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On the Complexity of Decoding Goppa Codes 

DILIP v. SARWATE, MEMBER,  IEEE 

Abstract--It is shown that i) erasures-and-errors decoding of 
Goppa codes can be done using O(n log2 n) arithmetic operations, 
ii) long primitive binary Bose-Chaudhuri-Hocquenghem (BCH) 
codes can be decoded using O(n log n) arithmetic operations, and 
iii) Justesen’s asymptotically good codes can be decoded using O(n2) 
bit operations. These results are based on the application of effi- 
cient computational techniques to the decoding algorithms recently 
discovered by Sugiyama, Kasahara, Hirasawa, and Namekawa. 

I. INTRODUCTION 

Sugiyama, Kasahara,  Hirasawa, and  Namekawa [l]-[3] have  
shown that, for a  t-error-correcting Goppa  code [4]-[6], the key 
equat ion for errors-only decoding as  well as  for erasures-and- 
errors decoding can be  solved by  use  of the extended version of 
Euclid’s algorithm for the greatest common divisor (gcd) of two 
polynomials. This algorithm requires O(t2) arithmetic operations, 
as  does  Berlekamp’s algorithm for Bose-Chaudhur i -Hoc- 
quenghem (BCH) codes [7] which also can be  appl ied to decoding 
Goppa  codes [8], [9]. Justesen [lo] and  the author [ll] have  in- 
dependent ly  d iscovered that if fast computat ional techniques 
for polynomial gcd’s [12], [13] are used,  then the key equat ion for 
errors-only decoding can be  solved using only O(t log2 t) arith- 
metic operations. In this correspondence,  this result is ex tended 
to the key equat ion for erqsures-and-errors decoding. Some other 
computat ions necessary in this case are also shown to require at 
most O(t log2 t) or O(n log n) arithmetic operations. Computa-  
tion of the syndrome, the error locations and  error (or erasure) 
values all require O(n log n) arithmetic operat ions [lo], [ll]. It 
follows that for a  fixed ratio of t/n, erasures-and-errors decoding 
of a  Goppa  code requires O(n log2 n) arithmetic operat ions and  
is of the same order of complexity as  errors-only decoding. Using 
Berlekamp’s estimates [14] of the minimum distance of long 
primitive binary BCH codes,  it is shown that these codes can be  
decoded  using O(n log n) arithmetic operations. The  asymptot- 
ically good  codes of Justesen [15] use  erasures-and-errors de-  
coding of Reed-Solomon codes in the outer decoder.  When  the 
efficient decoding algorithm proposed here is used,  the number  
of bit operat ions required by  the outer decoder  is reduced from 
O(n2 log n) to O(n log* n), and  the decoding of Justesen codes 
requires O(n2) bit operat ions which is the same as the order of 
complexity of the inner decoder.  

II. COMPLEXITY OF THE DECODING ALGORITHM 

Following the notation in [6], let g(z) be  a  polynomial of degree 
2t with coefficients in GF(q”), L  the subset  of elements of 
GF(qm) that are not roots ofg(z), and  n  the number  of elements 
in L. Then  the Goppa  code of length n, symbol field G&‘(q), 
location field GF(qm), and  Goppa  polynomial g(z) is the set of 
all vectors c that satisfy 

YZcT= 0, (1) 

where Y is a  2t X n  Vandermonde matrix and  Z is a  n  X n  diag- 
onal matrix [4]. Let M denote the set of error locations and  N the 
set of erasure locations. The  error-and-erasure locator polyno- 
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mials ue(.z) and  g&z) are as  def ined in [2]; for the error-and-era- 
sure-evaluator polynomials, a  slightly different definition is used,  
namely, 

?)&I = - c ey.y2’ -/EM g(Y) 6 AL @  - 6, E 

a,(z) = - c ey.y2’ YEN g(7) 6ci&y, (z - 6L 
where the ey  in (3) are erasure values, i.e., the difference between 
the arbitrary value assigned by  the decoder  to the symbol in the 
erasure location and  the transmitted symbol cy. 

Let S = [S2t-&!?2t-2, . . . ,S1,So] be  the syndrome vector de-  
f ined by  ST = YZrT, where r is the received vector, and  let S(z) 
=  Z&’ Sizi be  the corresponding syndrome polynomial. The  key 
equat ion then becomes 

where the decoder  knows both S(z) and  a,(z). 
The  definition of ~~(2) and  ~~(2) in (Z), (3), and  the corre- 

sponding key equation, (4), has  been  used by  MacWill iams and  
Sloane [16] who  attribute it to Helgert [17]. However,  the idea 
is implicit in [8]. While the definitions of ve  (z) and  qr(z) are not 
exactly those of [a], it is easy to verify that all results of [2] are 
equally applicable to (2)-(4). In particular, the errata-evaluator 
polynomial v(z) can  be  def ined as  in [2], and  we get the equa-  
tion 

u,(z)u,(z)S(z) 5  v(z) mod  Zig. (5) 

The  modif ied syndrome,polynomial S,(z) of degree 2t - 1  or less 
is def ined as  

S,(z) q u,(z)S(z) mod  z2t, 

and  the key equat ion can be  rewritten as  

u,(z)S,(z) =  v(z) mod  ,z~~. (6) 
Let deg  ue  = n, and  deg  u- =  n, with 1  I 2n, +  n, <  2t +  1. In [2] 
and  [3], it is shown that deg  Us I t - Kn, and  deg  7  < t + $n, and  
the following solution of (6) is proposed.  

Algorithm: Case 1) If n, =  0, i.e., if no  erasures occurred, the 
decoder  can follow the errors-only decoding procedure [I]. 

Case 2) deg  S, <  n, if and  only if n, =  0, and  the solution in this 
case is u,(z) =  l,~,(z) =  0, q(z) =  ~~(2) =  S,(z). 

Case 3) Otherwise, set r-l(z) =  z2t and  r,-,(z) =  S,(z), and  let 
the remainder sequence r;(z) be  as  def ined in [l] and  [2]. Let k 
be  the unique integer such that deg  rk-1 > t + 1/2n, and  deg  i-k <  
t + $n,. Then,  

q(Z) =  (-l)ksrk(Z) 

u,(z) =  &u,(z), 

where 6  is a  nonzero constant chosen to make SUk (z) manic. 
In applying fast computat ional techniques, note that Case 1  

has  been  dealt with in [lo], [ll] where it is shown that O(t log2 
t) arithmetic operat ions are sufficient if Algorithm HGCD ([13, 
procedure 8.71) is used.  In Case 2, only polynomial multiplication 
is necessary and  hence  only O(t log t) arithmetic operat ions are 
required [13]. However,  HGCD cannot  be  appl ied to Case 3  di- 
rectly. In order to solve the key equation, one  can begin with (5) 
rather than (6) since any  solution of one  is a  solution of the other. 
Furthermore, if 2n, +  n, <  2t +  1, the solution of (6) is unique 
[2, theorem 11, and  hence  it suffices to solve (5) for a  pair of rel- 
atively prime polynomials ue(z) and  q(z) of degrees at most t - 
l/pa, and  less than t + f/2nE, respectively. 

Lemma 1: If at least one  erasure has  occurred, then the erasure 
value(s) can  be  chosen so that deg  S = 2t - 1. 
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Proof: 

S2t--1= &$j. 

If Szt- 1 is zero, one of the erasure values (which are arbitrarily 
assigned) can be changed (to ry + 1, for example). For this 
modified received vector, Szt-l # 0 and deg S = 2t - 1. Note that 
this checking and forcing of S2t--1 to be nonzero takes O(n) 
arithmetic operations and can be done before the rest of the 
syndrome is computed. 

After forcing the degree of S(z) to be 2t - 1, one sets r-l(z) = 
cr,(z)S(z), r&) = z2t and invokes Algorithm HGCD. This is a 
recursive procedure that computes the polynomials rj-1, rj, Vj-1, 
Vj, Uj-1, and Uj, where j is the unique integer such that deg rj-1 
> lh deg r-1 and deg rj I ‘/2 deg rml = 1/2(2t - 1 + n,) < t + %n,. 
Thus, rj and Uj are exactly the polynomials rk and ub of Case 
3, and the additional iteration of Euclid’s algorithm, which is 
sometimes necessary in errors-only decoding [lo], [ll] is not re- 
quired here. Theorem 1 below has thus been proved. 

Theorem 1: The key equation for erasures-and-errors decoding 
of a t-error-correcting Goppa code can be solved using O(t log2 
t) arithmetic operations. 

As discussed in [lo] and [II], the computation of syndromes, 
error locations and error values all require O(n log n) arithmetic 
operations. Determining erasure values is no different from de- 
termining error values and also requires O(n log n) arithmetic 
operations. However, in erasures-and-errors decoding, there is 
also the following problem. The demodulator output may be ei- 
ther a symbol from GF(q) or a special symbol denoting an era- 
sure, for which the decoder substitutes some symbol from GF(q). 
The decoder thus knows the erasure-locations i.e., the set N. 
However, the computations required of the decoder make use of 
u,(z) and hence the decoder must first find a,(z) from the set 
N. 

Lemma 2: Given the set of erasure-locations N, the erasure- 
locator polynomial a,(z) can be determined by procedures re- 
quiring O(n log n) and O(t log2 t) arithmetic operations. 

Proof: n, = 1 N) I 2t. Consider the Goppa code of length n 
and minimum distance at least 4t + 1 that has the Goppa poly- 
nomial g2(z). Suppose that the all-zeroes codeword was trans- 
mitted and that the vector v was received where uy = 1, if y E N 
and zero otherwise. Using an errors-only decoding algorithm for 
this code, one can find the syndrome using O(n log n) arithmetic 
operations and the error-locator polynomial using O(t log2 t) 
arithmetic operations. This error-locator must be I&N(z - y), 
since this Goppa code has minimum distance at least 4t + 1 and 
at most 2t errors occurred. Hence U,(Z) can be computed by 
procedures requiring O(n log n) and O(t log2 t) arithmetic op- 
erations. Q.E.D. 

The above results can be summarized as follows. 

Theorem 2: For a fixed ratio of t/n, erasures-and-errors de- 
coding of a Goppa code requires O(n log2 n) arithmetic opera- 
tions. 

This result includes the results of Justesen [lo] and the’author 
[ 1 I] on errors-only decoding of Reed-Solomon and Goppa codes 
as special cases. We also have the following. 

Corollary 1: Erasures-and-errors decoding of a long primitive 
binary BCH code of block length n can be done using O(n log n) 
arithmetic operations. 

Proof: It is well-known that the BCH codes are a subclass 
of the Goppa codes. Berlekamp 1141 has proved that for long 
primitive binary BCH codes of rate R and block length n, the 
design distance is approximately 2n In R-l/log, n, i.e., t is O(n/ 

log n). Hence, the solution of the key equation requires 

O(t log2 t) = O(n log2 (n/log n)/log n) 
= O(n (log n - log log n)2/log n) 
= O(n log n) 

arithmetic operations. All other computations necessary are also 
of the same order of complexity. Q.E.D. 

Corollary 2: (MacWilliams-Sloane [16]). An alternant code 
of block length n can be decoded using O(n log2 n) arithmetic 
operations. 

This result is of interest since the alternant codes include the 
Goppa, the BCH, the Reed-Solomon, the generalized Srivastava 
and the Chien-Choy codes as subclasses. (See 1161 for details.) 

Corollary 3: Erasures-and-errors decoding of a Reed-Solomon 
code of block length n requires O(n log2 n) arithmetic opera- 
tions. 

In [15], Justesen describes his well-known asymptotically good 
codes. For these, the inner decoder uses O(n2/log2 n) arithmetic 
operations while the outer decoder uses O(n2/log n) arithmetic 
operations, or, equivalently, O(n2) and O(n2 log n) bit operations, 
respectively. The outer decoder uses an erasures-and-errors de- 
coding algorithm for Reed-Solomon codes. If the algorithm de- 
scribed in this correspondence is used, the outer decoder requires 
O(n log2 n) arithmetic operations or, equivalently, O(n log’ n) 
bit operations. Thus the complexity of the decoder for Justesen 
codes is dominated by the complexity of the inner, rather than 
the outer, decoder. Thus the following result has been proved. 

Corollary 4: A Justesen code of block length n can be decoded 
in O(n2) bit operations. 
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Some Results Related to Generalized Varshamov-Gilbert 
Bounds 

MIKHAIL DEZA AND FREDERICK HOFFMAN 

Abstract-Two generalizations of the Varshamov-Gilbert bound 
for error-correcting and error-detecting codes are developed. 
Sufficient intrinsic conditions are given for classes of linear codes 
over GF(q) to include “good” codes, and these classes are related 
to other known classes. A lower bound on the maximal order of 
subspaces contained in subsets of certain finite vector spaces is 
given and related to a bound on error-detecting codes. 

In[4],itisshownthatqn/]B-B] I ]CT(B)] Iqn/lEl,where 
q is prime and r is the family of all subsets of V. It is clear that 
these estimates are generalizations of the estimates of Gilbert and 
of Hamming-Rao, respectively (cf. [I]). (We note that 
log, I CT(B) ] is a generalization of the number h of information 
symbols.) 

I. INTRODUCTION 

In [6] Goppa has shown (in other notation) that ] CT(B) ] L 
q nl]B - B ] as n - a, if T is the family of all irreducible Goppa 
codes. (The Goppa codes are described in [6] and [7] as well as 
in [2] and [3]). Since these codes are subgroups of V, the results 
of [6] generalize the theorem of Varshamov-Gilbert which es- 
tablishes a bound for the class of all group-codes correcting an 
arbitrary additive noise. Similar results for other classes of codes 
appear in [9] and [lo]. We shall prove an analogous result for the 
segments defined here. The proof is a modification of the proof 
of the Varshamov-Gilbert bound given in [l], 

We shall discuss two concepts in this correspondence. First, 
we wish to consider the problem of constructing codes which 
correct arbitrary, but fixed, types of noise (as opposed to cor- 
recting all error patterns up to a certain weight). We prove a result 
analogous to the Varshamov-Gilbert bound on the size of a linear 
code needed for a given noise; in our case the code’is selected from 
a segment of self-inverse sets or a segment of subspaces. These 
are technically defined sets of “candidates for codes” which are 
large enough to enable us to establish the result,s and small 
enough to be of some value. It would, of course, be desirable to 
find smaller sets for which the bound may be attained. The re- 
sults given here include a set of sufficient conditions for a class 
of linear codes to contain “good” codes. Second, we prove a result 
on maximal subspaces contained in subsets of finite vector spaces, 
and employ this result to establish a bound on the size of codes 
to detect arbitrary noise, when the codes are selected from seg- 
ments of subspaces. 

Theorem: a) If T is a segment of self-inverse sets correcting the 
noise B, then ICT(B)I L qn/lB - BI. 

b) If q is odd, and if T is a segment of subspaces correcting the 
noise B, then ICr(B)I L 2qn/(2 + (q - 1)(/B - B] - 1)). In 
particular, if q is prime, this result applies when T is a segment 
of groups. 

Proof: a) Let CT(B) = A. Suppose the statement of a) is false. 
Then,since (AIIB-Bl <qn, IA+ (B-B)\{O)] <qn- 1,sothat 
there is a nonzero element u of V which does not belong to A + 
(B - B). Further, -v is also such an element; since, if-v = al + 
bl - 62 (al E A, bl, b2 E B), then v = -al + b2 - b and u E A + 
(B - B), a contradiction. The set A’ = A U (II,--0) is in 7, since 
A’ = -A’and A C A’. Since A’ - A’ = (A - A) U @I,-v) - A), 
andsince((v,-u{-A)n(B-B)=O,bythechoiceofv,A’cor- 
pecE;fe. But IA’1 > IA ] = ] CT(B) I, a contradiction. Thus a) must 

II, SEGMENTS OF SETS CORRECTING NOISE 

The problem of construction of maximal codes for correction 
of an arbitrary set of additive errors was posed in [4] and [5]. We 
let V be a vector space of dimension n over GF(q), and let the set 
R, 0 E B C V, be called noise. For a subset A of V, we let A - A 
= {ai - as]ai,as E A} and -A = {-ala E A). Following [4], we 
say that A is a code correcting the noise B provided that, for all 
anas E A and bl,bz E B, if ai # as then ai + bl # as + bz. This 
condition is clearly equivalent to (A - A) n (B - B) = {O). If A 
is a subspace (in fact if A is only a subgroup of V), this condition 
is equivalent to A n (B - B) = {O}. 

Let 7 be a family of subsets of V. We shall say that T corrects 
the noise B if some element of T corrects B. In this case, we let 
CT(B) be an element of 7 of maximal cardinality which corrects 
B. We shall call a family 7 a segment of groups (or of subspaces) 
if 

b) Now suppose the statement of b) is false. Then, for some 
segment of subspaces 7 with CT(B) = A, we have 

IAl < 2qnl(2 + (q - l)tIB - BI - 1)) 

so that 

lAl[l/(q - 1) + (JB -El - 1)/2] <qn/q - 1, 

and 

I) every element of T is a subgroup (subspace) of V, and 
2) every subgroup (subspace) of V containing an element of 

7 as a subset is itself in 7. 

(IAl - l)/(q - 1) + IAI(IB -BI - 1)/2 <q” - l/q - 1. 

We now consider the distinct one-dimensional subspaces of V. 
Therearepreciselyqn-l/q-linall,and]A](JB-BI-1)/2 
such subspaces intersect A + ((B - B)\{O)) nontrivially since, for 
anyueA+(B-B),-ueA+(B-B)and-v=vonlyforv= 
0 (since q is odd). (We know that 0 B A + ((B - B)\(O)), since A 
r‘l (B - B) = (01). There must then, be a one-dimensional sub- 
space W with W n (A + (B - B)) = (0). Thus (A + W) n (B - 
B) = {O). The subspace A + W corrects the noise B and A + W E 
r. Since IA + WI > IAl, we have a contradiction to the maxi- 
mality of ) A I, and we have proved the assertion of b). 

A segment of 7 is a segment of self-inverse sets if 

1) every A E 7 satisfies A = -A, and 
2) if A C V satisfies A = -A and A contains an element of T 

as a subset, then A E 7. 

III. THEMAXIMALSUBSPACECONTAINEDINASUBSETOF 
AFINITEVECTORSPACE 

Thus every segment of groups is a segment of self-inverse sets. 
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We now prove a result on the size of a maximal subspace con- 
tained in a subspace of a finite vector space, which we shall apply 
in Section III to the problem of detecting noise. We point out that 
when the ground field is of prime order, the theorem can be re- 
stated for elementary Abelian groups. 

Let V be a vector space of dimension n over GF(q). For any 
positive integer b, 1 I b I qn, let w( b) be the least integer m with 
b Iqm. 

Theorem: Let A be a subset of V containing a subspace of di- 
mension one. Then the set A contains a subspace of dimension 
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m ~p(lVl/(q - l)((]V] - )A()+ l)).ThereisasetA* C Vwith 
IA*1 = IAl and with no subspace of dimension larger than 
fi(lVl/(q - l)((lVl - IAl) + 1)). 

Proof: Let W be a subspace of V of maximal dimension 

result, since any subspace of V contained in A will detect B. It 
should be pointed out that, in the proof of the theorem of Section 
III, W may be chosen to contain U so that W will be an element 
of r in virtue of 7 being a segment of subspaces of V. 

contained in A. Let W = (wl,wz, . . - ,wtJ, where t = qm and where 
we let w I = 0. We define a sequence {Si) of subsets of A as follows. 
SO = V,forj = 1,-s. ,t, we define Sj inductively by Sj = {S ]S E 
Sj-i and wj + CYS E A, all a E GF(q)]. Clearly W c St E * * * c S1 
E A c So = V. It is also clear that for j = 1, . . . ,t and for every 
s E Sj-i\Sj, there is (Y E GF(q) withgj + CYS E v\A. Thus Sj-i] 
- ISjl I (q - l)(lVl - IAl), lsjl 2 ISj-11 - (4 - l)( VI - I 
IAl), IS.1 1 ]Se] -j(q - l)(]V] - ]A]),sothat,inparticular, 
]St] L (VI - t(q - l)((V] - IAl). Thus IS,\Wl = l&l -t 2 
IVJ-t(q-l).(IVI -]A])-t>O,ifandonlyift<]V]/(q- 
I)(] VI - IAI) + 1. But, if &\W # 0, the subspace generated by 
S, U (s], for any s E S,\W, is contained in A and is of dimension 
greater than that of W, contradicting the maximality of W. Thus 
S,\W = 0 so that 

We also point out a partial converse to the last theorem. Let 
M be an arbitrary subset of V with 0 E M. If M contains an ele- 
ment of 7 as a subset, we shall designate by GT(M) such an ele- 
ment of 7 of largest cardinality. 

Proposition 1: Let M be a subset of V, 0 E M. If 7 is a family 
of Varshamov-Gilbert type which detects the set (V\M) U (01, 
then 

IG'(M)I L qn/K,(qn - IMI + 1). 
Proof: This is clear, since G’(M) = DT((V”\M) LJ (0)). 

Now, let us briefly consider the question, for fixed positive m, 
of the orders of maximal linear codes in V (GF(q)) correcting 
m-element noise. For a family T of codes correcting at least one 
m-element noise, let D7(m) = max BI=~ ID7(B)I, the maximum 
taken over all m-element noise B d etected by 7. D(m) is DT(m) 
where 7 is the family of all subspaces of V. 

Proposition 2: D(m) is the greatest power of q not exceeding 
qn - m + 1. 

t 2 IVll(q - l)((lVl - IAI) + I), 

so that 

m 1 y(IVI/(q - l)((lVl - IAI) + I)), 

as was asserted in the first part of the theorem. 

We now let ] A ] be fixed and let W* be a fixed subspace of V 
of dimension n - p(IVl/(q- l)((]V] - ]A])+l)).Weshallform 
a set A* of cardinality ] A ] by deleting ( VI - I W* I + 1 - ] A I 
elements from (V\ W*) U (O]. First, we must pick a subspace W 
ofVofdimensionp((V]/(q-l)(((V] - ]A])+I))withW+W* 
= v and W n W* = {O). Since IA I 2 I WI (as can be seen from 
the first part of the proof), we may retain the elements of W in 
A*. The set A* cannot contain a subspace of dimension larger 
than dim W, so the theorem is proved. 

Corollary: Let G be an elementary Abelian group of order pn, 
p prime. Let A be a subset of V containing a nontrivial subgroup 
of G. Then the set A contains a subgroup of order at least p “/(p 
- l)((pn - IAl) + 1). 

Proof: This is simply a restatement of the theorem for the 
case where q is a prime. 

IV. SEGMENTSDETECTINGNOISE 

We now turn to the problem of codes detecting noise, and ob- 
tain bounds of a type similar to those of Varshamov-Gilbert. 

We say that the set A C V is a code detecting the noise B if, 
for all ai,as E A and b E B, if al # a2 then al + b # as. Clearly, 
this is equivalent to the condition that (A - A) (7 B = {O). If A 
is a group, then the condition becomes A n B = (0). If a family 
r contains a nontrivial code detecting the noise B, then DT(B) will 
denote one such code which has maximal cardinality. In [4], it is 
shown that 

qnllB U t-B)1 5 P(B)I 5 9” - IBI + 1, 
if 7 is the family of all subsets of V. 

We shall say that a family 7 of subspaces of V is of Varsha- 
mowGilbert type if, for every noise B (0 E B C V) which is de- 
tected by 7, we have ] DT(B) I 2 qn/K, I B I, where K, is a constant. 
This condition is somewhat stronger than the condition ] CT(B) ] 
L q”/K,IB - BI d iscussed earlier, since there are subsets B with 
1;: 5; P,t for which no B’ exists with 0 E B’ C V and ] B’( 

I 

Theorem: Let 7 be a segment of subspaces of V; then T is of 
Varshamov-Gilbert type. 

Proof: If B is a noise detected by 7 with 0 E B C V, then if 
A = (V\B) U (0) there is a nontrivial element U of ,T contained 
in A. We can then apply the theorem of Section III to obtain the 

Proof: This follows easily from the theorem of Section III. 
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Odd Weight Symmetry in Some Binary Codes 

VIJAY K. BHARGAVA 

Abstract-If a linear binary code of length n contains the all-one 
codeword, than the weights of the code are symmetric. We consider 
those codes which do not contain the all-one codeword and yet have 
an equal number of symmetrically placed odd weight words. 
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