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Abstract. CFS is the first practical code-based signature scheme. In
the present paper, we present the initial scheme and its evolutions, the
attacks it had to face and the countermeasures applied. We will show
that all things considered the system remains practical and we present
a software implementation of the signing primitive. For eighty bits of
security our implementation produces a signature in 1.3 seconds on a
single core of Intel Xeon W3670 at 3.20 GHz. Moreover the computation
is easy to distribute and we can take full profit of multicore processors
reducing the signature time to a fraction of second in software.
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1 Introduction

CFS [1] is a digital signature scheme based on the McEliece cryptosystem [2].
It was published in 2001 and relies on the hardness of the syndrome decoding
problem and on the undistinguishability of binary Goppa code.

The practicality of the scheme is questionable because of a large public key
and a long signing time. The large key size might be a problem for some appli-
cations, but a storage requirement of a few megabytes on the verifier’s side is
not always an issue. The second drawback is the long signing time. In fact each
signature requires a large number (several hundred of thousands) of algebraic
decoding attempts. The first reported signing time in software [1] was about one
minute but was only meant as a proof of concept. An FPGA implementation
was reported in [3] with a signing time under one second. One of the purposes
of this paper is to provide a more accurate measure in software.

Since it was published, the system has been weakened in several ways. It
was recently proven in [4] that the public key of CFS could be distinguished in
polynomial time from a random binary matrix. This property certainly needs to
be investigated further, but at this time does not seem to lead to an effective
attack. More threatening is the Bleichenbacher’s attack (unpublished) which
essentially reduces the cost of the best decoding attack from 2r/2 to 2r/3 (r = 144
in [1]) and necessitate an increase of parameters leading to a rather cumbersome
scheme (gigabytes of key and minutes of signing time). Fortunately an efficient
countermeasure, Parallel-CFS, was proposed in [5].

The purpose of this work is to (try to) clarify the situation, to show that the
system is practical and secure with properly chosen parameters. We propose an
efficient software implementation of the CFS scheme with a focus on the signing



primitive. In particular we will give a precise report on the time consuming parts
of the signing process. This could be an help to extend this work to coprocessor
dedicated for signing. For now, our target platform is a standard PC.

We will first review the CFS scheme, its attacks and the Parallel-CFS vari-
ant. This will allow us to propose some sets of secure parameters. Next we will
describe the software implementation. More specifically, we will explain the var-
ious algorithmic options for decoding binary Goppa and compare them. We will
conclude with some timings and detailed measurements of our implementation.

2 Background

In all this paper we will consider only binary linear codes. Most of the statements
are easily generalized to a larger alphabet, but no practical CFS-like signature
scheme has ever been proposed so far with non binary codes.

2.1 Syndrome Decoding

We consider the following problem:

Computational Syndrome Decoding Problem: Given a matrix H ∈ {0, 1}r×n, a
word s ∈ {0, 1}r, and an integer w > 0, find e ∈ {0, 1}n of Hamming weight ≤ w
such that HeT = s.

We denote CSD(H, s, w) this problem as well as the set of its solution for a
given instance. This problem is NP-hard [6]. For suitable parameters n, r and w
it is conjectured difficult on average which is the basis for the security of many
code-based cryptosystems.

2.2 Binary Goppa Codes

Let F2m denote the finite field with 2m elements. Let n ≤ 2m, let the support
L = (α0, . . . , αn−1) be an ordered sequence of distinct elements of F2m , and let
the generator g(z) ∈ F2m be a monic irreducible polynomial of degree t. The
binary Goppa code of support L and generator g is defined as

Γ (L, g) = {(a0, . . . , an−1) ∈ {0, 1}n |
n−1∑
j=0

aj
z − αj

mod g(z) = 0}.

This code has length n ≤ 2m dimension ≥ n −mt and has an algebraic t-error
correcting procedure. For the signature we will always take n = 2m, a smaller
value would increase the signing cost. For parameters of interest the dimension
will always be exactly k = n−mt, we will denote r = mt the codimension.

In a code-based cryptosystem using Goppa codes the system parameters are
(m, t) and are known to everyone, the secret key is the pair (L, g) and the public
key is a parity check matrix H ∈ {0, 1}r×n.



Density of Decodable Syndromes for a Goppa Code: A syndrome s ∈ {0, 1}r is
decodable (relatively to H) with the algebraic decoder if and only if it is of the
form s = eHT with e of Hamming weight t or less. There are

∑t
i=0

(
n
i

)
≈
(
n
t

)
such syndromes. The total number of syndrome is 2r and thus the proportion of
syndrome decodable with the binary Goppa code algebraic decoder is close to(

n
t

)
2r

=

(
2m

t

)
2mt

=
2m(2m − 1) · · · (2m − t+ 1)

t!2mt
≈ 1

t!
. (1)

2.3 Complete Decoding

A complete decoder for a binary linear code defined by some parity check matrix
H ∈ {0, 1}r×n is a procedure that will return for any syndrome s ∈ {0, 1}r an
error pattern e of minimal weight such that eHT = s. The expected weight w
of e will be the integer just above the Gilbert-Varshamov radius τgv, which we
define as the real number1 such that

(
n
τgv

)
= 2r. The threshold effect can be

observed on two examples in Table 1.
In practice we will relax things a little bit and when we mention a complete

decoder we mean a w-bounded decoder (with w ≥ τgv), that is a procedure
ψ : {0, 1}r → {0, 1}n returning an error pattern matching with the input of
weight ≤ w every time there exists one. A w-bounded decoder may return an
error pattern which not of minimal weight. Also, a w-bounded decoder may fail
even if w ≥ τgv (see Table 1 for (m, t) = (20, 8) and w = 9 > τgv = 8.91), in
that case we may either choose a decoding bound larger than τgv + 1 (loosing
some security) or handle somehow the decoding failure (see §5.4). In the sequel,
whenever the refer to complete decoding we implicitly define a decoding bound,
an integer larger than τgv, denoted w.

(m, t) τgv w = 8 w = 9 w = 10 w = 11

(20,8) 8.91 1− 2−15 0.055 2−131583 2−1010

(18,9) 10.26 1− 2−33 1− 2−18 0.93 2−2484

Table 1. Failure probability of a w-bounded decoder for a code of length n = 2m and
codimension r = mt

2.4 Original CFS

A CFS instance is defined by a binary Goppa code Γ of length n correcting up to
t errors; of parity check matrix H; over the finite field F2. We will denote decode
the decoding function of Γ . This function takes a binary syndrome as input and
returns a tuple of t error positions matching with the input syndrome or fails if

1 the mapping x 7→
(
n
x

)
is easily extended continuously for the positive real numbers

making the definition of τgv sound



no such error pattern exists. The matrix H is public and the procedure decode
is secret. Signing a document is done like this :

1. Hash the document.
2. Suppose the hash value is a syndrome and try to decode it using Γ .
3. Use the resulting error pattern as a signature.

Since the hash value of the document is very unlikely to be a decodable syndrome
(i.e. syndrome of a word at Hamming distance t or less from a codeword), step
2 is a little more complicated. CFS comes with two workarounds for this step :

– Complete decoding [Algorithm 1] that adds a certain amount of columns of
H to the syndrome until it becomes decodable (i.e. guess a few errors).

– Counter appending that alters the message with a counter and rehash it
until it becomes decodable.

The two methods require t! decoding in average (a consequence of (1), see [1]),
but the counter appending method includes the hash function inside the de-
coding thus forcing to implement it on the target architecture, which might be
an inconvenience on a dedicated coprocessor. Moreover, with this method the
size of the signature is variable because the counter has a high standard vari-
ation. Finally, the Parallel-CFS countermeasure (see §2.6) does not work with
the counter appending method.

Algorithm 1 Signing with complete decoding

function sign(M,w) . input: message M ; integer w > t
s←− h(M)
loop

(it+1, . . . , iw)
R←− {0, . . . , n− 1}w−t

(i1, . . . , it)←− decode(s+Hit+1 + . . .+Hiw , t)
if (i1, . . . , it) 6= fail then return (i1, . . . , iw)
end if

end loop
end function

2.5 Attacks

There exists key distinguishing attacks on CFS [4]: it is possible to efficiently
distinguish a CFS public key (a parity check matrix) from a random matrix
of same size. However this does not lead, for the moment, to any efficient key
recovery attack. In practice, the best known techniques for forging a signature
are based on generic decoding of linear codes, that is solving the computational
syndrome decoding problem (CSD).

The two main techniques for solving CSD are Information Set Decoding (ISD)
and the Generalized Birthday Algorithm (GBA). ISD was introduced by Prange



in 1962 [7]. All practical variant derive from Stern’s algorithm [8], the most
recent improvements are [9, 10]. GBA was introduced by Wagner in 2002 [11],
but and order 2 variant was already proposed in [12]. Its first use for decoding
came later [13].

Decoding One Out of Many (DOOM): In the signature forgery domain,
an attacker can create any number of messages suiting him and be satisfied with
one on them being signed. The benefits of having access to several syndromes
has been mentioned by Bleichenbacher for GBA2. For ISD a proposal was made
in [15] and was later generalized and analyzed in [16]. It shows that if N target
syndromes are given and if decoding anyone of them is enough, the time com-
plexity is reduced by a factor almost

√
N compared to the situation where a

single specific syndrome has to be decoded. There is a upper limit for N after
which there is no gain, it depends on the type of algorithm (ISD or GBA) and
on the code parameters. In practice this would mean, for 80 bits of security,
multiplying the key size by 400 with a similar signing time, or multiplying the
key size by 100 and the signing time by 10.

2.6 Parallel-CFS: a Countermeasure to DOOM

Parallel CFS is a countermeasure proposed by M. Finiasz in 2010 [5], aiming
at cancelling the benefits of having multiple target syndromes. The idea is to
produce λ different hash values from the document to be signed (typically two
to four) and to sign (that is decode) each of them separately. The final signature
will be the collection of the signatures of all those hash values, see Algorithm 2
for the description using complete decoding. This way, if the attacker forges a
signature for the first hash value of one of his multiple messages, he also has to
forge a signature for the remaining hash values of this specific message, thus he
is back to the initial single target decoding problem. As mentioned in [5], signing
appending a counter to the message is impossible in this countermeasure since it
is necessary to decode several hashes of the exact same message and the counter
alters the message. This countermeasure increases by a factor λ the signature
time, signature size and verification time.

Algorithm 2 Parallel-signing with complete decoding

function sign mult(M,w, λ) . input: message M ; integers w > t, λ > 0
for 1 ≤ i ≤ λ do

si ←− sign((M, i), w)
end for
return (si)1≤i≤λ

end function

2 this attack was presented in 2004 but was never published, it is described in [14]



In [5], Bleichenbacher’s attack is generalized for attacking several hash values.
The analysis shows that for most parameters, three hash value, sometimes only
two, will cancel the benefits of the attack. For ISD, it is shown in [16] that the
benefit of DOOM is not as high as for GBA. There was no generalization as in
[5] for several hash values, but it is not likely to change the situation and if the
number of hash values is large enough to cancel DOOM-GBA it will probably
also cancel DOOM-ISD.

2.7 Previous Implementations

We are not aware of any publicly available software implementation of CFS.
There is one FPGA implementation, described in [3], for the original parameters
n = 216, t = 9, and w = 11. It reports an average signing time of 0.86 seconds
and implements the Berlekamp-Massey decoding algorithm.

3 Parameter Selection

For single instances ISD is more efficient than GBA, and for multiple instances
GBA-DOOM (i.e. generalized Bleichenbacher’s attack) is more efficient than
ISD-DOOM. To select secure parameters will look for parameters such that we
are above the security requirements for the cost of the following attacks:

– ISD-MMT [10], the best known variant of ISD, for solving λ distinct single
instances. In [10], only the asymptotic decoding exponent is given. We pro-
vide in appendix §A a non asymptotic analysis which we used for Table 2.
We also mention the cost of a previous variant ISD-Dum [17] which is more
flexible and may have an advantage in some cases (not here though). The
numbers for ISD-Dum are derived from [18].

– GBA-DOOM [5], that is the generalized Bleichenbacher’s attack, for Parallel-
CFS of multiplicity λ.

failure public security bits (log2 of binary ops.)
m t τgv w λ prob. key size ISD-MMT ISD-Dum GBA-DOOM

16 9 10.46 11 3 ∼ 0 1 MB 77.4 78.7 74.9

18 9 10.26 11 3 ∼ 0 5 MB 87.1 87.1 83.4
18 9 10.26 11 4 ∼ 0 5 MB 87.5 87.5 87.0

20 8 8.91 10 3 ∼ 0 20 MB 82.6 85.7 82.5
20 8 8.91 9 5 5.5% 20 MB 87.9 91.0 87.3

24 10 11.05 12 3 ∼ 0 500 MB 126.4 126.9 120.4

26 9 9.82 10 4 10−8 2 GB 125.4 127.5 122.0
Table 2. Some parameter sets for Parallel-CFS using full length binary Goppa codes

The Table 2 gives the main features (including security) for some sets of pa-
rameters. The original parameters are given for reference but they are a bit



undersized. We propose two main families of Goppa codes: 9-error correcting of
length 218 and 8-error correcting of length 220. The latter is faster but also has
a larger public key size. All proposed parameter sets achieve 80 bits of security,
our main targets are those where the hash multiplicity is λ = 3. We also give
some sets of parameters with higher security which were not implemented.

To be thorough, there is a very recent improvement of ISD [19]. From what
we understand of this variant of ISD-MMT it is not likely to provide a significant
non-asymptotic improvement when the target weight is small compared with the
length as it is the case for CFS signature.

4 Algebraic Decoding of Goppa Codes

The secret is a binary Goppa code Γ (L, g) of length n = 2m of generator
g(z) ∈ F2m [z], monic irreducible of degree t, and support L = (α0, . . . , αn−1),
consisting of (all) distinct elements of F2m in a specific order. The public key H is
a systematic parity check matrix of Γ (L, g). We denote LS = (β0, . . . , βr−1) the
support elements corresponding to the identity part of H. An algebraic decoder
for Goppa codes takes as input a binary syndrome s = (s0, . . . , sr−1) ∈ {0, 1}r
and returns, if it exists, an error pattern e ∈ {0, 1}n of weight t such that
eHT = s. There are several algorithms (described later in this section) which all
have the same three steps:

1. Compute from s a new polynomial syndrome with coefficients in F2m .

2. Solve a key equation relating this syndrome to the error locator polynomial.

3. Extract the roots of the locator polynomial to recover the error positions.

4.1 Goppa Key Equation

The algebraic syndrome R(z) =
∑

0≤j<r sjfβj
(z) corresponding to s is computed

as a sum of elementary syndromes fβ(z) defined for any β ∈ F2m as

fβ(z) =
1

z − β
mod g(z) =

1

g(β)

g(z)− g(β)

z − β
. (2)

The corresponding key equation is

σ(z)R(z) =
d

dz
σ(z) mod g(z),deg σ ≤ t (3)

which has a unique solution σ(z) ∈ F2m [z] up to a scalar multiplicative constant.
If there exists an error pattern e ∈ {0, 1}n of weight ≤ t such that eHT = s,
then any solution to (3) is a scalar multiple of σ(z) =

∏
β∈supp(e)(z − β) the

locator polynomial of e (supp(e) is the subset of L corresponding to the non-
zero coordinates of e). Equation (3) is solved with the Patterson algorithm [20].



4.2 Alternant Key Equation

A binary Goppa Γ (L, g) can also be viewed as an alternant code. We use
the fact that Γ (L, g) = Γ (L, g2) when g is square-free. We still have R(z) =∑

0≤j<r sjfβj
(z) but the elementary syndrome fβ(z) has degree 2t − 1 instead

of t− 1 and is now defined for any β ∈ F2m as

fβ(z) =
1

g(β)2
1

1− βz
mod z2t =

2t−1∑
i=0

βizi

g(β)2
. (4)

The corresponding key equation is

σinv(z)R(z) = ω(z) mod z2t,degω < t, deg σinv ≤ t, (5)

which has a unique solution (σinv(z), ω(z)) ∈ F2m [z]2 up to a scalar multi-
plicative constant. If there exists an error pattern e ∈ {0, 1}n of weight ex-
actly t such that eHT = s and if (σinv(z), ω(z)) is a solution to (5) then
σ(z) = ztσinv(z

−1) =
∏
β∈supp(e)(z − β) up to a scalar multiple. To remain

consistent with the Goppa key equation we will speak of σ(z) = ztσinv(z
−1) as

the solution of the equation. The resolution of (5) is achieved either with the
Berlekamp-Massey algorithm [21] or with the extended Euclidean algorithm.

4.3 Root Finding

The state of the art for root finding is the Berlekamp trace algorithm [22].
Its complexity is O((m + t)t2) and is advantageous compared with exhaustive
techniques like Chien search or Horner’s polynomial evaluation whose complexity
is linear in the length n and thus exponential in m.

5 Implementation

5.1 Finite Field Arithmetic

We need to implement extensions of the binary field F2 of degree m = 18 and
m = 20. For fields of small size, the best approach is to tabulate the logarithm
and the exponentiation in base α, a primitive element of F2m . This is efficient as
long as the table fits into the processor cache. This is not the case here and we
chose to implement those fields as an extension of degree 2 of F2m/2 . We used

F220 = F210 [x]/(x2 + x+ α),F210 = F2[x]/(x10 + x9 + x7 + x6 + 1)

with α a primitive element of F210 such that α10 + α9 + α7 + α6 + 1 = 0, and

F218 = F29 [x]/(x2 + x+ 1),F29 = F2[x]/(x9 + x5 + 1).

The field F29 and F210 are small enough to be tabulated (with no cache miss
on our target platform) and with Karatsuba’s speedup a multiplication in the
extension field requires three multiplications in the base field. For constrained
architecture higher extension towers might be more effective. Also, bit slicing
might offer an interesting alternative which, furthermore, is available also for
prime extension degrees like m = 19 which have no subfield except F2.



5.2 Decoding

When signing a message M , we compute a hash value s = h(M) considered
as a syndrome according to the public key H. The word e of minimal weight
such that s = eHT has weight w > t and thus s cannot be decoded with the
algebraic decoder which is limited to t errors. If, as described in Algorithm 1,
we correctly guess δ = w− t error positions we will be able to successfully apply
the algebraic decoder on a modified syndrome. It was proven in [1] that this
succeeds on average after t! guesses. We describe in Algorithm 3 a variant where
the syndrome is modified in polynomial form. Also, the complete root finding
procedure is applied once only.

Algorithm 3 Signing with binary Goppa codes

function sign(M) . input: message M
s←− h(M)
R0(z)←−

∑
0≤j<r sjfβj (z) . once only, either (2) or (4)

for all B ⊂ L of cardinality δ = w − t do
R(z)←− R0(z) +

∑
β∈B fβ(z) . syndrome adjustment, either (2) or (4)

σ(z)←− solve key eq(R(z)) . key equation solving, either (3) or (5)
if z2

m

= z mod σ(z) then . split checking
A←− roots of(σ(z)) . once only
return indices of the elements of A ∪B in L

end if
end for
return fail

end function

Computing the Polynomial Syndrome: The first polynomial syndrome
R0(z) is computed once only from s. Then, as many times as necessary, R0(z) is
adjusted by computing and adding δ = w− t elementary syndromes fβ(z). This
adjustment has a cost proportional to δt field operations which is negligible in
practice.

Solving the Key Equation: As mentioned above, there are various syndromes
and key equations and sometimes several ways to solve them. In all case this
resolution has to be done completely and produces the same locator polynomial
σ(z). The cost is proportional to t2 field operations with various constant.

Root Finding: The key equation always has a solution σ(z) regardless of the
existence of a suitable error pattern of weight t. The error has weight t or less
if and only if the polynomial σ(z) has all its roots in the field F2m that is if
σ(z) | z2m − z. In practice we check whether z2

m

= z mod σ(z) and we only
compute the roots once. This requires m polynomial squaring modulo σ(z) for



a cost proportional to mt2 field operations. This will be the dominant cost for
the signature.

5.3 Discarding Degenerate Instances of Decoding

Several syndromes and key equations may be used for implementing the algebraic
decoding of Goppa codes. In all cases, there is some amount of control required;
at some point a coefficient is checked (leading coefficient in the extended Eu-
clidean algorithm, or the discrepancy in Berlekamp-Massey Algorithm) and if
it is zero the sequencing of operations if affected. Ignoring completely this test
(i.e. assuming the coefficient is non zero) will provide a significant speedup in
software (loops are easier to unroll) and a welcome simplicity in constrained de-
vices. The counterpart is that a (small) proportion of decoding attempts produce
inconsistent results and will fail. This is not a big deal in the signature context
where almost all decoding attempts fail anyway. This was already remarked in
[3] to simplify the control in an FPGA implementation.

5.4 How to Handle Decoding Failure

For (m, t) = (20, 8) and w = 9 there is a probability of failure of ν = 5.5%. This
means that some messages cannot be signed. When we use Parallel-CFS with
multiplicity λ = 5, this percentage is equal to µ = 1 − (1 − ν)λ that is almost
25%, which is hardly acceptable. The workaround is to add a counter:

Define a family F = {fi, 0 ≤ i < 2b} of 2b one-to-one transformations
on the syndromes (for instance adding distinct predefined random con-
stant vectors). Let s1, . . . , sλ denote the hash values of Parallel-CFS of
multiplicity λ. We try to decode the tuple f(s1), . . . , f(sλ) for all f ∈ F .
The verifier will also try all f ∈ F , in the same order as the signer.
Optionally, the b bits index i of the transformation can be added to the
signature to speed-up the verification.

The decoding fails for all f ∈ F with probability µ2b . For instance with b = 5 in
our example the probability of failure drops from 0.249 to 2−64 and each time we
increment b this probability is squared. The security is unchanged because we
applied the same transformation on all hash values. Note that, had we allowed
different transformations for the λ hash values, the attacker would have been
able to apply a 2b instances ISD-DOOM for on each hash value, gaining a factor√

2b to the attack.

5.5 Signature Size, Verification and Key Generation

Various interesting tradeoffs are possible between signature size and verification
time. They are described already in [1] and we propose no novelty here. For
(m, t, w, λ) = (20, 8, 10, 3) the signature size ranges from 292 to 535 bits and for
(m, t, w, λ) = (18, 9, 11, 3) it ranges from 286 to 519 bits. This part of the scheme
(as well as the key generation procedure) is out of the scope of this work and is
not detailed further.



6 Timings

6.1 Computation time

We measured with two decoders and the various sets of parameters the average
number of algebraic decoding and the running time for producing one signature
running on our target platform (a single core of an Intel Xeon W3670 at 3.20
GHz, about 400 000 signatures per parameter set were computed). The finite

(m, t, w, λ)
(18,9,11,3) (18,9,11,4) (20,8,10,3) (20,8,9,5)

number of decoding 1 117 008 1 489 344 121 262 360 216

running time (BM) 14.70 s 19.61 s 1.32 s 3.75 s

running time (Pat.) 15.26 s 20.34 s 1.55 s 4.26 s
Table 3. Average number of algebraic decoding and running time per signature

Fig. 1. Distribution of the number of decoding per signature (m, t, w, λ) = (20, 8, 10, 3)

0 100000 200000 300000 400000

field arithmetic primitives use 75% of the total amount of CPU time, most of
that (66%) for the sole multiplication. We observe in Table 3 that the number
of decoding is very close (but slightly above) the expected value of λt!. The only
exception is for (m, t, w, λ) = (20, 8, 9, 5). In that case each complete decoding
has a probability of 5.5% of failure, but when it fails, the number of decoding
attempts is equal to the maximum allowed. Experimentally the best tradeoff
when λ = 5 is to allow only 200 000 decoding per binary syndrome (instead of
220), this raises the probability of failure to 8.4% and with a counter of 6 bits
(see §5.4) we fail to sign with probability 2−95. In practice we observe that the
signing cost almost doubles.

6.2 Comparing Decoders

We provide here the number of elementary field operations needed for one alge-
braic decoding attempt. Those numbers were obtained by running the software.



Statistics are summarized in Table 4. The “critical” steps are those called inside
the loop of Algorithm 3. The “non critical” ones are outside the loop and thus
are called only once per complete decoding, that is λ = 3 times per signature. A
field operation is a multiplication, a squaring, a division, an inversion, or a square
root. We do not count additions which are implemented with a xor. In practice,
this gives an accurate measure of the complexity and allows and easy comparison
of the decoders and an indication about the relative costs of the various steps. All
numbers are constant for all steps except the root finding algorithm (Berlekamp
trace algorithm). If we consider the non critical parts, it appears that the syn-

critical non critical

(m, t) type (1) (2) (3) (1)+(2)+(3) (4) (5)

(18,9) BM 58 180 840 1078 2184 3079.1
(18,9) Pat. 38 329 840 1207 1482 3079.1

(20,8) BM 52 144 747 943 1950 3024.6
(20,8) Pat. 34 258 747 1039 1326 3024.6

(1) syndrome adjustment (4) initial syndrome
(2) key equation solving (5) root finding
(3) split checking

Table 4. Number of field operations (excluding additions) per decoding

drome computation and the root finding algorithms are the dominant cost and
thus the Patterson algorithm is more efficient than the Berlekamp-Massey algo-
rithm which requires a double sized syndrome. The situation is reversed when
we consider only the critical parts because the Berlekamp-Massey key equation
solving is more efficient.

7 Conclusion

For a proper choice of parameters we have shown that CFS, in fact Parallel-CFS,
is practical, though cumbersome to achieve a reasonable security. The fastest of
our instances needs a bit more than one second of CPU time to produce a
signature, which is slow but acceptable. The corresponding public key has a size
of 20 megabytes, which may disqualify the scheme for some applications. Note
that the public key is not needed for signing but only the secret key which consists
of a pair (L, g). The generator g has a size of mt bits (160 or 162 bits here) and
the support is a permutation of 2m elements which can be generated on the fly
from a seed. The implementation of the signing primitive we describe requires
only a relatively small amount of storage3 and memory, making it suitable for
massively parallel architecture (like GPUs) or “hardware-oriented” devices (like
FPGAs or even smart cards).

3 mostly for the finite field for which there are other options
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A A Non Asymptotic Analysis of ISD-MMT

We refer to the algorithm described in [10] to solve CSD(H, s, w) with H ∈
{0, 1}r×n and s ∈ {0, 1}r (we denote k = n − r the dimension), it uses as
parameters three integers p, `2, and `. First, a Gaussian elimination on H is
performed and then three levels of lists are built and successively merged. With
a certain probability P(p, `, `2) a solution to CSD(H, s, w) lies in the last of those
lists. The whole process has to be repeated 1/P(p, `, `2) times on average to find
a solution.

– There are 4 lists at the first level, each of size L0 =
(
(k+`)/2
p/4

)
.

– There are 2 lists at the second level, obtained by merging the first level lists
pairwise, both have size L1 = L2

02−`2 on average.

– The final list at third level is obtained by merging the two second level lists
and has size L2 = L2

12−`+`2 = L4
02−`−`2 on average.

To give an expression of the success probability, we cannot use [10] which assumes
a unique solution while for signature parameters we may have several4. Instead
we claim (following the analysis of [18, 16]) that any particular element of the
final list will provide a solution with probability ≈ 2`ε(p, `) where

ε(p, `) =

(
r−`
w−p

)
min

(
2r,
(
n
w

)) .
The min in the above expression takes into account the possibility of several
solutions. In practice for the signature 2r will be smaller than

(
n
w

)
. We claim

that, for practical code parameters and when p and ` are near their optimal
values

1. if `2 is not too small the proportion of duplicates in the final list is negligible,

2. if `2 is not too large the costs for building the first level lists and for the
Gaussian eliminations are negligible.

4 If the weight w is not above the Gilbert-Varshamov radius by more than a constant,
the expected number of solution is polynomial and do not affect the asymptotic
analysis, for a non-asymptotic analysis the difference is significant



Assuming the first claim is true, the probability of success is

P(p, `, `2) = 1−
(
1− 2`ε(p, `)

)L2 ≈ L22`ε(p, `) = L4
02−`2ε(p, `).

Assuming the second claim is true, the cost for building the final list and checking
whether it contains a solution is (crudely) lower bounded by 2L1+2L2 elementary
operations5. The factor 2 in front of L1 is because there are two lists at the
second level and the factor 2 in front of L2 is because each element of the final
list has to be constructed (an addition at least) then checked (a Hamming weight
computation). Finally assuming each elementary operation costs at least ` binary
operations the cost of ISD-MMT is lower bounded by

WFMMT = min
p,`

2`

ε(p, `)

(
1

2`
+

1

L2
0

)
. (6)

Note that, interestingly, `2 do not appear in the above expression. It means
that, as long as it is neither too small or too large, the choice of `2 has no
impact on the complexity of ISD-MMT. In practice the proper ranges is (roughly)
p/2 ≤ `2 ≤ log2 L0. It is best to avoid the extreme values in that range and large
values are better because they reduce memory requirements. Finally note that
in [10] it is suggested that `2 ≤ p − 2. This is marginally inside the acceptable
range but this has no consequence on the asymptotic exponent analysis.

5 here an elementary operation is an operation on a column of H, either addition or
Hamming weight, possibly with a memory store or read


