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Abstract. Courtois-Finiasz-Sendrier (CFS) digital signatures critically
depend on the ability to efficiently find a decodable syndrome by
random sampling the syndrome space, previously restricting the class
of codes upon which they could be instantiated to generic binary
Goppa codes. In this paper we show how to construct t-error correct-
ing quasi-dyadic codes where the density of decodable syndromes is
high, while also allowing for a reduction by a factor up to t in the key size.
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1 Introduction

Digital signatures are among the most useful and pervasive cryptographic prim-
itives, either per se or as part of more elaborate, derived protocols. Yet the
overwhelming majority of actually deployed signature schemes seem to rely on
the hardness of certain computational problems that are efficiently solvable by
quantum computers [19]. Should quantum computers become a technological
reality, the task of ensuring that suitable quantum-resistant signatures are avail-
able for deployment becomes critical.

The signature algorithm proposed by Courtois, Finiasz and Sendrier, or CFS
for short [4], is one of the few and most promising schemes known based on the
? Supported by the Brazilian National Council for Scientific and Technological Devel-
opment (CNPq) under research productivity grant 303163/2009-7.



difficulty of decoding linear error-correcting codes. However, it has the drawback
that public keys tend to be exceedingly large [9], all the more so due to an attack
due to Bleichenbacher (unpublished, but described in [9]).

Part of the difficulty resides in obtaining codes with high density of decod-
able syndromes, since the CFS signing mechanism involves sampling random
syndromes until a decodable one is found. Essentially the only family of suitable
codes for this purpose is that of binary Goppa codes, for which one can actually
correct all t design errors, leading to a signing complexity of O(t!). In compari-
son, for other classes of codes, no decoding method is known that is capable of
efficiently correcting more than about half as many errors; since one has then to
design the error correcting capacity twice as high, the CFS signing complexity
becomes O((2t)!) ≈ O((t!)2 · 4t/

√
t), far too much for any secure parameter set.

Quasi-dyadic (QD) codes [14], which constitute a proper subfamily of Goppa
codes, have been proposed to address the problem of key reduction in the re-
lated McEliece and Niederreiter cryptosystems [13, 15]. However, the original QD
construction only yields codes with a fairly low density of decodable syndromes,
comparable to generic alternant codes rather than to other Goppa codes.

Our contribution: In this paper we modify the construction algorithm for
t-error correcting quasi-dyadic codes [14], where the density of decodable syn-
dromes is high, while also allowing for a reduction by a factor up to t in the key
size. This yields dense binary Goppa codes as needed for practical instantiation
of CFS signatures.

Recently, in an independent unpublished work Kobara [12] proposed another
construction (dubbed flexible quasi-dyadic, or FQD for short) for the same prob-
lem, based on selecting distinct linear combinations from the rows of a certain
nonsingular matrix, with the associated computational effort of this kind of oper-
ation4. In contrast, our proposed algorithm is more accurately seen as a natural
extension of the original quasi-dyadic construction, whereby a stringent condi-
tion on the length of private codes is dropped and replaced by a straightforward
consistency validation for the resulting parity-check matrix. It is also compu-
tationally simpler, since no linear combinations of rows from the parity-check
matrix have to be generated and compared. Besides, contrary to [12] we pro-
vide a security assessment of binary QD codes against certain recent structural
attacks [7, 20] against this and other families of error-correcting codes. In partic-
ular, we argue that, in spite of those attacks being successful against non-binary
QD codes (and quasi-cyclic codes as well), binary QD codes remain unscathed
and are hence suitable for cryptographic applications.

The remainder of this paper is organized as follows. Section 2 introduces some
basic concepts of coding theory. We proceed by describing the CFS signature
scheme and its security in Section 3. In Section 4 we review the class of quasi-
dyadic codes and propose a modification of the generation algorithm, enlarging
4 We note en passant that, although [12] claims that the FQD construction further
reduces key sizes, this does not hold since that method does not produce any code
that is not defined by [14, Theorem 2].
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that class with codes where the density of decodable syndromes increases by
an exponential factor in the number of errors. We discuss security issues of the
resulting quasi-dyadic CFS scheme in Section 5. We conclude in Section 6.

2 Preliminaries

In what follows all vector and matrix indices are numbered from zero onwards.

Definition 1. Given a ring R and a vector h = (h0, . . . , hn−1) ∈ Rn, the dyadic
matrix ∆(h) ∈ Rn×n is the symmetric matrix with components ∆ij = hi⊕j,
where ⊕ stands for bitwise exclusive-or on the binary representations of the in-
dices. The sequence h is called its signature. The set of dyadic n × n matrices
over R is denoted ∆(Rn). Given t > 0, ∆(t, h) denotes ∆(h) truncated to its
first t rows.

One can recursively characterize a dyadic matrix when n is a power of 2: any
1× 1 matrix is dyadic, and for k > 0 any 2k × 2k dyadic matrix M has the form

M =

[
A B
B A

]
,

where A and B are 2k−1 × 2k−1 dyadic matrices. It is not hard to see that the
signature of a dyadic matrix coincides with its first row. Dyadic matrices form a
commutative subring of Rn×n as long as R is commutative [11]. We will consider
here only the case where R = Fq, the finite field with q (a power of 2) elements.

Definition 2. A dyadic permutation is a dyadic matrix Πi ∈ ∆({0, 1}n) whose
signature is the i-th row of the identity matrix.

Definition 3. A quasi-dyadic matrix is a (possibly non-dyadic) block matrix
whose component blocks are dyadic submatrices. A quasi-dyadic (QD) code is a
linear error-correcting code that admits a quasi-dyadic parity-check matrix.

Definition 4. Given two disjoint sequences z = (z0, . . . , zt−1) ∈ Ft
q and L =

(L0, . . . , Ln−1) ∈ Fn
q of distinct elements, the Cauchy matrix C(z, L) is the t×n

matrix with elements Cij = 1/(zi − Lj), i.e.

C(z, L) =


1

z0 − L0
. . .

1

z0 − Ln−1
...

. . .
...

1

zt−1 − L0
. . .

1

zt−1 − Ln−1

 .

Cauchy matrices have the property that all of their submatrices are nonsingu-
lar [18]. Notice that, in general, Cauchy matrices are not dyadic and vice-versa,
although the intersection of these two classes is non-empty in characteristic 2.
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Definition 5. Given t > 0 and a sequence L = (L0, . . . , Ln−1) ∈ Fn
q , the Van-

dermonde matrix vdm(t, L) is the t× n matrix with elements Vij = Li
j.

Definition 6. Given a sequence L = (L0, . . . , Ln−1) ∈ Fn
q of distinct elements

and a sequence D = (D0, . . . , Dn−1) ∈ Fn
q of nonzero elements, the General-

ized Reed-Solomon code GRSt(L,D) is the [n, k, t] linear error-correcting code
defined by the parity-check matrix

H = vdm(t− 1, L) · diag(D).

An alternant code is a subfield subcode of a Generalized Reed-Solomon code.

Let p be a prime power, let q = pd for some d, and let Fq = Fp[x]/b(x) for
some irreducible polynomial b(x) ∈ Fp[x] of degree d. Given a code specified
by a parity-check matrix H ∈ Ft×n

q , the trace construction derives from it an
Fp-subfield subcode by fixing a basis of Fq over Fp, writing the Fp-coefficients of
each Fq-component ofH onto d successive rows of a parity-check matrix Td(H) ∈
Fdt×n
p for the subcode. The related co-trace parity-check matrix T ′d(H) ∈ Fdt×n

p ,
equivalent to Td(H) by a left permutation, is obtained from H by writing the
Fp-coefficients of terms of equal degree from all components from a column of
H onto successive rows of T ′d(H).

Thus, given Fq elements ui(x) = ui,0 + · · · + ui,d−1x
d−1, the (co-

)trace construction maps a column (u0, . . . , ut−1)
T from H to the column

(u0,0, . . . , u0,d−1; . . . ;ut−1,0, . . . , ut−1,d−1)
T on the trace matrix Td(H), and to

the column (u0,0, . . . , ut−1,0; . . . ;u0,d−1, . . . , ut−1,d−1)
T on the co-trace matrix

T ′d(H).

Definition 7. Given a prime power p, q = pd for some d, a sequence L =
(L0, . . . , Ln−1) ∈ Fn

q of distinct elements, and a polynomial g(x) ∈ Fq[x]
of degree t such that g(Li) 6= 0 for 0 6 i < n, the Goppa code Γ (L, g)
over Fp is the alternant code over Fp corresponding to GRSt(L,D), where
D = (g(L0)

−1, . . . , g(Ln−1)
−1).

A binary Goppa code can correct up to t errors, sometimes slightly more [17,
2], regardless of whether the generator g(x) is irreducible or not. For all other
cases, no method is generally known to correct more than about t/2 errors.

Consider a t-error correcting Fp-alternant code of length n derived from a
code over Fpm . The syndrome space has size pmt. However, the decodable syn-
dromes are only those that correspond to error vectors of weight not exceeding t.
In other words, only

∑t
w=1

(
n
w

)
(p− 1)w nonzero syndromes are decodable, and

hence their density is

δ =
1

pmt

t∑
w=1

(
n

w

)
(p− 1)w.

If the code length is a fraction 1/pc for some c > 0 of the full length, i.e.
n = pm−c, the density can be approximated as

δ ≈ (nt/t!)(p− 1)t/pmt = (pm−c)t(p− 1)t/(pmtt!) = (p− 1)t/(pctt!).
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A particularly good case is therefore δ 6 1/t!, which occurs when (pc/(p−1))t 6
1, i.e. c 6 logp(p− 1), or n > pm/(p− 1). Unfortunately this also means that for
binary codes the highest densities are attained only by full or nearly full length
codes, otherwise the density is reduced by a factor 2ct. For full length binary
codes (p = 2, n = 2m) the density simplifies to

δ ≈ 1

2mt

nt

t!
=

1

t!
.

3 CFS signature scheme

Courtois, Finiasz and Sendrier proposed in [4] the first practical signature scheme
based on coding theory. The Full Domain Hash (FDH) approach assumes that
all the hash values can be inverted by decryption.

3.1 Description

The CFS signature scheme is based on the Niederreiter cryptosystem: signing a
document requires hashing it to a syndrome and then decoding it to an error
vector of a certain weight t. Since not all syndromes are decodable, a counter is
hashed with the message, and the signer tries successive counter values until a
decodable syndrome is found. The signature consists of both the error pattern
of weight t corresponding to the syndrome, and the counter value yielding this
syndrome.

Let H : {0, 1}∗×N→ Fk
q be a random oracle for a given vector space Fk

q over
a finite field Fq. Formally, the CFS signature scheme consists of the following
algorithms:

– Keygen: For the desired security level expressed by suitable integers q, n, k,
t, choose a linear t-error correcting [n, k]-code over Fq defined by a public
parity-check matrix H with a private decoding trapdoor T . The private-
public key pair is (T , H).

– Sign: Let m ∈ {0, 1}∗ be the message to sign. Find c ∈ N (either sequentially
or by random sampling) such that s ← H(m, c) is a decodable syndrome.
Using the decoding trapdoor T , find e ∈ Fn

q of weight wt(e) 6 t such that
HeT = sT. The signature is the pair (e, c).

– Verify: Let (e, c) be a purported signature for message m. Compute s ←
H(m, c), and accept iff wt(e) 6 t and HeT = sT.

The original description of the CFS scheme [4] suggests using a binary Goppa
code and scanning over the c values sequentially. Random counter sampling
(limited to r bits, i.e. from the set {0 . . . 2r − 1}) was proposed in [5] to obtain
a security proof in the random oracle model, assuming the intractability of the
following problems:

Definition 8 (Goppa Parametrized Bounded Decoding (GPBD)).
Given a matrix H ∈ Fr×n

2 and a syndrome s ∈ Fr
2, is there a word e ∈ Fn

2

of weight wt(e) 6 r/ lg n such that HeT = sT?
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Definition 9 (Goppa Code Distinguishing (GD)). Given m, t, n ∈ N and
a matrix H ∈ Fmt×n

2 , is H the parity-check matrix of a binary t-error correcting
[n, n−mt] Goppa code?

The main drawback of the CFS scheme is the key size. For the 80-bit security
level, the authors of [4] suggest taking m = 16 and t = 9, leading to 1152 KiB
keys. In the next section, we propose a construction that allows for smaller keys
(and faster arithmetic), by using quasi-dyadic Goppa codes.

4 Quasi-dyadic codes

We recap the original construction of binary QD Goppa codes [14]. These are
characterized by Theorem 1, which in turn suggests Algorithm 1, taken from the
same reference.

Theorem 1 ([14]). Let H ∈ Fn×n
q with n > 1 be simultaneously a dyadic matrix

H = ∆(h) for some h ∈ Fn
q and a Cauchy matrix H = C(z, L) for two disjoint

sequences z ∈ Fn
q and L ∈ Fn

q of distinct elements. Then Fq is a binary field, h
satisfies

1

hi⊕j
=

1

hi
+

1

hj
+

1

h0
, (1)

and zi = 1/hi + ω, Lj = 1/hj + 1/h0 + ω for some ω ∈ Fq.

4.1 Quasi-dyadic codes for CFS signatures

Because the sequences z and L must be disjoint and consist of distinct elements,
the length of the codes Algorithm 1 produces are upper bounded by n 6 2m−1,
and hence the syndrome density is bound by 1/(2tt!). Clearly, if z and L were not
disjoint at least one element Hij = 1/(zi −Lj) of matrix H would be undefined
due to division by zero.

However, the CFS signature scheme only needs a very small t (say, t . m),
meaning that most elements of the sequence z, and hence the corresponding rows
of the largest possible matrix ∆(h), are left unused anyway when defining the
actual code. It is therefore possible to allow matrix ∆(h) to contain undefined
entries, as long as the rows and columns containing those entries are removed
afterwards, and that ∆(t, h) itself contains only well-defined entries. This means
the code length can be naturally extended all the way up to 2m−t, corresponding
to an exact partition of the field elements from F2m into two disjoint sequences
z and L.

In principle, this strategy can fail, i.e. the first t rows could contain an un-
defined element. This can be handled by either choosing a different code, or else
by carefully rearranging the dyadic signature h into some h′ in order to permute
the rows of ∆(h) and eliminate undefined elements from ∆(t, h′). As it turns out,
the probability that an improper element will appear on the first t rows of ∆(h)
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Algorithm 1 Constructing a purely dyadic binary Goppa code
Input: q (a power of 2), n 6 q/2, t.
Output: Support L, generator polynomial g, dyadic parity-check matrix H for a

Goppa code Γ (L, g) of length n and design distance 2t+ 1 over Fq.
1: U ← Fq \ {0}
. Choose the dyadic signature (h0, . . . , hn−1). N.B. Whenever hj with j > 0 is taken

from U , so is 1/(1/hj +1/h0) to prevent a potential spurious intersection between
z and L.

2: h0
$←U, U ← U \ {h0}

3: for s← 0 to dlgne − 1 do
4: i← 2s

5: hi
$←U, U ← U \ {hi, 1/(1/hi + 1/h0)}

6: for j ← 1 to i− 1 do
7: hi+j ← 1/(1/hi + 1/hj + 1/h0)
8: U ← U \ {hi+j , 1/(1/hi+j + 1/h0)}
9: end for
10: end for
11: ω $←Fq

. Assemble the Goppa generator polynomial:
12: for i← 0 to t− 1 do
13: zi ← 1/hi + ω
14: end for
15: g(x)←

∏t−1
i=0 (x− zi)

. Compute the support:
16: for j ← 0 to n− 1 do
17: Lj ← 1/hj + 1/h0 + ω
18: end for
19: h← (h0, . . . , hn−1)
20: H ← ∆(t, h)
21: return L, g, H
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is extremely low. As a consequence, the simpler strategy of just trying another
code, if this is ever necessary in practice, is much simpler to implement without
any measurable impact on either security or efficiency.

This idea is captured in Algorithm 2, which in practice is as simple to imple-
ment and as efficient as Algorithm 1. In a sense it is actually somewhat simpler,
since less field elements have to be computed and discarded from the remaining
allowed set U . Notice that improper array elements, whose evaluation would
cause division by zero, are represented by a zero value, since this cannot ever
occur on a proper array entry.

Algorithm 2 Constructing a purely dyadic, CFS-friendly code
Input: m, n, t.
Output: A dyadic signature h from which a CFS-friendly t-error correcting binary

Goppa code of length n can be constructed from a code over F2m , and the sequence
b of all consistent blocks of columns (i.e. those that can be used to define the code
support).

1: q ← 2m

2: repeat
3: U ← Fq \ {0}
4: h0

$←U, U ← U \ {h0}
5: for s← 0 to m− 1 do
6: i← 2s

7: hi
$←U, U ← U \ {hi}

8: for j ← 1 to i− 1 do
9: if hi 6= 0 and hj 6= 0 and 1/hi + 1/hj + 1/h0 6= 0 then
10: hi+j ← 1/(1/hi + 1/hj + 1/h0)
11: else
12: hi+j ← 0 . undefined entry
13: end if
14: U ← U \ {hi+j}
15: end for
16: end for
17: c← 0 . also: U ← Fq

18: if 0 6∈ {h0, . . . , ht−1} then . consistent root set
19: b0 ← 0, c← 1 . also: U ← U \ {1/hi, 1/hi + 1/h0 | i = 0, . . . , t− 1}
20: for j ← 1 to bq/tc − 1 do
21: if 0 6∈ {hjt, . . . , h(j+1)t−1} then . consistent support block
22: bc ← j, c← c+1 . also: U ← U\{1/hi+1/h0 | i = jt, . . . , (j+1)t−1}
23: end if
24: end for
25: end if
26: until ct > n . consistent roots and support
27: h← (h0, . . . , hq−1), b← (b0, . . . , hc−1) . also: ω $←U
28: return h, b . also: ω
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Algorithm 2 produces a code that is amenable to the same treatment as
a generic Goppa code when instantiating the CFS signature scheme, namely,
apply the trace construction of a binary alternant code from the code over F2m ,
permute the columns of the corresponding parity-check matrix, and put the
result in systematic form to get a CFS public key. However, this simple technique
does not benefit from a possible reduction in key size since it destroys the quasi-
dyadic structure. Algorithm 2 is designed to preserve that structure by removing
the entire t× t block where one (or more) improper column lies.

The strategy to get shorter keys is then to permute the blocks (or a large
subset thereof) among themselves, dyadic-permute each block individually, and
apply the co-trace construction to get a binary quasi-dyadic alternant code. This
has to be done carefully so as to fully hide the code structure. The obvious ap-
proach is to delete more blocks and/or to replace them (and also the blocks that
contain improper columns) by random dyadic blocks (the latter case corresponds
to Wieschebrink’s technique). One has to be careful here as well, since if only a
fraction 1/2c of the columns remain, the syndrome density effectively decreases
by a factor 2ct as seen above. A sensible choice, which we will usually adopt, is
to take a fraction 2−1/t of full code length (i.e. c = 1/t), since this only increases
the average signing time by a factor of 2.

Typical parameter combinations are put forward on Table 1. We will later
examine some possible parameter choices in the context of, and as a result of,
the security discussion in Section 5.

Table 1. Suggested parameters for practical security levels.

level m t n = b2m−1/te k = n−mt key size (KiB)
80 15 12 30924 30744 169
100 20 12 989724 989484 7248
120 25 12 31671168 31670868 289956

5 Security

Most of the time, the most threatening attacks are based on decoding algorithms
for generic linear codes. There are two main families of generic algorithms, (Gen-
eralized) Birthday Algorithm (GBA) and Information Set Decoding (ISD). How-
ever, due to the peculiar nature of QD codes one has to take care of structural
attacks as well. We provide an overview of these attacks and their impact on the
choice of parameters for a quasi-dyadic CFS instantiation.

5.1 (Generalized) birthday attacks

An attack due to Daniel Bleichenbacher against the CFS scheme is described
in [9]. We can shortly describe this attack as follows:
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– build 3 lists L0, L1, and L2 of XORs of respectively t0, t1 and t2 columns of
H (with t = t0 + t1 + t2).

– merge the two lists L0 and L1 into a list L′0 of XORs of t0 + t1 columns of
H, keeping only those starting with λ zeros.

– repeat the following steps:
• choose a counter and compute the corresponding document hash,
• XOR this hash with all elements of L2 matching on the first λ bits,
• look up each of these XORs in L′0: any complete match gives a valid

signature.

Due to this attack, the values ofm and t proposed in the original CFS scheme
are not enough to ensure a proper security level. Therefore, instead of m = 16
and t = 9, the authors of [9] propose m = 21 and t = 10, or m = 19 and t = 11,
or m = 15 and t = 12, as new parameters for a security of more than 280 binary
operations.

5.2 Decoding attacks

The authors of [9] derive lower bounds on the work factor of idealized versions
of the ISD and of the GBA. Table 2 shows the cost of these two attacks against
various parameter sets, calculated according to [9]. Table 3 lists for each t the
minimum m such that the security level is about 280 or larger, taking both ISD
and GBA into account, and the resulting key sizes.

For simplicity, on Table 2 we assume full-length codes with n = 2m. In
practice we would adopt slightly shorter punctured codes, taking e.g. n = 2m−1/t

since this keeps the signing time within a factor of 2 from the corresponding time
for full-length codes; this choice is adopted in Table 3. While the key size may be
too large for smaller t, and conversely the signing complexity may be too large
for larger t, intermediate combinations like m = 15, t = 12 may be just right in
practice for this security level.

Table 2. Time complexity (given as lg) for the ISD / GBA attack against the CFS
scheme using binary codes with various parameter sets.

@
@@t
n

215 216 217 218 219 220 221

9 66.4/60.3 72.2/63.3 78.1/66.4 83.9/69.5 89.8/72.5 95.6/75.6 101.5/78.7
10 72.8/63.1 79.5/66.2 86.2/69.3 93.0/72.4 99.8/75.4 106.5/78.5 113.3/81.5
11 79.0/67.2 86.6/71.3 94.3/75.4 102.0/79.5 109.6/83.6 117.4/87.6 125.1/91.7
12 85.2/81.5 93.7/85.6 102.2/89.7 110.8/93.7 119.4/97.8 128.1/101.9 136.7/105.9

5.3 Structural attacks

Structural attacks attempt to benefit from the symmetries existent in the public
and private information. As an example of the potential of such attacks, the
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Table 3. Minimum m to yield time complexity of at least 280, expected number of
signing attempts, and key sizes.

(t,m) (8, 25) (9, 22) (10, 21) (11, 19) (12, 15) (13, 14) (14, 14) (15, 13) (16, 13)

sec level 281.7 281.7 281.5 283.6 281.5 280.7 284.1 280.7 284.6

avg sign atts 216.3 219.5 222.8 226.3 229.8 233.5 237.3 241.3 245.3

key size (KiB) 93902 93862 25080 12560 169 346 187 187 13

technique described in [16] successfully extracts the private key from the quasi-
cyclic codes proposed in [10]. That scheme takes a binary quasi-cyclic subcode
of a BCH code of length n as the secret code. The structure is hidden by a
heavily constrained permutation in order to produce a quasi-cyclic public code.
This implies that the permutation transformation is completely described with
n20 binary entries where n0 � n is the quasi-cyclic index. The attack takes
advantage of the fact that the secret is a subcode of completely known BCH
code. The idea is to construct a system of linear equations by exploiting the
public generator matrix and a known parity-check matrix of the BCH code, so
as to get an overdefined (and easily solvable) system satisfied by the unknown
permutation matrix.

We show how to adapt this attack to our variant. Let H0 be a private parity-
check matrix of the underlying [n, k, 2t + 1] Goppa code, for which a decoding
trapdoor is known to exist (or at least revealing that trapdoor, as is the case
for the purely dyadic parity-check matrix ∆(t, h) constructed in Section 4.1).
Consider matrix G = [GP | O] where GP is a generator matrix of the code
defined by the public parity-check matrix H, and O is the zero matrix with
N − n columns. Clearly, there exists an N ×N matrix X such that:

H0XG
T = O. (2)

Writing N = N0t, X is an N0 × N0 block matrix whose blocks are either the
t× t zero matrix or a t× t dyadic permutation (the actual permutation varying
from block to block). Let n0 < N0 be the number of nonzero blocks in X (all of
them on the n0 leftmost columns of X, , without loss of generality because of the
structure of G). There are therefore

(
N0

n0

)
n0!t

n0 possibilities for X. The situation
is almost the same as for quasi-cyclic alternant codes [1]. The main difference is
that, rather than having small powers of a fixed value whose successive powers
are on the diagonal, here we have one single element whose position assumes one
out of t possibilities (and this is not fixed). Therefore solving the system given
by Equation (2) reveals all the private information.

The first obstacle, however, is obtaining H0. The attack against quasi-cyclic
codes simply guesses the private parity-check matrix since there are only O(2m)
possibilities. In the QD case, on the other hand, guessing H0 would already incur
a superpolynomial cost O(2m

2

). To makes things worse, for each guess of H0,
the attacker would have to mount and solve a linear system over the ring of
dyadic t × t matrices, containing n0 × N0 unknowns, or alternatively a system
over F2 directly, increasing the number of unknowns by a factor t2. In either
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case the total amount of work is prohibitively high. The attacker might try to
guess X instead, or at least the positions of its nonzero dyadic blocks, but this
incurs an extra cost factor

(
N0

n0

)
n0!, which is too high for practical parameters. A

further difficulty is that the systems are highly underdefined (typically containing
hundreds of thousands of equations in tens of millions of unknowns).

None of the above ideas seems to lead to any promising strategy for a struc-
tural attack based on systems of linear equations. We next examine the possi-
bility of using systems of quadratic equations to reduce the overall attack com-
plexity.

5.4 Attacks based on multivariate quadratic equations

The structural attacks outlined above are based on solving certain systems of
linear equations after guessing part of the unknown information, a task that, the
attacker hopes, is made easier by the structure of the underlying codes, but as
we saw the chances of these ideas ever succeeding are meagre at best. Recently,
Faugère et al. [7] proposed to reduce the decoding problem for quasi-dyadic
codes (and others) to the problem of solving systems of multivariate quadratic
equations (MQE) instead. The overall idea is to find an alternant decoder for the
public code directly, i.e. to write the public parity-check matrix as H = V D for
an unknown Vandermonde matrix V and an unknown diagonal matrix D defined
over the public field F2d , where d | m. The unknown components of V and D in
the defining equation H = V D give rise to an instance of the MQE problem. By
making careful use of the structure of H, the authors of [7] are able to reduce the
complexity of such instances, since many component equations become linear,
and the truly quadratic part involves a reduced number of variables. This way
they are able to break all parameters proposed in [1] and [14] over extension
fields.

Apart from the fact that the attack complexity increases steeply as the codes
are defined over ever smaller extension fields, to the effect that no actual attack
was described against any of the published binary parameters, we argue that this
strategy, at least as it is presented, cannot yield an attack against binary QD
codes, even if it succeeds (at an impractically high cost but still faster than other
methods) against e.g. quasi-cyclic codes. The reason is that the attack principle
is to construct an alternant trapdoor directly from the public code defined by
H, which is not a Goppa code except with overwhelmingly low probability.
This trapdoor can be used to correct about t/2 errors at most, where t is the
design number of errors. For all alternant codes except binary Goppa codes this
is exactly the same as the number of errors that can be introduced and then
successfully corrected using the private trapdoor, which explains why the attack
is successful as long as the associated MQE instance can be solved in practice.

This is the case for codes over extension fields, as demonstrated in [7] (see
also [20]). Whether or not this is also the case for non-Goppa binary codes is at
best unclear for the time being as we pointed out. However, for the specific case
of binary Goppa codes, including binary QD codes, this attack can only correct
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half as many errors as can be introduced and then corrected using the private
Goppa trapdoor.

If the underlying QD code were used for encryption, the attacker would have
to guess the remaining t/2 errors before using the obtained alternant trapdoor.
This would mean repeating the attempted decoding

(
n
t/2

)
/
(

t
t/2

)
times, which is

clearly infeasible for properly chosen practical parameters. For CFS signatures
no guessing is possible, since the messages to be signed are hashed directly onto
syndromes, not onto words with errors. Thus the attacker faces the difficulty of
finding a syndrome that decodes into a t/2-error vector. Such syndromes only
occur with exceedingly low density.

We conclude that existing attacks based on solving instances of the MQE
problem fail against properly chosen, yet still practical, binary QD codes.

Remark 1. A recent paper by Faugère et al. [8] analyzes the problem of distin-
guishing binary Goppa codes from random codes. The authors show that, under
certain conditions (essentially for the parameters used for signatures), this prob-
lem is no longer hard (for binary Goppa codes and binary quasi-dyadic Goppa
codes).

6 Conclusion

In this paper, we have presented a new way to instantiate CFS-like signature
schemes. The adoption of binary quasi-dyadic (QD) codes allows for a reduction
of key sizes by a factor of 4 in practice. Although the number of signing attempts
increases by a factor of 2, a proper implementation of the more efficient arith-
metic enabled by QD codes is likely to make the actual signing time comparable
to plain CFS, possibly faster.

The resulting QD-CFS scheme can be adapted to schemes derived from CFS
signatures like [3], [21], or [6]. Binary QD codes can also be applied to other
code-based primitives like FSB (hash function), Stern (identification and signa-
ture scheme) or SYND (stream cipher). We leave these possibilities for further
research.
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