(dyadi c- convol ution. h 106)

(fwht . c 98)

(fwht . 96)

(of . c 40)

(gf .h 35)

(i nput.txt 168)

(matrix.c 138)

(matrix.h 137)

(poly.c 125)

(poly.h 124)

(utils.c 153)

(utils.h 148)

(decodefunctions 113, 116, 11§~ Used in section 111.

( dyadic convolutiorfunctions 108)  Used in section 107.

(dyadicfunctions62) Used in section 59.

(field functions 46, 48, 54)  Used in section 40.

(fwht functions 99, 101, 102, 103, 104 Used in section 98.

(mainadd some errorg87) Used in section 185.

(mainassemble the Goppa polynomigd) Used in section 174.

( main build quasi-dyadic Goppa cod&) Used in section 174.

(main check equality of codewordss2) Used in section 183.

(main check for correct decodingss) Used in section 185.

( main compute codeword directly usingn4 177) Used in section 183.

( main compute codeword explicitly as vector-matrix produst) Used in sections 183 and 185.

{main compute codeword using/alsh— Hadamard transformand dyadic convolution178) Used in
section 183.

( main compute dyadic convolution via Walsh-Hadamard transfage) Used in section 179.

( main compute the syndrome polynomial7) Used in section 185.

{ main construct parity check matrid2T for the private decodet15) Used in section 174.

(maincorrect errorsi21) Used in section 185.

(maindecode forged codewords5) Used in section 175.

(maindefine variables71) Used in section 170.
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(mainfree polynomials189) Used in section 185.

(mainfree resourceg90) Used in section 170.

( maingenerate binary Goppa code of tyjpek, t] 174) Used in section 170.
(maingenerate codewordss3) Used in section 175.

( main generate next error vectas4) Used in section 185.

(main handle blocks via Walsh-Hadamard transform®) Used in section 178.
(maininitialize data173) Used in section 170.

( main perform the encode/decode cydes) Used in section 170.

( main print error positionslse) Used in section 185.

(mainread the application parameters) Used in section 170.

( mainreverse signature bits the 176) Used in sections 177 and 178.

( main solve the key equation(X) = o(X)S(X) mod ¢g(X) 119) Used in section 185.
(return h, bc andw. Free used bufferz4) Used in section 62.
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