
New Algorithms for Generating Conway Polynomials overFinite FieldsLenwood S. Heath� Nicholas A. LoehryJuly 7, 1998AbstractArithmetic in a �nite �eld of prime characteristic p normally employs an irreduciblepolynomial in Zp[X]. A particular class of irreducible polynomials, generally knownas Conway polynomials, provides a means for representing several �nite �elds of char-acteristic p in a compatible manner. Conway polynomials are used in computationalalgebra systems such as GAP and Magma to represent �nite �elds. The generation ofthe Conway polynomial for a particular �nite �eld has previously been done by an oftenexpensive brute force search. As a consequence, only a few Conway polynomials havebeen generated. We present two new algorithms for generating Conway polynomialsthat avoid the brute force search. We have implemented one of these algorithms inMagma and present numerous new Conway polynomials that implementation gener-ated.1 IntroductionEvery �nite �eld F is characterized by two parameters | its prime characteristic p and itsdimension n over Zp, the integers modulo p. The �eld F has pn elements and is isomorphicto any other �eld having pn elements. The �eld F is often denoted GF(p; n) or just GF(pn),�Department of Computer Science, Virginia Tech, Blacksburg, VA 24061-0106, heath@cs.vt.edu.yDepartment of Computer Science, Virginia Tech, Blacksburg, VA 24061-0106, nloehr@vt.edu.1

2where GF is for Galois �eld. The multiplicative group of F is denoted F� and is alwayscyclic. A primitive element of F� is any element that generates the multiplicative group.In particular, if � 2 F� is a primitive element, then1 = �0; �; �2; : : : ; �pn�2are the elements of F�. As we will frequently need the cardinality pn�1 of the multiplicativegroup, let Mp;n denote pn � 1.Let Zp[x] be the polynomial ring in one unknown over Zp. A polynomial f 2 Zp[x] isirreducible if f = gh implies that either g or h is a constant. An irreducible polynomial fof degree n is primitive if some root (and hence every root) of f is a primitive element ofGF(pn)�. Typically, the �nite �eld GF(pn) is represented as the quotient ring Zp[x]=(f),where f is an irreducible polynomial of degree n. Moreover, if f is primitive, then arepresentation of the elements of GF(pn)� can be based on a root � of f . For an element 2 GF(pn)�, de�ne the index of to be the smallest integer i � 0 such that �i = .Alternatively, we can uniquely represent each element � 2 GF(pn) as a polynomial in � ofdegree at most n� 1: � = n�1Xi=0 bi�i:The index representation turns multiplication in GF(pn)� into addition modulo Mp;n, whilethe polynomial representation makes for straightforward addition in GF(pn). As describedin Example 2.52 of Lidl and Niederreiter [5], an index table that provides the mapping fromthe index representation to the polynomial representation is the key data structure thatcompletes the support for general arithmetic in GF(pn).Challenges arise when representing more than just the two �elds Zp and GF(pn). Con-sider the case of a chain of �elds Zp � GF(pn1) � GF(pn2), where 1 < n1 < n2. In this case,n1 divides n2. Suppose that �1 and �2 are primitive elements of GF(pn1) and GF(pn2),respectively. The cyclic group GF(pn1)� is a subgroup of the cyclic group GF(pn2)�, and

3the smallest power of �2 that gives a generator of GF(pn1) is = �Mp;n2 =Mp;n12 :Arithmetic in this chain of �elds, especially multiplication, will be most convenient if = �1.If f1 and f2 are the minimal polynomials of �1 and �2, respectively, then it is easy to seethat �1 = �Mp;n2 =Mp;n12 implies f1(x) j f2 �xMp;n2 =Mp;n1� :We generalize these observations as follows. Suppose that for each of the sub�eldsGF(pn0) of a �nite �eld GF(pn) we have chosen a primitive, irreducible polynomial fp;n0 2Zp[x] of degree n0. If whenever n1 j n2 and n2 j n, we havefp;n1(x) j fp;n2 �xMp;n2=Mp;n1� ;then we say that the polynomials chosen are compatible. Parker [7] inductively de�nes theConway polynomial Cp;n for each �nite �eld GF(pn), giving a particular set of compatiblepolynomials.1 First de�ne a lexicographic order <lex on polynomials of degree d in Zp[x]:adxd + ad�1xd�1 + � � �+ a1x+ a0 <lex bdxd + bd�1xd�1 + � � �+ b1x+ b0if, for some i with d � i > 0, we havead = bd; ad�1 = bd�1; : : : ; ai = biand (�1)d�iai < (�1)d�ibi;where the element order < in Zp is given by0 < 1 < � � � < p� 1:1These Conway polynomials for �nite �elds are quite di�erent from the Conway polynomials studied bytopologists in knot theory. The only similarity between these two families of polynomials is that both werenamed in honor of the mathematician John H. Conway.

4C3;1 x� 2C3;2 x2 � x+ 2C3;3 x3 + 2x� 1C3;4 x4 � x3 + 2C3;5 x5 + 2x� 2C3;6 x6 + 2x4 + x2 � x+ 2Table 1: An illustration of the de�nition of Conway polynomial.The base case of the de�nition of Conway polynomials is Cp;1(x) = x � , where is thesmallest primitive element of Zp with respect to the element order. For the general case,choose Cp;n to be the lexicographically smallest monic, irreducible, primitive polynomial ofdegree n such that, for every n0 < n satisfying n0 j n, we haveCp;n(x) j Cp;n0 �xMp;n=Mp;n0� :This de�nition yields the Conway polynomials in Table 1 for p = 3.It is quite natural to require that the Conway polynomial Cp;n be primitive and compati-ble with the Conway polynomials Cp;d for the proper divisors d of n, since this compatibilityallows easy conversions between the representations of elements in GF(pd) and the repre-sentations of those elements in GF(pn). However, there is no compelling algebraic reason forthe requirement that the Conway polynomial be minimal with respect to the <lex ordering.This requirement only serves to make the Conway polynomial unique for each p and n andto simplify the existing brute force algorithms used to generate the Conway polynomials.These algorithms rely on an exhaustive search through the set of monic polynomials inZp[x] of degree n considered in lexicographic order. For each such polynomial, it must bechecked whether it is irreducible, primitive, and compatible with \smaller" Conway poly-nomials. The �rst polynomial found to pass these checks is Cp;n. Clearly, the brute forcesearch is an ine�cient algorithm, and, as a consequence, very few Conway polynomials are

5actually known. Conway polynomials are used in the GAP [2] and Magma [4] computa-tional algebra systems to represent �nite �elds, and tables of known Conway polynomialscan be constructed from their built-in functions for Conway polynomials. Scheerhorn [8]also discusses compatible polynomials (which he calls norm-compatible polynomials) andhas implemented some algorithms in the AXIOM computational algebra system [3].In this paper, we demonstrate that Conway polynomials for larger �nite �elds can oftenbe found much more e�ciently than by the brute force search. We �rst develop somefundamental results about compatible elements in a group in Section 2. Based on thoseresults, in Section 3, we propose two new algorithms for generating Conway polynomialsor, more generally, compatible sets of polynomials. One algorithm is based on computingwith elements of GF(pn), while the second algorithm is based on computing more directlywith the de�nition of compatible polynomials. After implementing the second of thesealgorithms in Magma, we are able to generate a number of new Conway polynomials; theseare presented in Section 4. Finally, we suggest some additional directions for research inSection 5.2 Fundamental ResultsFrom the de�nition of Conway polynomials, it is not even clear that Cp;n always exists.Nickel [6] provides a proof of existence, and Scheerhorn [8] also proves the existence of aparallel class of polynomials that he calls trace-compatible polynomials. In this section,we develop some fundamental results that allow us to prove the existence of Conway poly-nomials and of compatible polynomials, in general. More importantly, these results formthe basis and give the insights for the new algorithms we present in the next section. Itturns out that the existence of compatible polynomials only depends on the fact that themultiplicative group of a �nite �eld is cyclic. Consequently, we are able to develop resultsin this section in the context of cyclic groups and their subgroups.Fix a positive integer k. Let Ck be the cyclic group of order k, written multiplicatively.

6For any element � 2 Ck, denote the order of � by o(�).A proof of the following lemma can be found, for example, in Lidl and Niederreiter [5],Theorem 1.15.Lemma 1. For � 2 Ck and i an integer, the order of �i iso(�)gcd (i; o(�)):The following lemma is easy to prove using group theoretic techniques.Lemma 2. Let j and k be integers satisfying j j k. Let the function f : Ck ! Ck=j be givenby f(x) = xj . Then f is a surjective group homomorphism. Moreover, for every y 2 Ck=j,there are precisely j elements x 2 Ck satisfying f(x) = xj = y.We now precisely develop the notion of compatible elements within a cyclic group. Letdiv (k) be the set of divisors of k. A system of compatible generators for Ck is a partialfunction � : div (k)! Ck;de�ned on def (�) � div (k), satisfying these properties:1. The function is de�ned on 1, that is, 1 2 def (�);2. If i 2 def (�), then o(�(i)) = i; and3. If i 2 def (�) and j j i, then j 2 def (�) and �(i)i=j = �(j).A system of compatible generators �0 is an extension of � if def (�) � def (�0) and if�0(i) = �(i) whenever i 2 def (�). If div (k) = def (�) then � is a complete system ofcompatible generators.The key result on systems of compatible generators asserts that a partial system canalways be extended to a complete one.Theorem 3. Assume that � is a system of compatible generators for Ck. Then there existsa complete system �0 of compatible generators for Ck that extends �.

7Proof: If k 2 def (�), then the theorem immediately follows. Hence, we may assume thatk 62 def (�). We �rst show how to extend def (�) by one element. That is, we show thatthere exists a system of compatible generators �0 satisfying �0(i) = �(i) whenever i 2 def (�)and jdef (�0) � def (�) j = 1. Let s = minT be the smallest integer in div (k) � def (�).Observe that every proper divisor of s is in def (�), for otherwise there would be a smallerinteger in div (k)� def (�).Let s = pe11 pe22 � � �pemm be the unique prime factorization of s. For 1 � i � m, de�neqi = s=pi. By the observation above, each qi 2 def (�). Also, each of the �(qi) is in Cs, theunique cyclic subgroup of Ck of order s.First suppose thatm = 1 and e1 = 1. De�ne �0 to be a system of compatible generatorsthat extends � by the one element s, where �0(s) is chosen to be any one of the s � 1generators of Cs.Now suppose thatm = 1 and e1 > 1. Then �(pe1�11) has p1 distinct p1th roots in Cs; byLemma 1, each of these roots has order s and thus generates Cs. De�ne �0 to be a systemof compatible generators that extends � by the one element s, where �0(s) is chosen to beany p1th root of �(pe1�11).Finally suppose that m > 1. Let 2 Ck be an element of order s, that is, a generatorof Cs. There exists ri satisfying ri = �(qi);for all i with 1 � i � m. Since o() = s and o(�(qi)) = qi, we know by Lemma 1 thatqi = sgcd (ri; s)and hence that pi = gcd (ri; s) :Applying the generalized Chinese remainder theorem (see Bach and Shallit [1], Section 5.5),we obtain an integer x satisfying the system of congruencesx � ripi (mod qi); (1)

8provided that ripi � rjpj (mod gcd (qi; qj)); (2)for every pair i; j, where 1 � i < j � m. Furthermore, if x exists, it is unique modulolcm (q1; q2; : : : ; qm) = s;since m > 1.To establish the congruences (2), �x i and j satisfying 1 � i < j � m. Eliminating qiand qj from the congruences (2), we obtainripi � rjpj (mod s=(pipj)):Now the element s=(pipj) 2 def (�), by the de�nition of s. Furthermore,�(s=(pipj)) = ripj = rjpi :It follows that ripj � rjpi (mod s)and that ripi � rjpj (mod s=(pipj));as required. We obtain x satisfying the system of congruences (1). Equivalently, x satis�esthis system of congruences: xpi � ri (mod s): (3)We now de�ne �0 to be a system of compatible generators that extends � by the oneelement s, where �0(n) = x. Since x is unique modulo s, x is uniquely de�ned. We mustverify that �0 is also a system of compatible generators.

9First note that (�0(s))s=qi = (x)pi= xpi= ri= �(qi);by the system of congruences (3) and the fact that o() = s.Second we must show that o(�0(s)) = s. Observe that, for each i, �0(s)pi generates thecyclic group of order qi. Since m > 1, the only subgroup of Cs that contains all those cyclicgroups is Cs itself. Thus, �0(s) must generate Cs. We conclude that o(�0(s)) = s.By iteratively extending � for jdiv (k)� def (�) j steps, we reach an extension �0 that isa complete system of compatible generators. The theorem follows.We also wish to count the number of extensions of � to a complete system of compatiblegenerators. For a prime p and an integer n, de�ne �p(n) to be the highest power of p thatdivides n; that is, �p(n) = pe, where pe j n and pe+1 j/n. For a prime p and a pair of integersm and n such that m j n, de�ne the p-contribution of m to n to be�p(m;n) = 8><>: �(�p(n)) if p j/m;�p(n)=�p(m) if p jm:If M is a set of divisors of n, de�ne the p-contribution of M to n to be�p(M;n) = minm2M �p(m;n);and de�ne the contribution of M to n to be�(M;n) = Ypjn �p(M;n);where p ranges over the prime divisors of n.Theorem 4. If � is a system of compatible generators for Ck, then the number of exten-sions of � to a complete system of compatible generators is �(def (�) ; k).

10Proof: Considering again the proof of Theorem 3, we see that there are three cases toconsider in extending � to a complete system of compatible generators, corresponding tothe three cases for de�ning �0 for elements of div (k)� def (�).1. The �rst case is p 2 div (k) � def (�) for some prime p. Then in the extension stepthat de�nes a value for �0(p), there are p� 1 possible values from which to choose.2. The second case is pe 2 div (k) � def (�) for some prime p and some e � 2. Thenin the extension step that de�nes a value for �0(pe), there are p possible values fromwhich to choose.3. The third case is s 2 div (k)�def (�) where s has two or more distinct prime factors.In this extension step there is a unique choice for �0(s).The total number of extensions of � to a complete system of compatible generators is theproduct of the number of choices at each step. By examining the cases above, we see thatthere is more than one choice only when de�ning the extension on a prime power. Hence,to count the number of extensions, we may take the product of the contributions of theprime factors of k. It is clear that each prime p contributes �p(def (�) ; k). Therefore, thetotal number of extensions is �(def (�) ; k), as claimed.We can now apply this result to �nite �elds. Fix a prime p and a positive integer n. Asystem of (primitive) roots for GF(pn) is a partial function� : div (n)! GF(pn);de�ned on def (�) � div (n), satisfying this property: If i 2 def (�), then o(�(i)) = Mp;i,that is, �(i) is a primitive element of GF(pi). A system of roots �0 is an extension of � ifdef (�) � def (�0) and if �0(i) = �(i) whenever i 2 def (�).If � is a system of roots, then two roots �(i) and �(j) are compatible if one of theseholds:

111. Neither of i and j divides the other;2. If i divides j, then �(j)Mp;j=Mp;i = �(i); or3. If j divides i, then �(i)Mp;i=Mp;j = �(j).If �(i) and �(j) are compatible for every pair i and j, then � is a compatible system ofroots. If div (n) = def (�) then � is a complete system of compatible roots.Theorem 5. Let p be a prime and let n be a positive integer. Then there exists a completesystem of compatible roots � for GF(pn).Proof: We show how to de�ne each �(i) by induction on i. De�ne �(1) to be any one ofthe �(p� 1) primitive elements of the multiplicative group GF(p)�.Now assume that i > 1 and that �(j) is de�ned for all j 2 div (n) with j < i. We needto de�ne �(i) in G = GF(pi)�. Now G is a cyclic group of order k = Mp;i. We can de�nea system of compatible generators � for G as follows. For any t that divides k, choosethe smallest j < i such that j j i and t j Mp;j . If such a j exists, then by the inductivehypothesis we know that �(j) is de�ned. De�ne�(t) = �(j)Mp;j=t:To show that � is a system of compatible generators, we need to show that if t1; t2 2def (�) and t1 j t2, then �(t2)t2=t1 = �(t1). Let j1 and j2 be such that �(t1) is de�nedto be �(j1)Mp;j1=t1 and �(t2) is de�ned to be �(j2)Mp;j2=t2 . Then the smallest sub�eldof GF(pi) containing �(t1) is GF(pj1), while the smallest sub�eld of GF(pi) containing�(t2) is GF(pj2). Since t1 j t2, we have that �(t1) is also in GF(pj2). This implies that

12GF(pj1) � GF(pj2) and j1 j j2. Hence�(t2)t2=t1 = ��(j2)Mp;j2=t2�t2=t1= �(j2)Mp;j2=t1= ��(j2)Mp;j2=Mp;j1�Mp;j1=t1= �(j1)Mp;j1=t1= �(t1);as required.Hence � is a system of compatible generators. By Theorem 3, � can be extended to acomplete system of compatible generators �0 for G. De�ne �(i) = �0(k). It is easily seenthat �(i) is compatible with all �(j) with j < i.The existence of � now follows by induction.Theorem 6. Let p be a prime, and let n be at least 2. Suppose � is a system of compatibleroots for all the sub�elds of GF(pn). Let M = fMp;n : 1 � i < n and i j ng. Then thenumber of choices for a primitive element of GF(pn) that is compatible with � is �(M;Mp;n).Proof: As in Theorem 5, we construct a system of compatible generators � for � andextend it to a complete system of compatible generators for GF(pn)�. Theorem 4 tells usthat the number of such complete systems of compatible generators is �(M;Mp;n). Eachsuch system corresponds to a primitive element of GF(pn) that is compatible with �. Thetheorem follows.Theorem 7. The Conway polynomial Cp;n exists for all primes p and all positive integersn.Proof: We �x a prime p and show that Cp;n exists by induction on n. For n = 1, letCp;1(x) = x � , where is the smallest primitive element in GF(p). Note that exists,

13since GF(p)� is cyclic. Clearly Cp;1 is the lexicographically smallest, monic, irreducible,primitive polynomial of degree 1.Now suppose that n > 1 and that Cp;i is de�ned for all i < n. By induction on properdivisors of n in increasing order, we may de�ne a system of compatible roots � in GF(pn)such that1. For each i < n dividing n, we have �(i) is a root of Cp;i;2. Whenever i j j, j j n, and j < n, we have that �(i) = �(j)Mp;j=Mp;i .By Theorems 5 and 6, we can extend � to a complete system of compatible roots by de�ning�(n) to be any of a number of primitive elements of GF(pn). Of those values, we can choosea primitive element with the lexicographically smallest monic minimal polynomial. (Thenumber of such primitive elements is �(M;Mp;n) > 0, where M is as de�ned in Theorem 6.)De�ne Cp;n to be that polynomial.The theorem follows by induction.3 New AlgorithmsBuilding on the ideas in Section 2, we present two new algorithms for generating Conwaypolynomials. To provide a point of comparison, we �rst review the brute force algorithm.The following notation will be used throughout this section. Fix a prime p, and supposen is a positive integer. Let n have prime factorization n = qe11 � � � qess . For 1 � i � s, setdi = n=qi and mi = Mp;n=Mp;di. Finally, set g = gcd1�i�sfmig and ni = mi=g.3.1 An Algorithm Based on Exhaustive SearchWe �rst describe the brute force algorithm currently used by GAP and Magma to computeConway polynomials. We present this algorithm here to contrast its performance with ourtwo new algorithms given later.

14The simplest version of the brute force algorithm to compute Cp;n starts by looking upor calculating Cp;d for all proper divisors d of n. Next, the algorithm enumerates the monicpolynomials of degree n over Zp in lexicographic order. Each polynomial is checked forprimitivity and for compatibility with the polynomials Cp;d. The �rst polynomial passingboth checks is Cp;n.Note that the search space for this algorithm has size pn, since there are p possible coef-�cients for each power of x from 0 to n�1 inclusive. It will be shown in Theorem 9 that thenumber of monic polynomials of degree n that are compatible with the lower order Conwaypolynomials is g; moreover, by Theorem 6, the number of primitive candidates among theg compatible candidates is �(M;Mp;n). In any case, there are no more than g primitive,compatible polynomials in the search space. Hence, assuming that these polynomials aredistributed randomly (uniformly) in the lexicographic listing of all degree n polynomials,we expect the brute force algorithm to test roughly pn=g polynomials before �nding the �rstacceptable one. If n is composite and even moderately large (say, n � 40), then g << pnin general, and the brute force algorithm is impractical.One improvement to the naive algorithm is obtained by noting that the constant termof Cp;n must be (�1)n, where is the smallest primitive element of GF(p). This observa-tion easily follows from the requirement that Cp;n be compatible with Cp;1. Knowing theconstant term reduces the size of the search space by a factor of p. Unfortunately, there isno analogous quick method for obtaining the higher order coe�cients of Cp;n.Another improvement to the algorithm involves the compatibility checks with lower or-der polynomials. Recall that d1; : : : ; ds are the maximal proper divisors of n. Suppose r(x)is a particular candidate polynomial that is compatible with all the polynomials Cp;di(x)in the sense that r(x) j Cp;di �xMp;n=Mp;di� : (4)Let d be any proper divisor of n. Then d divides some di. By de�nition,Cp;di(x) j Cp;d �xMp;di=Mp;d�

15so that Cp;di �xMp;n=Mp;di� j Cp;d hxMp;n=Mp;di iMp;diMp;d ! = Cp;d �xMp;n=Mp;d� :Thus, if (4) holds for all maximal proper divisors di of n, it follows thatr(x) j Cp;d �xMp;n=Mp;d� (5)for all proper divisors d of n. Of course, this observation reduces the number of compatibilityconditions to check per candidate polynomial.3.2 An Algorithm Based on ElementsWe present our �rst new algorithm for generating Conway polynomials. It is inspired bythe proofs of the results in Section 2. To �nd the Conway polynomial Cp;n, we must knowinductively the Conway polynomials Cp;di, for 1 � i � s. First note that the cardinalities ofthe multiplicative groups of the maximal sub�elds of GF(pn) are fi = Mp;di . We choose aroot xi for each Cp;di. We know that o(xi) = fi. In the multiplicative group G = GF(pn)�,we can �nd an element x1;2 of order lcmff1; f2g that is compatible with x1 and x2. Inanother step, we can �nd an element x1;2;3 of order lcmff1; f2; f3g that is compatible withx1, x2, and x3. Iterating, we can �nd an element x1;2;::: ;s of orderf = lcmff1; f2; : : : ; fsgthat is compatible with x1; x2; : : : ; xs. Note that g = Mp;n=f . Finally, all gth roots ofx1;2;::: ;s that are primitive elements of GF(pn) are candidates for being the roots of theConway polynomial Cp;n.The algorithm appears in Figure 1. The time complexity of the algorithm is dominatedby the loop in steps 16-19 that searches through g values in GF(pn). Hence the algorithmis almost linear as a function of g.

16GenerateConway(p; n)1 let n = qe11 � � �qess be the prime factorization of n2 r Mp;n3 for i 1 to s4 do di n=qi5 fi Mp;di6 mi r=fi7 xi a root of Cp;di8 x x19 v f110 for i 2 to s11 do �nd �; � such that � v + �fi = gcdfv; fig12 x x�x�i13 v lcmfv; fig14 g r=v15 min poly 116 for z a gth root of x in GF(pn)17 do poly minimum polynomial of z18 if poly is primitive and poly < min poly19 then min poly poly20 return min polyFigure 1: First algorithm for generating Conway polynomials.

173.3 An Algorithm Based on PolynomialsRecall that, by de�nition, the Conway polynomials must satisfy the compatibility conditionsCp;n(x) j Cp;d �xMp;n=Mp;d� (6)for all proper divisors d of n. By the transitivity relation (5), it su�ces to check the condition(6) for the maximal proper divisors of n, namely d1; : : : ; ds. Clearly, the compatibilitycondition holds for all these divisors if and only ifCp;n(x) j gcd1�i�sfCp;di(xmi)g: (7)Thus, if we know Cp;di(x) for each i, we can �nd Cp;n(x) in principle by simply computingthe GCD of the polynomials Cp;di(xmi), factoring the resulting polynomial, and pickingthe lexicographically smallest primitive, irreducible factor of degree n. Unfortunately, thedegree of the polynomial f(x) = gcd1�i�sfCp;di(xmi)gis typically very large compared to n, making it di�cult to factor f .To obtain a viable algorithm, we introduce a new unknown z = xg, where g =gcd1�i�sfmig, as before. Note that each polynomial Cp;di(xmi) in x can be written asa polynomial Cp;di(zmi=g) in z. Hence, f(x) = gcd1�i�sfCp;di(xmi)g can also be writtenas a polynomial r(z) in the unknown z. The polynomial r(z) has some useful properties,given by the following theorem.In proving this theorem, we need the following result from �nite �eld theory (pages49{50 of Lidl and Niederreiter [5]).Lemma 8. If f is an irreducible polynomial of degree d over GF(p), then all the roots of fare in GF(pd). If � is one root of GF(pd), then all the roots of f are �; �p; �p2 ; : : : ; �pd�1and these are all distinct.In general, if � 2 GF(pd) but not necessarily primitive, then the elements �pi�1, where0 � i � d� 1, are called the conjugates of � in GF(pd).

18Theorem 9. Let n > 1. Using the notation above, the polynomialr(z) = gcd1�i�sfCp;di(zmi=g)gis a monic irreducible polynomial of degree n, provided that s, the number of distinct primesdividing n, is at least 2. If s = 1, then we have r(z) = Cp;n=q1(z).Moreover, if z0 2 GF(pn) is any root of r(z), then z0 has exactly g distinct gth rootsx1; : : : ; xg 2 GF(pn), and these roots satisfy the compatibility propertyCp;di(xmij) = 0 for 1 � i � s and 1 � j � g.Among these roots, one that is primitive and whose minimal polynomial is lexicographicallysmallest has the Conway polynomial Cp;n as its minimal polynomial.Proof: If s = 1, it is obvious that r(z) = Cp;n=q1(z). So assume s > 1. Clearly, r(z) ismonic. Write r(z) as the product of t monic, non-constant, irreducible polynomials overZp, say r(z) = f1(z) � � �ft(z):By the remarks preceding the theorem, we know that the Conway polynomial Cp;n(x) mustdivide r(z) = r(xg). Thus, r(z) is non-constant, and t > 0:Next, since each polynomial Cp;di(x) is irreducible, we have gcd(Cp;di(x); ddxCp;di(x)) = 1for all i. Setting u = zmi=g = zni , we see thatgcd�Cp;di(zni); ddzCp;di(zni)� = gcd�Cp;di(u); nizni�1 dduCp;di(u)�= 1:Thus, Cp;di(zni) has no repeated factors, for each i, implying that r(z) cannot have anyrepeated factors either. Thus, the factors fi(z) of r(z) are all distinct.Fix j with 1 � j � t, and let d be the degree of fj(z). Let zj be a root of pj(z) in theextension �eld GF(pd) of Zp. Since r(zj) = 0, we have Cp;di(znij) = 0. Thus, some power of

19zj , namely znij , lies in the �eld GF(pdi), so that GF(pdi) � GF(pd) and hence di j d. Sinces � 2, we have n = lcm(di) j d. Moreover, sincezMp;nj = �zmi=gj �gMp;di = 1g = 1;zj 2 GF(pn) and so d j n. Hence, d = n, and all irreducible factors of r(z) must have degreen. Finally, we claim that r(z) has only one such factor, i.e., that t = 1. To prove this claim,by Lemma 8 it su�ces to show that any two roots of r(z) are conjugates in GF(pn). So letz0 and z1 be arbitrary roots of r(z). Note that both the elements zni0 and zni1 have Cp;dias their minimal polynomial; it follows that zni1 must be a conjugate of zni0 in GF(pdi), sayzni1 = (zni0)pci for some ci with 0 � ci < di. We claim that there exists an integer c such thatc � ci (mod di) for all i. This follows from the Extended Chinese Remainder Theorem,provided that ci � cj (mod n=(qiqj)) for 1 � i < j � s. To verify these congruences, �x iand j satisfying 1 � i < j � s, and de�ne e = n=(qiqj). Further de�ne bi = Mp;di=Mp;e andbj = Mp;dj=Mp;e. After computingnibi = Mp;ngMp;di Mp;diMp;e= Mp;ngMp;dj Mp;djMp;e= njbj ;we have that znibi0 = znjbj0is a primitive element of GF(pe) (because it is a root of Cp;e), as isznibi1 = znjbj1 :

20We can now compute �znibi0 �pci = �znipci0 �bi= znibi1= znjbj1= �znjpcj0 �bj= �znjbj0 �pcj= �znibi0 �pcj :Hence ci � cj (mod e), as desired.We now have an integer c such that zni1 = (zni0)pc for all i. Since gcdfn1; : : : ; nsg = 1,there exist integers ai such that Psi=1 aini = 1. Therefore, we obtainsYi=1 (zni1)ai = sYi=1�znipc0 �aizPsi=1 aini1 = zpcPsi=1 aini0 ;implying that z1 = zpc0 :Hence, z0 and z1 are conjugates in GF(pn), forcing t = 1. This completes the proof of the�rst part of the theorem.For the rest of the proof, we assume that s � 1. Let z0 denote any �xed root of r(z) inGF(pn). Since zMp;n=g0 = (zm1=g0)Mp;d1 = 1;the order of z0 must divide Mp;n=g. By Lemma 2, z0 has g distinct gth roots in GF(pn). Ifxj is such a root, then for every iCp;di(xmij) = Cp;di(zmi=g0) = 0;

21so that the roots are compatible with previously chosen Conway polynomials. Conversely,by the de�nition of r(z), any compatible �eld element x0 must have a minimal polynomialm(x) that divides r(z) = r(xg); hence, x0 appears among the gth roots of z0. It followsimmediately that one of the roots xj has Cp;n(x) as its minimal polynomial. The correct rootmust clearly be the primitive root whose minimal polynomial is lexicographically smallest;the existence of a primitive root is guaranteed by Theorem 7.This theorem immediately leads to the following algorithm for �nding the Conwaypolynomial Cp;n. We begin by �nding the prime factorization qe11 � � �qess of n. The algorithmsplits into three cases, depending on the number of distinct primes s in the factorization ofn. � Case I: s � 2.1. Look up (or recursively calculate) the Conway polynomials Cp;di(x) for eachmaximal proper divisor di = n=qi.2. Find g = gcd1�i�sfMp;n=Mp;dig. Setting z = xg, computer(z) = gcd1�i�sfCp;di(zmi=g)gusing any standard algorithm for �nding polynomial greatest common divisors.3. Let z0 denote a root of r(z) in GF(pn). Find any gth root � of z0 in GF(pn), andlet � be a primitive gth root of unity in GF(pn). Many well-known algorithmsexist to compute the �eld elements � and �; see, for example, Tonelli's algorithmin Section 7.3 of Bach and Shallit [1]. Since r(z) is an irreducible polynomialof degree n over Zp[z] (by Theorem 9), it is convenient to perform the rootextraction algorithm using the �eld representationGF(pn) =Zp[z]=(r(z)):It is easy to de�ne GF(pn) in this way using Magma.

224. Observe that all the gth roots of z0 in GF(pn) are of the form ��k , for 0 �k < g: Consider each of these roots in turn. Compute the minimal polynomialscorresponding to each primitive root, and return the lexicographically smallestpolynomial so computed. By Theorem 6, there are exactly �(M;Mp;n) primitiveroots among the gth roots of z0; note that �(M;Mp;n) > 0.More generally, we can obtain a compatible system of polynomials for any givenp by stopping the search through the gth roots of z0 as soon as we �nd the�rst primitive element that is compatible with the previously chosen primitiveelements (or polynomials). This possibility is discussed in more detail later.� Case II: s = 1. This case is really a degenerate form of the previous one. Notethat n = qe11 , g = Mp;n=Mp;n=q1, and r(z) = Cp;n=q1(z). As before, let z0 denote anyroot of q, considered as an element of GF(pn) � GF(pn=q1). Hence, as above, wecycle through all g of these roots, and return the lexicographically smallest minimalpolynomial of degree n that corresponds to a primitive root.� Case III: s = 0, i.e., n = 1. In this case, we are simply looking for Cp;1(x), theConway polynomial for the prime �eld Zp. We simply test each element 1; 2; : : : ofZp for primitivity until we �nd the �rst primitive element . (Testing an element forprimitivity can be done in polynomial time. See Bach and Shallit [1], Exercise 5.8.)Then, by de�nition, Cp;1(x) = x� :Theorem 9 proves the correctness of this algorithm for Cases I and II, and the algorithmis obviously correct for the last case.Example 10. Suppose we wish to �nd C2;6(x). In this case, p = 2, n = 6, q1 = 2, q2 = 3,s = 2, d1 = 3, d2 = 2, m1 = (26 � 1)=(23 � 1) = 9, m2 = (26 � 1)=(22 � 1) = 21, andg = gcd(9; 21) = 3. We look up C2;3(x) = x3 + x + 1 and C2;2(x) = x2 + x + 1. Settingz = x3, we have C2;3(x9) = x27 + x9 + 1 = z9 + z3 + 1C2;2(x21) = x42 + x21 + 1 = z14 + z7 + 1:

23The greatest common divisor of these two polynomials isf(x) = 1 + x6 + x12 + x15 + x18 = 1+ z2 + z4 + z5 + z6 = r(z):This is an irreducible polynomial in the unknown z, but factors as a polynomial in x asf(x) = (1 + x+ x3 + x4 + x6)(1 + x5 + x6)(1 + x+ x2 + x5 + x6):Letting z0 denote a root of r(z) in GF(26), it is easy to check that the three irreduciblefactors of f(x) are the minimal polynomials of the three cube roots of z0 in GF(26). Thesmallest of these factors relative to <lex, namely x6 + x4 + x3 + x + 1, is C2;6(x). In thiscase, since n was small, we found the candidate polynomials directly by factoring f(x). Inpractice, of course, these polynomials are found one at a time by taking a cube root � ofz0 in GF(26), and then checking the minimal polynomials of each primitive cube root of z0in this �eld.Assuming n > 1, the running time of the root-checking phase of the algorithm clearlygrows linearly with g. In fact, for s < 3 the size of g determines those values of p andn for which it is practical to compute Cp;n with this algorithm. Unfortunately, for any�xed p, g grows in a highly irregular and choppy manner as n is increased. If n is itself aprime power, g is particularly \large", and our algorithm is very slow. Ironically, the bruteforce algorithm performs better in this case, since the search space contains more primitive,compatible candidates (hence the �rst acceptable candidate will be found more quickly).See Section 4.2 for a more detailed comparison.4 Implementation and ResultsHere we discuss the implementation of the second of our new algorithms in the computeralgebra system Magma and report on new Conway polynomials that we have obtained withthis implementation. We also discuss the challenges faced by the algorithm and compareits performance to that of the brute force algorithm.

244.1 Implementation in MagmaSome subtleties arise when implementing the algorithm of Section 3.3 in computer algebrasystems such as Magma. In particular, when computing the Conway polynomial for GF(pn),it is usually necessary to perform extensive arithmetic operations (taking roots, etc.) in the�nite �eld GF(pn).2 When n has two or more distinct prime factors, Theorem 9 furnishesa very convenient representation for GF(pn), since we can de�ne GF(pn) by adjoining aroot z0 of r(z) to the prime �eld Zp. On the other hand, if n is a prime power qe11 , thepolynomial r(z) in the algorithm is simply Cp;n=q1(z). In this case, we �rst de�ne GF(pn=q1)in Magma using this polynomial and then create a degree p extension of this �eld to obtaina representation for GF(pn).Another subtlety arises in the computation of polynomial GCD's in the �rst stage ofthe algorithm. Ironically, for values of n with three or more distinct prime factors, ouralgorithm often fails because there is not enough memory to store the huge polynomialsCp;di(zmi=g) that occur when computing r(z). If n has two prime factors, the followingtrick proves very useful when �nding the polynomial GCD of g(z) = Cp;d1(zm1=g) andh(z) = Cp;d2(zm2=g). Assume that n = qe11 qe22 , where q1 < q2. Then the degree of g(z) willbe dramatically smaller than the degree of h(z). Indeed, for moderate n, we can factorg(z) directly using standard polynomial factoring algorithms. For each irreducible factorr(z) of degree n that divides g(z), we can indirectly test whether that factor also dividesh(z) as follows. Let z0 be a root of r(z) in GF(pn). Since r(z) divides g(z), it must be thecase that the minimal polynomial of zm1=g0 is Cp;d1(z). However, the minimal polynomialof zm2=g0 equals Cp;d2(z) if and only if r(z) divides h(z). Since large powers of �nite �eldelements, as well as their minimal polynomials, can be e�ciently computed, we can nowcompute r(z) without ever storing or using h(z), provided that we can compute and fullyfactor g(z).2This becomes quite awkward in GAP v3.4.4, since one cannot readily de�ne or use �nite �elds whoseConway polynomials are not known.

25Unfortunately, although this technique can be generalized to more than two polynomials,the exponents involved quickly become so large that even the polynomial Cp;di(zmi=g) oflowest degree is too big to store.Table 2 lists a number of new Conway polynomials. Each of these polynomials cor-responds to a gap in the list of known Conway polynomials in version 2.3-1 of Magma.Appendix A contains the Magma routines used to compute the Conway polynomials inTable 2. The initial call to �nd Cp;n(x) is conwaypol(p,n);.4.2 Comparison of Old and New AlgorithmsAs discussed earlier, the time consumed by our new algorithms to determine a particularConway polynomial Cp;n depends critically on the quantityg = gcd1�i�s(Mp;nMp;n=qi) :If g is reasonably small (say, eight digits or less), then Cp;n can be computed in a moderateamount of time. For example, on a Sun Ultra Sparc 30 workstation we computed C2;42 inonly 59 seconds.3 In this case, g was only 5419; nearly all of the computing time was spentcalculating the polynomial GCD r(z). In contrast, the brute force algorithm in GAP forcomputing Conway polynomials ran for days on C2;42 without completing.Table 3 contrasts the running time required by our new algorithm with that requiredby the brute force search. We consider the computation of the Conway polynomials C2;n,for 40 � n < 70. For each value of n, we tabulate the quantities g, c = �(M;Mp;n),h = pn=c (rounded to the nearest integer), and the amount of CPU time t needed bythe Magma implementation of our algorithm to compute the Conway polynomial (whenavailable). Recall that g is the number of �eld elements compatible with previously chosenpolynomials. Since our algorithm must check each of these elements for primitivity, thetime required by the algorithm increases at least linearly with g. The quantity c givesthe number of compatible �eld elements that are also primitive. Thus, pn=c gives a rough3Times cited refer to total CPU time, as reported by Magma at the end of each session.

26Table 2: Selected Conway polynomials.p n Cp;n(x)2 46 x46 + x23 + x21 + x20 + x17 + x14 + 12 50 x50 + x29 + x28 + x27 + x19 + x17 + x16 + x14 + x13 + x12x10 + x9 + x8 + x6 + x4 + x2 + 12 52 x52 + x28 + x27 + x26 + x25 + x23 + x21 + x17 + x15 + x14+x10 + x7 + x4 + x+ 12 56 x56 + x33 + x30 + x26 + x22 + x19 + x14 + x13 + x11 + x9+x8 + x4 + x3 + x2 + 12 60 x60 + x45 + x44 + x42 + x41 + x39 + x36 + x34 + x33 + x32+x30 + x26 + x25 + x22 + x19 + x17 + x12 + x8 + x5 + x4+x3 + x2 + 13 26 x26 + x13 + 2x12 + 2x11 + 2x10 + 2x9 + 2x8 + 2x7+2x6 + x3 + 2x2 + x+ 23 28 x28 + 2x14 + x13 + x12 + 2x11 + x10 + x9 + x8+2x6 + 2x4 + x3 + 23 34 x34 + x18 + 2x17 + 2x16 + 2x14 + 2x12 + x11 + 2x9+x7 + 2x6 + 2x4 + 23 36 x36 + x21 + 2x20 + x17 + x16 + 2x14 + 2x13 + 2x11 + 2x10+x9 + 2x8 + 2x6 + 2x5 + x3 + x2 + x + 2

27
Table 2: Selected Conway polynomials (continued).p n Cp;n(x)5 20 x20 + 3x12 + 4x10 + 3x9 + 2x8 + 3x6 + 4x3 + x+ 25 22 x22 + x12 + 3x11 + 4x9 + 3x8 + 2x6 + 2x5+4x3 + 3x2 + 3x+ 25 24 x24 + 2x16 + 4x15 + 4x13 + 2x12 + x11 + 3x10 + 4x8+2x7 + 4x6 + 2x4 + 3x3 + 3x2 + x+ 27 20 x20 + x12 + 6x11 + 2x10 + 5x9 + 2x8 + 3x7+x6 + 3x5 + 3x3 + x + 37 24 x24 + 6x15 + 5x14 + 5x13 + x12 + 2x11 + x10 + 3x8+4x7 + 5x6 + 2x5 + 2x4 + 6x3 + 4x2 + 3x+ 311 14 x14 + 2x7 + 9x6 + 6x5 + 4x4 + 8x3 + 6x2 + 10x+ 211 18 x18 + 3x12 + 8x11 + 10x10 + 8x9 + 3x8 + 9x7 + x6+3x4 + 9x3 + 8x2 + 2x+ 213 14 x14 + 4x7 + 6x5 + 11x4 + 7x3 + 10x2 + 10x+ 213 18 x18 + 10x11 + 4x10 + 11x9 + 11x8 + 9x7 + 5x6+3x5 + 5x4 + 6x3 + 9x+ 217 14 x14 + x8 + 11x7 + x6 + 8x5 + 16x4 + 13x3 + 9x2 + 3x+ 3

28estimate of the number of elements that the brute force algorithm must check before it�nds the �rst primitive, compatible one. Using Theorem 6, it is easy to calculate c givenvalues for p, n, and g.It is instructive to compare the relative magnitudes of g and pn=c for di�erent values ofn. If n is a prime, then g = Mp;n=(p�1) and pn=c is quite small. In this case, the brute forcealgorithm works quite well, since there are quite a few primitive, compatible polynomialsin the search space, so the �rst one will be found quickly. In contrast, our algorithmperforms horribly in this instance, since it must check all g compatible candidates to �ndthe lexicographically smallest primitive one.On the other hand, for composite n, the value of g tends to be small, often much smallerthan pn=c. For example, consider the cases n 2 f40; 42; 44; 48; 50; 52; 54; 60; 66g from Table 3for dramatic di�erences that favor our algorithm over the brute force algorithm. In thiscase, our algorithm succeeds where the brute force algorithm fails. On the Sun Ultra Sparc30 workstation, Conway polynomials can be computed in three days or less for values of gup to 108. Our algorithm is still viable, of course, for problems with nine-digit or ten-digitg's, but the computation will take proportionately longer (weeks or months, respectively).5 Alternative DirectionsConsider the algorithm described in Section 3.3, which �nds r(z) by �nding the greatestcommon divisor of several sparse polynomials of large degree. A major de�ciency in thisalgorithm is its inability to compute this polynomial GCD when p or n gets large. Inparticular, this stage of the algorithm is especially prone to failure when n has three ormore prime factors. The version of the algorithm from Section 3.2 (which does computationswith �eld elements rather than polynomials) addresses this problem.Assuming that enough memory is available to compute the polynomial GCD r(z), themajor time expense incurred by the algorithm occurs when it checks all g of the gth rootsof z0 to �nd the primitive root whose minimal polynomial is lexicographically smallest.

29Table 3: Comparison of the e�ciency of two algorithms for computing Cp;n.n g c = �(M;Mp;n) h = pn=c CPU time t (sec.)(if available)40 61681 61680 17826064 12541 2199023255551 2198858730832 1 N/A42 5419 5418 811747233 5943 8796093022207 8774777333880 1 N/A44 838861 836352 21034428 194745 14709241 14685300 2395890 3439646 2796203 2796202 25165830 1633647 140737488355327 140646443289600 1 N/A48 65281 64512 4363141380 20349 4432676798593 4432676798592 127 N/A50 1016801 1012500 1111999907 284451 2454285751 2429105112 927007 N/A52 13421773 13076544 344402896 3888053 9007199254740991 9005653101120000 1 N/A54 261633 261630 68854483467 100055 567767102431 566942112000 63549 N/A56 15790321 15790320 4563403024 5135057 39268347319 39267102096 3670125 N/A58 178956971 175923744 1638382458 N/A59 576460752303423487 576457548871463200 1 N/A60 80581 79200 14557089704631 318

30Table 3: Comparison of Algorithms' E�ciency (continued).n g c = �(N)g=N h = pn=c61 2305843009213693951 2305843009213693950 162 715827883 715827882 644245095063 60247241209 60246498816 15309390964 4294967297 4288266240 430167882365 145295143558111 145295143558110 25392166 1397419 1376496 5360493331970367 147573952589676412927 147573951827644447920 168 3435973837 3407185152 8662514422069 10052678938039 10052678938038 58720249Because so many of the gth roots of z0 are primitive, we can �nd a primitive root with acompatible minimal polynomial very quickly, by stopping at the �rst primitive root we �nd.The polynomial so obtained is not, in general, the Conway polynomial. However, it doeshave all the desirable algebraic properties of the Conway polynomial, namely primitivityand compatibility with previously chosen polynomials. Hence, for each p, one can quicklygenerate a large set of compatible polynomials to represent �elds of characteristic p.Indeed, one can de�ne a new set of polynomials via the modi�ed version of our algo-rithm. The only di�culty in postulating such a de�nition is that certain portions of ouralgorithm | speci�cally, taking roots in �nite �elds | rely on randomized subroutines;hence, the algorithm produces di�erent polynomials each time it is executed. To obtainone standard set of polynomials, it is necessary to remove all randomness from the algorithmused to de�ne these polynomials.Appendix B contains the Magma code for this alternate algorithm that generates ran-dom sets of compatible polynomials for p = 2. The routine that generates these polynomials

31skips all values of n with three or more prime factors, since Magma tends to run out ofmemory when computing the polynomial GCD r(z) for such n.In summary, we have demonstrated two new algorithms for generating Conway polyno-mials, or more general sets of compatible polynomials, over �nite �elds. These algorithmsare much more e�cient for �nding Cp;n than the brute force algorithm when the parameterg is small compared to the parameter pn=c. We have also shown the practical signi�cance ofthese new algorithms by generating numerous Conway polynomials that had not previouslybeen identi�ed.

32References[1] E. Bach and J. Shallit, Algorithmic Number Theory, The MIT Press, Cambridge,Massachusetts, 1996.[2] The GAP Group, GAP { Groups, Algorithms, and Programming, Version 4,Lehrstuhl D f�ur Mathematik, RWTH Aachen, Germany and School of Mathematicaland Computational Sciences, U. St. Andrews, Scotland, 1997.[3] J. Grabmeier and A. Scheerhorn, Finite �elds in AXIOM, 1993. Online documentavailable at http://extweb.nag.co.uk/doc/TechRep/NP1513.html.[4] C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer Characters,Clarendon Press, Oxford, 1995.[5] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications,Cambridge University Press, Cambridge, 1994.[6] W. Nickel, Endliche K�orper in dem gruppentheoretischen Programmsystem GAP.Diploma thesis, RWTH Aachen, 1988.[7] R. Parker, Finite �elds and Conway polynomials, 1990. Attributed in [8] to a talkgiven at IBM Heidelberg Scienti�c Center.[8] A. Scheerhorn, Trace- and norm-compatible extensions of �nite �elds, ApplicableAlgebra in Engineering, Communication and Computing, 3 (1992), pp. 199{209.

Appendices 33A Magma Implementation of AlgorithmHere is the Magma source code for our implementation of the algorithm of Section 3.3.// File "conway": Magma function to compute Conway polynomials.load "getroot";load "tryall0";// implements the "factor the smallest C_{p,d_i}(x^{m_i}) and check"// technique to get the polynomial GCD q(z)substitute := function(p,pr,x,exp)// return polynomial p over polynomial ring pr with x replaced by x^explist := Coefficients(p);answer := pr ! 0;j := 1;while (j le #list) doif (list[j] ne 0) thenanswer := answer + list[j]*x^((j-1)*exp);end if;j := j + 1;end while;return answer;end function;conwaypol := function(p,n)// return the Conway Polynomial for GF(p^n) if possible// check validity of argumentsif (not IsPrime(p)) thenprint "Error: ",p," is not a prime!";return 0;end if;if (n le 0) thenprint "Error: ",n," is not positive!";return 0;end if;pr<x> := PolynomialRing(GF(p));if (n eq 1) then // base case: GF(p)

Appendices 34beta := 1;while (not IsPrimitive(GF(p) ! beta)) dobeta := beta + 1;end while;return x - beta;end if;facs := Factorization(n);s := #facs;if (s eq 1) then // n is a prime power: special caseprint "prime power n";q := facs[1][1];d := n div facs[1][1];m := (p^n - 1) div (p^d - 1);g := m;if (not ExistsConwayPolynomial(p,d)) then//print "Finding polynomial with p=",p," d=",d," recursively.";cpd := Self(p,d);elsecpd := ConwayPolynomial(p,d);end if;// one more special case if d=1 (i.e., n itself is a prime)if (d gt 1) thengfpd<z> := ext< GF(p) | cpd >;elsegfpd := GF(p);z := gfpd ! (GF(p) ! -Coefficients(cpd)[1]);end if;gfpn := ext< gfpd | q >;root, zeta := getanyroot(z, g, gfpn);print "root = ",root," and zeta = ",zeta;return tryall2(root,zeta,g,gfpn,p,n);end if;ii := 1; d:=[* *]; m:=[* *]; cpd:=[* *];while (ii le s) dod[ii] := n div facs[ii][1];m[ii] := (p^n - 1) div (p^d[ii] - 1);if (not ExistsConwayPolynomial(p,d[ii])) then//print "Finding polynomial with p=",p," d=",d[ii]," recursively.";cpd[ii] := Self(p,d[ii]);end if;

Appendices 35cpd[ii] := ConwayPolynomial(p,d[ii]);print "ii=",ii,"; d[ii]=",d[ii],"; m[ii]=",m[ii],"; cpd[ii]=",cpd[ii];ii := ii + 1;end while;// Calculate the integer and polynomial GCD's of interest.g := m[1]; ii:=2;while (ii le s) dog:=GCD(g,m[ii]);ii:=ii+1;end while;print "g=",g;q := substitute(cpd[1],pr,x,m[1] div g);plist := Factorization(q);print "Have to check ",#plist," polynomial factors.";foundGCD := false;ii := 1;while (ii le #plist) and (not foundGCD) dopcand := plist[ii][1];if (Degree(pcand) eq n) thengf<zz> := ext< GF(p) | pcand >;if (p2comp(MinimalPolynomial(zz^(m[1] div g)),cpd[1]) ne 0) thenprint "Bad factor!";end if;kk := 2; OK:=true;while (kk le s) and OK doif (p2comp(MinimalPolynomial(zz^(m[kk] div g)),cpd[kk]) ne 0)then OK:=false; end if;kk := kk + 1;end while;if (OK) thenq:=pcand;foundGCD:=true;end if;end if;ii := ii+1;end while;print "OK, g=",g,"; and q(x) [really z] =",q;if (not IsIrreducible(q)) then // consistency checkprint "Error: q(x) is reducible!!!";return 0;

Appendices 36end if;if (Degree(q) ne n) thenprint "Error: q(x) does not have degree n!!";return 0;end if;gf<z> := ext< GF(p) | q >;root, zeta := getanyroot(z, g, gf);return tryall(root,zeta,g,gf,p,n);end function;// end of file "conway"/// File "getroot": Magma functions to take roots of field elements.getroot := function(a,r,fq)// Returns an r'th root of element a in field fq (if possible)// along with a primitive r'th root of unity.// This function implements a version of Tonelli's algorithm// as given in Chapter 7 of Bach and Shallit.// Here, r must be prime; the function "getanyroot"// later generalizes to non-prime r.q := #fq;// print "a =",a,"; r =",r,"; q =",q,"; fq =",fq;ii := 0;if ((q-1) mod r) ne 0 thenprint "Error: r does not divide q-1";return 0,0;elif (not IsPrime(r)) thenprint "Error: r is not a prime";return 0,0;end if;repeath:=Random(fq);ii := ii + 1;until (h ne 0) and ((h^((q-1) div r)) ne 1);// print "Found h =",h,"after",ii,"iteration(s).";// print "";t := (q-1) div r;s := 1;while (t mod r) eq 0 do

Appendices 37t := t div r;s := s + 1;end while;gg, alpha, beta := XGCD(t,r^s);if (gg ne 1) thenprint "Error: r^s and t were not relatively prime!";return 0,0;end if;gg, rprime, tprime := XGCD(r,t);// print "q-1 = r^s t, for q-1 =",q-1,"; r =",r,"; s =",s,"; t =",t;// print "r^(-1) modulo t is: ",rprime;// print "alpha *",t,"+ beta *",r^s,// "= 1 for alpha =",alpha,"and beta =",beta;ar := a^t;at := a^(r^s);g := h^t;zeta := g^((q-1) div r);e := 0;ii := 0;while (ii lt s) dojj := 0;while ((g^(e+jj*r^ii))*ar)^(r^(s-ii-1)) ne 1 dojj := jj + 1;if (jj eq r) thenprint "Error: could not find digit ",ii;return 0,0;end if;end while;e := e + jj*r^ii;ii := ii+1;end while;if (e mod r ne 0) thenprint "Error: final value of e is not divisible by r";print " i.e., a is NOT an r'th power in the field!";return 0;end if;br := g^(-(e div r));bt := at^rprime;b := (br^alpha)*(bt^beta);return b,zeta;

Appendices 38end function;getanyroot := function(a,r,fq)// "a" is a perfect "r"th power in the field "fq"// return an "r"th root of "a" in "fq" along with a primitive// "r"th root of unity in "fq".factors := Factorization(r);pe := PrimitiveElement(fq);zeta := pe^((#fq-1) div r);root := a;ii:=1;while (ii le #factors) dojj:=1;while (jj le factors[ii][2]) doroot1, zeta1:= getroot(root,factors[ii][1],fq);root := root1;jj := jj + 1;end while;ii:=ii+1;end while;return root, zeta;end function;// end of file "getroot"/// File "tryall0": routines to check all g g'th roots of z// and pick out the best primitive one.p2comp := function(p1,p2)// uses ordering in "Brauer character" bookc1 := Coefficients(p1);c2 := Coefficients(p2);if (#c1 ne #c2) thenprint "p2comp warning: polynomials are of unequal degrees!";return 0;end if;ii := #c1; sign := +1;while (ii gt 0) and (c1[ii] eq c2[ii]) doii := ii-1;sign := -sign;end while;

Appendices 39if (ii eq 0) then return 0; // equal polynomialsend if;a1:=IntegerRing() ! (sign*c1[ii]);a2:=IntegerRing() ! (sign*c2[ii]);if (a1 gt a2) then return 1;else return -1;end if;end function;tryall := function(root,zeta,r,fq,p,n)b := root;q := #fq;best := MinimalPolynomial(b);print "b =",b;print "Minimal polynomial: ",best;isprim := IsPrimitive(best);print "Initially, isprim = ",isprim;ii:=1;while ii lt r and (not isprim) dob := b * zeta;best:=MinimalPolynomial(b);isprim:=IsPrimitive(best);ii := ii + 1;end while;if not isprim thenprint "Error: No polynomial was primitive!!!";return 0;end if;print "First primitive one:",best;while ii lt r dob := b * zeta;tp:=MinimalPolynomial(b);if (p2comp(tp,best) eq -1) thenif IsPrimitive(tp) then best:=tp;end if;end if;

Appendices 40ii := ii + 1;if (ii mod 1000 eq 0) thenprint "ii is now:",ii;end if;end while;print "Best one was:",best;return best;end function;tryall2 := function(root,zeta,r,fq,prime,dd)b := root;q := #fq;best := MinimalPolynomial(b,GF(prime));print "b =",b;print "Minimal polynomial: ",best;cc := Coefficients(best); print "cc = ",cc;if (#cc lt (dd+1)) then isprim:=false;else isprim := IsPrimitive(best);end if;print "Initially, isprim = ",isprim;ii:=1;while ii lt r and (not isprim) dob := b * zeta;best:=MinimalPolynomial(b,GF(prime));if (#Coefficients(best) lt (dd+1)) then isprim:=false;else isprim:=IsPrimitive(best);end if;ii := ii + 1;end while;if not isprim thenprint "Error: No polynomial was primitive!!!";return 0;end if;print "First primitive one:",best;while ii lt r dob := b * zeta;tp:=MinimalPolynomial(b,GF(prime));

Appendices 41if (#Coefficients(tp) eq #Coefficients(best)) thenif (p2comp(tp,best) eq -1) thenif IsPrimitive(tp) then best:=tp;end if;end if;end if;ii := ii + 1;if (ii mod 1000 eq 0) thenprint "ii is now:",ii;end if;end while;print "Best one was:",best;return best;end function;// end of file "tryall0"

Appendices 42B Modi�ed AlgorithmHere is the modi�ed algorithm of Section 5.// File "compatible_sets":// Magma code to generate a random set of mutually compatible// polynomials that are not Conway polynomials.load "getroot";load "tryall4";// implement the "factor the smallest C_{p,d_i}(x^{m_i}) and check"// trick to get the polynomial GCD q(z)// Take the first primitive, compatible polynomial you can getsubstitute := function(p,pr,x,exp)// return polynomial p over polynomial ring pr with x replaced by x^explist := Coefficients(p);answer := pr ! 0;j := 1;while (j le #list) doif (list[j] ne 0) thenanswer := answer + list[j]*x^((j-1)*exp);end if;j := j + 1;end while;return answer;end function;compatiblepol := function(p,n,table)// check validity of argumentsif (not IsPrime(p)) thenprint "Error: ",p," is not a prime!";return 0;end if;if (n le 0) thenprint "Error: ",n," is not positive!";return 0;end if;pr<x> := PolynomialRing(GF(p));

Appendices 43if (n eq 1) then // base case: GF(p)beta := 1;while (not IsPrimitive(GF(p) ! beta)) dobeta := beta + 1;end while;return x - beta;end if;facs := Factorization(n);s := #facs;if (s eq 1) then // n is a prime power: special case//print "prime power n";q := facs[1][1];d := n div facs[1][1];m := (p^n - 1) div (p^d - 1);g := m;cpd := table[d];// one more special case if d=1 (i.e., n itself is a prime)if (d gt 1) thengfpd<z> := ext< GF(p) | cpd >;elsegfpd := GF(p);z := gfpd ! (GF(p) ! -Coefficients(cpd)[1]);end if;gfpn := ext< gfpd | q >;root, zeta := getanyroot(z, g, gfpn);//print "root = ",root," and zeta = ",zeta;return tryall2(root,zeta,g,gfpn,p,n);end if;ii := 1; d:=[* *]; m:=[* *]; cpd:=[* *];while (ii le s) dod[ii] := n div facs[ii][1];m[ii] := (p^n - 1) div (p^d[ii] - 1);cpd[ii] := table[d[ii]];// print "ii=",ii,"; d[ii]=",d[ii],";// m[ii]=",m[ii],"; cpd[ii]=",cpd[ii];ii := ii + 1;end while;// Calculate the integer and polynomial GCD's of interest.g := m[1]; ii:=2;

Appendices 44while (ii le s) dog:=GCD(g,m[ii]);ii:=ii+1;end while;//print "g=",g;q := substitute(cpd[1],pr,x,m[1] div g);plist := Factorization(q);//print "Have to check ",#plist," polynomial factors.";foundGCD := false;ii := 1;while (ii le #plist) and (not foundGCD) dopcand := plist[ii][1];if (Degree(pcand) eq n) thengf<zz> := ext< GF(p) | pcand >;if (p2comp(MinimalPolynomial(zz^(m[1] div g)),cpd[1]) ne 0) thenprint "Bad factor!";end if;kk := 2; OK:=true;while (kk le s) and OK domp := MinimalPolynomial(zz^(m[kk] div g));if (Degree(mp) ne Degree(cpd[kk])) thenOK:=false;elif (p2comp(mp,cpd[kk]) ne 0) thenOK:=false;end if;kk := kk + 1;end while;if (OK) thenq:=pcand;foundGCD:=true;end if;end if;ii := ii+1;end while;//print "OK, g=",g,"; and q(x) [really z] =",q;if (not IsIrreducible(q)) then // check answerprint "error: q(x) is reducible!!!";return 0;end if;if (Degree(q) ne n) thenprint "error: q(x) does not have degree n!!";

Appendices 45return 0;end if;gf<z> := ext< GF(p) | q >;root, zeta := getanyroot(z, g, gf);return tryall(root,zeta,g,gf);end function;poltable := [* *];p := 2;u := 1;print "Table of random compatible polynomials for p = ",p;while (u le 200) dofu := Factorization(u);if (#fu le 2) then/* don't bother for n's with 3 or more prime factors *//* (Magma usually runs out of memory for those n.) */poltable[u] := compatiblepol(p,u,poltable);print "poltable[",u,"] := ",poltable[u];else poltable[u] := 0;end if;u := u+1;end while;quit;// end of file "compatible_sets"/// File "tryall4": modified version of "tryall0" that// stops at the first primitive g'th root of z.p2comp := function(p1,p2)// uses ordering in "Brauer character" bookc1 := Coefficients(p1);c2 := Coefficients(p2);if (#c1 ne #c2) thenprint "p2comp warning: polynomials are of unequal degrees!";return 0;end if;ii := #c1; sign := +1;while (ii gt 0) and (c1[ii] eq c2[ii]) doii := ii-1;

Appendices 46sign := -sign;end while;if (ii eq 0) then return 0; // equal polynomialsend if;a1:=IntegerRing() ! (sign*c1[ii]);a2:=IntegerRing() ! (sign*c2[ii]);if (a1 gt a2) then return 1;else return -1;end if;end function;tryall := function(root,zeta,r,fq)b := root;q := #fq;best := MinimalPolynomial(b);// print "b =",b;// print "Minimal polynomial: ",best;isprim := IsPrimitive(best);// print "Initially, isprim = ",isprim;ii:=1;while ii lt r and (not isprim) dob := b * zeta;best:=MinimalPolynomial(b);isprim:=IsPrimitive(best);ii := ii + 1;end while;if not isprim thenprint "Error: No polynomial was primitive!!!";return 0;end if;// print "First primitive one:",best;return best;end function;tryall2 := function(root,zeta,r,fq,prime,dd)b := root;

Appendices 47q := #fq;best := MinimalPolynomial(b,GF(prime));// print "b =",b;// print "Minimal polynomial: ",best;cc := Coefficients(best); //print "cc = ",cc;if (#cc lt (dd+1)) then isprim:=false;else isprim := IsPrimitive(best);end if;// print "Initially, isprim = ",isprim;ii:=1;while ii lt r and (not isprim) dob := b * zeta;best:=MinimalPolynomial(b,GF(prime));if (#Coefficients(best) lt (dd+1)) then isprim:=false;else isprim:=IsPrimitive(best);end if;ii := ii + 1;end while;if not isprim thenprint "Error: No polynomial was primitive!!!";return 0;end if;// print "First primitive one:",best;return best;end function;

