
1

A SOFTWARE IMPLEMENTATION OF

THE McELIECE PUBLIC-KEY CRYPTOSYSTEM

Bart Preneel1,2, Antoon Bosselaers1, René Govaerts1 and Joos Vandewalle1

A software implementation of the McEliece public-key cryptosystem is pre-

sented together with some existing and new extensions. The important dis-

advantages of the scheme are the data expansion, the size of the keys and

the fact that no digital signatures are possible. However, even a software

implementation results in a reasonable speed of encryption and decryption.

Moreover, the system can be used as a combined scheme that offers a both

encryption and error correction at the cost of a decreased security level.

1 Introduction

In 1978, McEliece proposed a new public-key cryptosystem based on algebraic coding

theory [13]. The system makes use of a linear error-correcting code for which a fast

decoding algorithm exists, namely a Goppa code. The idea is to hide the structure

of the code by means of a transformation of the generator matrix. The transformed

generator matrix becomes the public key and the trapdoor information is the structure

of the Goppa code together with the transformation parameters. The security is based

on the fact that the decoding problem for general linear codes is NP-complete [4].

In a first section a mathematical description of McEliece’s system will be given.

Subsequently extensions and attacks will be summarized. Next some details are given

on the implementation of key generation, the encryption and decryption. Finally we

present our conclusions.

2 Description of McEliece’s Public-Key Cryptosystem

For each irreducible polynomial g(x) over GF (2m) of degree t, there exists a binary

irreducible Goppa code of length n = 2m and dimension k ≥ n − mt, capable of

correcting any pattern of t or fewer errors[3]. As it is a linear code, it can be described

by its k × n generator matrix G. With the aid of a regular k × k matrix S and an

n×n permutation matrix P , a new generator matrix G′ is constructed that hides the

structure of G:

G′ = S ·G · P

1Katholieke Universiteit Leuven, Laboratorium ESAT, K. Mercierlaan 94, B–3001 Heverlee,
Belgium.

2NFWO aspirant navorser, sponsored by the National Fund for Scientific Research (Belgium).

Appeared in Proceedings of the 13th Symposium on Information Theory in the Benelux,
Werkgemeenschap voor Informatie- en Communicatietheorie, pp. 119–126, 1992.



2

The public key consists of G′, and the matrices S and P together with g(x) are the

secret key. The new matrix G′ is the generator matrix of another linear code, that

is assumed to be difficult to decode if the trapdoor information is not known. The

encryption operation consists of multiplication of the k-bit message vector by G′ and

the modulo 2 addition of an error vector e with Hamming weight t:

c = m ·G′ ⊕ e.

The first step of the decryption is the computation of c · P−1. Subsequently the

decoding scheme makes it possible to recover m · S from

c · P−1 = (m · S ·G)⊕ (e · P−1).

The message m is finally constructed by a multiplication with S−1.

The disadvantages of the scheme are the data expansion, the size of the keys, and

the fact that no digital signatures are possible. On the other hand, the implementation

of the encryption part is much simpler, and for a comparable security level, the speed

of our general implementation is comparable to that of highly optimized code for the

well known RSA cryptosystem [16]. Moreover, it is one of the few still unbroken

public-key cryptosystems that is not based on any number-theoretic assumption.

3 Extensions

In this paper only public-key variations will be considered. A first extension originated

by F. Jorissen[7]. The idea was to add only t′ < t errors, such that t − t′ additional

errors can be corrected. This implies that the security level degrades: under worst

case conditions no additional error occurs and the work factor of an attacker decreases

significantly. For some applications however, it could be very attractive to have a

combined system that automatically corrects some errors.

A second idea consists of improving the code rate by transferring some data

through the pattern of the error bits [5, 14]. It is important to note that this has

no effect on security if the data in the concealed channel is perfectly random, but

otherwise an attacker could obtain an important advantage.

A third extension is the replacement of the requirement of irreducibility of g(x)

with a different condition: g(x) must be the product of non-repeating factors of degree

at least 2. It can be shown that in this case the error correcting capabilities are

unchanged and the bound on the dimension remains valid. A first consequence is an

increased key space. Secondly, the decoding algorithm has to be modified to take

into account these changes. For the implications on key generation and decoding the

reader is referred to section 5.

Appeared in Proceedings of the 13th Symposium on Information Theory in the Benelux,
Werkgemeenschap voor Informatie- en Communicatietheorie, pp. 119–126, 1992.



3

4 Cryptanalysis

The known non-exhaustive attacks can be classified in three categories: a first type

of attack tries to compute the key or an equivalent key. However, it is shown in [1]

that the existence of an equivalent Goppa code is extremely unlikely. The conclusion

in [6] is that the task of the researcher who wants to assess the security is as difficult

as the task of an attacker who wants to break the scheme.

A second type of attack aims at recovering directly the message m. The main

idea is to select and solve k of n equations obtained from c and G′. This attack was

already mentioned in [13], but has been significantly improved in by Lee and Brickell

[9] and by van Tilburg [18]. A first element is that the agreement between the resulting

message and the original message is systematically checked. The second improvement

is that j errors (j ≥ 1) in the k equations are allowed. The attack is then optimized

with respect to j.

A recent attack by Korzhik and Turkin [8] is based on an iterative optimization

algorithm, and the claimed number of operations to correct an error pattern with

weight at most t is claimed to be 20 · n3. This would mean a major breakthrough,

but the validity of the work is in question and remains to be verified. Note that this

attack does not contradict the fact that the decoding problem for a general linear code

is NP-complete, as only error patterns with Hamming weight ≤ t can be corrected.

The conclusion is that for m = 10 a maximal work factor of 271.1 is obtained if

t = 39. This implies that the resulting code has a length n = 1024, and a dimension

k ≥ 634. The information rate equals 0.619. The concealed channel could contain 235

bits.

5 Implementation

In this section, the key generation, encryption and decryption will be discussed in

more detail. For execution time and memory requirements, data will be given for the

case m = 10 and t = 39. Execution times were measured on a 16 MHz IBM PS/2

Model 80 containing a 80386 processor running under DOS. No use was made of

32-bit 80386 instructions.

5.1 Key Generation

This is certainly the most complicated part of the algorithm. It is certainly less critical

than the encryption and decryption, but the nature of the operations (e.g. inversion of

a k × k matrix) requires careful coding if a reasonable performance is expected. The

key generation involves following steps:

Step 1 Select a primitive polynomial of degree m and prepare log and antilog tables

for GF (2m).

Appeared in Proceedings of the 13th Symposium on Information Theory in the Benelux,
Werkgemeenschap voor Informatie- en Communicatietheorie, pp. 119–126, 1992.



4

Step 2 Select a generator polynomial of degree t, with no linear or repeating factors.

The first condition is easily checked, while the second is fulfilled if

gcd(g(x), g′(x)) = 1.

Note that the probability that a random polynomial is irreducible, as was re-

quired in the original scheme, equals approximately 1/t, while a constant frac-

tion of about 1/e of all polynomials satisfies the relaxed conditions. A proof of

this assertion is given in [19]. As a consequence, the time for finding a g(x) is

reduced.

Step 3 Compute the parity matrix H over GF (2m) and Hbin, the parity matrix over

GF (2). The generator matrix Gbin can now easily be computed.

Step 4 Select a random n × n permutation matrix P and construct the invertible

scramble matrix S as follows: S = S1 ·S2, where S1 is a lower triangular matrix

overGF (2) with random entries and S2 is an upper triangular matrix overGF (2)

with random entries and with diagonal elements equal to 1. The inverse S−1 is

easily computed as S−1
2 · S−1

1 .

Step 5 The public key G′ is computed as S ·G · P , and the secret key consists of S,

P an g(x).

This key generation takes about 5 minutes, and program plus data require together

about 560 K, which is quite close to the 640 K limit of the DOS operating system.

The size of the public key G′ is 79.3 K, while the secret key consists of S (49.1 K),

P (1.3 K) and g(x). The size of the secret key could be reduced significantly if S is

generated from a small seed. In [18] it is shown that a (different) decomposition of G′

can be made public without decreasing the security level. This results in a public key

only slightly larger than k(n− k) in stead of kn. For the usual parameters this would

be about 30.2 K. The price paid for this is in both cases that the scramble matrix

must be computed when it is needed.

5.2 Encryption

The encryption operation is very simple: it consists of a vector-matrix multiplication

followed by an addition of t random errors. The number of operations is kn, resulting

in a number of operations per bit of k with respect to the code bits and n with respect

to the information bits. The implementation in assembly language achieves a speed

of respectively 6 Kbit/sec and 3.7 Kbit/sec. With special hardware, this encryption

operation would certainly allow for speeds in the order of several Mbit/sec.

Appeared in Proceedings of the 13th Symposium on Information Theory in the Benelux,
Werkgemeenschap voor Informatie- en Communicatietheorie, pp. 119–126, 1992.



5

5.3 Decryption

The most time consuming and complex step in the decryption is the computation of

the error locator polynomial.

Step 1 Apply the permutation P−1 to c.

Step 2 Compute the error locator polynomial corresponding to c · P−1. The algo-

rithm of Patterson [15] is modified to take into account the fact that g(x) is not

necessary irreducible. In Step 2.2 an additional gcd has to be computed.

Let L be a subset of GF (2m) with the property that no element of GF (2m) is a

root of g(x) and let M = {γ ∈ L | eγ = 1}. The syndrome S(x) is then defined

as

S(x) =
∑

γ∈L

cγ
x− γ

mod g(x).

The error locator polynomial σ(x) is defined as

σ(x) =
∑

γ∈M

(x− γ).

Decoding of the binary Goppa code means solving the key equation:

S(x) · σ(x) ≡ σ′(x) mod g(x)

where σ′(x) denotes the formal derivative of σ(x). The solution of this key

equation requires following steps:

Step 2.1 Split σ(x) in an even and an odd part:

σ(x) = α2(x) + x · β2(x).

The key equation then becomes

S(x)(α2(x) + x · β2(x)) ≡ β2(x) mod g(x).

As deg σ(x) ≤ t, we can conclude that degα(x) ≤ bt/2c and deg β(x) ≤

b(t− 1)/2c.

Step 2.2 Compute g1(x) = gcd(S(x), g(x)). Note that if g(x) is irreducible,

g1(x) is constant. The factor g1(x) can then be removed from S(x) and

g(x):

g(x) = g1(x) · g2(x)

S(x) = g1(x) · h(x).

Appeared in Proceedings of the 13th Symposium on Information Theory in the Benelux,
Werkgemeenschap voor Informatie- en Communicatietheorie, pp. 119–126, 1992.



6

Step 2.3 As h(x) is relatively prime to g(x), its inverse modulo g(x) can be

computed. The resulting equation is:

β2(x)(x · g1(x) + h−1(x)) = g1(x)
(

α2(x) + q∗(x) · g2(x)
)

Step 2.4 With following definitions:

β2(x) = g2
1(x) · β

2
1(x)

d2
1(x) ≡ (x · g1(x) + h−1(x)) mod g(x)

d2
2(x) ≡ g1(x) mod g(x)

d2(x) = d2
1(x) · d

2
2(x)

the equation simplifies to:

β2(x) · d2(x) ≡ α2(x) mod g2(x) (†)

To compute d1(x) and d2(x), a square root has to be extracted modulo g(x).

Two techniques are known to us to solve the equation a2(x) ≡ b(x) mod

g(x).

• Extracting a square root is easy if b(x) has only even powers of x. It

can be shown [6] that every b(x) can be written in this form by addition

of
(

g′−1(x) · b′(x) mod g(x)
)

· g(x).

• Squaring is a linear operation and thus extracting the square root can

be done by multiplying with a precomputed matrix.

To optimize the speed of the implementation, the second alternative was

chosen.

Step 2.5 It is clear that a solution of

β1(x) · d(x) ≡ α(x) mod g2(x)

will result in a solution of (†) and thus of the key equation. The solution

will be unique if

degα(x) ≤ deg g2(x)− deg β1(x)− 1.

In case g2(x) is a power of x, Berlekamp’s algorithm [2] can be used to

compute α(x) and β1(x). Patterson [15] has extended this algorithm for an

arbitrary g2(x), but note that his paper contains an error, as was discovered

independently in [6]. An easier way to solve this equation is to apply

Appeared in Proceedings of the 13th Symposium on Information Theory in the Benelux,
Werkgemeenschap voor Informatie- en Communicatietheorie, pp. 119–126, 1992.



7

Euclid’s algorithm, till following conditions are satisfied:

degα(x) ≤ b
t

2
c

deg β1(x) ≤ b
deg g2(x)− deg g1(x)− 1

2
c.

The error locator polynomial is than given by

σ(x) = α2(x) + x · g2
1(x)β

2
1(x).

Step 3 The roots of σ(x) indicate the error positions. For the usual parameters the

most efficient way of determining the roots is simply trying all elements of the

finite field, with removing the corresponding linear factor when a root is found.

Step 4 Compute m by multiplying m · S on the right with S−1.

Most routines were coded in assembly language. Different parts were optimized

such that the execution time is evenly distributed over the different steps. The re-

sulting decryption speed is 1.7 Kbit/sec, and about 1 Kbit/sec with respect to the

information bits.

6 Conclusion

A software implementation of McEliece public-key cryptosystem was presented. The

key space was extended by allowing not only irreducible polynomials, but also poly-

nomials that have no linear or repeating factors. For the parameters m = 10 and

t = 39, an encryption speed of 6 Kbit/sec and a decryption speed of 1.7 Kbit/sec were

obtained on a 16 MHz IBM PS/2 Model 80. We believe this can be speeded up with

a factor of at least 2 by fixing all parameters (the current program is very flexible), by

coding all routines in assembly language and by using the powerful 32-bit instructions

of the 80386.

Acknowledgement

We would like to thank Luc Provoost, Luc Vanderghote, Frank Windmolders and

Patrick Wuytens for their important contributions to this work.

References

[1] C.M. ADAMS & H. MEIJER, “Security-related comments regarding McEliece’s

public-key cryptosystem”, IEEE Trans. Info. Theory , 35 (1989) 454–455.

[2] E. BERLEKAMP, “Algebraic coding theory”, McGraw-Hill, New York, 1968.

Appeared in Proceedings of the 13th Symposium on Information Theory in the Benelux,
Werkgemeenschap voor Informatie- en Communicatietheorie, pp. 119–126, 1992.



8

[3] E. BERLEKAMP, “Goppa codes”, IEEE Trans. Info. Theory , 19 (1973) 590–

592.

[4] E. BERLEKAMP, R.J. McELIECE & H.C.A. van TILBORG, “On the inherent

intractability of certain coding problems”, IEEE Trans. Info. Theory , 24 (1978)

384–386.

[5] D.W. DAVIES & W.L. PRICE, “Security for computer networks”, John Wiley

& Sons, 1984.

[6] P.J.M. HIN, Channel-error-correcting privacy cryptosystems (in Dutch), Thesis,

Delft University of Technology, 1986.

[7] F. JORISSEN, “A security evaluation of the public-key cipher system proposed

by McEliece, used as a combined scheme”, ESAT report K.U.Leuven, 1986.

[8] V.I. KORZHIK & A.I. TURKIN, “Cryptanalysis of McEliece’s public-key cryp-

tosystem”, Adv. in Cryptology, Proc. Eurocrypt’91, LNCS 547, Springer Verlag

(1991) 68–70.

[9] P.J. LEE & E.F. BRICKELL, “An observation on the security of McEliece’s

public cryptosystem”, Adv. in Cryptology, Proc. Eurocrypt ’88 , Springer-Verlag

(1988) 153–157.

[10] R. LIDL & H. NIEDERREITER, “Finite fields”, Addison Wesley, 1983.

[11] L. PROVOOST & L. VANDERGHOTE, Study and implementation of McEliece’s

public-key cryptosystem (in Dutch), Thesis, ESAT K.U.Leuven, 1989.

[12] R.J. McELIECE, “The theory of information and coding”, (Vol. 3 of the Ency-

clopedia of Mathematics and its Applications), Addison-Wesley, Reading, MA,

1977.

[13] R.J. McELIECE, “A public-key cryptosystem based on algebraic coding theory”,

DSN Progress Report 42–44 , Jet Propulsion Laboratory, Pasadena, CA, (1978),

114–116.

[14] C.S. PARK, “Improving code rate of McEliece’s public-key cryptosystem”, Elec-

tronic Letters, 25 (1989) 1466–1467.

[15] N.J. PATTERSON, “The algebraic decoding of Goppa codes”, IEEE Trans. Info.

Theory , 21 (1975) 203–207.

[16] R.L. RIVEST, A. SHAMIR & L. ADLEMAN, “A method for obtaining digital

signatures and public-key cryptosystems”, Comm. ACM , 21 (1978) 120–126.

[17] F.J. MacWILLIAMS & N.J.A. SLOANE, “The theory of error-correcting codes”,

North Holland, 1978.

[18] J. van TILBURG, “On the McEliece cryptosystem”, Adv. in Cryptology, Proc.

Crypto’88, LNCS 403 , Springer Verlag (1988) 119–131.

[19] F. WINDMOLDERS & P. WUYTENS, Study and implementation of cryptosys-

tems based on algebraic coding theory (in Dutch), Thesis, ESAT K.U.Leuven,

1990.

Appeared in Proceedings of the 13th Symposium on Information Theory in the Benelux,
Werkgemeenschap voor Informatie- en Communicatietheorie, pp. 119–126, 1992.


