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MATHEMATICS OF COMPUTATION, VOLUME 24, NUMBER 11I, JULY, 1970 

Factoring Polynomials Over Large Finite Fields 

By E. R. Berlekamp 

Abstract. This paper reviews some of the known algorithms for factoring polynomials 
over finite fields and presents a new deterministic procedure for reducing the problem of 
factoring an arbitrary polynomial over the Galois field GF(p?n) to the problem of finding the 
roots in GF(p) of certain other polynomials over GF(p). The amount of computation and 
the storage space required by these algorithms are algebraic in both the degree of the 
polynomial to be factored and the logarithm of the order of the finite field. 

Certain observations on the application of these methods to the factorization of poly- 
nomials over the rational integers are also included. 

1. Introduction and Summary of Results. This paper presents algorithms for 
the factorization of a polynomial over a finite field. We are given the polynomial's co- 
efficients, fO, fl, f2, ... , fn which are elements in the finite field GF(q), where q is a 
power of the prime p, and we wish to find the factors of f(x) = Z fxix which are 
irreducible over GF(q). 

The algorithm includes several major steps, which we present in different sections. 
In Section 3, we obtain a partial factorization, 

n 

f(x) = f h'T)(x), 
i =1 

where h"'i(x) is the product of ri irreducible-power factors each of which has degree i, 
and E".= iri = n. In Section 4, we reduce the problem of factoring h/)(x), a poly- 
nomial of degree iri, to the problem of finding the roots in GF(q) of a new polynomial, 
H(x), which has degree ri. If we denote the factorization of h()(x) into irreducible- 
power factors by 

h(')(x) = h h(')(x) 
ji=1 

where 

h('(x ) E k jXk 
k30 

then the roots of H(x) give us the coefficients h', i. From the roots of H(x), we obtain 
a partial factorization of h(t)(x). This partial factorization separates the irreducible- 
power factors according to their h i) . If this factorization is incomplete, then we may 
construct another polynomial whose roots are the values of the coefficients hl" i of 
the factors of f(x) which have a particular lowest coefficient ht Q From the roots of 
this new polynomial, we obtain a further refinement of the factorization of h"')(x). 
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714 E. R. BERLEKAMP 

The process may be continued until h"'i(x) is factored into the product of irreducible- 
power factors. In other words, in Sections 3 and 4 we reduce the problem of factoring 
an arbitrary polynomial, f(x), to the problem of finding the roots of a new polynomial 
which factors into linear factors over GF(q). 

In Sections 5, 6, and 7, we present algorithms for finding the roots of a polynomial 
over GF(q). In Sections 5 and 6, we present two different methods for converting the 
root-finding problem in GF(pm) to a root-finding problem in GF(p), where p is prime. 
The method of Section 5 is better for small primes, while the method of Section 6 is 
better for very large primes. Finally, in Section 7 we present an algorithm for finding 
the roots of a polynomial in a large prime field, thus completing the algorithm for 
factoring an arbitrary polynomial over a finite field. 

The algorithms presented in Sections 3-5 are completely deterministic. Although 
the amount of time and space these algorithms require to factor a polynomial will 
depend somewhat on the input polynomial, these costs may be overbounded by an 
algebraic function of the degree of the input polynomial and the logarithm of q, the 
order of the finite field. 

The algorithm presented in Section 7, on the other hand, is probabilistic rather 
than deterministic in nature. The algorithm makes a sequence of trials, each of which 
uses a parameter which is selected at random. Whether or not the trial succeeds in 
obtaininig a factorization depends on the particular choice of this random parameter 
as well as on the polynomial to be factored. However, each trial succeeds with proba- 
bility greater than 1/2, independent of the input polynomial and of all previous trials. 
Thus, although the number of computations required by the algorithm of Section 7 
is a random variable, its mean, variance, and any finite moment may be bounded by 
an algebraic function of the degree of the input polynomial and log p, where the 
prime p is the order of the field. For any given e > 0, we may therefore obtain a 
number N, proportional to log 1 /,e, a small power of log p, and a small power of the 
degree of the input polynomial, such that the probability that the algorithm of 
Section 7 will require more than N computations is no greater than E. However, for 
e = 0, the only known general bounds on N are proportional to a root of p rather 
than a power of log p. 

Section 8 reviews a procedure for factoring a polynomial over the rational integers. 
From the coefficients of the polynomial, we first compute a general bound on the 
magnitude of any coefficient of any possible factor. We then select a prime, p, larger 
than twice this bound and factor the polynomial modulo this enormous prime. The 
factors of the original rational polynomial must then lie among the known factors 
mod p, so we then try each factor mod p to see whether it is also a factor over the 
rational integers. The greatest difficulty with this procedure is that a polynomial 
which has i irreducible factors modp will have 2t factors altogether, all but 2 of which 
will be nontrivial. Consequently, if the original polynomial, of large degree n, factors 
into b X n irreducible factors modp (where perhaps b = 1/2 or 1/3), then the amount 
of computation required to find which of the 2bn factors mod p are also factors over 
the rational integers grows exponentially in n, even though the expected amount of 
computation required to obtain the complete factorization mod p grows only alge- 
braically in n. Fortunately, however, most polynomials of degree n have only about 
ln n irreducible factors mod p, and if a particular polynomial which we wish to factor 
over the rational integers turns out to have unpleasantly many irreducible factors 
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mod p, we can simply factor it again modulo a still larger prime. While it is easily 
shown that such a strategy will factor "almost all" polynomials over the rational 
integers in a very modest amount of effort, the "worst" irreducible polynomials have 
at least 2n/2 factors modulo every prime. However, even for one of these polynomials 
our procedure is substantially better than the classical Kronecker algorithm. (The Kro- 
necker algorithm is presented in Section 25, p. 77 of van der Waerden (1931).) 

Some of the material presented in this paper is based on other work. The central 
notion of this paper, which is the Q matrix of Section 3, appeared in a previous paper, 
Berlekamp (1967), a revised version of which was republished as Section 6.1 of Berle- 
kamp (1968). The algorithm presented there succeeded in factoring an arbitrary 
polynomial of degree n over GF(q) in an amount of computation which grew only 
algebraically in n, but it was proportional to q rather than algebraic in log q. The 
fact that the 0 matrix could be used to determine the number of factors had been 
anticipated by Schwarz (1956), but he gave no procedure for finding the actual factors. 
The results of Sections 5 and 6 are based on a suggestion of L. Welch (1968), and the 
results of Section 7 are based on a suggestion of G. Collins (1967) and D. Knuth (1967). 
The algorithm of Section 7 has apparently been independently discovered by a 
number of authors, several of whom are listed by Knuth (1969). Indeed, Knuth (1969) 
gives a more general probabilistic algorithm which finds factors as well as roots 
over GF(p). 

The principal innovation of this paper is the deterministic procedure of Sections 3 
and 4, which allows us to reduce an arbitrary factoring problem to a root-finding 
problem, thereby postponing the probabilistic part of the general factorization al- 
gorithm as much as possible. In this manner, we minimize the amount of computation 
which might be caused by a run of bad luck. We also maximize the opportunities to 
escape the randomization entirely by the use of special tricks, some of which are 
discussed in Section 7. 

2. Prerequisites. In this section we list several results which are required in sub- 
sequent sections and which are well known in the theory of finite fields. We also 
assume that the reader is familiar with the known techniques for performing arith- 
metic operations on the elements of a finite field. These techniques may be found in 
Chapter 2 of Berlekamp (1968) and Collins (1969). 

LEMMA 2.1. If g(x) is a polynomial over GF(q), then (g(x))' = g(x'). 
LEMMA 2.2. In GF(q), x" - x = HI8EGF(q) (x - s). 
LEMMA 2.3. In GF(q), xlm - x factors into the product of all monic irreducible 

polynomials of degrees dividing m. 
LEMMA 2.4. Let f(x) and g'i)(x) all be monic polynomials over GF(q), and suppose 

that the g'i)(x) are relatively prime. If f(x) I Ii g'i'(x), then 

f(x) = II gcd (f(x), g(" (x)) 

where gcd denotes the monic common divisor of greatest degree. 
LEMMA 2.5. Every repeatedfactor of f(x) divides its derivative, f'(x), and deg f'(x) < 

deg f(x). 
LEMMA 2.6. A polynomial f(x) over GF(q) has zero derivative iff there exists another 

polynomial, g(x), such that f(x) = g(xP), where p, the characteristic of the field, is 
the prime divisor of q. 
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Lemmas 2.5 and 2.6 provide a method by which we may reduce the factorization 
of an arbitrary polynomial, f(x), to the factorization of a polynomial whose irre- 
ducible factors are all distinct. We first compute the derivative, f'(x). If it is zero, we 
then have 

n/p / n/p 

f(x)= Zt2xPi = tE fiZ'xi) i=o i=o 

and since the pth root of an element in GF(pm) is also its p- ' power, which we may 
calculate with less than 2 log2 (pm- 1) multiplications, we may reduce the factorization 
of f(x) to the factorization of the pth root of f(x). On the other hand, if f'(x) is non- 
zero, then we may compute the gcd (f(x), f'(x)).' If this greatest common divisor has 
positive degree, then it is a proper factor of f(x). After dividing out this factor, we 
may reapply the same test. Finally, if gcd (f(x), f'(x)) = 1, then we know that f(x) 
has no repeated factors. 

In this manner, we may remove the repeated factors of f(x). 
Although it may be advisable to eliminate the repeated factors of f(x) immedi- 

ately, it is not necessary to do so. The algorithm of the following sections will factor 
an arbitrary polynomial over GF(q) into its irreducible-power factors. Thus if one 
prefers, he may first use the algorithm of the following sections to factor f(x) into 
irreducible powers, and then compute the derivative of each irreducible-power factor 
to factor it into the power of an irreducible polynomial. 

3. From Factorization of an Arbitrary Polynomial over GF(q) to the Factoriza- 
tion of a Polynomial Whose Irreducible-Power Factors all have the Same Degree. 
If f(x) is a polynomial of degree n over GF(q), then for i = 0, 1, 2, * * *, n we define 
hI'I(x) as the product of all of the irreducible-power factors of f(x) which have degree i. 
We then have the factorization 

n 
(3.01) f(x) = 17 h"'i(x). 

i =1 

In this section, we will present two methods for determining the h'('(x). 
Of course, the degree of each hi' must be a multiple of i. Most h() will be 1, but 

the factorization of Eq. (3.01) will be nontrivial unless all irreducible-power factors of 
f(x) have the same degree. Even in that case, the factorization of Eq. (3.01) will reveal 
the number of factors of f(x) of each degree. 

Before presenting our new approach to obtaining the factorization of Eq. (3.01), 
we review an older, better known approach which works whenever f(x) has no re- 
peated factors. For each successive i, the older algoritllm computes h(t(x), F(')(x) 
Hi i+1 h(')(x), and R(t)(x), the residue of xl' mod F(t)(x), as follows: 

Algorithnm 3.02: Initialization. 

R (0(x) = x, F(0)(x) = f(x). 

1 As described in Chapter 6 of Berlekamp (1968), we may compute the discriminant, D(f), 
along with gcd (f(x), f'(x)). For any given D 0 0, we can invoke Stickelberger's theorem to determine 
whether the number of irreducible factors of f(x) is odd or even. This tells us only a little bit about 
the factorization of f, but it requires very little computation. 
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Recursion. 

R "'(x)-= (R'-'(x))" mod F"-l'(x), 

deg R() < deg F(j 1 

h(x)( ) gcd (F(i-'(x), R)(x) - ) 

F(i (x) F h()(x) 

Assuming that f(x) has no repeated factors, Lemma 2.3 enables us to verify that 
each h(')(x) computed by Algorithm 3.02 is indeed the product of the irreducible 
factors which have degree i. 

In order to obtain RAi+'), Algorithm 3.02 must compute the qth power of 
R( ' mod F( ). The conventional way of doing this is to compute the residues of 
(R(i))2, (R('))4, (R(i)8, * * (R i.)2 10I',2 and then obtain R('+l) by multiplying to- 
gether an appropriate combination of these residues mod F i'). This requires between 
log q and 2 log q multiplications mod F'i', and if f(x) is irreducible or the product of 
two irreducible polynomials each of degree n/2, then it will be necessary to calculate 
n/2 successive R "), each of which is congruent to (R " - 1 q mod f(x). 

Instead of calculating each of the successive R(t) independently, we might first 
compute r'?'(x), r'l)(x), *, n'8-1(x), where each r(')(x) is the residue of xi modulo 
-f(x). We could then calculate R()(x) from the formula 

n-I n- 

(3.03) R(Ax) R(AXl = E R"1 rl'(x). 
j=O i=O 

If we introduce the n X n matrix, Q, whose n rows are the coefficients of r r 1, 
r(n-) Eq. (3.03) may then be rewritten as 

(3.04) [R i), R i, . R X1] = [R(X1, R . .R( lo 
Once we have calculated the matrix Q, Eq. (3.04) provides a fast method of calculating 
Rl'? from R('-'). If we use 0 to calculate several successive R(v, the total savings more 
than justifies the initial cost of computing 0. For large q, the time required to com- 
pute 0 is dominated by the time required to compute the second line, r(')(x) = R'(x). 
Once r(')(x) is known, each successive row of 0 may be obtained in only one multi- 
plication and reduction mod f(x). 

Although the 0 matrix does serve to expedite the calculation of Algorithm 3.02, 
it plays a relatively peripheral role. On the other hand, this same matrix lies at the 
heart of the factorization procedure of Berlekamp (1967). Although conceptually 
more complicated, this procedure improves on Algorithm 3.02 in several respects. 
First, and most important, it provides us with tools which prove useful in factoring 
each h ' (x). Second, it turns out that even in the case when each irreducible factor of 
f(x) has a different degree, the new procedure often obtains the factorization in sub- 
stantially fewer computations than Algorithm 3.02. 

The key to the factoring procedure of Berlekamp (1967) lies in finding one or more 
other polynomials, g(x), such that 

(3.05) g(x)' - g(x) _ 0 mod f(x), 0 ? deg g < deg f. 

2 Unless another base is explicitly given, "log" means "log2". 
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Berlekamp (1967) has shown that if f(x) is the product of powers of r distinct irre- 
ducible polynomials, then there are qr solutions of Eq. (3.05). These solutions and the 
value of r may be found by solving a system of n linear equations in the n unknown 
coefficients of g(x) over GF(q), namely 

(3.06) g(- _ 9) = 0 

where J is the n X n identity matrix and 0 is the n X n matrix whose ith row is the co- 
efficients of x ;-1) reduced modulo f(x). 

If g(x) is any solution of Eq. (3.05), then Lemmas 2.1, 2.2, and 2.4 give us a fac- 
torization of f(x), namely 

(3.07) f(x)- tI gcd (f(x), g(x) - s). 
sEGF(q) 

This factorization of f(x) is nontrivial unless deg g(x) = 0. The factors of f(x) given 
by Eq. (3.07) may not be irreducible powers, but in that case the factorization may be 
further refined by computing the gcd's of the composite factors and g(x) - s for 
other legitimate choices of g(x). 

If q is small, this method succeeds in factoring an arbitrary polynomial of degree n. 
The number of GF(q) computations required is proportional to n3, most of which 
are spent finding r linearly independent g's from Eq. (3.06).3 However, if q is large 
compared to n, then Eq. (3.07) becomes the bottleneck step of the computation. If q 
is very large, it becomes impractical to compute the gcd of f(x) and g(x) - s for each 
s E GF(q). Of course, most of these computations will prove useless, since at least 
q - r of these gcd's must be one. 

One method of dealing with Eq. (3.07) when q is large was recently proposed by 
Zassenhaus (1969). If S denotes the subset of GF(q) consisting of those s for which 
gcd (f(x), g(x) - s) z- 1, then Eq. (3.07) can be simplified to 

f(x) fI gcd (f(x), g(x) -s) 
sES 

from which 

(x) I -I(g(x) - s) 

We define 

G(y) = (y - s) = I Giy i 

Since f(x) I G(g(x)), we have the congruence 
Isi 

E Gi(g(x))t 0 mod f(x). 
=0 

This congruence enables us to determine the polynomial G by computing the residues 
mod f(x) of 1, g(x), (g(x))2, (g(x))3, * * * until we find a power of g(x) which is linearly 
dependent on its predecessors. Since deg G = ISI < r, the residues of 1, g(x), (g(x))2, 
. .. , (g(x))r cannot be linearly independent. The coefficients of the first linear depend- 

3 If n is large but q and r are small, then the number of GF(q) computations which Algorithm 
3.02 requires to find the gcd's is also proportional to n3, and the constant of proportionality is 
substantially higher for Algorithm 3.02 than for the procedure of Eqs. (3.06) and (3.07). 
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ence among these residues mod f(x) are the coefficients of the polynomial G. The 
values of s which yield nontrivial factors of f via Eq. (3.07) are the roots of G. Thus, 
the Zassenhaus algorithm transforms the problem of factoring f into the problem 
of finding the roots of G. 

Unfortunately, as we shall see in Section 7, the best algorithms known for finding 
the roots of a polynomial in a large prime field are probabilistic in nature. Although 
these algorithms usually run quite quickly, it is difficult to obtain any reasonable 
upper bound on the amount of time they may require in the most unlucky case. For 
this reason, we present a new, deterministic algorithm which obtains the partial fac- 
torization of Eq. (3.01). Although conceptually complicated, the algorithm runs quite 
fast. In Section 4 we show how an extension of this algorithm may be used to reduce 
the problem of factoring the product of r irreducible d-tics to the problem of finding 
the roots of a polynomial of degree r. 

We begin with some definitions. 
Definition 3.08. An r X r matrix of polynomials, DEL, over GF(q), is a matrix whose 

entries are polynomials in one indeterminant over GF(q). We say that such a matrix 
is invertible4 iff its determinant, IMZI, is a nonzero polynomial. We say that a matrix 
is unimodular iff IZI is a nonzero scalar. 

Definition 3.09. Two matrices of polynomials, (L and eC are said to be equivalent 
(written 63 t C) iff there exists a unimodular matrix of polynomials, XT, and an in- 
vertible matrix of scalars, 8, such that C = 913. 

It is trivially verified that the relation "" is transitive, reflexive, and symmetric. 
THEOREM 3.1. If f(x) = nfJ= f(t)(x), where each f(t)(x) is the power of a distinct 

irreducible polynomial, and if 1, g2)(x), g(3) (X), ** , g (x) are linearly independent 
monic solutions of the equation 

g()(X")_ g(i)(x) 0 mod f(x) 

and 0 < deg g'' < deg f, if 

f 0 0 0 . 0 

g(2) 1 0 0 0 

(3.1 1) e = g(3) 0 -1 0 0 

9(4) I .. 0 

g(r) 0 o . Ii 
and if 

1 0 0 0' 

0 f(2) 0 0 

(3.12) = 0 0 f(3) 0 

then 5- a. 
4 If IZ is invertible, it has an inverse, f-1, whose entries are quotients of polynomials in x. 

By Cramer's rule, fZ-1 will be a matrix of polynomials iff f is unimodular. 
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Proof. Let g(l) = 1, and let the r X r matrix of polynomials S be defined by 

g(x) mod f(')(x), 0 < deg Si, < deg f'. 

We claim that 
LEMMA 3.13. Every entry in the jth column of the product matrix as is a multiple 

of f(i) 
LEMMA 3.14. 8 is a matrix of scalars. 
LEMMA 3.15. 8 is invertible. 
LEMMA 3.16. a(aS)-1 is a unimodular matrix of polynomials. 
Assuming the lemmas, the theorem follows from the formula 

uwsylS)-)s = 5:f 

We now prove the lemmas. 
3.13. This lemma is an immediate consequence of the definitions of a and S. 
3.14. In GF(q), 

g(i)(XQ) - g(i)(X) = (g (x) - s). 
sEGF(a) 

Since g(i)(x') - g)(x) = 0 mod IIzl f(i(x), 

( I f (g") (x) - S). 
8EGF(a) 

Since the factors in this product are relatively prime, and f' i(x) is an irreducible 
power, there must exist one particular scalar si,i for which f ̀  (x) I g(i)(x) - s1, and 

g(i (x) = . mod f(i(x). 

3.15. If 8 were singular, then ] scalars A1, A2, * * *, A., not all zero, such that 

ZAiS,i = O for all j. 

This implies that 

Z A g(t)(x)= 0 mod f") (x) for all j, 

so 

E Aig(t)(x)- 0 mod f(x), 

and since deg g(`) < deg f, we conclude that E Aig(t)(x) = 0, contradicting the 
linear independence of g(l), g(2), . . gr) 

3.16. In view of Lemma 3.13, the cofactor of the i, j entry in aS is a multiple of 

HkpIj f((k)(x) = f(x)/1f()(x). Furthermore, 1aSI = 1a1 181 = f(x).scalar. Hence, 
if we evaluate (0,8)-1 by Cramer's rule, we find that every element in the jth row 
of (c8s)` is of the form polynomial (x)/f ';(x). It follows that the product Y(as)' 
is a matrix of polynomials. Its determinant is given by 151 181-1 1a1-1 = f(x). 
scalars/f(x) = scalar. Since 1Y1 # 0, 1S1 # 0, and jai # 0, :(a8s)-1 is unimodu- 
lar. Q.E.D. 
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Although the proof of Theorem 3.1 considered the matrix (as)-', whose entries 
were elements in the field of rational functions, GF(pm)(x), the statement of Theorem 
3.1 involves only matrices over the polynomial ring GF(pm)[x]. Henceforth, all opera- 
tions we consider are restricted to this ring. 

Since the polynomials in the first column of a, may be found by solving the matrix 
equation (3.06), Theorem 3.1 shows that the factors of f(x) may be found by diago- 
nalizing the matrix of polynomials, C, to obtain a, whose diagonal elements are 
the factors of f(x). We now consider the problem of diagonalizing a matrix of poly- 
nomials. 

A square matrix of polynomials may be transformed into another matrix of poly- 
nomials by any of the following elementary operations: 

(1) Permute any pair of rows. 
(2) Multiply any row by a nonzero scalar. 
(3) Add a scalar times a power of x times a row into any other row, and determiine 

the maximum degree of the elements in the new row. 
(4) Permute any pair of columns. 
(5) Multiply any column by a nonzero scalar. 
(6) Add any scalar multiple of any column into any other column. 
The row operations are the elementary unimodular operations. 
It is obvious that the new matrix formed by any of these operations is equivalent 

to the original matrix, because operations (1)-(3) may be performed by premultiplying 
the orginal matrix by an appropriate unimodular matrix of polynomials, and opera- 
tions (4)-(6) may be performed by postmultiplying the original matrix by an appro- 
priate invertible matrix of scalars. 

Since operation (3) is more powerful than operation (6), we can perform a greater 
variety of operations on rows than columns. Thus, rows have a special importance. 

Definitions 3.17. The degree of a row of a matrix of polynomials is the maximal 
degree of any of the entries in that row. The degree of an all-zero row is conventionally 
taken as -1.5 The total row degree of a matrix of polynomials is the sum of the degrees 
of its rows. 

An entry whose degree is equal to the maximum degree occurring in its row is 
said to be a maxrowdeg entry. An entry is called a dominant entry iff it is a diagonal 
entry and it is the unique maxrowdeg entry in its row. A row containing a dominant 
entry is called a dominated row. Likewise, a column containing a dominant entry is 
called a dominated column, even though some of the nondiagonal entries in the domi- 
nated column may have higher degrees than the diagonal entry. 

A matrix of polynomials is said to be a row-dominated matrix iff all of its nonzero 
rows are dominated rows. The complexity of a matrix of polynomials is defined as 
twice its total row degree minus the number of its dominated rows. 

THEOREM 3.2. If an r by r matrix of polynomials is not row-dominated, then it is 
equivalent to another matrix of smaller complexity, which can be obtained from the 
original matrix in at most r - 1 elementary operations. 

Proof. Any matrix of polynomials which is not row-dominated must contain a 
diagonal entry which is not the unique maxrowdeg entry in its row. Let such an entry 

6 Notice that this convention violates the usual law, deg (fg) = deg f + deg g if f or g is 0. 
The law can be preserved only by taking deg 0 = i o, which would lead to even more difficulties 
in the present context. 
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be called the pivotal entry, and let the row and column containing the pivotal entry 
be called the pivotal row and the pivotal column. We then consider two cases: 

Case 1. The pivotal row contains a maxrowdeg entry in an undominated column. 
In this case we may perform column operations which will convert the pivotal row 

to a dominated row, thereby increasing the number of dominated rows. Since we 
will not perform any row operations, we will not increase the degrees of any rows, 
and since our column operations will never add a dominated column into an un- 
dominated column, every row which was dominated in the original matrix will remain 
dominated in the less complex equivalent matrix. 

Specifically, we make the pivotal entry a maxrowdeg entry, by column permutation 
if necessary. We then decrease the degree of every nonpivotal maxrowdeg entry in 
the pivotal row by adding to the column containing it an appropriate scalar multiple 
of the pivotal column. 

Case 2. Every maxrowdeg entry in the pivotal row occurs in a dominated column. 
In this case we define the relevant set of rows as the pivotal row and those rows 

which contain a dominant entry in the same column as a maxrowdeg entry in the 
pivotal row. We then select from the relevant set of rows a row having row degree at 
least as large as any other relevant row, and call this row the key row. We then decrease 
the degree of the key row by adding into the key row appropriate multiples of the 
other relevant rows. Since all of these operations effect only the key row, they will 
transform the original matrix into a matrix of smaller complexity, even if the original 
key row is dominated and the transformed key row is not dominated. 

Specifically, if the key row is not the pivotal row, we begin by adding to the key 
row an appropriate scalar times an appropriate power of x times the pivotal row, 
chosen so as to reduce the degree of the key row's diagonal entry. If this reduces the 
degree of the key row, we are finished; if not (or if the key row is the pivotal row), 
we may assume that each maxrowdeg entry in the key row lies in the same column 
as a diagonal entry of some row in the relevant set. Adding an appropriate multiple 
of the corresponding relevant row into the key row will decrease the number of 
maxrowdeg entries in the key row, etc., until the degree of the key row is decreased. 
Q.E.D. 

THEOREM 3.3. Let 63 be any r X r matrix of polynomials, with total row degree b. 
Then there exists a (possibly nonunique) row-dominated matrix, (6R, such that 63 _ (6R. 
6R can be computedfrom (6 in less than 2(b + r)(r - 1) elementary operations. 

Proof. The complexity of (B is no greater than 2b. The complexity of 61 is no less 
than -2r, with equality only if (R is the all-zero matrix. Theorem 3.3 is therefore a 
direct consequence of repeated applications of Theorem 3.2. Q.E.D. 

If 61 is nonsingular, its complexity is nonnegative and at most 2b(r - 1) elementary 
operations are required. 

In general, (3 61(R means only that there exists a unimodular matrix of poly- 
nomials, C, and an invertible matrix of scalars, 8, such that (3'-' = e6R. In order 
to obtain certain information about the relative row degrees of 6B and 61, we begin 
by considering the special case, 63 = e6R. 

THEoREM 3.4. If 63, e, and (R are r X r matrices of polynomials, such that 63 = e(R 
and (R is row-dominated, then any row of (3 which has row degree d is a linear combina- 
tion only of rows of a which have row degrees _ d. 

Proof. The degree of the ith row of (3 is given by 
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max deg 0M,; = max deg E e%iCka6 i 
i i k 

< max max deg Ci,k(Rk, i 
i A; 

< max max deg Ci,k61k,i 
k i 

< max deg ei,k(Rk.k 
k 

Let m be chosen so that 

deg Cim6m,m = max deg ej,kAR,k 
k 

If k F? m, then 

deg I, kIRk,,m < deg Ck1Rk,k < deg ei,m6Rm,m 

so 

deg Ej CiIc1RkI,m = deg (Ci.m6(1Rnrm + E1 ei,k(Rk.) 
k kr6m 

= deg ej, m6m., 

= max deg Ci,,kRk,k 
b 

and 

max deg tSi, i > deg _,m = max deg Ci,kRk,k 

Therefore, 

max deg 6i,i = max degCi,k6Rk1 k 
i 

Hence, if max1 deg 6i ,i = d, then max deg Ci, kcRk, k =d, whence deg Rk, k > d implies 
that ei,k =0. Q.E.D. 

Definition 3.41. A canonically-ordered matrix is one whose successive rows have 
nonincreasing degrees. A normalized matrix is a canonically ordered row-dominated 
matrix in which all diagonal entries are monic polynomials. A uniform matrix is a 
normalized matrix in which each polynomial on the diagonal has the same degree. 

THEoREM 3.5. If 6 is a canonically ordered r X r matrix, and (R is a normalized ma- 
trix, and o i (R, then the degree of every row of (3 is at least as great as the degree of 
the corresponding row of (R. 

Proof. @ = eRS, so 68-1 = e6R. Since row degrees are unaffected by colunln 
operations, there is no loss of generality in assuming that 63 - e6R. Since all nonzero 
rows of (R are dominated, they are linearly independent, and the rank of 61 is equal 
to the number of its nonzero rows. If the degree of the ith row of 63 is less than the 
degree of the ith row of 61, then Theorem 3.4 implies that the ith, (i + l)st, * * * rows of 
63 are all linear combinations of the last r - i rows of 61. The rank of 63 is therefore 
no greater than i - 1 + the dimension of the space spanned by the last r - i rows 
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of 61. But the rank of (R is i + the dimension of the space spanned by the last r - i 
rows of 61, so e must be singular, contradicting the definition of equivalence. Q.E.D. 

THEOREM 3.6. If two normalized matrices are equivalent, their corresponding rows 
have equal degrees. 

Proof. This is a direct consequence of Theorem 3.5. 
A normalized matrix may be partitioned into various submatrices, such that Riji 

and (6k,Z are in the same submatrix iff deg 6Ri,j = deg (Rk,, and deg Ri , = deg (R,. 
This is called the standard partition corresponding to 61. The partitioned matrix is 
said to be triangular with respect to this partition if all submatrices below the main 
diagonal are zero. (See Fig. 1.) Notice that each diagonal submatrix is uniform. 

FiGURE 1. A Partiotiedi Matrix With Diagonal Submatrices Shaded And Above-Diagon-al Stub- 
matrices Crosshatched. 

THEOREM 3.7. If & and 3 are equivalent normalized matrices, with 3i C6S., theit 

e is triangular with respect to the standard partition of 61 and c. 
Proof. With 38' = C61, the theorem follows directly from Theorem 3.4. 
THEOREM 3.8. If 61 and 3 are equivalent invertible normalized matrices, and 3 is 

triangular with respect to its standard partition, then so is 6R. Furthermore, every uni- 
form diagonal submatrix of 61 (with respect to the standard partition) is equivalent to 
the corresponding uniform diagonal submatrix of 3. 

Proof. We have (R = 038. 3 is triangular by hypothesis, and e is triangular by 
Theorem 3.7. Since the product of two triangular matrices is triangular, we deduce 
that (Cc) is triangular with respect to the standard partition. 

If D is any matrix of polynomials, we may define D as the matrix of scalars ob- 
tained by setting 

= leading coefficient of Di, if Di , is a maxrowdeg, 

= 0, otherwise. 

Then since the equation 61 = (Cc3)8 implies, among other things, that the leading 
coefficients of the entries of maximum degree in each row must be equal, we deduce 
that ( = ((C3)%)8. Since c3 is truly diagonal (without respect to any partition, even 
nonstandard ones), it is invertible and we have S' = &1((Cc)%, which is triangular 
with respect to the standard partition. Therefore S' and 8 are also triangular. We 



FACTORING POLYNOMIALS OVER LARGE FINITE FIELDS 725 

conclude that 6R = (CZi)S is the product of triangular matrices, so it must be triangular 
too. 

When one takes the product of matrices which are triangular with respect to the 
standard partition, a diagonal submatrix in the multiplier matrix is multiplied only 
by the corresponding diagonal submatrix of the multiplicand matrix. It follows that 
corresponding diagonal submatrices of equivalent normalized matrices are equiva- 
lent. Q.E.D. 

Let us now review what we have shown. Given a polynomial f(x), we may construct 
0, solve Eq. (3.06), and thereby determine r [the number of distinct irreducible fac- 
tors of f(x)] and a certain r X r matrix of polynomials, called a. Using Theorems 3.2 
and 3.3, we may transform a to 61, which is a normalized matrix. From Theorem 3.1 
we know that 61 _ in a truly diagonal matrix whose diagonal entries are the r monic 
irreducible-power factors of f(x). Since ff is triangular, 61 will automatically be 
triangular with respect to the standard partition. From Theorems 3.4-3.6, we may 
determine the degrees of the various irreducible-power factors, and the number 
of factors of each degree. If f(x) has ri irreducible-power factors of degree i, then 
according to Theorems 3.7 and 3.8, 61 will have a corresponding ri X ri submatrix on 
its diagonal, and this submatrix will be uniform of degree i. Its determinant will be 
the polynomial h(')(x) of Eq. (3.01). 

Thus, we have obtained a decomposition of the matrix corresponding to the fac- 
torization of Eq. (3.01). By calculating the determinants of the corresponding sub- 
matrices, we could obtain each factor h'('(x). However, if we wish to factor h (t(x) into 
the product of irreducible-powers of degree i, then it is easier to proceed directly with 
the further manipulations on the corresponding ri by ri matrix of polynomials which 
are described in Section 4. There is no real need to evaluate the determinant of this 
matrix explicitly. 

4. From Factorization of the Product of r Irreducible-Power d-tics to the Fac- 
torization of the Product of r Linear Factors. If we wish to factor a polynomial, 
f(x), which is the product of r irreducible-power factors, f '((x), f(2)(x), ... * fr(x), 
each of which has the same degree, d, then we might employ the Zassenhaus algorithm, 
which is described in Section 3 between Eq. (3.07) and Definition (3.08). An alter- 
native procedure continues with 61, the r X r uniform6 matrix of polynomials with 
which the new algorithm of Section 3 terminates. We know that 61 i, where 5 
is the truly diagonal matrix of polynomials whose diagonal elements are f')(x), 
f (x) . *, f'r'(x). In order to find 5 from the given 61, we require some additional 
results. 

THEOREM 4.1. If 61 and 5f are uniform matrices of polynomials and 61 i 5, then 
61 = 8-158 where 8 is a matrix of scalars. 

Proof. Write 61 = CiF8. Since i, 61, and e are matrices of polynomials, we may 
write 

(R = Ro + C1X + C2x2 + + (qiX, 

e1 = 0 + elX + 02X2 + + e7Xi 

6 Rl D0 + e DIX + 2oXs + . 3 +3 aX., 

6 Recall Definitions 3.08, 3.09, 3.17, and 3.41. 
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where JRn, Cn, and Sin are matrices of scalars and Ri 5 0, ej # 0, and 5:I. 0 0. Since 
R and 5f are uniform, GRi = 5k = -9, the identity matrix. Equating the scalar matrix 
coefficients of the leading powers of x on both sides of the equation (R{ = C8 gives 
i = j + k and J = eC4S, where = S-'. Since i = k by Theorem 3.6, we must have 
j= 0. Q.E.D. 

We must now solve the equation S-'RS = 5f for 8 and 5in,given 61. 
Letting S' denote the ith column of 8, we write 

S = [ S ~(I) s(2) (3) ... J(rs)] 

and similarly 

0 

0 8(2) 0 0 

5= ? ? t(3) ? 

The equation (RS = &V is equivalent to the equations 

(RS ") = f(1) (x)S ") for i = 1, 2, , r. 

Writing out both sides explicitly as polynomials in x gives 
d d 

Z RiS()x_ E f5i)ixi 
i=O =0 

from which we deduce that 

(Ri s = f(j),Si' for i 1, 2, , r; j = 0, 1, 2, , d 

and 

j ( = o. 
Since S' # 0, 

IS{, - flFJ -0; J -(1) j(2) j() 

If (Rj is diagonal, then the solutions for the scalar fj are trivially seen to be the 
diagonal components of (R{. If (G, is not diagonal, then the determinant R, - figI 
is a polynomial in f i of degree r over GF(q), and it must have r (possibly not distinct) 
roots in GF(q). 

Thus, we may determine the set f(l), ff2), * * f(r) from the equation I - fi 
= 0. 

The details of the problem of finding the roots of this polynomial are discussed 
in Sections 5-7. 

In general, these r eigenvalues of (R; (and 5F:) may not all be distinct. In that case, 
we may partition them into disjoint sets, and obtain a corresponding partition of 
5:. This partition will be trivial (i.e., it will partition all rows and columns together) 
iff ( is a scalar multiple of the identity matrix. It is obvious that this cannot happen 
if (R, is not diagonal. 
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Knowing f(i), f2) fJ( we may find a scalar matrix Si such that 8W'R is - 

V. The ith column of s may be taken as any solution of the equation 

[Ps- fji)g]8 4i = o. 
If fJ(' has multiplicity I and f(i) - fj(+i) _ = f(i+ii) then the vector solutions 
of this equation form an i-dimensional subspace, any basis of which may be selected 
as V(), S.w+u) , (+- 

We now assert that the matrix Si which truly diagonalizes Ri also diagonalizes 
(R with respect to the (known) partition of 5Y,. This fact follows from the observation 
that if f<i) has multiplicity I and fY) f(.i+ l, f i+l-4, then the vectors 

i) S(i+1) ... V`i+Z-1) and S, 8,(i) *.., - are both bases of the same 
space, and hence linear combinations of each other. Thus, we have obtained a further 
decomposition of (. If it is not yet truly diagonal, then we may reapply the same pro- 
cedure to each diagonal submatrix of 87lRgi until we eventually obtain a matrix 
whose diagonal entries are the irreducible-power factors of f(x). 

5. From Root-Finding in GF(pm) to Root-Finding in GF(p), p Small. In Sections 
3 and 4, we have given a deterministic procedure whereby the problem of factoring 
an arbitrary polynomial over GF(q) may be reduced to the problem of finding the 
roots in GF(q) of several other polynomials, each of which has degree no greater than 
the number of irreducible-power factors of f(x) of a particular degree. We now con- 
sider the root-finding problem in GF(pJ). In this section and the next. we give algo- 
rithms which reduce the problem of finding the roots of f(x) to the problem of finding 
the roots of another polynomial which splits in GF(p). Although the algorithms we 
present here are immediate consequences of the well-known properties of conjugate 
polynomials and polynomial norms, the algorithms themselves are little known in 
the subject of error-correcting codes, where computational problems in nonprime 
finite fields have great practical importance. 

In order to represent the elements of GF(p'), we must begin by specifying an 
element to be called a, which is a root in GF(pm) of some polynomial of degree m 
which is irreducible over GF(p). The minimal polynomial of a is initially selected by 
some ad hoc procedure. The coefficients of the minimal polynomial of a are often 
wired into the circuitry for doing computations in GF(pm). Details are given by 
Berlekamp (1968). 

In GF(pm), 

(5.01) xv -x= fI (Tr(x)-s) 
sEGF(p) 

where 
m-1 

Tr(x)- Ex". 
i O 

Therefore, if 

xP -_x 0modf(x), 

then 

I (Tr(x) -s) 0 mod f(x). 
&CGF (p) 
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Hence, if f(x) is a nonlinear polynomial which splits in GF(pm), then by Lemma 2.4, 
we have the factorization 

(5.02) f(x) = I gcd (f(x), Tr(x) - s) 
8GGP(V) 

where gcd denotes the monic common divisor of greatest degree. If p is small, Eq. 
(5.02) enables us to factor f(x) even if m is large. 

We proceed as follows: 
Compute the residues of x, x2, x22 * X, e,' modulo f(x). 

By adding together these residues, compute the residue of Tr(x). If Tr(x) is not con- 
gruent to a scalar, then f(x) factors according to Eq. (5.02). If Tr(x) is congruent to a 
scalar, then the factorization of Eq. (5.02) degenerates into the trivial result: f(x) = 

f(x).fl. 
In this case, additional assaults are required. Let ae be the root of an irreducible 

(not necessarily primitive) polynomial of degree m over GF(p). Then a', a, a2, 

a.m-1 form a basis for GF(pm) over GF(p). Substituting aix for x in Eq. (5.01) gives 

ap'xp _ g- = II (Tr(a'x) - s). 
s E G F (p) 

Since ao' E GF(pm), (a)P = a, and we have 

xPM -X=c 171i 1 (Tr(aix) - s). 
s EGF (p) 

We thus obtain the following generalization of Eq. (5.02): 

(5.03) f(x) = H gcd (f(x), Tr(a'x) - s). 
seGGF(p) 

If Eq. (5.03) yields a trivial factorization when j = 0, we may reapply Eq. (5.03) 
with j = 1, 2, 3, *.. , m - 1. 

We shall now show that the additive property of traces implies that at least one 
of these m special cases of Eq. (5.03) must yield a nontrivial factorization. Let 

Pl, P2, ... , Pn be the roots of f(x) in GF(pm). Then Eq. (5.03) yields a trivial factoriza- 
tion iff there exists an s (which may depend on j) such that f(x) divides Tr(ai x) -s, 
which implies that s = Tr(a pP) = Tr(a' p2) = * = Tr(apn). If all m factorizations 

are trivial then for any j, 0 _ j < m, and any i, k, 1 < i < k < n, we must have 

Tr(api) = Tr(a2pk) or Tr(ai(pi - Pk))= 0 

and for any A0, A, , Am_1 C GF(p), 

En-i A,Tr(a'(pi - Pk)) = 0 = Tr(( Aiai)(p, - = 0. 

Since ao,a', a',2 a. , m-1 form a basis of GF(pn) over GF(p), this means that 

(5.04) Tr(Q(pi - Pk)) = 0 for all t in GF(pm). 

If Pi F? Pk, then every element in GF(pm) is of the form t(pi - Pk), and Eq. (5.04) 
implies that every element in GF(pm) has trace 0. But it is evident from Eq. (5.01) that 
only pm-l elements in GF(pm) have trace 0, so Eq. (5.04) must be false and Eq. (5.03) 
must therefore yield a nontrivial factorization for some j, 0 < j < m. 
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In practice, there is rarely any need to apply all m versions of Eq. (5.03). For any 
C GF(pm), we may factor f(x) as 

(5.05) f(x) = fJ gcd (f(x), Tr(Qx) - s). 
sGGF(p) 

This factorization will be trivial if Tr(Qp1) = Tr(P2) Tr(Qp). In some 
cases, this failure may be avoided by wise a priori choice of t. Since fn,l = _z.1 pi, 
we know that 

n 

Tr(fnJ1) = -E Tr(pi). 
i=1 

If n is a multiple of p, we cannot have Tr(p1) = Tr(p2) = *.. = Tr(pn) unless 
Tr(fn-1) = 0. Hence, if n is a multiple of p, we may insure a nontrivial factorization 
in Eq. (5.05) by choosing t so that Tr(fn_-1) 0 0. If fn-1 0 0, this is easily ac- 
complished. 

The methods introduced in this section are the best methods known for factoring 
f(x) over GF(pm) when p is small and n = deg f is large. When n is small (in par- 
ticular if p = 2 and deg f = 2, 3, or 4), the methods of this section are inferior to 
those given by Berlekamp, Rumsey, and Solomon (1967), and expanded in Chapter 11 
of Berlekamp (1968). 

6. From Root-Finding in GF(pm) to Root-Finding in GF(p), p Large. We now 
consider the problem of finding the roots of the polynomial f(x) which splits in 
GF(pm). 

The polynomial whose roots we wish to find is represented as 

m-1 n 

f(x) = f(a, x) =E E E 
1=0 j=0 

where ft. i C GF(p), fon = 1 and fi, n = 0 if i 5? 0. Knowing that x2> x mod f(x), 
we wish to find 01, 02, n eC GF(pm) such that 

f(a, x)= H (x 1k). 
k=1 

To find these roots, we first calculate the new polynomial, 

m-1 m-1 rn-1 n 

F(x)= rI (a" , x)= H JE E fi.itx 
k=O k=O i=0 j=O 

We shall now show that F(x) is a polynomial of degree mn over GF(p). Since the jth 
coefficient of f(a, x) is plus or minus the jth elementary power-sum symmetric func- 
tion of the 13's, we have 

E f i, wa (-01 )E E7 j:0k,'k2 
.. 

Ok, 
=i(~)k >k<kz<. . . <k, 

Taking pth powers gives 

>3 J. j'2 (-a)i 
>3 >3 >3 

1kl 
. 

k 
i kl <k2 < ... <kl 
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or 

f(aP x) = II (x - k) 
k=l 

and therefore 
m-1 n n m-1 

F(x) = TI H (x - ) = H H (x - 1Pk)) = i F(X), 
k=O i=1 i =1 k=O i 

where each F"' is a power of a distinct irreducible polynomial over GF(p), and the 
degree of each Fi' is a multiple of m. We may find these F" by factoring F(x) over 
GF(p) according to the methods indicated in Sections 3 and 4. 

The factorization of f(x) is then obtained as 

f(x) - T gcd [f(x), F t'(x)]. 

This factorization is nontrivial unless F(x) is itself an irreducible power. In this case 
the roots of f(x) are all conjugate. To find them we compute 

gcd (f(at, x), f(atp, x)), gcd (f(ae, x), f(agP, x)), 

gcd (f(at, x), f 
(ap3, x)), gcd Q(a( X), f(ap( 

( /,n) 1) X)) 

If any of these gcd's is nontrivial, then it gives a nontrivial factor of f(a, x). We claim 
that all of these gcd's are trivial iff f(a'p /, x) = f(a, x). To prove this, we observe 
that F(x) is an irreducible power if all n roots of f(x) are conjugates. In this case, 
At-= 1I for each i = 1, 2, *- , n. Without loss of generality, we may assume that 
0 11 < 12 < 13 < ... < In < m. Define 4+, = m, and define A = min%1(li, - li). 
Clearly A < m/n, with equality iff f(apm'/n, x) = f(a, x). If A < mr/n, then the sets 

1n /32, ... , i1} and { 1A, PAn * 
P I } have a nontrivial intersection, and 

gcd (f(a, x), f(apv, x)) is nontrivial. 
Thus, we need further consider only the case in which f(aog'/, x) = f(a, x), which 

happens iff f(a, x) is an irreducible polynomial over GF(pm'/n). In this case (assuming 
n > 1), we transform the polynomial f(x) to A(a, x) = f(a, ax)&.. Since the coefficients 
of f(x) are in GF(pm/n) but a d2 GF(ppm/n), f(a, x) is monic, of degree n, and has at 
least one coefficient not in GF(pm'/n), so f(a, x) can be factored by the methods of this 
section. The factorization of f(x) may then be easily recovered from the factorization 
of f(a, x). 

7. Finding Roots in GF(p), p a Large Prime. In the previous sections of this 
paper, we have reduced the factorization of an arbitrary polynomial, f(x) of degree n 
over GF(pm), to the special case in which 

n 

f(x)= (x - pi) 

where the p, are distinct elements in GF(p). To solve this problem, we observe that 
if -y is any element in GF(p), p odd, then 

f(x -) = H (x - (e + pi)) 
i=1 
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and f(x -y) ) (xP - x) = x(x(P-1/2 + l)(x(1p)/2 - 1) and therefore, if x j f(x - y), 
then 

(7.01) f(x -y)= gcd (f(x - y), x' ''2 + 1) gcd (f(x -y), X p-l''2 1). 

This equation provides a feasible method of factoring f(x - y), for we may corn- 
pute the residues (modulo f(x-ry)) of x, x22, * * , x2IloitVl * * - * '-2 If 

- ? 1, then Eq. (7.01) yields a nontrivial factorization. However, if X(P-')'2 

+1, then the factorization of Eq. (7.01) is trivial and we must try again with a new 
value of y. 

In general, the factorization of Eq. (7.01) will fail iff Pi + 'y, P2 + y, P *, Pn + Y 
are all quadratic residues or all quadratic nonresidues. If Pl, P2, * - *, Pn are all residues 
(or nonresidues), then the theory of cyclotomy7 leads us to expect that a randomly 
chosen -y in GF(p) will yield a nontrivial factorization with probability about (I -2-n). 
Thus, any given product of linear factors, f(x), may be factored via Eq. (7.01) and a 
few randomly chosen values of ry with very high probability. However, there is an 
unfortunate improbable possibility that each successive choice of y proves unlucky. 

If n = 2, then the success or failure of a particular choice of -y depends only on 
the quadratic character of go, the constant term in the polynomial 

n 
g(x) = gixi = f(x - y). 

i-O 

This is because if n is even, then 
n 

go- (pi + 7) 
i-1 

and hence go is a residue if an even number of the p, + 7 are residues. In particular, 
if n = 2, go is a residue if both p, + 7 and P2 + y have the same quadratic char- 
acter. Thus, the success of factorization via Eq. (7.01) may be anticipated by evaluating 
the Legendre symbol, (go/p) with aid of Gauss' law of quadratic reciprocity. If 
(go/p) = -1, then Eq. (7.01) must yield a nontrivial factorization and the calculation 
may be continued. However, if (go/p) = 1, then Eq. (7.01) will yield only a trivial 
factorization, so the calculation should be aborted and resumed with another can- 
didate value of y. 

In the special case of a quadratic equation over GF(p), p -1 mod 4, then the 
choice of y which eliminates the linear term in f(x - 7) also guarantees a nontrivial 
factorization via Eq. (7.01). For, in this case, f(x - y) = x- c. If f(x) has two 
roots in GF(p), then c must be a quadratic residue, and since - I is a quadratic non- 
residue, so is the constant term in the polynomial f(x - 7). 

Certain special classes of quadratic equations modulo primes _ 1 mod 4 may be 
solved by other methods, such as those given by Schonheim (1956). 

In the special cases of cubics and quartics over a field whose order, p, is congruent 
to -1 mod 12, we may use the classical formulas of Scipio del Ferro and Ferrari as 
given on pp. 105-108 of Birkhoff and Mac Lane (1965). Since p -1 mod 4, we 
may extract square roots and fourth roots by the procedure explained above. Since 
p 0 1 mod 3, we may extract cube roots by taking the (p - 1)/3 power. Thus, the 

7 For details, see pp. 147-166 of Hall (1967). 
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classical formulas for solving quartic equations in terms of radicals may be applied 
to obtain the factorization in a small number of steps without any reliance on luck. 

In general, however, there is no good deterministic procedure for finding the roots 
in the large prime field GF(p) of the polynomial f(x), which is known to split into 
distinct linear factors in GF(p). The best practical procedure is to attempt to factor 
f(x - y) for several choices of y, and to hope that you are not too unlucky. 

It appears rather difficult to determine the "best" sequence of successive choices 
of -y, although the sequence y = 0, 1, 2, 3, . seems as plausible as any. However, it 
is not known how many successive trials are required from this sequence (or any 
other good sequence) to guarantee a factorization of the "worst" f(x). Burgess (1962) 
has shown that the maximum number of consecutive quadratic residues or non- 
residues modulo a large prime p is no greater than 0(pl/4(log p)32), but there are 
probably an infinite number of primes all of whose sequences of consecutive residues 
or nonresidues have lengths much, much smaller than pl/4. 

8. From Factorization Over the Integers Mod M to Factorization Over the 
Rationals. Let f(x) = Ii f'"(x), where f(x) is a given polynomial with integral 
coefficients and the f"'i(x) are the distinct irreducible factors of f(x). Our problem 
is to determine the f"'i(x) from the given coefficients of f(x). We may begin by cal- 
culating some large integer, C, such that 

max IftI< < C. 
i, i 

One method of calculating such an upper bound to the magnitudes of all of the co- 
efficients of the factors of f(x), due to Collins (1967) and Knuth (1969) is based on 
the inverse of the Vandermonde matrix which arises in the classical Kronecker fac- 
torization algorithm. Several expressions for the coefficients of that inverse matrix 
are given by Gautschi (1962). A more recent method of calculating an upper bound, 
C, has been presented by Zassenhaus (1969). Either method requires only a modest 
amount of computation with the coefficients of the original polynomial, f(x). 

Once we have found the upper bound, C, we proceed to factor the polynomial 
f(x) modulo some large integer, M > 2C. 

If Mis a primep, we may obtain the factorization of f(x) mod M from the factoriza- 
tion algorithms of Sections 3, 4, and 7. 

If M is a prime-power, then we first factor f(x) mod p, the prime divisor of M. Fol- 
lowing a suggestion of Zassenhaus (1969), we may then extend the complete 
factorization of f(x) mod pi to the factorization mod p2i by the classical p-adic lemma 
of Hensel. Continuing this extension for i = 1, 2, ... , 2'092 1ogPM we will eventually 
obtain the complete factorization of f(x) mod M. The number of irreducible factors 
of f(x) mod M is the same as the number of irreducible factors mod p. 

If M is the product of several distinct primes, then we first factor f(x) mod each 
of these primes and then attempt to reconstruct the factorization of f(x) mod M 
with the aid of the Chinese remainder theorem. This latter step may require many 
attempts, because the degrees of the factors of f(x) mod different primes may be 
compatible. For example, if M = P1P2, p, and p, primes, and f(x) has degree 8, 
then f(x) may factor into four quadratics mod P, and into 2 quartics mod p2. There 
are then (4) possible factorizations of f(x) mod M. Consequently, if the degrees of 
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the factors of f(x) mod several different primes are compatible, it appears unwise to 
choose an M which is divisible by more than one of these primes. The simpler course 
is to take M as a power of a single prime. 

The polynomial f"'i(x), a factor of f(x) which is irreducible over the rationals, may 
factor mod M as 

f ") x) f f 'i (x) mod M. 

Mod M, the original polynomial f(x) then factors as 

f(x) f f'i )(x) mod M. 

If we know f(')(x) mod M, then we can easily determine the coefficients of f"'t(x) 
over the rational integers because we have chosen M so large that we are guaranteed 
that for all i and j, 

-MI/2 < f '< MI/2 

Unfortunately, however, we may have considerable difficulty in determining, mod M, 
the f(t'(x) from the irreducible fj( i'(x), for we do not know which irreducible factors 
mod M to multiply together to obtain a factor over the rationals. For example, the 
complete factorization of f(x) modulo M might be 

f(x) a(x)b(x)c(x)d(x)e(x) mod M. 

Even if we knew that f(x) was the product of exactly two irreducible factors over the 
rationals, we would still have no easy way of determining f ")(x) and f 2)(x) modulo M. 
For example, we might find that f ("(x) _ b(x)e(x) and f 23(x) _ a(x)c(x)d(x). In gen- 
eral, if f(x) is the product of r distinct irreducible factors modulo M, then there 
are 2' subsets of these factors whose product might be congruent mod M to the 
irreducible rational factor f '((x). These 2' subsets occur in 2`- complementary 
pairs, but this still leaves 2`' essentially different candidates for the factor f ')(x). 

Fortunately, for the "typical" polynomial, r will be small. This is because the ex- 
pected number of irreducible factors of a randomly chosen polynomial of large 
degree, d, over GF(p) is about ln d, for all large p. For furthb r details, see Problem 3.6, 
page 86 of Berlekamp (1968). 

Unfortunately, however, the "worst" polynomial is much worse than the "typical" 
polynomial. The Dirichlet density theorem implies that no polynomial which is 
irreducible over the rationals can have a linear factor modulo every prime, but there 
do exist polynomials which are irreducible over the rationals and factor into only 
linear and quadratic factors modulo every prime p. One such class of polynomials, 
suggested by Swinnerton-Dyer (1969), is constructed as follows: Let the degree, d, 
be a power of 2, say d = 2i, and let pi be the ith prime. Consider the monic poly- 
nomial, f(x), whose complex roots are given by ? V-1 i a/2 ? V/3 i \/5 i 
... *i? (p,_)/2, where the 2' combinations of signs give the 2' distinct complex roots. 
Since v - 1, V2, a/3, * . * (p -,) 12 are rationally independent, it follows that f(x) is 

I For reference, see pp. 227-230 and Exercise 6 on p. 361 of Algebraic Number Theory, edited 
by J. W. S. Cassels and A. Frohlich, Academic Press, London; Thompson Book Co., Inc., Wash- 
ington, D.C., 1967, Math. Rev. 35 #6500. 
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irreducible over the rational integers. On the other hand, if p is any prime, then 
/ - 1, V/2, V/3, * * , (pi_1)12 all lie in GF(p2), from which it follows that f(x) splits 

into linear factors in GF(p2) and into quadratic and linear factors in GF(p). Thus, 
this polynomial has degree d and is irreducible over the rationals, but it has r ? d/2 
distinct irreducible factors modulo every integer M. Although the amount of work 
required to obtain the irreducible factors modulo M of a polynomial is only alge- 
braic in its degree, d, the r irreducible factors modulo M lead to 2r-1 candidate 
factors over the rationals. When r is large compared to log d, then testing each of 
these 2 r- candidates becomes the bottleneck step of the factorization algorithm. 
We now consider programming tricks by which these tests may be speeded up. 

If f ' (x) I f(x), then f ("(a) I f(a) for every integer a. If we canl find an integer a for 
which the integer f(a) has only a small number of prime factors, then we may elimi- 
nate the candidate factor f"1)(x) by computing f'1'(a) and obtaining an answer not 
on tthe small list of factors of f(a). By performing an appropriate translation of f(x) 
and each of its irreducible factors modulo M, we may assume that a = 0. Testing 
that f(l)(a) divides f(a) is then equivalent to testing that the constant term of f(l)(x) 
divides the constant term of f(x). 

If we have a sufficiently large memory capacity, then we can use the following 
programming technique suggested by L. Welch (1969) to determine the subset of the 
2r-1 candidate factors f1)(x) which survive the test f")(0) I f(O) in only about 
k2r/2 log r operations, where k is the total number of integral divisors of f(O), including 
the trivial divisors +1l and J f(O). The procedure is as follows. We first discard one 
of the r irreducible factors of f(x) modulo M9 and partition the remaining (r - 1) 
irreducible factors into two sets, each consisting of about r/2 irreducible factors. Each 
candidate factor f1)(x) is of the form f")(x) = g(x)h(x), where g(x) is the product 
of some subset of irreducible factors in the first set and h(x) is the product of some 
subset of irreducible factors in the second set. 

For each of the 2r'/2 candidate g's, we compute the value of g(O) and its inverse 
modulo M, (g(0))-'. This list of 2r/2 entries, represented in any convenient fashion, 
is then sorted. The sorting requires about r2r'2 operations. Then, for each candidate 
h(x), we compute and store the value of h(O), and sort this list of 2r'/2 candidates for 
h(O). We then make one joint scan through the two sorted lists to see if there is any 
pair of polynomials g(x) and h(x) such that (g(o))-0 h(O) mod M. In this manner 
we find all candidate factors f ')(x) for which f"(O) == 1. After we have found and 
tested all such candidates, we then replace the list of values of h(O) by the list of values 
of dh(O), where d is a rational integral divisor of f(O). The list of candidates of dh(O) 
is then resorted, and another joint scan reveals all candidate factors f ")(x) for which 
f(')(0) = d. Repeating this procedure for each (positive and negative) integer d 
which divides f(O), we eventually obtain all candidate factors f ")(x) which survive 
the test f'1'(0) I f(O). 

In some cases, there may be a large number of candidate factors f l)(x) which 
survive the test f"')(O) I f(O) and still fail to pass the more general test f"1)(x) I f(x). 
For example, it may happen that many irreducible factors of f(x) mod M have con- 

9 To reduce duplication of subsequent work, it is wise to discard an irreducible factor whose 
constant term is i 1 or a small divisor of f(O). If there are no such irreducible factors, any choice of 
discard is good. If there are several such irreducible factors, it may be wise to consider another 
choice of a. 
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stant terms congruent to + 1. In such cases it may be advantageous to test that 
f<"(ai) I f(ai) for more than one value of ai. There remains the problem of choosing 
these ai in a clever manner. If a sufficiently large number of primes or i l's or a suf- 
ficiently large number of sufficiently small integers occur among the values of f(ai), 
then it may be possible to deduce the irreducibility of f(x) immediately, using the 
criteria of Brown and Graham (1969) or of Brauer and Ehrlich (1946). 
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