## 



Paulo S. L. M. Barreto

LARC/PCS/EPUSP


## Syndrome Decoding

## Syndrome Decoding

$\square$ Let $q=p^{m}$ for some prime $p$ and $m>0$ (for cryptographic applications $p=2$ ).
$\square$ The (Hamming) weight $\mathrm{w}(u)$ of $u \in\left(\mathbb{F}_{q}\right)^{n}$ is the number of nonzero components of $u$.
$\square$ The distance between $u, v \in\left(\mathbb{F}_{q}\right)^{n}$ is $\operatorname{dist}(u, v) \equiv w(u-v)$.
$\square$ A linear $[n, k]$-code $\mathcal{C}$ over $\mathbb{F}_{q}$ is a $k$ dimensional vector subspace of $\left(\mathbb{F}_{q}\right)^{n}$.

## General/Syndrome Decoding (GDP/SDP)

$\square$ GDP
$\square$ Input:

- positive integers $n, k, t$;
- generator matrix $G \in$ $\left(\mathbb{F}_{q}\right)^{k \times n}$;
- vector $c \in\left(\mathbb{F}_{q}\right)^{n}$.
$\square$ Question: $\exists$ ? $m \in\left(\mathbb{F}_{q}\right)^{k}$ such that $e=c-m G$ has weight $w(e) \leq t$ ?
$\square$ SDP
$\square$ Input:
- positive integers $n, r, t$;
- parity-check matrix $H \in$ $\left(\mathbb{F}_{q}\right)^{r \times n}$;
- vector $s \in\left(\mathbb{F}_{q}\right)^{r}$.
$\square$ Question: $\exists$ ? $e \in\left(\mathbb{F}_{q}\right)^{n}$ of weight $w(e) \leq t$ such that $H e^{\top}=s^{\top} ?$

Both are NP-complete!

## Syndrome Decoding

$\square$ Let $d=\min \{\operatorname{dist}(u, v) \mid u, v \in \mathcal{C}\}$. If $v, e$ $\in\left(\mathbb{F}_{2}\right)^{n}$ and $w(e) \leq\lfloor(d-1) / 2\rfloor \equiv t$, the SDP has a unique solution for $c=v \oplus e$.


## Syndrome Decoding

$\square$ Determining the minimum distance of a linear code is NP-hard.
$\square$ Bounded Distance Decoding Problem (BDDP):

- Given a binary ( $n, k$ )-code $\mathcal{C}$ with known minimum distance $d$ and $c \in\left(\mathbb{F}_{2}\right)^{n}$, find $v \in \mathcal{C}$ such that $\operatorname{dist}(v, c)=d$.
$\square \therefore$ BDDP is SDP with knowledge of $d$.
$\square$ BDDP is believed (but not known for sure) to be intractable.


## Ranking and Unranking Permutations

$\square$ Some SDP-based cryptosystems represent messages as $t$-error $n$-vectors, i.e. $n$-bit vectors with Hamming weight $t$.
$\square$ Mapping messages between error vector and normal form involves permutation ranking and unranking.

## Ranking and Unranking Permutations

$\square$ Let $B(n, t)=\left\{u \in\left(\mathbb{F}_{2}\right)^{n} \mid \mathrm{w}(u)=t\right\}$, with cardinality

$$
r=\binom{n}{t} \approx \frac{n^{t}}{t!}
$$

$\square$ A ranking function is a mapping rank: $B(n, t) \rightarrow$ $\{1 . . . r$ \} which associates a unique index in $\{1 . . . r\}$ to each element in $B(n, t)$. Its inverse is called the unranking function.
$\square$ Rank size: $\lg r \approx t(\lg n-\lg t+1)$ bits.

## Ranking and Unranking Permutations

$\square$ Ranking and unranking can be done in $O(n)$ time (Ruskey 2003, algorithm 4.10).
$\square$ Computationally simplest ordering: colex.
$\square$ Definition: $a_{1} a_{2} \ldots a_{n}<b_{1} b_{2} \ldots b_{m}$ in colex order iff $a_{n} \ldots a_{2} a_{1}<b_{m} \ldots b_{2} b_{1}$ in lex order.

## Colex Ranking

$\square$ Sum of binomial coefficients:

$$
\operatorname{Rank}\left(a_{1} a_{2} \ldots a_{k}\right)=\sum_{j=1}^{k}\binom{a_{j}-1}{j}
$$

$\square$ Implementation strategy: precompute a table of binomial coefficients.

## Colex Unranking

input: $r$ // permutation rank for $j \leftarrow k$ downto 1 \{

$$
\begin{aligned}
& p \leftarrow j \\
& \text { while }
\end{aligned}\binom{p}{j} \leq r\{
$$

$$
p \leftarrow p+1
$$

$$
\begin{aligned}
& \} \\
& r \leftarrow r-\binom{p-1}{a_{j} \leftarrow p}
\end{aligned}
$$

\}
return $a_{1} a_{2} \ldots a_{k}$

## Irreducible Polynomials

$\square$ Theorem: for $i \geq 1$, the polynomial $x q^{i}-x$ $\in \mathbb{F}_{q}[x]$ is the product of all monic irreducible polynomials in $\mathbb{F}_{q}[x]$ whose degree divides $i$.
$\square$ Ben-Or irreducibility test: monic $g \in \mathbb{F}_{q}[x]$ of degree $d$ is irreducible iff $\operatorname{GCD}\left(g, x q^{q^{i}}-x\right.$ $\bmod g)=1$ for $i=1, \ldots, d / 2$.

## Irreducible Polynomials

$\square$ Efficient implementation of Ben-Or:

- compute $y \leftarrow x^{q} \bmod g$.
$\square$ compute $z_{i} \leftarrow y^{i} \bmod g$ for $0 \leq i<t$.
- initialize $v \leftarrow x$.
- for $j=1, \ldots, t / 2$ :
- let $v=\sum_{i=0}^{t-1} v_{i} x^{i}$ : set $v \leftarrow x^{q^{j}} \bmod g=v^{q} \bmod$ $g=\left(\sum_{i=0}^{t-1} v_{i} x^{i}\right)^{q} \bmod g=\sum_{i=0}^{t-1} v_{i}\left(x^{q} \bmod g\right)^{i}$ $\bmod g=\sum_{i=0}^{t-1} v_{i}\left(y^{i} \bmod g\right)=\sum_{i=0}^{t-1} v_{i} z_{i}$.
$\square$ check that $\operatorname{GCD}(g,(v-x) \bmod g) \neq 1$.


## Goppa Codes

$\square$ Let $g(x)=\sum_{i=0}^{t} g_{i} x^{i}$ be a monic $\left(g_{t}=1\right)$ polynomial in $\mathbb{F}_{q}[X]$.
$\square$ Let $L=\left(L_{0}, \ldots, L_{n-1}\right) \in\left(\mathbb{F}_{q}\right)^{n}$ (all distinct) such that $g\left(L_{j}\right) \neq 0$ for all $j$.
$\square$ Properties:

- Easy to generate and plentiful.
- Usually $g(x)$ is chosen to be irreducible; if so, $\mathbb{F}_{q} t=\mathbb{F}[x] / g(x)$.


## Goppa Codes

$\square$ The syndrome function is the linear map $S:\left(\mathbb{F}_{p}\right)^{n} \rightarrow \mathbb{F}_{q}[X] / g(X):$

$$
S(c)=\sum_{i=0}^{n-1} \frac{c_{i}}{x-L_{i}}=\sum_{c_{i}=1} \frac{1}{x-L_{i}}(\bmod g(x))
$$

$\square$ The Goppa code $\Gamma(L, g)$ is the kernel of the syndrome function, i.e. $\Gamma=\left\{c \in\left(\mathbb{F}_{p}\right)^{n}\right.$ $\mid S(c)=0\}$.

## Goppa Codes

$\square$ N.B. Usually $t=O(n / \lg n)$. CFS are an exception, with $n=O(t!)$.
$\square$ The syndrome can be written in matrix form as a mapping $H^{*}:\left(\mathbb{F}_{p}\right)^{n} \rightarrow\left(\mathbb{F}_{q}\right)^{t}$ or even $H:\left(\mathbb{F}_{p}\right)^{n} \rightarrow\left(\mathbb{F}_{p}\right)^{m t}$ (just write the $\mathbb{F}_{p}$ components of each $\mathbb{F}_{q}$ element from $H^{*}$ on $m$ successive rows of $H$ ).
$\square H$ is the parity check matrix of the code. Determining whether $c \in\left(\mathbb{F}_{p}\right)^{n}$ is a code word amounts to checking that $H c^{\top}=0$.

## Parity-Check Matrix

$\square$ Easy to compute $H^{*}$ from $L$ and $g$, namely, $H^{*}{ }_{t \times n}$ $=T_{t \times t} V_{t \times n} D_{n \times n}$, where:

$$
\begin{gathered}
T=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
g_{t-1} & 1 & 0 & \ldots & 0 \\
g_{t-2} & g_{t-1} & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_{1} & g_{2} & g_{3} & \ldots & 1
\end{array}\right], V=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
L_{0} & L_{1} & \ldots & L_{n-1} \\
L_{0}^{2} & L_{1}^{2} & \ldots & L_{n-1}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
L_{0}^{t-1} & L_{1}^{t-1} & \ldots & L_{n-1}^{t-1}
\end{array}\right], \\
D=\left[\begin{array}{cccc}
1 / g\left(L_{0}\right) & 0 & \ldots & 0 \\
0 & 1 / g\left(L_{1}\right) & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & & 0 & \cdots \\
1 / g\left(L_{n-1}\right)
\end{array}\right] .
\end{gathered}
$$

## Generator Matrix

$\square$ A Goppa code $\Gamma$ is a k-dimensional subspace of $\left(\mathbb{F}_{p}\right)^{n}$ for some $k$ with $n-m t$ $\leq k \leq n-t$.
$\square$ In general the minimum distance of $\Gamma$ is $d$ $\geq t+1$, but in the binary case whenever $g(x)$ has no multiple zero (in particular when $g(x)$ is irreducible) the minimum distance becomes $d \geq 2 t+1$.

## Generator Matrix

$\square$ A generator matrix for $\Gamma$ is a matrix $G_{k \times n}$ whose rows form a basis of $\Gamma$.
$\square G$ defines a mapping $\left(\mathbb{F}_{p}\right)^{k} \rightarrow\left(\mathbb{F}_{p}\right)^{n}$ such that $u G \in \Gamma, \forall u \in\left(\mathbb{F}_{p}\right)^{k}$.
$\square$ Therefore $H(u G)^{\top}=H G^{\top} u^{\top}=o^{\top}$ for all $u$, i.e. $H G^{\top}=0$.

## Generator Matrix

$\square$ If $G$ is in echelon form, it is trivial to map between $\left(\mathbb{F}_{p}\right)^{k}$ and $\left(\mathbb{F}_{p}\right)^{n}$.
$\square$ The first $k$ columns of $u G \in\left(\mathbb{F}_{p}\right)^{n}$ directly spell $u \in\left(\mathbb{F}_{p}\right)^{k}$ itself.
$\square$ The remaining $n-k$ columns contain the "checksum" of $u$.

## Generator Matrix

$\square$ It is easy to solve $H_{m t \times n} G^{\top} n_{\times k}=O_{m t \times k}$ for $G$ in echelon form and $k=n-m t$, i.e. $G_{k \times n}$ $=\left[I_{k \times k} \mid X_{k \times m t}\right]$.
$\square$ Let $H_{m t \times n}=\left[L_{m t \times k} \mid R_{m t \times m t}\right]$. Equation $H G^{\top}$ $=O$ becomes [ $L_{m t \times k} \mid R_{m t \times m t}$ ] [ $I_{k \times k} \mid X_{m t \times k}^{\top}$ ] $=L_{m t \times k}+R_{m t \times m t} X^{\top}{ }_{m t \times k}=O_{m t \times k r}$ whose solution is $X_{m t \times k}^{\top}=R^{-1}{ }_{m t \times m t} L_{m t \times k \text {, }}$ or $G_{k \times n}=$ $\left[I_{k \times k} \mid L_{k \times m t}^{\top}\left(R^{\top}\right)^{-1}{ }_{m t \times m t}\right]$.

## Generator Matrix

$\square$ Any nonzero matrix $H^{\prime}$ satisfying $H^{\prime} G^{\top}=O$ is an alternative parity check matrix.

- Since $T_{t \times t}$ is invertible $(\operatorname{det}(T)=1)$ and $H_{t \times n}=$ $T_{t \times x} V_{t \times n} D_{n \times n}$, clearly $H^{\prime} G^{\top}=O$ for $H^{\prime}=V D$.
- Let $G_{k \times n}=\left[I_{k \times k} \mid X_{k \times t}\right]$ and $H^{\prime \prime}=\left[X_{t \times k}^{\top} \mid I_{t \times t}\right]$. Clearly $\left[X_{t \times k}^{\top} \mid I_{t \times t}\right]\left[I_{k \times k} \mid X^{\top}{ }_{t \times k}\right]=O_{t \times k \prime}$ i.e. $H^{\prime \prime} G^{\top}=0$.
- For any nonsingular matrix $S_{t \times t,} H^{\prime \prime \prime} \leftarrow S H^{\prime \prime}$ satisfies $H^{\prime \prime \prime} G^{\top}=0$.



## Error Correction

## Error Locator Polynomial

$\square$ Efficient decoding procedure for known $g$ and $L$ via the error locator polynomial:

$$
\sigma(x) \equiv \prod_{e_{i}=1}\left(x-L_{i}\right) \in \mathbb{F}_{q}[x] / g(x)
$$

$\square$ Property: $\sigma\left(L_{i}\right)=0 \Leftrightarrow e_{i}=1$.

## Alternant Error Locator Polynomial

$\square$ Efficient decoding procedure for known $g$ and $L$ via the error locator polynomial:

$$
\sigma(x) \equiv \prod_{e_{i} \neq 0}\left(1-x L_{i}\right) \in \mathbb{F}_{q}[x] / g(x)
$$

$\square$ Property: $\sigma\left(L_{i}^{-1}\right)=0 \Leftrightarrow e_{i} \neq 0$.

## Error Correction

$\square$ Let $m \in \Gamma$, let $e \in\left(\mathbb{F}_{2}\right)^{n}$ be an error vector of weight $w(e) \leq t$, and $c=m \oplus e$.
$\square$ Compute the syndrome of $e$ through the relation $S(e)=S(c)$.
$\square$ Compute the error locator polynomial $\sigma$ from the syndrome (Sugiyama et al. 1975).
$\square$ Determine which $L_{i}$ are zeroes of $\sigma_{l}$ thus retrieving $e$ and recovering $m$.

## Error Correction (aka "Binary Goppa Miracle")

$\square$ Let $s(x) \leftarrow S(e)$. If $s(x) \equiv 0$, nothing to do (no error), otherwise $s(x)$ is invertible.

- Property \#1: $\quad \sigma(x)=a(x)^{2}+x b(x)^{2}$.
- Property \#2: $\quad \frac{d}{d x} \sigma(x)=b(x)^{2}$.
- Property \#3: $\quad \frac{d}{d x} \sigma(x)=\sigma(x) s(x)$.
$\square$ Thus $b(x)^{2}=\left(a(x)^{2}+x b(x)^{2}\right) s(x)$, hence $\underbrace{a(x)=b(x) v(x)}$ with $v(x)=\sqrt{x+\underbrace{1 / s(x)}} \bmod g(x)$. Extended Euclid!

Extended Euclid!

## Computing $s(x)^{-1}(\bmod g(x))$

$F \leftarrow s, G \leftarrow g, B \leftarrow 1, C \leftarrow 0$
while $(\operatorname{deg}(F)>0)$ \{ if $(\operatorname{deg}(F)<\operatorname{deg}(G))$ \{

$$
F \leftrightarrow G, B \leftrightarrow C
$$

\}
$j \leftarrow \operatorname{deg}(F)-\operatorname{deg}(G), h \leftarrow F_{\operatorname{deg}(F)} / G_{\operatorname{deg}(G)}$
$F \leftarrow F-h x^{j} G, B \leftarrow B-h x^{j} C$
\}
if $(F \neq 0)$ return $B / F_{0}$ else "not invertible"

## Decoding a binary Goppa

 syndrome $s(x)$$\square$ Given: $v(x), g(x) \in \mathbb{K}[x]$
$\square$ Find: $a(x), b(x), f(x) \in \mathbb{K}[x]$
$\square$ Where: $b(x) v(x)+f(x) g(x)=a(x)$
$\square$ Thus $a(x)=b(x) v(x) \bmod g(x)$, i.e. $a(x)=b(x) v(x)$ in $\mathbb{K}[x] / g(x)$.
$\square$ Conditions:
$-\operatorname{deg}(a) \leq\lfloor t / 2\rfloor, \operatorname{deg}(b) \leq\lfloor(t-1) / 2\rfloor$.

## Decoding a binary Goppa syndrome $s(x)$

$A \leftarrow v, a \leftarrow g, B \leftarrow 1, b \leftarrow 0, t \leftarrow \operatorname{deg}(g)$
while $(\operatorname{deg}(a)>\lfloor t / 2\rfloor)$ \{
$A \leftrightarrow a, B \leftrightarrow b$
while $(\operatorname{deg}(A) \geq \operatorname{deg}(a))\{$

$$
\begin{aligned}
& j \leftarrow \operatorname{deg}(A)-\operatorname{deg}(a), h \leftarrow A_{\operatorname{deg}(A)} / a_{\operatorname{deg}(a)} \\
& A \leftarrow A-h x^{j} a, B \leftarrow B-h x^{j} b
\end{aligned}
$$

\}
\}
$\sigma(x) \leftarrow a(x)^{2}+x b(x)^{2}$
return $\sigma \quad / /$ error locator polynomial

## Decoding an alternant

 syndrome $s(x)$$\square$ Given: $s(x) \in \mathbb{K}[x], t \in \mathbb{N}$
$\square$ Find: $\omega(x), \sigma(x), f(x) \in \mathbb{K}[x]$
$\square$ Where: $\sigma(x) s(x)+f(x) x^{2 t}=\omega(x)$
$\square$ Thus $\omega(x)=\sigma(x) s(x) \bmod x^{2 t}$, i.e. $\omega(x)=\sigma(x) s(x) \in \mathbb{K}[x] / x^{2 t}$.
$\square$ Conditions:
$\square \operatorname{deg}(\omega) \leq t-1, \operatorname{deg}(\sigma) \leq t$.

## Decoding an alternant syndrome $s(x)$

$A \leftarrow s, a \leftarrow x^{2 t}, B \leftarrow 1, b \leftarrow 0$
while $(\operatorname{deg}(a)>t-1)\{$
$A \leftrightarrow a, B \leftrightarrow b$
while $(\operatorname{deg}(A) \geq \operatorname{deg}(a))\{$
$j \leftarrow \operatorname{deg}(A)-\operatorname{deg}(a), h \leftarrow A_{\operatorname{deg}(A)} / a_{\operatorname{deg}(a)}$
$A \leftarrow A-h x^{j} a, B \leftarrow B-h x^{j} b$
\}
\}
$\sigma(x) \leftarrow b(x) / b_{0} / /$ hence $\sigma(0)=1$
$\omega(x) \leftarrow a(x) / b_{0} / /$ normalize
return $\omega, \sigma / /$ error evaluator \& locator polynomials


## Coding-Based Cryptosystems

## McEliece Cryptosystem

$\square$ Key generation:

- Let $p$ be a prime power and $q=p^{d}$ for some $d$.
- Choose a secure, uniformly random [n, k] t-error correcting alternant code $\mathcal{A}(L, D)$ over $\mathbb{F}_{p}$, with $L, D \in$ $\left(\mathbb{F}_{q}\right)^{n}$.
- N.B. $\mathcal{A}(L, D)$ defined e.g. by the parity-check matrix $H=\operatorname{vdm}(L) \operatorname{diag}(D)$.
- Compute for $\mathcal{A}(L, D)$ a systematic generator matrix $G$ $\in\left(\mathbb{F}_{p}\right)^{k \times n}$.
- Set $K_{\text {priv }}=(L, D), K_{\text {pub }}=(G, t)$.


## McEliece Cryptosystem

$\square$ "Hey, wait, I know McEliece, and this does not look quite like it!"
$\square$ Observations:

- A secret, random $L$ is equivalent to a public, fixed $L$ coupled to a secret, random permutation matrix $P \in$ $\left(\mathbb{F}_{p}\right)^{k \times k}$, with $\mathcal{A}(L P, D P)$ as the effective code.
- If $G_{0}$ is a generator for $\mathcal{A}(L, D)$ when $L$ is public and fixed, and $S$ is the matrix that puts $G_{0} P$ in systematic form, then $G=S G_{0} P$ is a systematic generator of $\mathcal{A}(L P, D P)$, as desired.
- Goppa: $D=1 / g(L), \mathcal{A}(L, D)=\Gamma(L, g), K_{\text {priv }}=(L, g)$.


## McEliece Cryptosystem

$\square$ Encryption of a plaintext $m \in\left(\mathbb{F}_{p}\right)^{k}$ :

- Choose a uniformly random $t$-error vector $e \in\left(\mathbb{F}_{p}\right)^{n}$ and compute $c=m G+e \in\left(\mathbb{F}_{p}\right)^{n}$ (IND-CCA2 variant via e.g. Fujisaki-Okamoto).
$\square$ Decryption of a ciphertext $c \in\left(\mathbb{F}_{p}\right)^{n}$ :
- Use the trapdoor to obtain the usual alternant paritycheck matrix $H$ (or equivalent).
- Compute the syndrome $s^{\top} \leftarrow H c^{\top}=H e^{\top}$ and decode it to obtain the error vector e.
- Read $m$ directly from the first $k$ components of $c-e$.


## McEliece-FujisakiOkamoto: Setup

$\square$ Random oracle (message authentication code) $\mathcal{H}:\left(\mathbb{F}_{p}\right)^{k} \times\{0,1\}^{*} \rightarrow \mathbb{Z} / s \mathbb{Z}$, with $s=$ ( $n$ choose $t$ ) $(p-1)^{t}$.
$\square$ Unranking function $\mathcal{U}: \mathbb{Z} / s \mathbb{Z} \rightarrow\left(\mathbb{F}_{p}\right)^{n}$.
$\square$ Ideal symmetric cipher $\mathcal{E}:\left(\mathbb{F}_{p}\right)^{k} \times\{0,1\}^{*}$ $\rightarrow\{0,1\}^{*}$.
$\square$ Alternant decoding algorithm $\mathcal{D}:\left(\mathbb{F}_{q}\right)^{n} \times$ $\left(\mathbb{F}_{q}\right)^{n} \times\left(\mathbb{F}_{p}\right)^{n} \rightarrow\left(\mathbb{F}_{p}\right)^{k} \times\left(\mathbb{F}_{p}\right)^{n}$.

## McEliece-FujisakiOkamoto: Encryption

$\square$ Input:

- uniformly random symmetric key $r \in\left(\mathbb{F}_{p}\right)^{k}$;
- message $m \in\{0,1\}^{*}$.
$\square$ Output:
- McEliece-FO ciphertext $c \in\left(\mathbb{F}_{p}\right)^{n} \times\{0,1\}^{*}$.
$\square$ Algorithm:
- $h \leftarrow \mathcal{H}(r, m)$
- $e \leftarrow \mathcal{U}(h)$
$w \leftarrow r G+e$
$\square \leftarrow \mathcal{E}(r, m)$
- $c \leftarrow(w, d)$


## McEliece-FujisakiOkamoto: Decryption

$\square$ Input:

- McEliece-FO ciphertext $c=(w, d)$.
$\square$ Output:
- message $m \in\{0,1\}^{*}$, or rejection.
$\square$ Algorithm:
- $(r, e) \leftarrow \mathcal{D}(L, D, w)$
- $m \leftarrow \mathcal{E}^{-1}(r, d)$
- $h \leftarrow \mathcal{H}(r, m)$
- $v \leftarrow \mathcal{U}(h)$
a accept $m \Leftrightarrow v=e$ and $w=r G+e$


## Niederreiter Cryptosystem

$\square$ Key generation:

- Choose a secure, uniformly random [ $n, k] t$ error correcting alternant code $\mathcal{A}(L, D)$ over $\mathbb{F}_{p}$, with $L, D \in\left(\mathbb{F}_{q}\right)^{n}$.
- Compute for $\mathcal{A}\left(L_{,}, D\right)$ a systematic paritycheck matrix $H \in\left(\mathbb{F}_{p}\right)^{r \times n}$.
- Set $\mathrm{K}_{\text {priv }}=(L, D), \mathrm{K}_{\text {pub }}=(H, t)$.


## Niederreiter Cryptosystem

$\square$ Encryption of plaintext $m \in \mathbb{Z} / s \mathbb{Z}, s=(n$ choose $t)(p-1)^{t}$ :

- Represent $m$ as a $t$-error vector $e \in\left(\mathbb{F}_{p}\right)^{n}$ via permutation unranking.
- Compute the syndrome $c^{\top}=H e^{\top}$ as ciphertext.
$\square$ Decryption of ciphertext $c \in\left(\mathbb{F}_{p}\right)^{r}$ :
- Let $H_{0}=\operatorname{vdm}(L) \operatorname{diag}(D)$ be the trapdoor parity-check matrix for $\mathcal{A}(L, D)$, so that $H_{0}=S H$ for some nonsingular matrix S. Compute $c_{0}{ }^{\top}=S C^{\top}$. Notice that $c_{0}{ }^{\top}=S\left(H e^{\top}\right)=$ $H_{0} \mathrm{e}^{\top}$, a decodable syndrome (using the trapdoor). Also, $S=$ $H_{0} H^{\top}\left(H H^{\top}\right)^{-1}$.
- Decode the syndrome $c_{0}{ }^{\top}$ to $e^{\top}$ using the decoding trapdoor.
- Recover $m$ from e via permutation ranking.


## Niederreiter Cryptosystem

$\square$ The computational security levels of McEliece and Niederreiter are exactly equivalent.
$\square$ Both need extra message formatting to achieve indistinguishability properties.
$\square$ Niederreiter leads more naturally to digital signatures.

## CFS Signatures

$\square$ Security based on the BDDP assumption.
$\square$ Represent the message as a decodable syndrome, then decode the syndrome to produce the error vector as the signature.
$\square$ Verify the signature by matching it to the syndrome of the message.
$\square$ Short signatures possible via permutation ranking.

## CFS Signatures

$\square$ System setup:

- Choose $m, t \leq m$ and $n=2^{m}$.
- Choose a hash function $\mathcal{H}:\{0,1\}^{*} \times \mathbb{N} \rightarrow$ $\left(\mathbb{F}_{2}\right)^{n-k}$.
$\square$ Key generation:
- Choose a t-error correcting, binary Goppa code $\Gamma(L, g)$, compute for it a systematic parity-check matrix $H$.
$\square \mathrm{K}_{\text {private }}=(L, g) ; \mathrm{K}_{\text {public }}=(H, t)$.


## CFS Signatures

$\square$ Signing a message $m$ :

- Let $H_{0}$ be the trapdoor parity-check matrix for $\Gamma(L, g)$, so that $H_{0}=S H$ for some nonsingular matrix $S$. Find $i$ $\in \mathbb{N}$ such that, for $c \leftarrow \mathcal{H}(m, i)$ and $c_{0}{ }^{\top} \leftarrow S c^{\top}, c_{0}$ is a decodable $H_{0}$-syndrome of $\Gamma$.
- Using the decoding algorithm for $\Gamma_{,}$, compute the error vector $e$ whose $H_{0}$-syndrome is $c_{0}$, i.e. $c_{0}{ }^{\top}=H_{0} e^{\top}$.
- The signature is $\left(e_{1} i\right)$. Notice that $c_{0}^{\top}=H_{0} e^{\top}=S H e^{\top}$ and hence $H e^{\top}=S^{-1} C_{0}^{\top}=C^{\top}$, i.e. $c=\mathcal{H}(m, i)$ is the $H$ syndrome of e.
$\square$ Verifying a signature (e, $i$ ):
- Compute $c \leftarrow H e^{\top}$.
- Accept the signature iff $c=\mathcal{H}(m, i)$.


## CFS Signatures

$\square$ The number of possible hash values is $2^{n-k}$ $=2^{m t}=n^{t}$ and the number of syndromes decodable to codewords of weight $t$ is

$$
\binom{n}{t} \approx \frac{n^{t}}{t!}
$$

$\square \therefore$ The probability of finding a codeword of weight $t$ is $\approx 1 / t!$, and the expected value of hash queries is $\approx t$.

## CFS Signatures

$\square$ If the $n$-bit error $e$ of weight $t$ is encoded via permutation ranking, the signature length is $\approx \lg \left(n^{t} / t!\right)+\lg (t!)=t \lg n \approx m t$.
$\square$ Public key is huge: mtn bits.
$\square$ Recommendation for security level $\approx 2^{80}$ :

- original: $m=16, t=9$, $n=2^{16}$, signature length $=144$ bits, key size $=1152 \mathrm{KiB}$.
- updated: $m=15, t=12, n=22^{15}$, signature length $=180$ bits, key size $=720 \mathrm{KiB}$;


## CFS Signatures

$\square$ Bleichenbacher's attack: Wagner's generalized (3way) birthday attack $\Rightarrow$ security level lower than expected.
$\square$ Larger key sizes, longer signature generation.
$\square$ Dyadic keys: shorter by a factor $u=$ largest power of 2 dividing $t$, but $2^{u}$ times longer signature generation.

| m | $\mathrm{t}=9$ | $\mathrm{t}=10$ | $\mathrm{t}=11$ | $\mathrm{t}=12$ |
| :---: | :---: | :---: | :---: | :---: |
| 15 | 60.2 | 63.1 | 67.2 | $\underline{\mathbf{8 1 . 5}}$ |
| 16 | 63.3 | 66.2 | 71.3 | $\underline{85.6}$ |
| 17 | 66.4 | 69.3 | 75.4 | $\underline{89.7}$ |
| 18 | 69.5 | 72.4 | 79.5 | $\underline{93.7}$ |
|  |  | $\ldots$ |  |  |
| 22 | $\underline{81.7}$ | $\underline{84.6}$ | $\underline{95.8}$ | $\underline{110.0}$ |

## Stern Identification

$\square H \in\left(\mathbb{F}_{2}\right)^{(n / 2) \times n}$ : uniformly random binary parity-check matrix (N.B. originally of size $(n-k) \times n)$.
$\square$ Gaborit-Girault improvement: uniformly random double circulant $H=[I \mid C]$, with $C_{i j}=C_{(j-i) \bmod n / 2}$ for some $c \in\left(\mathbb{F}_{2}\right)^{n / 2}$.
$\square$ Misoczki-Barreto alternative: uniformly random double dyadic $H=[I \mid D]$, with $D_{i j}=d_{i \oplus j}$ for some $d \in\left(\mathbb{F}_{2}\right)^{n / 2}$.

## Stern Identification

$\square$ Key pair:

- Private key: random $x \in\left(\mathbb{F}_{2}\right)^{n}$ of weight $t$.
- Public key: syndrome $s=x H^{\top} \in\left(\mathbb{F}_{2}\right)^{n / 2}$.


## Stern Identification

$\square$ Commitment:

The prover chooses a uniformly random word $y \in\left(\mathbb{F}_{2}\right)^{n}$ and a uniformly random permutation $\sigma$ on $\{0, \ldots, n-1\}$ and sends $c_{0}$ $=\operatorname{hash}(\sigma(y)), c_{1}=\operatorname{hash}(\sigma(y+x))$, and $c_{2}=$ hash $\left(\sigma \| H y^{\top}\right)$ to the verifier.

## Stern Identification

$\square$ Challenge \& Response:

- The verifier sends a uniformly random $b \in \mathbb{F}_{3}$ to the prover.

The prover responds by revealing:
■ $y$ and $\sigma$ if $b=0$;
$\square y+x$ and $\sigma$ if $b=1$;
$\square \sigma(y)$ and $\sigma(x)$ if $b=2$.

## Stern Identification

$\square$ Verification:

- The verifier verifies that:
$\square c_{0}$ and $c_{2}$ are correct if $b=0$;
$\square c_{1}$ and $c_{2}$ are correct if $b=1$ (noticing that $H y^{\top}$

$$
\left.=H(y+x)^{\top}+H x^{\top}=H(y+x)^{\top}+s^{\top}\right) ;
$$

$\square c_{0}$ and $c_{1}$ are correct if $b=3$ (noticing that $\sigma(y$ $+x)=\sigma(y)+\sigma(x))$.

- The probability of cheating in this ZKP is 2/3. Repeating $\lceil(\lg \varepsilon) /(1-\lg 3)\rceil$ times reduces the cheating probabiliy below $\varepsilon$.


## Stern Identification

$\square$ Gaborit-Girault propose $n=347$ and $t=$ 76 to achieve security $2^{83}$ with double circulant keys.
$\square$ Exactly the same parameters are fine with double dyadic keys.
$\square$ In either case the key is only $2 n=694$ bits long and the global matrix $H$ fits $n=$ 347 bits.

## Stern Identification

$\square$ Identity-based identification: Goppa trapdoor for the Stern scheme combined with CFS signatures.
$\square$ Stern public key is the user's identity mapped to a decodable syndrome (N.B. the identity has to be complemented by a short counter provided by the KGC).
$\square$ Identity-based private key is a CFS signature of the user's identity, i.e. an error vector $x$ of weight $t$ computed by the KGC.

## Choosing Parameters

$\square$ Using systematic (echelon) form, storage reduces to only $k \times(n-k)$ bits.

| security <br> level | $m$ | $n$ | $k$ | $t$ | naïve key size | echelon <br> key size | source |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: | :---: |
| $2^{56}$ | 10 | 1024 | 524 | 50 | 65.5 KiB | 32 KiB | original |
| $2^{80}$ | 11 | 1632 | 1269 | $33+1$ | $74-253 \mathrm{KiB}$ | 57 KiB | BLP |
| $2^{112}$ | 12 | 2480 | 1940 | $45+1$ | $164-587 \mathrm{KiB}$ | 128 KiB | BLP |
| $2^{128}$ | 12 | 2960 | 2288 | $56+1$ | $243-827 \mathrm{KiB}$ | 188 KiB | BLP |
| $2^{192}$ | 13 | 4624 | 3389 | $95+2$ | $698-1913 \mathrm{KiB}$ | 511 KiB | BLP |
| $2^{256}$ | 13 | 6624 | 5129 | $115+2$ | $1209-4147 \mathrm{KiB}$ | 937 KiB | BLP |

## Choosing the Code

$\square$ Most syndrome-based cryptosystems can be instantiated with general ( $n, k$ )-codes.
$\square$ Not all choices of code are secure.

- McEliece with maximum rank distance (MRD) or Gabidulin codes is insecure (Gibson 1995, 1996).
- Niederreiter with GRS codes is insecure (SidelnikovShestakov 1992).
$\square$ Binary Goppa seems to be OK.
- ... Except if the coefficients of the Goppa polynomial itself are all binary (Loidreau-Sendrier 1998).
- Distinguishing a (complete) permuted Goppa code from a random code of the same length and distance (Sendrier 2000): O( $t n^{t-2} \log ^{2} n$ ).


## Compact Goppa Codes?

$\square$ Recap: a Goppa code is entirely defined by:

- a monic polynomial $g(x) \in \mathbb{F}_{q}[x]$ of degree $t$,
- a sequence $L \in\left(\mathbb{F}_{q}\right)^{n}$ of distinct elements with $g(L) \neq 0$.
$\square$ Features:
- good error correction capability (all $t$ design errors in the binary case).
- withstood cryptanalysis quite well.
$\square$ Goal: replace the large $O\left(n^{2}\right)$-bit representation by a compact one (like above!).


## Cauchy Matrices

$\square$ A matrix $M \in \mathbb{K}^{t \times n}$ over a field $\mathbb{K}$ is called a Cauchy matrix iff $M_{i j}=1 /\left(z_{i}-L_{j}\right)$ for disjoint sequences $z \in \mathbb{K}^{t}$ and $L \in \mathbb{K}^{n}$ of distinct elements.
$\square$ Property: any Goppa code where $g(x)$ is squarefree admits a parity-check matrix in Cauchy form [TZ 1975].
$\square$ Compact representation, but:

- code structure is apparent,
- usual tricks to hide it destroy the Cauchy structure.


## Dyadic Matrices

$\square$ Let $r$ be a power of 2. A matrix $H \in \mathcal{R}^{r \times r}$ over a ring $\mathcal{R}$ is called dyadic iff $H_{i j}=h_{i \oplus j}$ for some vector $h \in \mathcal{R}^{r}$.


## Dyadic Matrices

$\square$ Dyadic matrices form a subring of $\mathcal{R}^{r \times r}$ (commutative if $\mathcal{R}$ is commutative).
$\square$ Compact representation: $\mathrm{O}(r)$ rather than $\mathrm{O}\left(r^{2}\right)$ space.
$\square$ Efficient arithmetic: multiplication in time $\mathrm{O}(r \lg r)$ time via fast Walsh-Hadamard transform, inversion in time $\mathrm{O}(r)$ in characteristic 2.
$\square$ Idea: find a dyadic Cauchy matrix.

## Quasi-Dyadic Codes

$\square$ Theorem: a dyadic Cauchy matrix is only possible over fields of characteristic 2 (i.e. $q=2^{m}$ for some $m$ ), and any suitable $h \in$ $\left(\mathbb{F}_{q}\right)^{n}$ satisfies

$$
\frac{1}{h_{i \oplus j}}=\frac{1}{h_{i}}+\frac{1}{h_{j}}+\frac{1}{h_{0}}
$$

with $z_{i}=1 / h_{i}+\omega, L_{j}=1 / h_{j}-1 / h_{0}+\omega$ for arbitrary $\omega$, and $H_{i j}=h_{i \oplus j}=1 /\left(z_{i}-L_{j}\right)$.

## Dyadic Cauchy Matrices

$\square$ Dyadic: $M_{i j}=h_{i \oplus j}$ for $h \in\left(\mathbb{F}_{q}\right)^{n}$.
$\square$ Cauchy: $M_{i j}=1 /\left(x_{i}-y_{j}\right)$ for $x, y \in\left(\mathbb{F}_{q}\right)^{n}$.
$\square$ Dyadic matrices are symmetric:

$$
\begin{aligned}
& 1 /\left(x_{i}-y_{j}\right)=1 /\left(x_{j}-y_{i}\right) \Leftrightarrow y_{j}=x_{i}+y_{i}-x_{j} \Leftrightarrow \\
& -y_{j}=\alpha+x_{j}(\text { taking } i=0 \text { in particular) for some } \\
& \text { constant } \alpha \Leftrightarrow M_{i j}=1 /\left(x_{i}+x_{j}+\alpha\right) \text { for } x \in\left(\mathbb{F}_{q}\right)^{n} .
\end{aligned}
$$

$\square$ Dyadic matrices have constant diagonal:

- $M_{i j}=1 /\left(2 x_{i}+\alpha\right)=h_{0} \Leftrightarrow$ all $x_{i}$ equal (impossible) or char 2.


## Dyadic Cauchy Matrices

$\square$ Condition $h_{i \oplus j}=1 /\left(x_{i}+x_{j}+\alpha\right)$ shows that $\alpha=$ $1 / h_{0}$ (taking $i=j$ in particular), hence $1 / h_{i \oplus j}+$ $1 / h_{0}=x_{i}+x_{j}$, or simply

$$
x_{i}=1 / h_{i}+1 / h_{0}+x_{0}
$$

(taking $j=0$ in particular).
$\square$ Thus $1 / h_{i \oplus j}+1 / h_{0}=x_{i}+x_{j}=1 / h_{i}+1 / h_{j}$, so necessarily the sequence $h$ satisfies

$$
\frac{1}{h_{i \oplus j}}=\frac{1}{h_{i}}+\frac{1}{h_{j}}+\frac{1}{h_{0}}
$$

## Constructing Dyadic Codes

$\square$ Choose distinct $h_{0}$ and $h_{i}$ with $i=2^{u}$ for $0 \leq u<\lceil\lg n\rceil$ uniformly at random from $\mathbb{F}_{q}$, then set

$$
h_{i+j} \leftarrow \frac{1}{\frac{1}{h_{i}}+\frac{1}{h_{j}}+\frac{1}{h_{0}}}
$$

for $0<j<i$ (so that $i+j=i \oplus j$ ).
$\square$ Complexity: $\mathrm{O}(n)$.

## Quasi-Dyadic Codes

$\square$ Structure hiding:

- choose a long dyadic code over $\mathbb{F}_{q}$,
- blockwise shorten the code (Wieschebrink),
- permute dyadic block columns,
- dyadic-permute individual blocks,
- take a binary subfield subcode.
$\square$ Quasi-dyadic matrices: $\left(\left(\mathbb{F}_{2}\right)^{t \times t}\right)^{m \times \ell}$.



## Compact Keys

$\square$ Binary quasi-dyadic codes obtained from a Goppa code over $\mathbb{F}_{2} 16$ with $t \times t$ dyadic submatrices:

| level | $n$ | $k$ | $t$ | size | generic | shrink | RSA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{80}$ | 2304 | 1280 | 64 | 20480 bits | 57 KiB | 23 | 1024 bits |
| $2^{112}$ | 3584 | 1536 | 128 | 24576 bits | 128 KiB | 43 | 2048 bits |
| $2^{128}$ | 4096 | 2048 | 128 | 32768 bits | 188 KiB | 47 | 3072 bits |
| $2^{192}$ | 7168 | 3072 | 256 | 49152 bits | 511 KiB | 85 | 7680 bits |
| $2^{256}$ | 8192 | 4096 | 256 | 65536 bits | 937 KiB | 117 | 15360 bits |

## Linear Attacks

$\square$ The relation between the decodable private parity-check matrix $H$ and the public generator matrix $G$ is $H X G^{T}=O$ for some permutation matrix $X$.
$\square$ Attack idea: guess $H$ and solve the above equation for $X$.
$\square$ Possible when (1) it is feasible to guess $H$, and (2) the linear system is determined.

## Linear Attacks

$\square$ For a generic, irreducible Goppa code there are roughly $\mathrm{O}\left(q^{t} /(t \log q)\right) \sim \mathrm{O}\left(2^{m t} / m t\right) \sim \mathrm{O}\left(2^{2^{m}}\right)$ possibilities for $H$, too many to mount an attack. Besides, $X$ is as general as it can be, so there is no hope of getting a determined linear system.
$\square$ For a quasi-cyclic code there are only $\mathrm{O}\left(2^{m}\right)$ possibilities. Besides, the linear system is overdetermined due to severe constraints on $X$. As a consequence, most if not all quasi-cyclic proposals have been broken.

## Linear Attacks

$\square$ For a quasi-dyadic codes there are $\mathrm{O}\left(2^{m^{2}}\right)$ possibilities, still too many. Besides, $X$ is only constrained to consist of dyadic submatrices, but these are otherwise independent and the system remains highly indetermined.
$\square$ Hence quasi-dyadic, binary Goppa codes resist this kind of attack.

