गII||||||||| A Simple Introduction to Syndrome-DecodingBased Cryptography

Contents

\square Motivation and basic concepts of error-correcting codes
\square Cryptosystems based on syndrome decoding (McEliece and Niederreiter encryption, CFS signatures)
\square Constructing and decoding Goppa codes
\square Current challenges (reducing key sizes, safe codes, new functionality)

Motivation

Deployed Cryptosystems

\square Conventional intractability assumptions:

- Integer Factorization (IFP): RSA.
- Discrete Logarithm (DLP), Diffie-Hellman (DHP), bilinear variants: ECC, PBC.
\square These assumptions reduce to the Hidden Subgroup Problem - HSP.

Quantum Computing

\square Shor's quantum algorithm can solve particular cases of the AHSP (including IFP and DLP) in random polynomial time.

Proposed Post-Quantum Cryptosystems

\square Quantum computers seem to be unable to solve NP-complete/NP-hard problems.
\square Syndrome Decoding (this seminar)
\square Lattice Reduction
\square Merkle signatures, Multivariate Quadratic Systems, Non-Abelian (e.g. Braid) Groups, Permuted Kernels and Perceptrons, Constrained Linear Equations...

Basic Concepts of Error-Correcting Codes

Linear Codes

\square The (Hamming) weight $w(u)$ of $u \in\left(\mathbb{F}_{q}\right)^{n}$ is the number of nonzero components of u, and the (Hamming) distance between u, v $\in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{n}}$ is $\operatorname{dist}(\mathrm{u}, \mathrm{v}) \equiv \mathrm{w}(\mathrm{u}-\mathrm{v})$.
\square A linear [n, k]-code \mathcal{C} over \mathbb{F}_{q} is a k dimensional vector subspace of $\left(\mathbb{F}_{q}\right)^{n}$.

Linear Codes

\square A code may be defined by a generator matrix $G \in\left(\mathbb{F}_{q}\right)^{k \times n}$ or by a parity-check matrix $H \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{r} \times n}$ with $r=n-k$.
$-\mathcal{C}=\left\{u G \in\left(\mathbb{F}_{\mathrm{q}}\right)^{n} \mid \mathrm{u} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{k}}\right\}$
$\square \mathcal{C}=\left\{v \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{n}} \mid H v^{\top}=0^{\mathrm{r}}\right\}$
\square N.B. The vector s such that $\mathrm{Hv}^{\top}=s^{\top}$ is called the syndrome of v .
\square N.B. $\mathrm{HG}^{\top}=0$.

Linear Codes

\square Generator and parity-check matrices are not unique: given an arbitrary nonsingular matrix $S \in\left(\mathbb{F}_{q}\right)^{k \times k}$ (resp. $\left.S \in\left(\mathbb{F}_{q}\right)^{\text {rxr }}\right)$, the matrix $\mathrm{G}^{\prime}=\mathrm{SG}$ (resp. $\mathrm{H}^{\prime}=\mathrm{SH}$) defines the same code as G (resp. H) in another basis.
\square Consequence: systematic (echelon) form $G=\left[I_{k} \mid M\right], H=\left[-M^{\top} \mid I_{r}\right]$ where $M \in$ $\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{kxr}}$. N.B.: not always possible.

Linear Codes

\square Two codes are (permutation) equivalent if they differ essentially by a permutation on the coordinates of their elements.
\square Formally, a code \mathcal{C}^{\prime} generated by G^{\prime} is equivalent to a code \mathcal{C} generated by G iff G' $=$ SGP for some permutation matrix $\mathrm{P} \in$ $\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{n} \times \mathrm{n}}$ and some nonsingular matrix $\mathrm{S} \in$ $\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{k} \times \mathrm{k}}$. Notation: $\mathcal{C}^{\prime}=\mathcal{C P}$.

General Decoding

-Input: positive integers n, k, t; a finite field \mathbb{F}_{q}; a linear $[\mathrm{n}, \mathrm{k}]$-code $\mathcal{C} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{n}$ defined by a generator matrix $G \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{k} \times n}$; a vector $\mathrm{c} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{n}$.
\square Question: is there a vector $m \in\left(\mathbb{F}_{q}\right)^{k}$ s.t. $\mathrm{e}=\mathrm{c}-\mathrm{mG}$ has weight $\mathrm{w}(\mathrm{e}) \leq \mathrm{t}$?
\square NP-complete!
\square Search: find such a vector e.

Syndrome Decoding

-Input: positive integers $\mathrm{n}, \mathrm{k}, \mathrm{t}$; a finite field \mathbb{F}_{q}; a linear $[\mathrm{n}, \mathrm{k}]$-code $\mathcal{C} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{n}$ defined by a parity-check matrix $H \in$ $\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{rxn}}$ with $\mathrm{r}=\mathrm{n}-\mathrm{k}$; a vector $\mathrm{s} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{r}}$.
\square Question: is there a vector $\mathrm{e} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{n}$ of weight w(e) $\leq \mathrm{t}$ s.t. $\mathrm{He}^{\top}=\mathrm{s}^{\top}$?
\square NP-complete!
\square Search: find such a vector e.

Easily Decodable Codes

\square Some codes allow for efficient decoding, e.g. GRS/alternant codes with a paritycheck matrix of form $\mathrm{H}=\mathrm{VD}$ with

$$
V=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
L_{0} & L_{1} & \ldots & L_{n-1} \\
L_{0}^{2} & L_{1}^{2} & \ldots & L_{n-1}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
L_{0}^{r-1} & L_{1}^{r-1} & \ldots & L_{n-1}^{r-1}
\end{array}\right], D=\left[\begin{array}{ccccc}
D_{0} & 0 & 0 & \ldots & 0 \\
0 & D_{1} & 0 & \ldots & 0 \\
0 & 0 & D_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & D_{n-1}
\end{array}\right] .
$$

Easily Decodable Codes

\square N.B. The decoding algorithm may require a syndrome computed with such a special parity-check matrix H.
\square Given a syndrome $\mathrm{c}^{\top}=\mathrm{Au}^{\top}$ computed with a different parity-check matrix A for the same code (hence $H=S A$ for some S), a decodable syndrome is obtained as $\mathbf{s}^{\top}=$ $\mathrm{Sc}^{\top}=H \mathrm{u}^{\top}$ with $\mathrm{S}=\mathrm{HA}^{\top}\left(\mathrm{AA}^{\top}\right)^{-1}$.

Permuted Decoding

\square Problem: Solve the GDP/SDP for a code \mathcal{C} that is permutation equivalent to some efficiently decodable code \mathcal{C}^{\prime}.
\square Obvious resolution strategy: find the permutation and basis change between the codes, and use the \mathcal{C}^{\prime} trapdoor to decode in \mathcal{C}.
\square Conjectured to be "hard enough" for certain codes.

Shortened Decoding

\square Problem: Solve the GDP/SDP for a code \mathcal{C} that is permutation equivalent to some shortened (i.e. projection) subcode of some efficiently decodable code C^{\prime}.
\square Obvious resolution strategy: find the permutation, basis change and shortening between the codes, and use the \mathcal{C}^{\prime} trapdoor to decode in \mathcal{C}.
\square Deciding whether a code is equivalent to a shortened code is NP-complete.

Cryptosystems Based on Syndrome Decoding

McEliece Cryptosystem

\square Key generation:

- Choose a uniformly random [n, k] t-error correcting, efficiently decodable code Γ and a uniformly random permutation matrix $P \in\left(\mathbb{F}_{q}\right)^{k \times k}$, and compute a systematic generator matrix $G \in\left(\mathbb{F}_{\mathrm{q}}\right)^{k \times h}$ for the equivalent code Γ.
- Set $K_{\text {priv }}=(\Gamma, P), K_{\text {pub }}=(G, t)$.
\square Encryption of a plaintext $m \in\left(\mathbb{F}_{q}\right)^{k}$:
- Choose a uniformly random t-error vector $e \in\left(\mathbb{F}_{\mathrm{q}}\right)^{n}$ and compute $\mathrm{c}=\mathrm{mG}+\mathrm{e} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{n}}$.
\square Decryption of a ciphertext $c \in\left(\mathbb{F}_{q}\right)^{n}$:
- Correct the errors in $c^{\prime}=c P^{-1}$, i.e. find the t-error vector e' $=\mathrm{eP}^{-1} \mathrm{~s} . \mathrm{t}$. $\mathrm{c}^{\prime}-\mathrm{e}^{\prime} \in \Gamma$, then recover m directly from $\mathrm{c}-\mathrm{e} \in$ ГР.

A Toy Example

\square Let $\mathrm{n}=8, \mathrm{t}=1, \mathrm{k}=4$, and a code with the following systematic parity-check matrix H and generator matrix G:

$$
H=\left[\begin{array}{llll|llll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right], G=\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right] .
$$

\square Encryption of the message $m=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ with error vector $\mathrm{e}=\left(\begin{array}{llllll}0 & 01000\end{array}\right): \mathrm{c}=\mathrm{mG}+\mathrm{e}=\left(\begin{array}{lll}11100101\end{array}\right)$.
\square Syndrome computation $\mathrm{Hc}^{\top}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)^{\top}$, error correction reveals e and yields $\left.\mathrm{mG}=\mathrm{c}-\mathrm{e}=\left(\begin{array}{lll}11100\end{array}\right) 101\right)$.

Niederreiter Cryptosystem

\square Key generation:

- Choose a uniformly random [n, k] t-error correcting, efficiently decodable code Γ and a uniformly random permutation matrix $\mathrm{P} \in\left(\mathbb{F}_{q}\right)^{\mathrm{k} \mathrm{\times k}}$, and compute a systematic parity-check matrix $H \in\left(\mathbb{F}_{q}\right)^{\text {rxn }}$ for the equivalent code Γ.
- Set $K_{\text {priv }}=(\Gamma, P), K_{\text {pub }}=(H, t)$.
\square Encryption of a plaintext $m \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\ell}$ with $\ell \leq(\mathrm{n}$ choose t$)$:
- Represent m as a t-error vector $e \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{n}}$, and compute the syndrome $\mathrm{c}^{\top}=\mathrm{He}^{\top} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{r}$.
\square Decryption of a ciphertext $c \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{r}}$:
- Decode the syndrome $\mathrm{c}^{\top}=\mathrm{He}^{\top}=\left(\mathrm{HP}^{-1}\right)\left(\mathrm{Pe}^{\top}\right)=\left(\mathrm{HP}^{-1}\right)$ $\left(\mathrm{eP}^{-1}\right)^{\top}$ to the error vector $\mathrm{e}^{\prime}=\mathrm{eP}^{-1}$ using the decoding algorithm for Γ, and obtain the plaintext m from $\mathrm{e}=\mathrm{e}^{\prime} \mathrm{P}$.

CFS Signatures

\square Key generation:

- Choose a uniformly random [n, k] t-error correcting, efficiently decodable code Γ and a uniformly random permutation matrix $P \in$ $\left(\mathbb{F}_{2}\right)^{k \times k}$, and compute a systematic parity-check matrix $H \in\left(\mathbb{F}_{2}\right)^{r \times n}$ for the equivalent code Γ.
- Choose a random oracle $\mathrm{h}:\{0,1\} * \times \mathbb{N} \rightarrow\left(\mathbb{F}_{2}\right)^{r}$.
- Set $K_{\text {priv }}=(\Gamma, P), K_{\text {pub }}=(H, t)$.
\square Signing a message m:
- Find $i \in \mathbb{N}$ such that $s \leftarrow h(m, i)$ is a decodable syndrome of Γ, i.e. $\mathrm{s}^{\top}=\mathrm{He}^{\top}=\left(\mathrm{HP}^{-1}\right)\left(\mathrm{eP}^{-1}\right)^{\top}$ for some t-error vector eP ${ }^{-1} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{n}}$.
- Decode s^{\top} to the error vector $\mathrm{e}^{\prime}=\mathrm{eP}^{-1}$ using. the decoding algorithm for Γ, and obtain $e \leftarrow e^{\prime} P$. The signature is $(e, i) \in\left(\mathbb{F}_{2}\right)^{n}$ $\times \mathbb{N}$.
\square Verifying a signature (e, i):
- Check that $w(e) \leq t$, and compute $c \leftarrow \mathrm{He}^{\top}$.
- Accept the signature iff $c=h(m, i)$.

IND-CCA2 Security

\square McEliece is not secure in the strong sense of indistinguishability under an adaptive chosen-ciphertext attack (e.g. c $=\mathrm{mG}+\mathrm{e}$ reveals all bits of m but t, at most).
\square Solution: all-or-nothing transform (AONT), e.g. (McEliece-tailored) Fujisaki-Okamoto.

IND-CCA2 Security

\square Random oracles

- $\mathcal{R}:\left(\mathbb{F}_{2}\right)^{\mathrm{k}} \rightarrow\{0,1\}^{*}$.
- $\mathcal{H}:\left(\mathbb{F}_{2}\right)^{k} \times\{0,1\}^{*} \rightarrow\{0, \ldots,(\mathrm{n}$ choose t$)-1\}$, with output encoded as a vector in $\left(\mathbb{F}_{2}\right)^{n}$.
\square Encryption of $m \in\{0,1\} *$:
$-\mathrm{u} \leftarrow \operatorname{random}\left(\mathbb{F}_{2}\right)^{\mathrm{k}}$
- $\mathrm{c} \leftarrow \mathcal{R}(\mathrm{u}) \oplus \mathrm{m}$
- $\mathrm{e} \leftarrow \mathcal{H}(\mathrm{u}, \mathrm{m})$
- $\mathrm{z} \leftarrow \mathrm{uG}+\mathrm{e}$
\square The ciphertext is $(z, c) \in\left(\mathbb{F}_{2}\right)^{n} \times\{0,1\}^{*}$.
\square Decryption: find u and e from z, recover $m \leftarrow$ $\mathcal{R}(u) \oplus \mathrm{c}$, and accept iff $\mathrm{e}=\mathcal{H}(\mathrm{u}, \mathrm{m})$.

Summary

\square Syndrome decoding based cryptosystems are simple and efficient.
\square Security related to NP-complete and NPhard problems (a suitable code may make this relation stronger).
\square Strong notions of security are possible in the RO model using a suitable AONT.

Goppa Codes

Goppa Codes

\square Let $g(x)=\sum_{i=0}{ }^{t} g_{j} x^{i}$ be a monic ($g_{t}=1$) polynomial in $\mathbb{F}_{q}[x]$ where $q=p^{m}$.
\square Let $\mathrm{L}=\left(\mathrm{L}_{0}, \ldots, \mathrm{~L}_{\mathrm{n}-1}\right) \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{n}}$ (all distinct) such that $g\left(L_{j}\right) \neq 0$ for all j . L is called the code support.
\square Properties:

- Easy to generate and plentiful.
- Usually $g(x)$ is chosen to be irreducible; if so, $\mathbb{F}_{\mathrm{q}^{t}}=\mathbb{F}[\mathrm{x}] / \mathrm{g}(\mathrm{x})$.

Goppa Codes

\square The syndrome function is the linear map $S:\left(\mathbb{F}_{p}\right)^{n} \rightarrow \mathbb{F}_{q}[X]:$

$$
S(c)=\sum_{i=0}^{n-1} \frac{c_{i}}{x-L_{i}}=\sum_{c_{i}=1} \frac{1}{x-L_{i}}(\bmod g(x)) .
$$

\square The Goppa code $\Gamma(\mathrm{L}, \mathrm{g})$ is the kernel of the syndrome function, i.e. $\Gamma=\left\{c \in\left(\mathbb{F}_{p}\right)^{n}\right.$ $\mathrm{S}(\mathrm{c})=0\}$.

Goppa Codes

\square The syndrome can be written in paritycheck matrix form as $\mathrm{H}^{*} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\text {tx }}$ or even $H \in\left(\mathbb{F}_{p}\right)^{m \times n}$.
\square Trace construction of the parity-check matrix H: write the \mathbb{F}_{p} components of each \mathbb{F}_{q} element (in a certain basis) from H^{*} on m successive rows of H .

Parity-Check Matrix

\square Easy to compute H^{*} from L and g, namely, $\mathrm{H}^{*}{ }_{\text {txn }}$ $=T_{t \times t} V_{t \times n} D_{n \times n}$, where:

$$
\begin{gathered}
T=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
g_{t-1} & 1 & 0 & \ldots & 0 \\
g_{t-2} & g_{t-1} & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_{1} & g_{2} & g_{3} & \ldots & 1
\end{array}\right], V=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
L_{0} & L_{1} & \ldots & L_{n-1} \\
L_{0}^{2} & L_{1}^{2} & \ldots & L_{n-1}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
L_{0}^{t-1} & L_{1}^{t-1} & \ldots & L_{n-1}^{t-1}
\end{array}\right], \\
D=\left[\begin{array}{cccc}
1 / g\left(L_{0}\right) & 0 & \cdots & 0 \\
0 & 1 / g\left(L_{1}\right) & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & & 0 & \cdots \\
1 / g\left(L_{n-1}\right)
\end{array}\right] .
\end{gathered}
$$

A Toy Example

\square The toy example sets $m=4, \mathbb{F}_{2 m}=\mathbb{F}_{2}[u] /\left(u^{4}+u+1\right), n=$ $8, \mathrm{t}=1, \mathrm{k}=\mathrm{n}-\mathrm{mt}=4$, with generator polynomial $\mathrm{g}(\mathrm{x})=$ x and support $\mathrm{L}=\left(\mathrm{u}^{7}, \mathrm{u}^{2}, \mathrm{u}^{3}, \mathrm{u}^{10}, \mathrm{u}^{13}, \mathrm{u}^{1}, \mathrm{u}^{11}, \mathrm{u}^{0}\right)$.
\square The parity-check matrix H* (leading to the binary matrix H via the trace construction and systematic formatting) is

$$
\left.\left.\begin{array}{rl}
H^{*} & =T V D=\left[\begin{array}{llllllll}
u^{8} & u^{13} & u^{12} & u^{5} & u^{2} & u^{14} & u^{4} & u^{0}
\end{array}\right] \\
T & =\left[\begin{array}{l}
1
\end{array}\right] \\
V & =\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right. \\
1
\end{array}\right], \quad \begin{array}{lllll}
1 / g\left(L_{0}\right) & 1 / g\left(L_{1}\right) & \ldots & 1 / g\left(L_{7}\right)
\end{array}\right] .
$$

Error Locator Polynomial

\square Efficient decoding procedure for known g and L via the error locator polynomial.

$$
\sigma(x) \equiv \prod_{e_{i \neq 0}}\left(x-L_{i}\right) \in \mathbb{F}_{q}[x] / g(x)
$$

\square Property: $\sigma\left(L_{i}\right)=0 \Leftrightarrow e_{i}=1$.
\square For simplicity, assume binary fields (otherwise an error evaluator polynomial must be defined and computed as well).

Error Correction

\square Let $\mathrm{m} \in \Gamma$, let $\mathrm{e} \in\left(\mathbb{F}_{2}\right)^{\mathrm{n}}$ be an error vector of weight $w(e) \leq t$, and $c=m+e$:

- Compute the syndrome of e through the relation $\mathrm{S}(\mathrm{e})=\mathrm{S}(\mathrm{c})$.
- Compute the error locator polynomial σ from the syndrome.
- Determine which L_{i} are zeroes of σ (Chien search) thus retrieving e and recovering m .

Error Correction

\square Let $s(x) \leftarrow S(e)$. If $s(x) \equiv 0$, nothing to do (no error), otherwise $s(x)$ is invertible.

- Property \#1: $\quad \sigma(x)=a(x)^{2}+x b(x)^{2}$.
- Property \#2: $\frac{d}{d x} \sigma(x)=b(x)^{2}$. (N.B.: char 2)
- Property \#3: $\quad \frac{d}{d x} \sigma(x)=\sigma(x) s(x)$.
\square Thus $b(x)^{2}=\left(a(x)^{2}+x b(x)^{2}\right) s(x)$, hence $a(x)=b(x) v(x)$ with $v(x)=\sqrt{x+1 / s(x)} \bmod g(x)$. Extended Euclid!

Extended Euclid!

A Toy Example

\square The toy example sets $g(x)=x, L=\left(u^{7}, u^{2}, u^{3}, u^{10}, u^{13}, u^{1}\right.$, $\left.u^{11}, u^{0}\right), c=\left(\begin{array}{llll}1 & 1 & 0 & 101\end{array}\right)$, and $H^{\top}=\left(\begin{array}{ll}111\end{array}\right)^{\top}$, so $s(x)$ $=u^{3}+u^{2}+u+1=u^{12}$.
\square Hence $v(x)=(x+1 / s(x))^{1 / 2} \bmod g(x)=\left(x+u^{3}\right)^{1 / 2} \bmod x$ $=\left(u^{3}\right)^{1 / 2}=u^{9}$.
\square Extended Euclid starts with $a(x)=g(x)=x$ and $b(x)=0$, and proceeds until $\operatorname{deg}(a) \leq\lfloor t / 2\rfloor=0, \operatorname{deg}(b) \leq\lfloor(t-1) / 2\rfloor=$ 0 , with $\mathrm{a}(\mathrm{x})=\mathrm{u}^{9}$ and $\mathrm{b}(\mathrm{x})=1$.
\square Thus $\sigma(x)=x+u^{3}$, which is zero for $x=u^{3}=L_{2}$, and hence $e_{2}=1$ (i.e. c_{2} is in error).

Summary

\square Goppa codes are simple to construct and to decode.
\square Binary irreducible Goppa codes have distance $2 \mathrm{t}+1$. The best one gets for any other alternant code is distance $t+1$.
\square Cryptosystems on Goppa codes remain unbroken.

Problems and Challenges

Why Goppa?

\square Most syndrome-based cryptosystems can be instantiated with general [n, k]-codes, but not all choices of code are secure.

- Gabidulin, maximum rank distance (MRD), GRS, lowdensity parity-check (LDPC) and several other codes are all insecure.
\square Goppa seems to be OK.
- Complexity of distinguishing a permuted Goppa code from a random code of the same length and distance: $\mathrm{O}\left(\mathrm{t} \mathrm{n}^{\mathrm{t}-2} \log ^{2} \mathrm{n}\right.$) [Sendrier 2000], or $\mathrm{O}\left(2^{n} / \mathrm{t}\right)$ in most cryptosystems, where $t=\Theta(n / \log n)$.
- Few known vulnerabilities (e.g. generator polynomial defined over a proper subfield of the base field).

Choosing Parameters

\square Original McEliece setting:

- $m=10, n=2 m=1024$ (hence L spans $\mathbb{F}_{2 m}$), $\mathrm{t}=50$, $k=n-m t=524$, security ≈ 254, naïve key size $=65.5$ KiB , key size $=32 \mathrm{KiB}$.
\square Other choices [BLP 2008]:

security	n	t	k	m	naïve key size	key size
2^{80}	1632	$33+1$	1269	11	$74-253 \mathrm{KiB}$	57 KiB
2^{128}	2960	$56+1$	2288	12	$243-827 \mathrm{KiB}$	188 KiB
2^{192}	4624	$95+2$	3389	13	$698-1913 \mathrm{KiB}$	511 KiB
2^{256}	6624	$115+2$	5129	13	$1209-4147 \mathrm{KiB}$	937 KiB

Quasi-Dyadic Codes

\square Let t be a power of 2. A matrix $\mathrm{H} \in \mathcal{R}^{\mathrm{txt}}$ over a ring \mathcal{R} is called dyadic iff $\mathrm{H}_{\mathrm{ij}}=\mathrm{h}_{\mathrm{i} \oplus \mathrm{j}}$ for some vector $h \in \mathcal{R}^{\mathrm{t}}$.

Quasi-Dyadic Codes

\square Dyadic matrices form a subring of $\mathcal{R}^{\mathrm{t} \times \mathrm{t}}$ (commutative if \mathcal{R} is commutative).
\square Compact: O(t) rather than O(t²) space.
\square Efficient: multiplication in time O(t $\lg \mathrm{t}$) time via fast Walsh-Hadamard transform, inversion in time $\mathrm{O}(\mathrm{t})$ in characteristic 2.

Quasi-Dyadic Codes

\square A Cauchy matrix is a matrix $C \in\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{t} \times \mathrm{n}}$ where $C_{i j}=1 /\left(z_{i}-L_{j}\right)$ for vectors $z \in\left(\mathbb{F}_{q}\right)^{t}$ and $L \in\left(\mathbb{F}_{q}\right)^{n}$.
\square Goppa codes admit a parity-check matrix in Cauchy form: just take z to be the roots of the generator polynomial, i.e. $g(x)=$ $\left(x-z_{0}\right) \ldots\left(x-z_{t-1}\right)$.
\square Idea: find a dyadic Cauchy matrix.

Quasi-Dyadic Codes

\square Theorem: a dyadic Cauchy matrix is only possible over fields of characteristic 2 (i.e. $\mathrm{q}=2 \mathrm{~m}$ for some m), and any suitable $\mathrm{h} \in$ $\left(\mathbb{F}_{\mathrm{q}}\right)^{\mathrm{n}}$ satisfies

$$
\frac{1}{h_{i \oplus j}}=\frac{1}{h_{i}}+\frac{1}{h_{j}}+\frac{1}{h_{0}}
$$

with $z_{i}=1 / h_{i}+\omega, L_{j}=1 / h_{j}-1 / h_{0}+\omega$ for arbitrary ω, and $H_{i j}=h_{i \oplus j}=1 /\left(z_{i}-L_{j}\right)$.

Quasi-Dyadic Codes

\square Choose distinct h_{0} and h_{i} with $\mathrm{i}=2^{\mathrm{u}}$ for $0 \leq u<\lceil\lg \mathrm{n}\rceil$ uniformly at random from \mathbb{F}_{q}, then set

$$
h_{i+j} \leftarrow \frac{1}{\frac{1}{h_{i}}+\frac{1}{h_{j}}+\frac{1}{h_{0}}}
$$

for $0<\mathrm{j}<\mathrm{i}($ so that $\mathrm{i}+\mathrm{j}=\mathrm{i} \oplus \mathrm{j})$.
\square Complexity: O(n).

Quasi-Dyadic Codes

\square Structure hiding:

- choose a long dyadic code over \mathbb{F}_{q},
- blockwise shorten the code (Wieschebrink),
- permute dyadic block columns,
- dyadic-permute individual blocks,
- take a binary subfield subcode.
\square Quasi-dyadic matrices: $\left(\left(\mathbb{F}_{2}\right)^{\text {txt }}\right)^{m \times \ell}$.

Compact Keys

\square Sample parameters for practical security levels (private codes over $\mathbb{F}_{2} 16$).
\square Still larger than RSA keys... but faster, and quantum-immune ©

security	n	t	k	MB key size	BLP/MB
2^{80}	2304	64	1280	20480 bits	23
2^{128}	4096	128	2048	32768 bits	47
2^{192}	7168	256	3072	49152 bits	85
2^{256}	8192	256	4096	65536 bits	117

Further Issues

\square One can do encryption, signatures, even identity-based identification using ECC (error-correcting codes, not elliptic curve cryptosystems).
\square How do we get identity-based encryption? What about other protocols that are easy with pairings? N.B. Some functionality is possible with lattices - why not with ECC?

Appendix A

Hidden Subgroup Problem

\square Let \mathbb{G} be a group, $\mathbb{H} \subset \mathbb{G}$, and f a function on \mathbb{G}. We say that f separates cosets of \mathbb{H} if $f(u)=f(v)$ $\Leftrightarrow \mathrm{u} \mathbb{H}=\mathrm{v} \mathbb{H}, \forall \mathrm{u}, \mathrm{v} \in \mathbb{G}$.
\square Hidden Subgroup Problem (HSP):

- Let \mathcal{A} be an oracle to compute a function that separates cosets of some subgroup $\mathbb{H} \subset \mathbb{G}$. Find a generating set for \mathbb{H} using information gained from \mathcal{A}.
\square Important special cases:
- Abelian Hidden Subgroup Problem (AHSP)
- Dihedral Hidden Subgroup Problem (DHSP)

Appendix B

Ranking and Unranking

 Permutations\square Let $\mathcal{B}(\mathrm{n}, \mathrm{t})=\left\{\mathrm{u} \in\left(\mathbb{F}_{2}\right)^{\mathrm{n}} \mid \mathrm{w}(\mathrm{u})=\mathrm{t}\right\}$, with cardinality

$$
r=\binom{n}{t} \approx \frac{n^{t}}{t!}
$$

\square A ranking function is a mapping rank: $\mathcal{B}(\mathrm{n}, \mathrm{t}) \rightarrow$ \{1..r\} which associates a unique index in $\{1 . . r$ \} to each element in $\mathcal{B}(\mathrm{n}, \mathrm{t})$. Its inverse is called the unranking function.
\square Rank size: $\lg r \approx t(\lg n-\lg t+1)$ bits.

Ranking and Unranking

 Permutations\square Ranking and unranking can be done in O(n) time (Ruskey 2003, algorithm 4.10).
\square Computationally simplest ordering: colex.
\square Definition: $a_{1} a_{2} . . a_{n}<b_{1} b_{2} . . b_{m}$ in colex order iff $a_{n} . . a_{2} a_{1}<b_{m} . . b_{2} b_{1}$ in lex order.

Colex Ranking

\square Sum of binomial coefficients:

$$
\operatorname{Rank}\left(a_{1} a_{2} \ldots a_{k}\right)=\sum_{j=1}^{k}\binom{a_{j}-1}{j}
$$

\square Implementation strategy: precompute a table of binomial coefficients.

Colex Unranking

for $\mathrm{j} \leftarrow \mathrm{k}$ downto 1 \{

$$
\mathrm{p} \leftarrow \mathrm{j}
$$

$$
\text { while }\binom{p}{j} \leq r \text { \{ }
$$

$$
p \leftarrow p+1
$$

\}

$$
\begin{aligned}
& f \\
& r \leftarrow r-\binom{p-1}{\mathrm{a}_{\mathrm{j}} \leftarrow p}
\end{aligned}
$$

\}
return $a_{1} a_{2} \ldots a_{k}$

Appendix C

Decoding a syndrome $s(x)$ for a binary Goppa code

$\mathrm{v}(\mathrm{x}) \leftarrow(\mathrm{x}+1 / \mathrm{s}(\mathrm{x}))^{1 / 2} \bmod \mathrm{~g}(\mathrm{x}) / /$ extended Euclid!
$\mathrm{F} \leftarrow \mathrm{v}, \mathrm{G} \leftarrow \mathrm{g}, \mathrm{B} \leftarrow 1, \mathrm{C} \leftarrow 0, \mathrm{t} \leftarrow \operatorname{deg}(\mathrm{g})$
while $(\operatorname{deg}(\mathrm{G})>\lfloor\mathrm{t} / 2 \mathrm{~J})$ \{
$\mathrm{F} \leftrightarrow \mathrm{G}, \mathrm{B} \leftrightarrow \mathrm{C}$
while ($\operatorname{deg}(F) \geq \operatorname{deg}(G))$ \{

$$
\begin{aligned}
& \mathrm{j} \leftarrow \operatorname{deg}(F)-\operatorname{deg}(G), h \leftarrow \mathrm{~F}_{\operatorname{deg}(F)} / \mathrm{G}_{\operatorname{deg}(G)} \\
& \mathrm{F} \leftarrow \mathrm{~F}-\mathrm{h} x^{\mathrm{j}} \mathrm{G}, \mathrm{~B} \leftarrow \mathrm{~B}-\mathrm{h} \mathrm{x}^{\mathrm{C}}
\end{aligned}
$$

\}
\}
$\sigma(x) \leftarrow G(x)^{2}+x C(x)^{2}$
return $\sigma \quad / /$ error locator polynomial

Appendix D

Decoding Alternant Codes

\square Similar to Patterson's algorithm for binary irreducible Goppa codes.
\square Extended Euclid initialized with $s(x)$ instead of $v(x)$ and x^{r} instead of $g(x)$.
$\square \sigma(x)=b(x) / b(0)(s o$ that $\sigma(0)=1$).
\square N.B.: Patterson's algorithm works for binary reducible Goppa codes as long as the syndrome is invertible mod $g(x)$.

