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D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 41 IntrodutionIn this paper we want to give an overview over the MEliee ryptosystem andthe primitives it is based on. First, we give some introdution into oding theoryand the onstrution priniple of the ryptosystem. In the seond setion, wepresent Goppa odes, whih at the moment seem to be the best hoie for ryp-tographi appliations. In the setions three to �ve we present known attakson the MEliee PKC and onsequenes for the hoie of system parameters.Afterwards we will present CCA2-seure onversions and show how to buildother ryptographi protools from the basi sheme. Finally we will disussperformane and seure hoies of parameters for the MEliee PKC.1.1 HistoryIn 1978 R. MEliee proposed the �rst publi key ryptosystem whih is basedon oding theory. MEliee's proposal to use Goppa odes for ryptographi ap-pliations is one of the oldest publi key ryptosystems and remains unbrokenfor appropriate system parameters. In 1986, Niederreiter proposed a di�erentsheme whih uses GRS odes. This proposal is equivalent (dual) to MEliee'sproposal if we substitute the GRS odes by Goppa odes [33℄. Sidelnikov andShestakov showed 1992, that Niederreiter's proposal to use GRS odes is inse-ure.Several proposals were made to modify MEliee's original sheme (see e.g.[17℄, [16℄, [18℄, [46℄ and [26℄). Most of them replae the Goppa odes with otherodes. However, most of them turned out to be inseure or ineÆient omparedto MEliee's original proposal (see e.g. [38℄ or [28℄).The most important variants of MEliee's sheme are the ones proposedby Kobara and Imai in 2001. These variants are CCA2-seure and provably asseure as the original sheme [27℄.Parallel to the e�orts to build an eÆient enryption sheme based on od-ing theory, there were several attempts to build other ryptographi protoolsbased on error orreting odes. Most e�orts to build a signature sheme failed(ompare [52℄, [22℄, [2℄ and [50℄), until �nally in 2001 Courtois, Finiasz andSendrier made a promising proposal [11℄. In addition, there exists an identi�-ation sheme by Stern [49℄, whih is based on oding theory.There are also attempts to build fast hash funtions and random numbergenerators using the priniples of oding theory (see e.g. [3℄, [13℄). All in all,this provides suÆient motivation to have a loser look at the MEliee ryp-tosystem, as an serious alternative to the established PKCs based on numbertheory.1.2 Coding Theory and ProblemsThe seurity of the ryptosystems reviewed in this paper is based on the diÆultyof some lassial problems of oding theory. Here we give an introdution intothe topi of oding theory.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 5De�nition 1.2.1 An (n; k)-ode C over a �nite �eld F is a k-dimensional sub-vetorspae of the vetor spae Fn . We all C an (n; k; d)-ode if the min-imum distane is d = minx;y2C dist (x;y), where \dist" denotes a distanefuntion, e.g. hamming distane. The distane of x 2 Fn to the null-vetorwt (x) := dist (0;x) is alled weight of x.De�nition 1.2.2 The matrix C 2 Fk�n is a generator matrix for the (n; k)ode C over F, if the rows of C span C over F. The matrix H 2 F(n�k)�n isalled hek matrix for the ode C if H> is the right kernel of C. The odegenerated by H is alled dual ode of C and denoted by C?.With these de�nitions, we are able to de�ne some basi problems of odingtheory. Here the distane funtion used will be the hamming distane although,there exist other notions of distane.Problem 1.2.3 The general deoding problem for linear odes is de�ned asfollows:� Let C be an (n; k) linear ode over F and y 2 Fn .� Find x 2 C where dist (y;x) is minimal.Let e be a vetor of weight � t := � d�12 � and x 2 C. Then there is a uniquesolution to the general deoding problem for y = x + e. The ode C is said tobe an t-error orreting ode.Problem 1.2.4 The problem of �nding weights (SUBSPACE WEIGHTS) of alinear ode is de�ned as follows:� Let C be an (n; k) linear ode over F and w 2 N.� Find x 2 C satisfying dist (0;x) = w.Our hope that we might be able to onstrut seure ryptosystems based onthe problems above is based on the following result.Theorem 1.2.5 The general deoding problem and the problem of �nding weightsare NP-hard.Proof. See [4℄.We present another problem based on the equivalene of odes:De�nition 1.2.6 Two (n; k) odes C and C0 over a �eld F are alled permutationequivalent if there exists a permutation � of the permutation group Sn over nelements, suh thatC0 = � (C) = ��x��1(1); � � � ; x��1(n)� jx 2 C	 .The subgroup of Sn whih keeps C �xed will be alled Aut (C).



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 6Given two generator matries G and G0 the problem is to deide if the odesgenerated by the matries are permutation equivalent or not. In the ase whereF = F2 the de�nition of permutation equivaleny oinides with the de�nitionof equivaleny.De�nition 1.2.7 Two (n; k) odes C and C0 over F are alled equivalent if thereexists � 2 Sn, a n-tupel (ai)1�i�n 2 F� and a �eld automorphism � of F suhthat x 2 C , �� �a��1(i)x��1(i)��1�i�n 2 C0In setion 3.3, we will see an algorithm whih solves the problem to deidewhether two odes are permutation equivalent or not.Throughout this paper, we will use the following notation. We write G = hGiif the linear (n; k)-ode G over F has the generator matrix G. We an write x 2 Gas (x1; � � � ; xn) 2 Kn . For any (ordered) subset fj1; � � � jmg = J � f1; � � �ng wedenote the vetor (xj1 ; � � � ; xjm) 2 Km with xJ . Similarly we denote by M�Jthe submatrix of a k � n matrix M onsisting of the olumns orresponding tothe indies of J and MJ0� = �M>��J0 for any (ordered) subset J 0 of f1; � � � ; kg.1.3 MEliee PKCThis ryptosystem was proposed by MEliee [37℄ and is the �rst, whih useserror orreting odes as a trapdoor. It remains unbroken in its original version.Although it uses Goppa odes (see setion 2) in the original desription, anysublass of the lass of alternant odes ould be used. However, it might notreah the desired seurity (ompare setion 3.2 or e.g. [38℄). The trapdoor forthe MEliee Cryptosystem using Goppa odes is the knowledge of the Goppapolynomial used to generate the ode.We briey desribe the ryptosystem:� System Parameters: n, t 2 N, where t� n.� Key Generation: Given the parameters n, t generate the following ma-tries:G0 : k � n generator matrix of a binary irreduible (n; k) Goppa ode Gwhih an orret up to t errors, where k is hosen maximal.S : k � k random binary non-singular matrixP : n� n random permutation matrixThen, ompute the k � n matrix G = SG0P .� Publi Key: (G; t)� Private Key: (S; DG ;P), where DG is an eÆient deoding algorithm forG (see e.g. algorithm 2.3.1).



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 7� Enryption: To enrypt a plaintext m 2 f0; 1gk hoose a vetor z 2f0; 1gn of weight t randomly and ompute the iphertext  as follows: =mG� z .� Deryption: To derypt a iphertext  alulateP�1 = (mS)G0 � zP�1�rst, and apply the deoding algorithm DG for G to it. Sine P�1 has ahamming distane of t to the Goppa ode we obtain the odewordmSG0 = DG �P�1� .Let J � f1; � � � ; ng be a set, suh that G�J is invertible, then we anompute the plaintext m = (mSG0)J (G0�J )�1 S�1There are some restritions to the hoie of the MEliee system parametersgiven by the attaks, if we want to get optimal seurity. We are going to disussthem later on.De�nition 1.3.1 The MEliee problem is desribed as follows:� Given a MEliee publi key (G; t) where G 2 f0; 1gk�n and a iphertext 2 f0; 1gn,� Find the (unique) message m 2 f0; 1gk s.t. dist (mG; ) = t.It is easy to see that someone who is able to solve the general deodingproblem is able to solve the MEliee problem. The reverse is presumably nottrue, as the ode G = hGi is not a random one, but permutation equivalent toa ode of a known lass (a Goppa ode in our de�nition). We an not assumethat the MEliee-Problem is NP-hard. Solving the MEliee-Problem wouldonly solve the General Deoding Problem in a ertain lass of odes and not forall odes.In the ase of MEliee's original proposal, Canteaut and Chabaud state thefollowing: \The row srambler S has no ryptographi funtion; it only assuresfor MEliee's system that the publi matrix is not systemati otherwise mostof the bits of the plain-text would be revealed" [7℄. However, for some variantsof MEliee's PKC, this statement is not true, as e.g. in the ase of the CCA2-seure variants (whih we are going to present in setion 6). The importane ofP is not that easy to see. We will ome bak to this question in setion 3.1.4 Niederreiter PKCThe Niederreiter PKC is a knapsak-type ryptosystem whih uses an (n; k)-linear ode whih an orret up to t errors and for whih an eÆient deodingalgorithm is known. We desribe the ryptosystem briey:



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 8� System Parameters: n, t 2 N, where t� n.� Key Generation: Given the parameters n, t generate the following ma-tries:H: (n� k)� n hek matrix of a binary irreduible Goppa ode Gof maximal dimension k whih an orret up to t errorsM: (n� k)� (n� k) random binary non-singular matrixP: n� n random permutation matrixThen, ompute the n� (n� k) matrix H0 = MHP.� Publi Key: (H0; t)� Private Key: (P;DG ;M), where DG is an eÆient syndrome deodingalgorithm for G (see e.g. algorithm 2.3.1).� Enryption: A messagem is represented as a vetor e 2 f0; 1gn of weightt, alled plaintext. To enrypt it, we ompute the syndromes = H0e> .� Deryption: To derypt a iphertext s alulateM�1s = HPe>�rst, and apply the syndrome deoding algorithm DG for G to it in orderto reover Pe>. Now, we an obtain the plaintext e> = P�1Pe>The seurity of the Niederreiter PKC and the MEliee PKC are equivalent.An attaker who an break one is able to break the other and vie versa [33℄.2 Goppa CodesIn this paper, we onsider only irreduible binary Goppa odes. The followingreasons make them interesting for ryptography:� The lower bound for the minimum distane is easy to ompute.� The knowledge of the generating polynomial1 allows eÆient error orre-tion.� Without the knowledge of the generating polynomial no eÆient algo-rithms for error orretion are known.For a omprehensive introdution to Goppa odes see [36, 34, 23℄.1See below



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 92.1 De�nitionIn this setion, we will �rst de�ne Goppa odes. Based on this de�nition, we willdesribe a way to onstrut a generator and a parity hek matrix for Goppaodes.Goppa odes were de�ned by V.D. Goppa in 1970 [21℄.De�nition 2.1.1 (Goppa polynomial, Syndrome, binary Goppa Codes)Let m and t be positive integers and letg(X) = tXi=0 giX i 2 F2m [X ℄be a moni polynomial of degree t alled Goppa polynomial andL = (0; : : : ; n�1) 2 Fn2ma tuple of n distint elements suh thatg(i) 6= 0; for all 0 � i < n:For any vetor  = (0; : : : ; n�1) 2 Fn2 , de�ne the syndrome of  byS(X) = � n�1Xi=0 ig(i) g(X)� g(i)X � i mod g(X). (1)The binary Goppa ode G(L; g(X)) over F2 is the set of all  = (0; : : : ; n�1) 2Fn2 suh that the identity S(X) = 0 (2)holds in the polynomial ring F2m [X ℄ or equivalently ifS(X) � n�1Xi=0 iX � i � 0 mod g(X): (3)Thus, we have G(L; g(X)) = f 2 Fn2 j S(X) = 0g= f 2 Fn2 j S(X) � 0 mod g(X)gIf g(X) is irreduible over F2m , then G(L; g(X)) is alled an irreduible binaryGoppa ode.Remark 2.1.2 To emphasize the dependeny of vetor  on sequene L, wesometimes write  = (0 ; : : : ; n�1). The elements 0; : : : ; n�1 2 F2m arealled ode support.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 10Goppa odes are linear odes. If g(X) is irreduible, we have g() 6= 0 for all 2 F2m . Thus tuple L from the de�nition may ontain all elements of F2m .Now we will show how to onstrut the parity hek matrix of a Goppa odeG(L; g(X)). Sineg(X)� g(i)X � i = tXj=0 gjX i � jiX � i = t�1Xs=0Xs tXj=s+1 gjj�1�si ; for all 0 � i < n;we see that  2 G(L; g(X)), i� for all s = 0; : : : ; t� 1n�1Xi=0 0� 1g(i) tXj=s+1 gjj�1�si 1A i = 0:Thus, a parity hek matrix of G(L; g(X)) an be written asH = 0BBBB� gtg(0)�1 � � � gtg(n�1)�1(gt�1 + gt0)g(0)�1 � � � (gt�1 + gtn�1)g(n�1)�1... . . . ...�Ptj=1 gjj�10 � g(0)�1 � � � �Ptj=1 gjj�1n�1� g(n�1)�11CCCCA = XYZwhereX = 0BBB� gt 0 0 � � � 0gt�1 gt 0 � � � 0... ... ... . . . ...g1 g2 g3 � � � gt1CCCA ; Y = 0BBB� 1 1 � � � 10 1 � � � n�1... ... . . . ...t�10 t�11 � � � t�1n�11CCCA ; and
Z = 0BBBB� 1g(0) 1g(1) . . . 1g(n�1)1CCCCAand therefore we have  2 G(L; g(X)); i� HT = 0: (4)The entries of the matrix H are elements of the extension �eld F2m over F2 . Ifwe interpret F2m as m dimensional vetor spae over F2 , we an write H as amatrix over F2 of dimension mt� n.The rows of matrix H generate a vetor spae V whih is a subspae of Fn2 .From (4) it follows that the Goppa ode is a vetor spae whih is dual to V .Therefore we obtain a generator matrix G of a Goppa ode by omputing thebasis of the vetor spae dual to V . The rows of G are these basis vetors.Sine H is amt�nmatrix, the matrix G has dimension n�k, with k � n�mt.Thus, it de�nes a (n; k) Goppa ode, where k � n�mt.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 112.2 The Minimum Distane of Irreduible Binary GoppaCodesIn this setion we will determine the minimum distane of an irreduible binaryGoppa ode.Let G(L; g(X)) be an irreduible binary Goppa ode with L = (0; : : : ; n�1).Let  = (0; : : : ; n�1) 2 G(L; g(X)) be a odeword and T = fi : i = 1g. Thenwe de�ne �(X) = Yj2T(X � j) 2 F2m [X ℄:The derivative of �(X) is�0(X) = Xi2T Yj2Tnfig(X � j):From (3) it follows �(X)S(X) � �0(X) mod g(X): (5)Sine g(i) 6= 0 for all 0 � i < n, we have gd(�(X); g(X)) = 1. Therefore,�(X) is invertible modulo g(X) and we have�0(X)�(X) � S(X) mod g(X):It follows that8 2 Fn2 :  2 G(L; g(X)), �0(X) � 0 mod g(X):The map F2m �! F2m , x 7! x2 is the Frobenius automorphism on F2m , thereforeevery element y 2 F2m has a unique square root.The Frobenius mapF2m [X ℄ �! F2m [X ℄; f(X) = nXi=0 fiX i 7! (f(X))2 = nXi=0 f2i X2iis a injetive, but not surjetive, ring homomorphism. Its image is F2m [X2℄, aset of polynomials, whih are perfet squares of the ring F2m [X ℄.The polynomial �0(X) =Pni=1 i�iX i�1 is a perfet square, beause in F2mwe have i�iX i�1 = 0 for eah even i. Sine g(X) is irreduible, we have8 2 Fn2 :  2 G(L; g(X)), �0(X) � 0 mod g2(X):Thus, for any odeword  2 G(L; g(X))nf0g we havewt() = deg�(X) � 1 + deg�0(X) � 2 deg g(X) + 1:



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 122.3 Error Corretion for Irreduible Binary Goppa CodesAs mentioned above, the minimum distane of a Goppa ode G whih is gener-ated by an irreduible polynomial of degree t is at least 2t+ 1. Therefore, it isalways possible to orret up to t errors. We now will desribe suh an error or-retion algorithm whih orrets up to t errors in the ase of irreduible binaryGoppa ode G(L,g(X)). The error orretion of non-binary or non-irreduibleGoppa odes is slightly di�erent and an be found in [36, 23℄.Assume m 2 G(L; g(X)) is a odeword, e 2 Fn2 with wt(e) � t is an errorvetor, and  =m� e:Given , we want to ompute e and m.Note that sinem is a odeword, we have Sm(X) � 0 mod g(X) and there-fore S(X) � Se(X) mod g(X):First, we de�ne the error loator polynomial �e(X). For Te = fi : ei = 1g,we set �e(X) = Yj2Te(X � j) 2 F2m [X ℄:From (3), it follows �e(X)Se(X) � �0e(X) mod g(X): (6)We split �e(X) in squares and non-squares. Then we have�e(X) = �2(X) +X�2(X):Sine the harateristi of the �eld is 2, we have �0e(X) = �2(X). Thus equa-tion (6) an be rewritten as follows�2(X)(XSe(X) + 1) � �2(X)Se(X) mod g(X) (7)We an assume that e is not a odeword, thus Se(X) 6� 0 mod g(X). Therefore,there exists an inverse of Se(X) modulo g(X). We set T (X) = S�1e (X), andmultiply equation (7) by T (X). Then we obtain�2(X)(X + T (X)) � �2(X) mod g(X) (8)As mentioned in the last setion, eah element of F2mt has a unique square root.So let �(X) 2 F2m [X ℄ be the unique square root of the polynomial T (X) +X ,i.e. �(X)�(X) � T (X) +X mod g(X): Taking the square root of equation (8)we obtain �(X)�(X) � �(X) mod g(X): (9)In order to solve the last equation for known �(X) and g(X), we have to deter-mine �(X) and �(X) of least degree. By assumption we have deg(�e(X)) � t.It follows that deg(�(X)) � bt=2 and deg(�(X)) � b(t � 1)=2. This yields



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 13a unique solution of equation (9) whih an be found by applying the ex-tended Eulidean algorithm. We reall that this algorithm may be used toompute polynomials �k(X) + �k(X)�k(X) � 0 mod g(X) in eah step withdeg(�k(X)) = deg(g(X)) � deg(�k�1(X)): This last formula presents the rela-tion between the degrees of � and �: After eah step, the degree of � inreasesas the degree of � dereases. Using this, one an see that there is a unique pointin the omputation of the Eulidean algorithm, where the degree of both poly-nomials is below the respetive bound. More preisely, we run the algorithmuntil deg(�k(X)) drops below b(t+ 1)=2 for the �rst time and getdeg�k(X) � b(t+ 1)=2 � 1 � bt=2.In this round of the algorithm the following holds:deg �k(X) = deg(�k(X)) = deg(g(X))� deg(�k�1(X))� t� b(t+ 1)=2 = b(t� 1)=2.Now, we set �(X) = �k(X) and �(X) = �k(X) (see algorithm 2.3.1). In[36, 34, 23℄, it is shown in more detail that they ful�ll equation (9) and areunique.Finally, the omputation of zeroes for �e(X) = �2(X) + X�2(X) leads tovetors e and m. We present the omplete algorithm on the following page.Now, we analyze the runtime of the presented error orretion algorihm. Toompute the syndrome S(X) employing the hek matrix H , we need at most(n � k)n binary operations. To ompute T (X), we employ the extended Eu-lidean algorithm. This takes O �t2m2� binary operations, as the omputationsare modulo g(X), a polynomial of degree t and oeÆients of size m. Com-puting the sqare root of T (X) +X takes O �t2m2� operation sine it is a linearmapping on F2m [X ℄ =g(X). The subsequently employed variant of the extendedEulidean algorithm takes O �t2m2� binary operations, too. These steps are allomparatively easy in omparison to the last step of the algorithm, whih is to�nd all roots of the error loator polynomial. This last step an be performed inn(tm2+ tm) binary operations, thus the whole error orretion algorithm needsO �n � t �m2�binary operations, as mt � (n� k).3 Attaks on the Private KeyIn the following setions we present several attaks on the MEliee PKC. Inthis setion we view attaks that aim to get the private key from the publikey. We will see that not every lass of linear odes is a seure hoie for theMEliee ryptosystem.
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Algorithm 2.3.1 Error Corretion of Binary Irreduible Goppa CodesInput: A binary irreduible Goppa ode G(L; g(X)), a vetor  =m� e,where m is a odeword and e is an error vetor.Output: The message m and the error vetor e./* Compute the syndrome of  */S(X) =Pn�1i=0 iX�i mod g(X) (or use the parity hek matrix H)if S(X) � 0 mod g(X) then/* there is no error,  is a odeword */return(, 0)else/* there are errors,  is not a odeword */T (X) � S�1 (X) mod g(X)�(X) �pT (X) +X mod g(X)/* extended Eulidean algorithm */i = 0; r�1(X) = ��1(X) = g(X); r0(X) = �0(X) = �(X); ��1(X) = 0;�0(X) = 1while deg(ri(X)) � b(t+ 1)=2 doi = i+ 1Determine qi(X) and ri(X), s.t. ri(X) = ri�2(X)� qi(X)ri�1(X)and deg(ri(X)) < deg(ri�1(X))�i(X) = �i�2(X) + qi(X)�i�1(X)�i(X) = ri(X)�(X) = 2((�i(X))2 +X(�i(X))2) with  2 F2m , s.t. �(X) is moni/* Determination of zeroes of �e(X) */for i = 0 to n� 1 doif �(i) = 0 thenei = 1elseei = 0m = � ereturn(m; e)



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 153.1 The importane of S, P and MSuppose, the set L whih was used to generate the seret Goppa ode for somepubli key of the MEliee PKC is known. This is true for normal appliations,and if P is seret, then L may be revealed without seurity problems.Suppose that g is unknown. Let H0 be the systemati dual matrix of SG0 =G. Assume further, that an attaker is able to reover P and M suh thatM�1H0P�1 = H, where H = XYZ has the form given in setion 2 (representedover F2 ). Then he an ompute g in the following way: The matrix gtZ iswritten in in the �rst m rows of H. The matrix Y is determined by L. Thus theattaker an reover (X=gt) by solving some linear equations. Sine g de�nes thesame Goppa ode as (g=gt), the attaker is now able to orret errors eÆiently.This breaks Niederreiter's as well as MEliee's ryptosystem.If the matrix P is revealed, it is easy to reover the generator polynomialfrom H0P�1 using equation (6), as S(X) = 0 for every binary n vetor  withH0P�1> = 0.The seret matrix S indeed has no ryptographi funtion in hiding the seretpolynomial g. Today, there is no way to reover H with the knowledge of S�1Gonly.For the seurity of the MEliee PKC it is absolutely ruial to keep Mseret. The knowledge of M�1H0 = HP is suÆient to reover g. We mayinterpret M�1H0 to be a matrix over Fqm . As we will see in the following, thisallows an eÆient omputation of g and P.3.2 Attak on the original Niederreiter PKCNiederreiter proposed his ryptosystem originally using generalized Reed-Solo-mon (GRS) odes. In 1992 V.M. Sidelnikov and S.O. Shestakov proposed aattak on Niederreiter's ryptosystem using GRS odes [47℄ whih reveals analternative private key in polynomial time. We onsider this attak to be worthmentionable, as Goppa odes are sub�eld subodes of GRS odes. Even though,the results from [47℄ do not a�et the seurity of the original MEliee PKC.In their attak, Sidelnikov and S.O. Shestakov take advantage of the fat,that the hek matrix of GRS ode is of the form�H = 0BBB� z1a01 z1a11 � � � z1as1z2a02 z2a12 � � � z2as2... . . . ...zna0n zna1n � � � znasn 1CCCA 2 Fn�(s+1)q . (10)Note that the matrix X�1H = YZ from setion 2 is of this from, too. It follows,that the matrix �H is a hek matrix of a Goppa ode, or to say it di�erently,eah Goppa ode is a sub�eld subode of a GRS ode.A publi Niederreiter key is of the form H0 = P�HM, whereM is a non-singularmatrix and P a permutation matrix. The permutation matrix P does not hangethe struture of �H, so we don't have to worry about P. The entries of H0 an be



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 16viewed as the values of polynomials M�i (whose oeÆients are represented bythe i-th olumn of M and therefore are denoted in the same way) multiplied byzj : H0 = 0BBB� z1M�1 (a1) z1M�2 (a1) � � � z1M�s (a1)z2M�1 (a2) z2M�2 (a2) � � � z2M�s (a2)... . . . ...znM�1 (an) znM�2 (an) � � � znM�s (an) 1CCCA ,where M�i (x) =Psj=0Mjixj .Sidelnikov and Shestakov onlude, that eah entry of the row H0i� an be ex-pressed by a polynomial in ai. From this observation one an derive a system ofpolynomial equations whose solution yields the private key. We will need the no-tation �H = Z �A with A := Z�1�H and the diagonal matrix Z := diag [z1; � � � ; zn℄.We want to assume without loss of generality that a1 = 1 and a2 = 0. Inorder to do this, we have to view the matries �H, M and H0 as matries overF := Fq [1 with 1=1 = 0, 1=0 = 1 and f (1) = fdegf for every polynomialf (x) = Pdegfj=0 fjxj over Fq . Sidelnikov and Shestakov show that for everybirational transformation (F-automorphism)� (x) = ax+ bx+ d with a; b; ; d 2 Fq , ad� b 6= 0there exist z01; � � � ; z01 and a matrix M0 suh thatH0 = 0BBB� z01� (a1)0 z01� (a1)1 � � � z01� (a1)sz02� (a2)0 z02� (a2)1 � � � z02� (a2)s... . . . ...z0n� (an)0 z0n� (an)1 � � � z0n� (an)s 1CCCA � (M0)�1M.For every three numbers a1; a2; a3 2 Fq it is possible to �nd a birational trans-formation � s.t. � (a1) = 1 = x1� (a2) = 0 = x2� (a3) =1 = x3� (aj) = xj ; j 62 f1; 2; 3g .Thus we an make the assumption mentioned above. Note that beause x3 =1we have xi 6=1 for all i 6= 3.We an use Algorithm 3.2.1 to reover a (alternative) private Niederreiterkey from the publi key. The algorithm generates a system of polynomial equa-tions based on the assumption x1 = 1, x2 = 0, x3 = 1 and solves it. Weare going to explain the algorithm briey. First we have to remember theidenti�ation of the entries of H 0 with polynomials evaluated at the aj . Thusfor i 2 Fs+1q , i = 1; 2 and j 2 f1; � � � ; ng, the salar produt 1zjH0j�i is thevalue of a polynomial �i at xj , where �i is of degree at most s. De�ningJ1 = f1; s+ 2; s+ 3; � � � ; 2sg and J2 = f2; s+ 2; s+ 3; � � � ; 2sg we an solve



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 17H0Ji�i = 0 for i = 1; 2 we get two polynomials �1, �2 with zeroes in xs+2; � � � ; x2sand in x1, x2 respetively. We know that x1 = 1; x2 = 0 thusH0j�1H0j�2 = �1 (xj)�2 (xj) = �1 (1)�2 (1) � xj � 1xj = �1 (x3)�2 (x3) � xj � 1xj ,whih reveals xj for j 62 f1; 2; s+ 2; � � � ; 2sg. To determine the missing xj ,j 2 fs+ 2; � � � ; 2sg we repeat the proedure (introduing 3, J3, 4 and J4) andtake into aount the knowledge of the already determined xj . Afterwards weperform another birational transformation �0 on the xj s.t. ai = �0 (xj) are�nite.Knowing all ai, i 2 f1; � � � ; ng we are able to reover z2; � � � ; zs+2 assumingthat z1 = 1 . De�ning J5 := f1; 2; � � � s+ 2g and solving 5H0J5� = 0 for 5 2 Fs+1qwe get a polynomial s.t. Ps+2j=1 5jzjMi� (xj) = 0 for i = 1; � � � ; s+2. Expressingthis in matrix form we get:5(�HM)J5� = 5(ZA)J5M = 0and onsequently we know that 5(ZA)J5 = 0, whih gives us a linear systemwith s+1 unknowns and s+1 equations sine z1, A and 5 are already known.Now we an determineM and in ontinuation the remaining zj . Algorithm 3.2.1has a running time of O �s4 + sn�. For details see [47℄.Remark 3.2.1 Algorithm 3.2.1 an not be applied to MEliee/Niederreiterryptosystems using Goppa odes. Even though for every Goppa ode there isa hekmatrix H whih has the same struture as the hek matrix �H for GRSodes in equation (10) (see [36℄), there is no analogous interpretation of H0 forthe Niederreiter ryptosystem using Goppa odes. We are able to view H as amatrix over F2 if we are using Goppa odes, whereas this doesn't work for GRSodes. Thus we have di�erent matries M: M 2 F(s+1)�(s+1)2m for the GRS aseand M 2 Fm(s+1)�m(s+1)2 for Goppa odes. Thus, in the latter ase, H0 has noobvious struture, as long as M is unknown.3.3 Weak Keys and the Support Splitting AlgorithmP. Loidreau and N. Sendrier proposed a way to identify a sublass of Goppaodes, namely the ones with binary generator polynomial g 2 F2 [X ℄. If anattaker knows, that the seret generator polynomial is binary, this reduesthe searh spae of a brute fore attak on the private key [35℄. Their generalidea is to take advantage of the Support Splitting Algorithm (SSA) presentedin [44℄. The SSA an be used as an orale to deide whether two odes arepermutation equivalent as well as to determine the automorphism group of aode. P. Loidreau and N. Sendrier use this ability, to determine if the generatorpolynomial of a Goppa ode is a binary (irreduible) polynomial. If this is thease, we searh the spae of the Goppa odes with binary generator polynomialfor a ode, whih is equivalent to the one given by the publi generator matrix.
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Algorithm 3.2.1 GRSreover [47℄Input: H0 = �h0ij� 2 Fn�(s+1)q and t, a Niederreiter Publi key.Output: �H,P of the orresponding private Niederreiter Key.J1 = f1; s+ 2; s+ 3; � � � ; 2sg; J2 = f2; s+ 2; s+ 3; � � � ; 2sg;J3 = f1; 3; 4; � � � ; s+ 1g; J4 = f2; 3; 4; � � � ; s+ 1g; J5 = f1; 2; � � � s+ 2g;for i = 1 to 4 dosolve H0Ji�i = 0 with i 2 Fs+1q n 0;for j 62 J1 [ J2 do//�1j = H0j�1; �2j = H0j�2;bj = �1j=�2j ;for j 2 fn; 2s; � � � ; s+ 2g do�3j = Hj�3; �4j = Hj�4;bj = bn�4n�3n � �3j�4j ; // Note, that we already know bn.x1 = 1; x2 = 0; x3 =1;for j = 4 to n do// Determining the values of xj .xj = b3= (b3 � bj);hoose some a 2 Fq di�ering from all xj ;for j = 1 to n do// Mapping the xj to �nite elements.aj = (a� xj)�1; Aj� = �a0j ; � � � ; asj�;solve 5H0J5� = 0 with 5 2 Fs+1q n 0;z1 = 1;�nd z2; � � � ; zs+2 2 Fq s.t. Ps+2j=1 5jzjAj� = 0;for i = 0 to s dosolve AJ5�M�i = �z�1j H0ji�>j2J5 ;M = (M�0; � � � ;M�s);for j = 3 to n dozj = H0j� �M�1��0;Return a1; � � � ; an; z1; � � � ; zn;M;



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 19If suh a ode is found, the SSA an be used to reover the permutation matrixP. There is another attak by Gibson [20℄, whih aims to reover the matrixP, but we forbear presenting it here, as its average work fator is larger than2nm(1+O(1)) binary operations [43℄.The Support Splitting Algorithm was presented to solve the problem to de-ide whether two odes are permutation equivalent in (almost) polynomial time.We will explain it in the following. Our notation in the following presentationof the algorithm will di�er slightly from that used in [44℄ so as not to onfusethe reader of the paper with two di�erent de�nitions of a signature. The mainidea is to partition the index set of the ode C into small sets, whih are �xedunder operation of elements of Aut (C). We have to introdue some de�nitions�rst:De�nition 3.3.1 Let L be the set of all odes and let M be a arbitrary set. Afuntion f : L � N 7! M is alled permutation invariant if for all (n; k) odesC and all permutations � on f1; � � � ; ng the equation f (C; i) = f (� (C) ; � (i))holds. A permutation invariant funtion f is alled disriminant for C if thereexist i; j 2 f1; � � � ; ng s.t. f (C; i) 6= f (C; j). It is further alled fully disrimi-nant for C if 8i;j2f1;��� ;ng : i 6= j ) f (C; i) 6= f (C; j)If we have two permutation equivalent odes C and C0 and a fully disriminantfuntion for C, then we are able to name the permutation � s.t. � (C) = C0. Inorder to build a disriminant funtion for C, we employ the weight enumeratorand puntured odes :De�nition 3.3.2 Let C be an (n; k) ode over K . Let J be any subset off1; � � � ; ng. Then the ode C puntured in J is de�ned byCJ = fx 2 Fn jxJ = 0 and 9y2C8j 62Jxj = yjg .The weight enumerator W : L 7! NN is the funtion s.t. W (C)i is the numberof words of weight i in the ode C for all i 2 N.Example 3.3.3 The funtion W 0 : L � N ! NN ; (C; i) 7! W �Cfig� is permu-tation invariant. Furthermore, W 0 is disriminant for most binary (n; k) odesC. We are going to use disriminant funtions to partition the index set of aode. Starting with a funtion f disriminant for C, we want to onstrut afuntion g more disriminant for C in the sense ofjg (C; f1; � � � ; ng)j � jf (C; f1; � � � ; ng)jfor the (n; k) ode C. The funtion g is alled stritly more disriminant for C ifwe an replae � with > in the inequality above. We repeat this proess untilwe get a fully disriminant funtion for C. The following two de�nitions willenable us to do so.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 20De�nition 3.3.4 Let f; g be two permutation invariant funtions. We de�nethe produt of f and g asf � g : L � N !M �M;(C; i) 7! (f (C; i) ; g (C; i)) ,and the dual of f as f? : L � N !M;(C; i) 7! f �C?; i� .The funtion f is alled self-dual if f = f?.It is easy to see, that f�g is more disriminant than f . With the de�nitionsabove we are able to desribe the Support Splitting Algorithm (algorithm 3.3.1).It mainly onsists in a while-loop in whih de�nitions 3.3.4 and 3.3.2 are usedto get more disriminant funtions for a given ode C, until a fully disriminantfuntion for C is generated. After the while-loop the index set of C is partitionedin a standardized way.Algorithm 3.3.1 Support Splitting Algorithm (SSA)Input: G generator matrix of a linear (n� k) ode C,S : L � N !M permutation invariant disriminant for C.Output: P = f(Pj ; j)g1�j�n, Pj � f1; � � � ; ng, alled labeled partition.T a permutation invariant, disriminant funtion for C.In = f1; � � � ; ng;j = 0;T0 = S;while (a funtion stritly more disriminant for C than Tj exists) dohoose L � Ti (C; In) at random;Tj+1 (C; i) = Tj (C; i)� S �Cfi2InjT (C;i)2Lg; i�� S? �Cfi2InjT (C;i)2Lg; i�;j = j + 1;T = Tj ;for j = 1 to n doif j 2 S1�i<j Pi thenPj = ;;elsePj = fi 2 InjT (C; i) = T (C; j)g;There are two main diÆulties with the algorithm. The �st one is, thatit won't terminate if we are not able to generate a fully disriminant funtionfor C in the while-loop. Only then we would know, that there does not existany further re�nement of Tj . However, remark 3.3.7 will give us a terminationriterion for binary Goppa odes. The seond diÆulty is to �nd a good hoiefor the funtion S. Aording to [35℄ and [44℄ for binary odes C we hooseS : L � N ! NN�N(C; i) 7! �W �Cfig \ �Cfig�?� ;W ��C?�fig \ ��C?�fig�?�� (11)



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 21as input for SSA, where W is the weight enumerator. This funtion is disrimi-nant in pratie. Choosing suitable riteria for exiting the while-loop, algorithm3.3.1 runs in time O �n3 + 2dim(C\C?)n2 log (n)� , (12)see [35℄. To see that the average running time of SSA is polynomial boundedwe need to estimate the dim �C \ C?�-term in equation (12) and the ost foromputing the weight enumeratorW . The worst-ase omputation ost ofW fora q-ary ode of length n and dimension k is proportional to nqk operations in Fq .However, the average ost of omputing the weight enumerator is proportionalto 2n operations [44℄. We ontinue with determining the dim �C \ C?�-term:Proposition 3.3.5 Let C be an (n; k) ode over Fq . We all C \ C? the hull ofC. The average dimension of the hull of C tends to a onstant when the size ofthe ode goes to in�nity. This onstant is equal toR = 1Xi=1 1qi + 1.The proportion of (n; k) odes over Fq with a hull of dimension l � 0 is asymp-totially equal to Rl = Rl�1= �ql � 1� with R0 = 1Yi=0 11 + q�i .Proof. See [45℄, [44℄.As we have already mentioned SSA is unlikely to terminate in the version ofalgorithm 3.3.1. Thus we have to make some assumptions on its output if wehoose other termination riteria for the while-loop, than the one given in thealgorithm. We will see, that these assumptions lead to a suitable terminationriterion, if C is a Goppa ode.We write P = SSA (C) if the labeled partition P = f(Pj ; j)g1�j�n is outputof SSA on input of the generator matrix of C. The nonempty Ps of the outputof SSA are alled the ells of P . Two labeled partitions P and P 0 are alledequivalent i� a permutation � 2 Sn exists, s.t. for all s 2 In jPsj = j P 0�(s) j ; wewrite P � P 0. The fundamental property of SSA is thatC = � (C0)) P � P 0 ,where � 2 Sn. Thus the output of SSA on input of two permutation equivalentodes is idential and the orbits of the elements of the ode support under theation of Aut (C) onstitute the �nest obtainable partition.Assumption 1 If SSA on input G and G0 returns P ; T and P 0; T 0 respetively,then (T (hGi ;N) = T (hG0i ;N) ^ P � P 0) ) hGi = � (hG0i) ,



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 22This assumption is satis�ed in pratie, if the number of ells is larger thana few units. From this observation the following assumption about the behaviorof SSA is derived:Assumption 2 On input of the generator matrix of C the SSA returns a labeledpartition whose ells are the orbits of the elements of the ode support under theation of Aut (C).Assumption 2 seems to hold for (binary) odes of length � 50 and is basedon experiments by P. Loidreau and N. Sendrier [35℄. Now, if we know Aut (C),then we an easily determine for every for C disriminant funtion T whetherthere exists a stritly more disriminant funtion for C, or not. Fortunately wean determine Aut (G) for a Goppa ode G in some ases:Theorem 3.3.6 With the notation of remark 2.1.2. Let G (L; g) be a binary(n; k) Goppa ode de�ned by a generator polynomial g 2 Fqm [X ℄ with oeÆientsfrom a sub�eld Fqs of Fqm . If n = qm, then AUT (G) ontains the automorphism� : Fqm ! Fqm ; x 7! x2s .Note that the elements x 2 Fqm are the ode support and orespond to positionswhih are determined by L.Proof. The proof is derived from a theorem by Moreno [36℄, [35℄.Here we will only onsider s = 1, i.e. only binary Goppa odes with binarygenerator polynomial. In suh ases, the group generated by the Frobenius �eldautomorphism is in general exatly AUT (G) [35℄. Based on this theorem andthe assumptions above, we get the following termination riterion for algorithm3.3.1:Remark 3.3.7 Let G be a binary Goppa ode over Fqm with binary generatorpolynomial. Assume, that the group generated by the Frobenius �eld automor-phism over Fqm is exatly Aut (G). Let PAut be the set of di�erent orbits of theode support under the ation of Aut (G). Then the ondition(a funtion stritly more disriminant for G than Tj exists)in algorithm 3.3.1 is equivalent tojTj (G;N) j < ��PAut�� .Further, the running time of algorithm 3.3.1 is given by equation (12).Let's return to the original problem. We do know the publi MEliee key(G; t) and want to reonstrut the private key. If assumptions 1 and 2 hold,we an identify a weak key (i.e. a MEliee-Instane, generated with a binary



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 23generator polynomial) by omparing the ardinalities of SSA (hGi) with theardinalities of the di�erent orbits of the elements of the ode support underthe ation of Aut (hGi): If the SSA does not terminate or returns a funtion Tsuh that jT (C;N)j 6� ��PAut�� ,then we assume, that hGi = G does not have a binary generator polynomial.Otherwise, we identify a \weak key ", i.e. we assume, that G has a binarygenerator polynomial.One a weak key is identi�ed, we an determine the binary Goppa polynomialused to generate the publi key G by brute fore. We hek ifSSA (hGi) � SSA (G(L; g(X)))for all (irreduible) binary polynomials g of degree t, where G(L; g(X)) de-notes the Goppa ode de�ned by the set L and g (ompare setion 2). Afterhaving identi�ed the generator polynomial of G, one an determine the seretpermutation matrix P. In order to do so, we have to pik a i 2 f1; � � � ; ng s.t.AUT �Gfig� = f1g and a j out of the orbit of i under Aut (G). Then Gfig andhGifjg are equivalent and we get the permutation by applying SSA to both. Thisprodues partitionings ontaining only ells of ardinality one (under assump-tion 2) and the mathes between the ells provide the permutation. The authorsof [35℄ laim that most i serve the last ondition. The number of irreduiblepolynomials of degree 50 is approximately 244. Thus the average runtime of theattak on weak keys for MEliee parameters n = 1024, t = 50 is�244 + 1�O �n3 + 2Rn2 log (n)� � 275,where R is given in proposition 3.3.5. We onlude, that the hoie of n = 1024,t = 50 for MEliee does not reah the desired level of seurity, if we want touse binary generator polynomials.There is a possibility to speed up this attak by a fator (log (n))3 if we �rsthek the idempotent subodes against eah other in the brute fore part of theattak, instead of omparing the Goppa odes themselves.De�nition 3.3.8 Let G be a Goppa ode, then a word a 2 G is alled idempo-tent if a = �a0 ; � � � ; an�1� = �a��1(0); � � � ; a��1(n�1)� .The set of all idempotents of G is a linear subode of G and is alled the idem-potent subode IG of G.The subode IG may be mapped to a linear ode I of length equal to thenumber of di�erent orbits of F2m under � [35℄. The ode I has the same di-mension as IG and its length is shorter by a fator lose to m. We onludethat the use of the idempotent subode provides a speedup of the attak loseto the fator m3, thus the hoie of a binary generator polynomial for the seretGoppa odes does not provide suÆient seurity, even for parameter sets withn > 1024.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 24Remark 3.3.9 This attak may be generalized to detet Goppa odes witha generator polynomial over any sub�eld of F2m but the lass deteted thisway is muh too big to perform an exhaustive searh. Further, the number ofpolynomials lassi�ed by this property is muh too small to provide an e�etiveattak against the MEliee ryptosystem.4 Ciphertext Only AttaksIn this setion, we will �rst present algrorithms for solving the general deod-ing problem (see Problem 1.2.3). These algorithms yield to di�erent attaksagainst ryptosystems based on linear error-orreting odes. On input of aode generator matrix G (a part of the publi key) and a iper-text , these at-taks ompute the plain text orresponding to the ipher text . Although theseattaks require exponential time, they are faster than the brute fore algorithm.At the end of the setion, we will desribe an attak by Brikell and Odlyzko[6℄ based on lattie redution and show why this attak does not work withMEliee or Niederreiter ryptosystems based on binary Goppa odes.4.1 Generalized Information-Set-Deoding AttakThis attak was proposed by MEliee in his original paper [37℄. Lee and Brikellsystematized and generalized it in [30℄. It solves the general deoding problemassuming the knowledge of an upper bound for the distane to the next odeword.We will begin by presenting the idea of the attak. Assume we are given agenerator matrix G of a linear error-orreting ode and a ipher text  =mG�ewhere e is the error vetor of weight t. Then, we randomly hoose k olumns ofG and . If there is no error in the hosen olumns of  and the k � k matrixbuilded from k olumns of G is invertible, then we an easy determine m.Now we will give a detailed desription of the attak. It proeeds as follows.Let I � f0; : : : ; n � 1g with jIj = k = dimG. As in setion 1.2 we denote byGI , I , and eI the k olumns piked from G, , and e, respetively. Then thefollowing relationship is true I =mGI � eI :If GI is non-singular and eI = 0, thenm = IG�1I :If GI is non-singular and wt(eI) is small, then m an be reovered by guessingeI and heking whether wt((I � eI)G�1I G� ) = t:We will estimate the work fator of this attak (see Algorithm GISD). Thenumber of sets I, suh that there are exatly i errors in vetor I is �ti��n�tk�i�.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 25Algorithm 4.1.1 GISDInput: n� k generator matrix G, a ipher text  =mG� e, where m is theplain-text and e is the error vetor of weight t, a positive integer j � t.Output: The plain-text mwhile true doChoose randomly I � f0; : : : ; n� 1g, with jIj = k.Q1 = G�1I ; Q2 = Q1Gz = � IQ2for i = 0 to j dofor all eI with wt(eI) = i doif wt(z � eIQ2) = t thenreturn((I � eI)Q1)The number of all sets I with jIj = k is �nk�. Therefore, the expeted numberfor hoosing the set I suh that there are at most j errors in vetor I isTj = �nk�Pji=0 �ti��n�tk�i� :The number of error vetors eI with wt(eI) � j isNj = jXi=0 �ki�:Therefore the expeted work fator of the attak for given j and (n; k) Goppaode with minimum distane 2t+ 1 isWj = �Tj(k3 +Njk);where � is a small onstant.In [30℄ the authors propose to use j = 2 to minimize the Wj .4.2 Finding-Low-Weight-Codeword AttaksIn this setion, we will present three algorithms whih solve the problem of�nding weights (see Problem 1.2.4). These algorithms an be used to breakMEliee or Niederreiter ryptosystems in the following way. Assume we knowa generator matrix G of a linear error-orreting ode with minimum distane tand a ipher text  = mG� e, where wt(e) < t=2. We ompute the odewordwith the minimum weight in a new ode generated by matrix�G� :Sine this odeword is e, this attak an be used to reover the plain text mfrom the given ipher text .



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 26All three algorithms presented below are based on the same idea. Assumewe have a ode C given by a generator matrix G. The algorithms �rst searhfor odewords of small weight in a restrited ode generated by GS where S is arandom subset of f0; : : : ; n� 1g. Then, they expand these odewords to ode-words in C and hek whether the odewords in C have the desired weight. Thealgorithms di�er in the way of hoosing for set S and the strategy of searhingfor odewords of small weight in the restrited ode.Before we desribe the algorithms, we will will give some neessary notationsand de�nitions.Let N = f0; : : : ; n� 1g be the set of all oordinates. As in the last setion,we will use the set I � N with jIj = k = dimG.By G = (V;W)I , we will denote the deomposition of G in two matries Vand W, suh that V = (Gi)i2I and W = (Gi)i=2I , where Gi is the i-th olumn ofG. Now, we will introdue the information set whih allows us to redue theomputation ost in the algorithms we will present below.De�nition 4.2.1 Let I � N , suh that jIj = k. Then I is an information setfor the ode C i� there is a generator matrix G for C suh that G = (Idk;Z)I .The following statement for information sets is true.Theorem 4.2.2 Let I be an information set and G = (Idk;Z)I the orrespond-ing systemati generator matrix. Then I 0 = (Inf�g) [ f�g is an informationset i� Z�;� = 1Proof. Sine G = (Idk;Z)I , we haveG� = Z�;� + Xi2Inf�gZi;�Gi:Columns indexed by I are linearly independent, therefore G� and (Gi)i2Inf�gare linearly independent i� Z�;� = 1.Now we will desribe the algorithms by Leon, Stern, and Canteaut and Chabaud.4.2.1 LeonIn [32℄, J. S. Leon proposed a probabilisti algorithm for omputing mini-mum weights of large linear error-orreting odes. This algorithm an alsobe adapted for omputing odewords of minimum weight in a linear ode.In this paper, we will present a version of the algorithm whih is slightlydi�erent from version presented by Leon in [32℄. This version was presented byChabaud in [10℄.The input of the algorithm is a generator matrix G, the weight t, and twoadditional integers p and l whih ontrol the runtime and the suess probabilityof the algorithm. The algorithm returns a odeword of weight t or fails. Thealgorithm exeutes the following steps.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 27Step 1: Randomly hoose an information set I and apply a Gaussian elimina-tion in order to obtain a systemati generator matrix G� = (Idk;Z)I .Step 2: Randomly hoose a set L � NnI onsisting of l elements.Step 3: For eah linear ombination A of p or fewer rows of matrix G�I[Lompute wt(AI[L).Step 4: If wt(AI[L) � p hek whether the same linear ombination appliedto matrix G� has weight t. If that is the ase, then return the last linearombination. If there is no linear ombination whih ful�lls the aboveondition, then the algorithm fails.Next, we will analyze the algorithm. Thereby we assume that zeros and ones inthe odewords are distributed almost uniformly.At �rst, we will determine the suess probability. It depends on favorablehoies of I and L. Assume we have a odeword e with wt(e) = t. Fix p; l 2 Z,then the following onditions lead to favorable hoies of I and L:I � N ; jIj = k; L 2 NnI; jLj = l; wt(eI[L) � p:Therefore, Leon's algorithm sueeds with probability:Pr[algorithm sueeds℄ = pXj=1 �tj�� n�tk+l�j�� nk+l� :Next, we will estimate the expeted work fator of the algorithm.� The Gaussian elimination performed in step 1 requires on the averagek22 (n� k+12 ) bit operations.� Step 3 requiresPpj=1 �kj�(j � 1) additions of l-bit words.� Sine in step 4, ondition wt(AI[L) � p is true approximatelyPpj=1 �kj�Pp�ji=0 (li)2ltimes. The algorithm requiresPpj=1 �kj�(j � 1)Pp�ji=0 (li)2l additions of n-bitwords.Therefore, the expeted work fator of Leon's attak against MEliee ryp-tosystem is� nk + l� k22 (n� k+12 ) +Ppj=1 �kj�(j � 1)(l + n2l Pp�ji=0 �li�)Ppj=1 �tj�� n�tk+l�j� . (13)To minimize the work fator, in [10℄ the parameters of Leon's attak are hosento be p = 3 and l � k + log2(n).
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Algorithm 4.2.1 Leon-LWCWInput: k � n generator matrix G, a positive integers t, p, and l.Output: A odeword of weight tN = f0; : : : ; n� 1gwhile true do/* Step 1 */I = ;; P = ;for i = 1 to k doRandomly hoose r 2 NnI; I = I [ frgRandomly hoose  2 f1; : : : ; kgnP suh that Gr; = 1; P = P [ fg/* Eliminate all 1's in olumn  */for j = 1 to k doif j 6= r and Gj; = 1 thenGj = Gj � Gr, where Gx is the x-th row of G/* now we have G = (Idk;Z)I *//* Step 2 */Randomly hoose L � NnI suh that jLj = l/* Steps 3 and 4 */for all linear ombinations A of p rows of GI[L doif wt(AI[L) � p thenConstrut  from G by taking the same rows as in Aif wt()=t thenreturn()



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 294.2.2 SternIn this setion, we will present a slightly modi�ed algorithm from [48℄. We applyour algorithm to a generator matrix of a ode instead of a parity hek matrixas presented by Stern.On input of a generator matrix G and three integers t, p and l the algorithmreturns a odeword of length t or fails. The additional parameters p and lallow us to ontrol the runtime and the suess probability of the algorithm.Thus, knowing that there exist a odeword, we an repeat the algorithm untilit sueeds.The algorithm is based on the following idea. It randomly splits G into twosub-matries whih onsist of rows of matrix G. In eah matrix, the algorithmomputes all linear ombinations of p rows and heks whether ertain parts ofthese linear ombinations are equal. If they are equal, then the algorithm hekswhether the weight of remaining parts is equal t. In this ase the algorithmsueeds.The algorithm performs the following �ve steps:Step 1: Randomly hoose an information set I and apply a Gaussian elimina-tion in order to obtain a systemati generator matrix G� = (Idk;Z)I .Step 2: Randomly spit I into two subsets I1 and I2. Eah element of I isadded either to I1 or to I2 with probability 1=2. This auses a splittingof the rows of Z in ZI1� and ZI2�Step 3: Randomly hoose a set L � NnI onsisting of l elements.Step 4: For eah linear ombinationA (resp. B) of p rows of matrix ZI1� (resp.ZI2�) ompute AL (resp. BL).Step 5: For eah pair (A;B) withAL = BL hek whether wt(A+B) = t�2p.If that is the ase, then return vetor e onsisting of a linear ombinationof rows of G�, where the same rows as in A +B are taken. If there is nopair whih ful�lls the above onditions, then the algorithm fails.We will analyze the algorithm. At �rst, we will determine the probability itsueeds. It depends on hoies of I, I1, I2, and L. Assume we have a odeworde with wt(e) = t. Fix p; l 2 Z, then we have the following onditions:1. jIj = k and wt(eI) = 2p,2. I1 � I, wt(eI1) = p, and I2 = InI1,3. L 2 NnI, jLj = l, wt(eNnI) = t� 2p, and wt(eL) = 0.These onditions impliate the probabilities of hoosing suh sets I, I1, I2, and



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 30L whih yield to the given odeword e.Pr[of hoosing a favorable I℄ = � t2p�� k�tk�2p��nk�Pr[of hoosing a favorable I1℄ = �2pp �4pPr[of hoosing a favorable L℄ = �n�k�t+2pl ��n�kl �The probability of suess of Stern's algorithm is the produt of the aboveprobabilities. Thus, we havePr[the algorithm sueeds℄ =Pr[of hoosing a favorable I℄�Pr[of hoosing a favorable I1℄�Pr[of hoosing a favorable L℄: (14)Next, we will estimate the expeted work fator.� The Gaussian elimination performed in step 1 requires on the averagek22 (n� k+12 ) bit operations.� Step 4 requires on the average 2lp�k=2p � bit operations.� In step 5 we assume that the distribution of values of AL (resp. BL) isroughly uniform. Then, any bit vetor of dimension l is hit by approxi-mately �k=2p �=2l elements of A (resp. B). It follows, that step 5 requiresapproximately 2(n� k)�k=2p �2=2l bit operations.Thus, Stern's algorithm requires on average2lpk2(n� k)(n� k + 12 )�k=2p �3=2l (15)bit operations.By ombining the results of (14) and (15), we onlude that the expetedwork fator of Stern's attak against MEliee ryptosystem is4p+1lpk2(n� k)(n� k+12 )�k=2p �3�n�kl ��nk�2l+1�2pp �� t2p�� k�tk�2p��n�k�t+2pl � (16)4.2.3 Canteaut and ChabaudAs mentioned above, Stern's algorithm has to be repeated very often in orderto derypt suessfully. Eah repetition performs in the �rst step a Gaussian
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Algorithm 4.2.2 Stern-LWCWInput: k � n generator matrix G, a positive integers t, p, and l.Output: A odeword of weight tN = f0; : : : ; n� 1gwhile true do/* Step 1 */I = ;; P = ;for i = 1 to k doRandomly hoose r 2 NnI; I = I [ frgRandomly hoose  2 f1; : : : ; kgnP suh that Gr; = 1; P = P [ fg/* Eliminate all 1's in olumn  */for j = 1 to k doif j 6= r and Gj; = 1 thenGj = Gj � Gr, where Gx is the x-th row of G/* now we have G = (Idk;Z)I *//* Step 2 */Randomly split I into I1 and I2/* Step 3 */Randomly hoose L � NnI suh that jLj = l/* Steps 4 and 5 */for all linear ombinations A of p rows of ZI1 dostore (AL; A; index of rows) in a hash table Tfor all linear ombinations B of p rows of ZI2 doif there exists (BL; A; index of rows) 2 T andwt((A+B)Nn(I[L)) = t� 2p thenConstrut  from G by taking the same rows as in A+Breturn()



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 32elimination whih is very time onsuming. In [8℄ the authors suggest anotherstrategy for this step. Based on theorem 4.2.2, they suggest to hoose a newinformation set not randomly but by modifying only one element in the old one.The omplexity of this new step is approximately k(n� k)=2 binary operationsinstead of k2(n� k+12 ) in Stern's algorithm.The preise analyze of the algorithm CC-LWCW an be found in [8, 9℄.Here we will present only the results. The algorithm is analyzed via modelingby a Markov hain. For this purpose we need a random variable Xi whihrepresent the ith iteration of the algorithm and orresponds to the numberof non-zero bits of ipher text  in I. Xi takes one of the values of the setE = (f1; : : : ; tgnf2pg)[ f(2p)S ; (2p)F g The set of suess states is S = f(2p)Sg.The set of failure states is F = EnSTheorem 4.2.3 The following results for the algorithm CC-LWCW are true:1. The average number of elementary operations performed in eah while-iteration is
p;l = 2pl��k=2p ��+2p(n�k�l)��k=2p ��22l +S�p��k=2p ��+ 2l�+k(n� k)2where S is the size of a omputer word (= 32 or 64).2. Let �0(u) = Pr[X0 = u℄, Pu;v = Pr[Xi = v=Xi�1 = u℄, Q = (Pu;v)u;v2F ,and R = (I�Q)�1. Then the expetation of the number of while-iterationsN is E(N) = Xu2F �0(u)Xv2F Ru;v3. Suppose the number of odewords of weight t is At (Note, that At = 1 inour attak). Then the overall work fator of the algorithm isWp;l = 
p;lE(N)At (17)The exat values of the entries of the matrix P and a more detailed analysismay be found e.g. in [9℄. To get a approximate work fator, one an replae thek2 �n� k+12 �-term in equation (16) by k(n� k)=2.4.3 Statistial DeodingThis attak was presented by A Kh. Al Jabri in [25℄. It is based on the ideathat vetors from the dual spae of a binary ode whih are not orthogonalto the iphertext reveal some information on the error positions. This attakneeds an algorithm whih �nds a suÆient number of vetors of the dual ode ofertain weight. It is not lear what the running time of suh a searh would be,sine the problem of �nding the desired set of vetors is onneted to Problem



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 33Algorithm 4.2.3 CC-LWCWInput: k � n generator matrix G, a positive integers t, p, and l.Output: A odeword of weight tN = f0; : : : ; n� 1g/* Step 1 */I = ;; P = ;for i = 1 to k doRandomly hoose r 2 NnI; I = I [ frgRandomly hoose  2 f1; : : : ; kgnP suh that Gr; = 1; P = P [ fg/* Eliminate all 1's in olumn  */for j = 1 to k doif j 6= r and Gj; = 1 thenGj = Gj � Gr, where Gx is the x-th row of G/* now we have G = (Idk;Z)I */while true do/* Step 2 */Randomly split I into I1 and I2 with jI1j = bjIj=2/* Step 3 */Randomly hoose L � NnI suh that jLj = l/* Steps 4 and 5 */for all linear ombinations A of p rows of ZI1 dostore (AL; A; index of rows) in a hash table Tfor all linear ombinations B of p rows of ZI2 doif there exists (BL; A; index of rows) 2 T andwt((A+B)Nn(I[L)) = t� 2p thenConstrut  from G by taking the same rows as in A+Breturn()/* New step 1 */Randomly hoose � 2 IFind unique r suh that Gr;� = 1Randomly hoose � 2 NnI, suh that Zr;� = 1I = (Inf�g) [ f�g/* Update Z appropriate to new I */for i = 1 to k doif r 6= i and Gi;� = 1 thenGi = Gi � Gr, where Gx is the x-th row of G



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 341.2.4 (SUBSPACEWEIGHTS). Further we know little about the true minimumdistane of the dual ode (see e.g. [12℄).Let Hw be a set of vetors of weight w of the dual spae of the (n; k; 2t+ 1)linear binary ode G with generator Matrix G. Let y be the sum of a odeworduG 2 G and an error vetor e with weight at most t. A Jh. Al Jabri points out,that for randomly generated odes the probability that a value of 1 appears inthe i-th position of h 2 Hw with yhT = 1 depends on i being an erroneousposition in the vetor y. Let p be the probability that hi = 1 and i is anerroneous position, and q be the probability that hi = 1 and i is a non-erroneousposition. Then we havep = Pm�tm odd � n�tw�m�� t�1m�1�Pm�tm odd � tm�� n�tw�m� , q = Pm�tm odd � n�t�1w�m�1�� tm�Pm�tm odd � tm�� n�tw�m�for all h satisfying that yhT = 1.The idea for statistial deoding is quite similar to the one of iterative deod-ing, see [14℄. It onsists in estimating the probability that hi = 1 and yhT = 1for eah position i onsidering di�erent vetors h. Unlike at iterative deodingwe do not determine a single error position, but try to determine an informa-tion set of non-error positions. If for example p > q, then we assume that i isa non-error position if the relative frequeny estimate is lower then a ertainbound. One we have found a non-erroneous information set by modifying thebound, we try to orret the errors.We an reover u using algorithm 4.3.1 if Hw is properly hosen. Notethat for i 2 f1; � � � ; ng an (non-)error position the value vi=v+y with v+y :=Ph2Hw �yhT mod 2� is the relative frequeny estimate for p (q respetively).The mean value of vi is pv+y , and its variane is �2 = p(p � 1)v+y . The sets I1and I2 are introdued to over the ases where p < q or p > q.Algorithm 4.3.1 StatDeInput: Hw, y.Output: u, the information vetor.v =Ph2Hw �yh> mod 2�h 2 Zn.hoose I1 = fpositions of the k largest entries of vg s.t. G�I1 is invertible.hoose I2 = fpositions of the k smalles entries of vg s.t. G�I2 is invertible.u1 = yI1G�1�I1u2 = yI2G�1�I2if weight(u1G� y) � t thenu = u1elseu = u2The work fator for algorithm 4.3.1 isO �n � jHwj+ 2k3 + kn�



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 35MEliee parameters w jp� qj jHwj �nw�2�k Workfator(2m; k; d = 2t+ 1) StatDe(1024; 524; 101) 137 0:2 � 10�7 251 252:5 261(1024; 524; 101) 153 0:21 � 10�8 258 294 268(2048; 1278; 141) 363 0:41 � 10�14 296 296:9 2107(65536; 65392; 9) 32000 0:17 � 10�13 293 2109:7 2109Table 1: StatDe for example parameter setsbinary operations having omputed the setHw in advane. The author of [25℄laims that the latter an be done e.g. by the methods of [8℄, whih is to bedoubted (ompare [39℄ and [14℄).The di�erene between p and q is very small for large odes, so we need a largeset Hw to distinguish the relative frequeny estimates for p and q respetively.Al Jabri's initial analysis of the size of Hw needed for error orretion seems tobe too optimisti. A more realisti bound seems to bejHwj � 5:4p(1� p) 1(p� q)2 : (18)from [39℄, whih is about a fator 214 larger than Al Jabri's original bound(ompare as well [14℄).It is obvious, that a setHw of the desired size will not even exist if w is hosento small. Goppa odes, BCH odes and GRS odes have a weight distribution\lose" to the expeted weight distribution of a random odes, whih is thebinomial distribution [25℄. Consequently, we get the following ondition for Hw:jHwj � �nw�2�k.Table 1 shows some example sizes to attak MEliee this way, where thework fator refers to the omputational osts after having omputed the setHw. One an see, that the MEliee ryptosystem resists this kind of attak forall parameter sets seure against CC-LWCW. Further, for all parameter setsproposed, StatDe has no advantage over CC-LWCW. However, so far thereis no algorithm known, whih performs the preomputation eÆiently.In [39℄, a improved version of StatDe is proposed, but the author on-ludes, that this improvement is not suÆient to attak the MEliee Cryptosys-tem by statistial deoding due to the large amount of preomputation needed.The authors of [14℄ onlude, that for iterative deoding a smaller set Hw as forthe initial StatDe is suÆient as well. However, the size of Hw needed is stillvery large and in onsequene it is infeasible to ompute Hw by the existingmethods.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 364.4 Lattie AttaksIn [6℄, the authors suggest to apply the low density algorithm from [29℄ to breakNiederreiter ryptosystem. In this setion we give an idea of this attak andexplain why this attak doesn't work with Niederreiter/MEliee ryptosystemsbased on binary Goppa odes.The attak proeeds as follows. Given a parity hek matrix H 2 Fn�(n�k)qof a Goppa ode and ipher text  =mH, wherem is a message, i.e. wt(m) = t(see setion 1.4). Let L be the lattie generated by the row vetors in the matrixQ = 0� Idn+1 rHrT0 qrIdn�k 1Awhere Ids is the identity matrix of dimension s and r is an integer. The vetorm� = (m1; : : : ;mn;�1; 0; : : : ; 0) is a vetor in the lattie and has at most t+1nonzero entries. If r � t, then the authors laim that m� is a shortest vetor inthe lattie. So by �nding this vetor we an determine the orresponding plaintext.Unfortunately, this is not true for �elds of harateristi 2. The reasonfor this failure is that m� isn't the shortest vetor for q = 2. The shortestvetors are 2e1; : : : ; 2en+1, where ei = (0; : : : ; 0| {z }i�1 ; 1; 0; : : : ; 0). These vetors anbe obtained by taking the �rst (resp. seond, et.) row twie and erase the last(n � k) elements in the vetor by taking appreiate rows from the sub-matrixqrIdn�k. Sine these vetors have nothing to do with original message m, thisattak doesn't work with the Niederreiter ryptosystem based on binary Goppaodes.5 Attaks infeasible with CCA2 ConversionsThe attaks outlined in the following aim at revealing partial information aboutthe message sent, or the error vetor used for enryption in the MEliee ase.Thus they are not stand alone attaks, i.e. they annot be used to reover theplaintext ompletely or to get the private keys, but they provide ways to reduethe system size and thus the omplexity of onseutive attaks.One thing all attaks dealt with in this setion have in ommon is that theyan be avoided ompletely by suitable onversions for the originalMEliee ryp-tosystem [27℄. Thus the attaks are mentioned here mostly for ompleteness'sake and to underline the importane for using one of the proposed onversions,some of whih we present later.5.1 Taking advantage of partially known plaintextsAn attaker for the MEliee ryptosystem may use known bits of a sent mes-sage to reover the whole plaintext. More preisely, the partial knowledge of



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 37the originally sent message orresponds to a redution in the ryptosystemsparameters.Suppose an adversary knows the target plaintext bits mI for an index setI � f1; 2; : : : ; kg: Denote with J the omplement of I in f1; 2; : : : ; kg: Then theadversary may try to reover mJ using the following redution:mG =mIG�I �mJG�J :Therefore, we have �mIG�I =mJG�J � z0 =mJG�J � z:An analogous redution an be ahieved for the Niederreiter sheme. All attaksdesribed in the previous setion, that do snot use the partiular struture ofthe ode an be applied to try and solve this equation for mJ : In partiular,this inludes the Generalized Information-Set-Deoding attak and the Finding-Low-Weight-Codeword attak. (Note that their suess is no longer guaranteedas we do not know wether G�J ontains an Information Set, whih is needed inboth ases.) However, the omputational ost for those attaks an be ritiallyredued as k drops to jJ j:5.2 Taking advantage of known relations between mes-sagesAn adversary for the MEliee sheme may use the relation between two en-rypted messages to determine error bits [5℄. This attak annot be adapted tothe Niederreiter ryptosystem. Let m1;m2 be two messages related by �; e.g.�(m1;m2) =m1 �m2: Then1 � 2 � �(m1;m2) = z1 � z2:Zero bits on the left hand side of this equation implyz1jk � z2jk = 0) (1 = z1jk = z2jk0 = z1jk = z2jk:Sine the weight of the error vetors z1; z2 is small, the �rst ase is highlyunlikely: Pr(1 = z1jk = z2jk) = � tn�2 :This enables an adversary to eÆiently guess error bits.A speial ase is themessage-resend attak where the attaker an reoverz1 � z2 = 1 � 2:



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 385.3 Reation AttakThis attak is a weaker version of an adaptively hosen ipher text attak, inthat it does not require any deryptions, but only depends on the observationof the reeiver's reation on potential iphertexts [27℄. This attak again aimsat determining error bits and is therefore only appliable to the MEliee ryp-tosystem.An adversary may interept iphertexts, hange a few bits, and wath thereation of the designated reeiver on these modi�ed iphertexts. Sending mod-�ations of an authenti iphertext amounts to adding further error bits. If thereeiver annot deode (reation: repeat request), the orresponding bits werenot in error originally. This may enable a Generalized Information-Set-Deodingattak, for example.The probability to need more than k rounds before hitting an error positionis �n�kt ��nt� :5.4 MalleabilityAdding odewords, i.e. rows of G to a iphertext yields another valid iphertext.Therefore, the original MEliee ryptosystem does not satisfy non-malleability.Note that this is no problem in the Niederreiter ase, as there is no knownrelation that may be used to reate new deodable syndromes from old ones.6 Conversions ahieving CCA2-SeuritySuppose an adversary who wants to reover a message from its iphertext only,has aess to a deryption orale. He may not query the orale on the targetiphertext. Apart from that, the orale provides him with iphertext-plaintextpairs of his hoie. A ryptoystem is seure against adaptive hosen iphertextattaks (CCA2 seure) if suh attaker has no advantage in deiphering a giveniphertext. It is indistinguishable in the CCA2-model if the attaker has noadvantage in determining for a given iphertext and two plaintexts whih ofthem was enrypted.In [27℄ Kobara and Imai review two generi onversion. One was origi-nally presented by Pointheval [41℄ and the other by Fujisaki and Okamoto [15℄.Both onversions were designed to ahieve CCA2 seurity for a restrited lassof publi key ryptosystems. Kobara and Imai show, that these onversions ansuessfully be applied to the MEliee ryptosystem.Furthermore they and propose three onversion shemes spei�ally tailored forthe MEliee ryptosystem. To explain these onversions, we introdue the fol-lowing notation:



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 39r; r0 Random numbersConv Bijetive onversion of any number in Z=Z�nt� to the orrespondingerror vetor of length nH Cryptographi hash funtion, outputting bit-strings of length log2 �nt�R Cryptographially seure pseudo random number generator from �xedlength seedsE MEliee enryption funtion, taking as �rst argument the message tobe enrypted and as seond one the error vetor: E(m; z) = D MEliee deryption funtion: D() = (m; z)MSBn(m) The n rightmost bits of m.LSBn(m) The n leftmost bits of m.6.1 Pointheval's Generi ConversionA funtion f : X � Y ! Z; (x; y) 7! z is partially trapdoor one-way (PTOWF)if it is impossible to reover x or y from their image z alone, but the knowledgeof seret enables a partial inversion, i.e. �nding x from z: Pointheval [41℄demonstrated how any PTOWF an be onverted to a publi-key ryptosystemthat is indistinguishable against CCA2.The MEliee ryptosystem draws is seurity from the assumption that itsprimitive is PTOWF: The funtion (m; z) 7! E(m; z) an be inverted to reoverm i� the private key, i.e. the generator matrix of the underlying Goppa ode,is known.Algorithm 6.1.1 Pointheval's generi onversion { EnryptionInput: Random r; r0 and the (possibly padded) message m:Output: A MEliee-based ipher :z = H(mjjr)z = Conv(z)1 = E(r0; z)2 = R(r0)� (mjjr) = (1jj2)6.2 Fujisaki-Okamoto's Generi ConversionFujisaki and Okamoto propose hybrid enryption that merges a symmetri en-ryption sheme whih is seure in the Find-Guess model, with an asymmet-ri One-Way-Enryption sheme whih is suÆiently probabilisti, to obtain apubli-key ryptosystem whih is indistinguishable against CCA2. See [15℄ formore details. The adaptation of Kobara and Imai to the MEliee primitive usesone-time padding with random numbers for the symmetri part, and MEliee



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 40Algorithm 6.1.2 Pointheval's generi onversion { DeryptionInput: A ipher  and the orresponding MEliee deryption funtion DOutput: The target plaintext m1 =MSBn()2 = LSBLen(m)+Len(r)()(r0; z) = D(1)(mjjr) = 2 �R(r0)if 1 = E(r0;Conv(H(mjjr))) thenreturn melserejet enryption for the asymmetri one.Algorithm 6.2.1 Fujisaki-Okamoto's generi onversion { EnryptionInput: Random r; and the (possibly padded) message m:Output: A MEliee-based ipher :z = H(rjjm)z = Conv(z)1 = E(r; z)2 = R(r) �m = (1jj2)6.3 Kobara-Imai's Spei� ConversionsKobara and Imai also present three onversions of their own. Their main onernis to derease data overhead introdued by the previously mentioned shemes.One of the orresponding onversions is given below.
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Algorithm 6.2.2 Fujisaki-Okamoto's generi onversion { DeryptionInput: A ipher ; and the orresponding MEliee deryption funtion DOutput: The target plaintext m1 =MSBn()2 = LSBLen(m)()(r; z) = D(1)m = 2 �R(r)if 1 = E(r;Conv(H(rjjm))) thenreturn melserejet 
Algorithm 6.3.1 Kobara-Imai's Spei� Conversion  { EnryptionInput: Random r; a predetermined publi onstant onst and the (possiblypadded) message m:Output: A MEliee-based ipher :Note: It is assumed that the message m is prepared so that Len(m) �log2b�nt�+ k�Len(onst)�Len(r) where n; k and t are the parameters usedfor MEliee enryption.1 = R(r) � (mjjonst)2 = r �H(1)3 = LSBblog2 (nt)+k(2jj1)4 = LSBk(3)5 =MSBb(nt)(3)z = Conv(5)if Len(2jj1)� blog2 �nt� � k > 0 then6 =MSBLen(2jj1)�blog2 (nt)�k(2jj1) = (6jjE(4; z))else = E(4; z)



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 42Algorithm 6.3.2 Kobara-Imai's Spei� Conversion  { DeryptionInput: A ipher ; the bit length of the random number used in enryptionLen(r) and the orresponding MEliee deryption funtion DOutput: The target plaintext m6 =MSBLen()�n()(Again, 6 may be empty)(4; z) = D(LSBn())5 = Conv�1(z)2 =MSBLen(r)(6jj5jj4)1 = LSBLen()�Len(r)(6jj5jj4)r0 = 2 �H(1)(mjjonst0) = (1)�R(r0)if onst0 = onst thenreturn melserejet  Conversions and Data RedundanyaConversion Dataredundany = Ciphertext size - Plaintext size(n,k) (1024, 524) (2048,1608) (2048, 1278)t 50 40 70Pointh. Len(r) + n 1184 2308 2308FujisakiOkamoto n 1024 2048 2048KobaraImai n + Len(onstjjr)� log2b�nt� � k 536 480 655OriginalMEliee n� k 500 440 770aWe follow the suggestion of Kobara and Imai and use Len(r) = Len(Const) = 160.Kobara and Imai laim to ahieve a redution in data redundany even belowthe values for the original MEliee PKCS for large parameters. We point outthat this is only true if the message is prepared in suh a way thatLen(m) � log2b�nt�+ k � Len(r) � Len(onst):Nonetheless, the ut in data overhead is remarkable. Their main result onern-ing seurity is the following:Theorem 6.3.1 Breaking indistinguishability in the CCA2 model using any of



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 43the onversions presented above, is as hard as breaking the original MElieepubli key system.Furthermore, the Known-Partial-Plaintext Attak, the Related Message At-tak, the Reation Attak and the Malleability Attak, all beome impossible,sine relations among plaintexts do no longer result in relations among ipher-texts. Already the simple hashing of messages before enryption prevents this.7 Other ryptographi appliationsIn this setion we want to look into digital signature and identi�ation shemesusing error orreting odes. Up to now there has been little researh onerningthe development of seure and eÆient digital signatures based on the MElieeCryptosystem. In fat MEliee laimed in his original paper \the deryptionalgorithm [: : : ℄ annot be used to produe unforgeable 'signatures'."[37℄The �rst ideas to derive digital signatures from error-orreting odes havebeen presented by Xinmei in [52℄. Xinmei's suggestion uses a MEliee-typeenryption but was attaked and modi�ed by Harn and Wang [22℄ and �nallybroken by Alabbadi and Wiker in 1992 [1℄.One year later, J. Stern proposed an identi�ation sheme based on syndromedeoding [49℄ but aknowledged himself that it ould not be modi�ed to aneÆient signature sheme.Alabbadi andWiker reviewed the hanes to design digital signature shemesbased on error-orreting odes in [2℄ but did not �nd feasible models. Theirown proposal was suessfully attaked by Stern [50℄.Thus all attempts to reate seure and reasonably eÆient digital signatureson the basis of the MEliee ryptosystem have failed until the paper of Courtois,Finiasz and Sendrier [11℄.7.1 Stern's identi�ation shemeStern's identi�ation sheme is based on the Niederreiter ryptosystem.Let H be a (n � k) � n matrix ommon to all users. Chosen randomly,Stern laims that H generally will provide a parity hek matrix for a ode withgood error orreting apability. Every user reeives an n bit private key s ofpresribed weight p:� Publi key H; Hst = i; p� Private key sThe seurity of the sheme relies on the diÆulty of the syndrome deodingproblem, that is on the diÆulty of determining the preimage s of i = Hst:Without the seret key, an adversary has two altenatives to deeive the veri�er:



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 44Protool 7.1.1 Stern's Identi�ation shemeProver Veri�erChoose random n-bit vetor y and ran-dom permutation �; to ompute1 = (�;Hyt) 2 = �(y) 3 = �(y � s)Send ommitments for (1; 2; 3) Send random request b 2 f0; 1; 2gIf b = 0 ) reveal y; �If b = 1 ) reveal y � s; �If b = 2 ) reveal �(y); �(s) If b = 0 ) hek 1; 2If b = 1 ) hek 1; 3 andHyt = H(yt � st)� iIf b = 2 ) hek 2; 3 and!(�(s) = p1. He an work with a random s0 of weight p instead of the seret key. Hewill sueed if he is asked b 2 f0; 2g but in ase b = 1 he will hardly beable to produe the orret 1; 3 sine Hs0 6= Hs = i:2. He an hoose s0 from the set of all preimages of i under H; i.e. s 2H�1(it): This time he will fail to answer the request b = 2 sine !(s0) 6= p:Thus the attaker has hanes 2=3 to deeive the veri�er in any round. Theidenti�ation sheme of Stern has not been broken. Unfortunately, it an notbe adapted to obtain an eÆient signature sheme. The standard method toonvert the identi�ation proedure into a prodedure for signing, is to replaeveri�er-queries by values suitably derived from the message to be signed. Thisleads to a blow-up of eah (hashed) plaintext bit to 2n signature bits and istherefore hardly appliable here.7.2 CFS Signature ShemeThe only working signature sheme based on the MEliee, or rather on theNiederreiter enryption was presented by Courtois, Finiasz and Sendrier in [11℄.Analogously to the results on the original MEliee PKCS, the seurity of theCFS sheme an be redued to the Bounded Distane Deoding Problem. TheBounded Distane Deoding Problem (BD) is the Syndrome Deoding Problemfor odes with known minimal distane. This extra knowledge allows the deoderto restrit his searh to odewords within the given distane to the reeived one.Some believe this problem not to be NP-omplete, as determining the minimumdistane of a linear ode in itself already is NP-omplete, and this additionalinformation is given in the BD ase.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 45Let the underlying ode be a (n; k)-Goppa ode, with error-orreting apa-bility t, where n = 2m and k = n� tm; for some integer m: Denote with G thegenerator matrix and with H the parity hek matrix, respetively.The idea of the CFS algorithm is to repeatedly hash the doument aug-mented by a ounter, until the ouptput is a deodable syndrome. The signeruses his seret key to determine the orresponding error-vetor. Together withthe urrent value of the ounter, this error vetor will then serve as signature.The error-vetor length n an be redued onsiderably, taking into aountthat only t of its bits are nonzero. With the parameters suggested by Cour-tois, Finiasz and Sendrier the number of possible error-vetors is approximatelygiven by �nt� = �2169 � � 2125:5 so that a 126-bit ounter suÆes to address eahof them. We need the following ingredients:h Publi hash funtionI Funtions that assigns eah word of weight t and length n a uniqueindex in the set of all these words.T MEliee trapdoor funtion, outputting the error-vetor for a givendeodable syndromeH The publi parity hek matrix.Algorithm 7.2.1 CFS digital signature { SigningInput: h; I; T ; r and the doument to be signed dOutput: A CFS-signature s:z = h(d)hoose a r-bit Vetor i at randoms = h(zjji)while s is not deodable dohoose a r-bit Vetor i at randoms = h(zjji)e = T (s)s = (I(e)jji)The average number of attempts needed to reah a deodable syndrome anbe estimated by omparing the total number of syndromes Ntot to the numberof orretable syndromes Nde:Ntot = 2n�k = 2mt = ntNde = tXi=0 �nt� � ntt!NdeNtot = 1t!Thus eah syndrome has a probabillity of 1t! to be deodable. The CFS sheme



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 46Algorithm 7.2.2 CFS signature sheme { Veri�ationInput: A signature s = (I(e)jji); the doument d and the MEliee publikey HOutput: Is the signature valid?e = I�1(I(e))s1 = H(et)s2 = h(h(d)ji)if s1 = s2 thenaept selserejet sParameter Sizes and Costsparameters n 215 216 217t 10 9 10 8 9 10size publikey in MB k(n�k)=(8�10242) 0:58 1:12 1:12 2:38 2:38 2:38signatureost t!t2m3 240 237 240 234 238 241veri�ationost t olumnoperations2 218 219 219 220 220 220signaturelength log2(nt) 150 144 160 136 153 170needs about t! iterations, produing signatures of length log2(r�nt�) � log2(nt).Thus, r has to be be larger than log2(t!).Attaking the CFS signature sheme via the birthday paradoxon is the bestmethod so far, whih is infeasible (ompare [11℄).8 Performane and ParametersThe main reason why MEliee reeived little attention in pratie is beauseof the huge key sizes in omparison to RSA. Like RSA, its seurity remainsunbroken in its original form. It is as old as RSA, but less well studied. In thefollowing we review some aspets of implementation, performane and (good)hoie of parameters.As we have already mentioned, the key sizes are quite big in omparison toRSA. However, the MEliee Cryptosystem has a muh faster en- and deryp-tion. We to take a look at the running times �rst and analyze the key sizesafterwards.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 478.1 Performane of En-/Deryption and Key GenerationThe enryption of a messgage in the original MEliee sheme takes aboutk=2 � n+ tbinary operations plus the time to generate the error vetor. For deryption,the deryption algorithm gets faster if we store some matries in advane, whihonly depend on the private key. We return to the notations of setion 1.3 and1.4 respetively.Theorem 8.1.1 The deryption of a iphertext of a MEliee instane gener-ated by a (n = 2m; k; d) binary irreduible Goppa ode requires O �ntm2� binaryoperations.Proof. Let J � f1; � � � ; ng with jJ j = k and GJ invertible. We may omputemSG � zP�1 in n � m binary Operations and the orresponding syndrome inn � (n� k) more. Applying the algorithm of Patterson ([40℄, algorithm 2.3.1) weneed O �n � t �m2� binary operations to identify the vetor zP�1 and n more togetmSG. Having omputed (SGJ )�1 we need only further k2 binary operationsto reover the message m.The time needed to enrypt a message with Niederreiter depends on themethod of representing the message by a appropriate plaintext e of length nand weight t. This ould be done in several ways. We just want to point out,that the distribution of the support of e should be (almost) uniform to avoidorret guessing of the positions of the zeros (ompare [42℄). For example oneould use methods derived from [51℄ or simple enumeration of all possible errorvetors. The time of deryption depends on the time to reover the plaintextand the time to reonstrut the original message from that plaintext.Theorem 8.1.2 Reovering the plaintext from a iphertext of a Niederreiterinstane generated by a (n; k; d) Goppa ode requires O �ntm2� binary opera-tions.Proof. The proof is analogeous to the one of the theorem above.When generating an instane of the MEliee Cryptosystem with n = 2m wesuppose that we already know a polynomial F 2 F2 [X ℄ s.t. (F2 [X ℄) =F = F2m .From [19℄ we know that the number of moni irreduible polynomials of degreet over F2m is bigger than (2mt � 1) =t. Thus the probability of getting an irre-duible polynomial by hoosing a random one of degree t with leading oeÆient6= 0 is larger than 1=t. To hek the irreduibility requires O �t2m2 + t3m� op-erations [24℄. Having found an irreduible generator polynomial g we need 2mevaluations of (g (x))�1 and n (t� 1) multipliations in F2m to generate the par-ity hek matrix. For the MEliee ryptosystem we need a Gaussian elimination(O((n�k)3) binary operations) at that point, to ompute the generator matrix.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 48Next we have to generate the permutation and the sramble matrix and multiplythem with the generator matrix whih an be done in O �k2n+ n2� (MEliee)and O �(n� k)2n+ n2� (Niederreiter) binary operations respetively. Togetherwith the time neessary to invert SGJ andM, this leads to the following theorem:Theorem 8.1.3 The running time (in binary operations) to generate a keypair for the MEliee ryptsystem is O �k2n+ n2 + t3(n� k) + (n� k)3� andO �(n� k)2n+ n2 + t3(n� k)� for the Niederreiter ryptosystem.8.2 Key SizesThe method of storing the private key o�ers some variants. First we wouldwant to store the Goppa polynomial and the generator polynomial of F2m andadditionally the hek matrix H. Seond it would be better to store M�1 or(SG�J )�1, to enhane the performane of deryption. The private key storedthat way has the size of(n� k)n+ (n� k + 1 + 2 � log2 n) + k2 + n � log2 nbits for MEliee Cryptosystem and(n� k + 1 + 2 � log2 n) + (n� k)2 + n � log2 nfor the Niederreiter version. Alternatively, the holder of the seret key an omitstoring the matrixH, as it is not needed to ompute the syndrome of the reeivediphertext. However, this would derease the speed of deryption.To store the publi key requires n �k bits for the MEliee ryptosystem. Forthe CCA2-seure variants of the MEliee PKC it is possible to give the publigenerator matrix G in its systemati form. If we hoose the �rst k olumns ofG to be the identity matrix, then we an desribe the publi key by only givingthe last (n� k) olumns of G, alled the redundant part. This requiresk � (n� k)bits. The same is true for the the Niederreiter PKC. Table 2 shows the perfor-mane of the original MEliee PKC for some example parameters.8.3 Choie of ParametersUnfortunately, there is no simple riterion for the hoie of t with respet to n.One should try to make it as diÆult as possible to attak the ryptosystemusing the known attaks. For the sample parameter sets from Table 2, Table 3shows the theoretial work fators for the MEliee ryptosystem (the CCA2-seure variants and the original one). In omparison, Table 4 gives the estimatedwork fators for the RSA ryptosystem.As one an observe from the tables, today the best attak against MEliee'sryptosystem is CC-LWCW (Algorithm 4.2.3), whih is Stern-LWCW with



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 49MEliee Size publi Workfatorsystem parameters key in bytes (binary operations)(n; k; d = 2t+ 1) plain CCA2-seure enryption deryption(1024; 524; 101) 67,072 32,750 218 222(2048; 1608; 81) 411,648 88,440 220:5 223(2048; 1278; 141) 327,168 123,008 220 224(2048; 1025; 187) 262,400 131,072 220 224:5(4096; 2056; 341) 1,052,672 524,280 222 226:5Table 2: Performane of the MEliee PKC
MEliee Workfator (binary operations)system parameters GISD Leon-LWCW CC-LWCW 3(n; k; d = 2t+ 1) p = 2 p = 3, l = m p = 2, l = 2m� 1(1024; 524; 101) 270 269 264(2048; 1608; 81) 2110 2107 298(2048; 1278; 141) 2120 2118 2110(2048; 1025; 187) 2115 2112 2106(4096; 2056; 341) 2195 2193 2184Table 3: Attaking the MEliee PKC3 Approximation without determining the exat value of the number of expeted iterations.The exat evaluation uses a Markov hain and thus no losed formula is available (see [9℄).

System Size Workfator (binary operations)publi key en- de- bestin bytes ryption ryption attak 5RSA 1024-bit Modulus 256 230 230 279RSA 2048-bit Modulus 512 233 233 295RSA 4096-bit Modulus 1024 236 236 2115Table 4: Performane of the RSA PKC5 this is the NFS attak for fatoring the RSA modulus, see [31℄.



D. Engelbert, R. Overbek and A. Shmidt: The MEliee Cryptosystem 50Markov hain improvement. CC-LWCW has a polynomial spae omplexityand its work fator may be approximated byO(n3)2�t log2(1�k=n),if t is small and k=n is not too lose to 1 (ompare [43℄). Sine n = 2m andk = n � tm, N. Sendrier onludes, that the maximum degree of seurity isobtained for an information rate k=n � 1� 1= exp(1). We omitted to onsiderthe statistial deoding attak on the MEliee Cryptosystem beause of seriousdoubts regarding the assumptions made by the author of [25℄, ompare setion4.3.9 ConlusionAfter more than twenty years of researh the MEliee PKC ryptosystem slowlyomes to the fore as a pratial alternative to RSA in appliations where longterm seurity is needed. There are no known lassial or quantum omputerattaks on MEliee's ryptosystem, whih have sub-exponential running time.Despite the lak of eÆient attaks on MEliee's proposal, none of the ryp-tographi shemes based on oding theory is proven to be as seure as somelassi problem of oding theory. Nevertheless, a key size of 123KB seems to beseure until the year 2041.The fast inreasing amount of storage spae on small devies like USB To-kens, PDAs and mobile phones would even allow an appliation of the MElieePKC nowadays. We believe, that the MEliee PKC might be used within thenext deades, even if no quantum omputer is available. The advantage of odebased ryptography lies in the faster en- and deryption, whih helps to reduethe battery drain of ryptographi appliations on mobile devies.Another interesting property of ode based ryptography is the fat, that onean build a omplete infrastruture from it. Identi�ation shemes, signatureshemes and even random number generators as well as hash funtions areavailable.AknowledgmentWe would like to thank Prof. Dr. Johannes Buhmann for inspiring for this workand Dr. Ulrih Vollmer for his onstant support and most helpful omments.
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