
Outline

McEliece scheme with quasi-dyadic separable
binary Goppa codes

Gerhard Hoffmann

CASED

15th April 2010

Outline

Outline of Part I: McEliece cryptosystem

1 Before we begin

2 McEliece cryptosystem (1978)
The ingredients
The recipe
The Dilemma

Outline

Outline of Part I: McEliece cryptosystem

1 Before we begin

2 McEliece cryptosystem (1978)
The ingredients
The recipe
The Dilemma

Outline

Outline of Part I: McEliece cryptosystem

1 Before we begin

2 McEliece cryptosystem (1978)
The ingredients
The recipe
The Dilemma

Outline

Outline of Part I: McEliece cryptosystem

1 Before we begin

2 McEliece cryptosystem (1978)
The ingredients
The recipe
The Dilemma

Outline

Outline of Part I: McEliece cryptosystem

1 Before we begin

2 McEliece cryptosystem (1978)
The ingredients
The recipe
The Dilemma

Outline

Outline of Part II: Asking for trouble

Don’t make the adversary happy
Compact keys are only useful in compact form
What about performance?
Mission impossible?

Outline

Outline of Part II: Asking for trouble

Don’t make the adversary happy
Compact keys are only useful in compact form
What about performance?
Mission impossible?

Outline

Outline of Part II: Asking for trouble

Don’t make the adversary happy
Compact keys are only useful in compact form
What about performance?
Mission impossible?

Outline

Outline of Part II: Asking for trouble

Don’t make the adversary happy
Compact keys are only useful in compact form
What about performance?
Mission impossible?

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part III: Goppa codes

3 Goppa codes
Goppa codes: what was that again?

Generalized Reed-Solomon Codes
Alternant Codes
Classical Goppa codes
Syndrome function
Some remarks
The canonical parity check matrix for GRS again

4 Irreducible binary Goppa codes

5 Separable binary Goppa codes
A striking property
It’s a kind of magic

Parity check matrix for separable binary Goppa codes
Reminder: Cauchy matrices

H is a Cauchy matrix!
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part IV: The dyadic and quasi-dyadic world

6 The (quasi-) dyadic world
Dyadic matrices
Sylvester-Hadamard matrices
Sylvester-Hadamard matrices: examples
Some properties

Dyadic convolution of two vectors
Dyadic convolution: what for?

The Fast Walsh-Hadamard transform (FWHT)
FWHT visualized
Let’s summarize

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part V: QD

7 QD
Can we have the cake and eat it, too?
Putting the pieces together
Oh no: char(F) = 2!

The trick
The trick: an example

Quasi-dyadic matrices
QD: Assumptions
QD: Select
QD: Select and permute
QD: Select, permute and scale
QD: Co-Trace
QD: Co-Trace continued
QD: Co-Trace continued
QD: Final step

QD: Some remarks

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Decoding Goppa codes as alternant
codes

8 Decoding Goppa codes as alternant codes
Some definitions
The syndrome
The key equation

Reminder: Extended Euclidian Algorithm
Euclidian Algorithm continued
Applying the Euclidian Algorithm

Let’s summarize
Separable binary Goppa codes again
The magic again
The strategy again
Adapting the decoder
Under attack
Warning

Outline

Outline of Part VI: Flexible QD

9 Flexible QD
FQD: Step 1
FQD: Step 2
FQD: Step 3
FQD: Step 4
FQD: Step 5
FQD: Step 6
FQD: Sketch of proof
FQD: Remarks

Outline

Outline of Part VI: Flexible QD

9 Flexible QD
FQD: Step 1
FQD: Step 2
FQD: Step 3
FQD: Step 4
FQD: Step 5
FQD: Step 6
FQD: Sketch of proof
FQD: Remarks

Outline

Outline of Part VI: Flexible QD

9 Flexible QD
FQD: Step 1
FQD: Step 2
FQD: Step 3
FQD: Step 4
FQD: Step 5
FQD: Step 6
FQD: Sketch of proof
FQD: Remarks

Outline

Outline of Part VI: Flexible QD

9 Flexible QD
FQD: Step 1
FQD: Step 2
FQD: Step 3
FQD: Step 4
FQD: Step 5
FQD: Step 6
FQD: Sketch of proof
FQD: Remarks

Outline

Outline of Part VI: Flexible QD

9 Flexible QD
FQD: Step 1
FQD: Step 2
FQD: Step 3
FQD: Step 4
FQD: Step 5
FQD: Step 6
FQD: Sketch of proof
FQD: Remarks

Outline

Outline of Part VI: Flexible QD

9 Flexible QD
FQD: Step 1
FQD: Step 2
FQD: Step 3
FQD: Step 4
FQD: Step 5
FQD: Step 6
FQD: Sketch of proof
FQD: Remarks

Outline

Outline of Part VI: Flexible QD

9 Flexible QD
FQD: Step 1
FQD: Step 2
FQD: Step 3
FQD: Step 4
FQD: Step 5
FQD: Step 6
FQD: Sketch of proof
FQD: Remarks

Outline

Outline of Part VI: Flexible QD

9 Flexible QD
FQD: Step 1
FQD: Step 2
FQD: Step 3
FQD: Step 4
FQD: Step 5
FQD: Step 6
FQD: Sketch of proof
FQD: Remarks

Outline

Outline of Part VI: Flexible QD

9 Flexible QD
FQD: Step 1
FQD: Step 2
FQD: Step 3
FQD: Step 4
FQD: Step 5
FQD: Step 6
FQD: Sketch of proof
FQD: Remarks

Outline

Outline of Part VII: HyMES

10 HyMES
HyMES with QD/FQD

Outline

Outline of Part VII: HyMES

10 HyMES
HyMES with QD/FQD

Outline

Outline of Part IX: Anything else?

Summary
Mission accomplished?
Questions?
Material used and further reading

Outline

Outline of Part IX: Anything else?

Summary
Mission accomplished?
Questions?
Material used and further reading

Outline

Outline of Part IX: Anything else?

Summary
Mission accomplished?
Questions?
Material used and further reading

Outline

Outline of Part IX: Anything else?

Summary
Mission accomplished?
Questions?
Material used and further reading

McEliece cryptosystem McEliece cryptosystem

Part I

McEliece cryptosystem

McEliece cryptosystem McEliece cryptosystem

Before we begin

I There are quite a number of slides.
I A lot of them are only there for your convenience as a

quick reminder.

What you should remember:
I McEliece with binary separable Goppa codes.
I Such Goppa codes and quasi-dyadic matrices are related.
I Together they provide short McEliece keys.

McEliece cryptosystem McEliece cryptosystem

McEliece cryptosystem (1978)

I First cryptosystem using error correcting codes as
trapdoor.

I Trapdoor: efficient error correcting algorithm for Goppa
codes.

I Since 1978 unbroken in its original version.

McEliece cryptosystem McEliece cryptosystem

How it works: The ingredients

I n, t ∈ N, where t � n
I Binary (n, k) code G with minimum distance d ≥ 2t + 1
I G′ : k × n generator matrix of G
I S : k × k random binary non-singular matrix
I P : n × n random permutation matrix

I Public key: (G, t) with G := SG′P
I Private key: (S,DG , P), where DG decoder for G

McEliece cryptosystem McEliece cryptosystem

How it works: The recipe

Apply P−1

Apply DG

cP−1 = (mS)G′ ⊕ zP−1

mSG′ = DG(cP−1)

m = (mSG′)J(G′
.J)−1S−1

Use (G′
.J)−1 and S−1

McEliece cryptosystem McEliece cryptosystem

How it works: The recipe

Apply P−1

Apply DG

cP−1 = (mS)G′ ⊕ zP−1

mSG′ = DG(cP−1)

m = (mSG′)J(G′
.J)−1S−1

Use (G′
.J)−1 and S−1

McEliece cryptosystem McEliece cryptosystem

How it works: The recipe

Apply P−1

Apply DG

cP−1 = (mS)G′ ⊕ zP−1

mSG′ = DG(cP−1)

m = (mSG′)J(G′
.J)−1S−1

Use (G′
.J)−1 and S−1

McEliece cryptosystem McEliece cryptosystem

The Dilemma

Although the McEliece scheme based on Goppa codes turns
out to be quite efficent in terms of speed, and is unbroken since
its invention, one major drawback still remains:

Downside
The sizes of the public matrices are too big, typically around
hundreds of KB or even some MB.

Goal
Reduce this size, but don’t sacrifice speed and security.

Part II

Asking for trouble

Don’t make the adversary happy

One way to reduce the key size is to put more structure into the
cryptosystem. But we have to be very careful ...

More structure means more information!

If it’s done the wrong way ...

Good news for the adversary!

Compact keys are only useful in compact form

Compact keys are definitely what we want, but ...

If we have to unfold the keys to become operational,
we would gain not that much!

What about performance?

Compact keys are definitely what we want, but ...

Their processing speed shouldn’t be much worse
than RSA.

Mission impossible?

To solve those problems all at once seems to be really tough.

So let’s try!

Goppa codes Goppa codes

Part III

Goppa codes

Goppa codes Goppa codes

Goppa codes have shown their quality

Since its invention, the original McEliece scheme using general
Goppa codes is unbroken.

McEliece with other codes has failed.

Therefore, let’s try Goppa codes as starting place.

Goppa codes Goppa codes

Goppa codes: what was that again?

Goppa codes (Alternant codes (GRS codes

General assumptions:

I n ≤ q ∈ N+

I L = (L0, ..., Ln−1) ∈ Fn
q, pairwise distinct

I h(X) :=
∏
i∈n

(X − Li) ∈ Fq[X]

I g(X) ∈ Fq[X], g(Li) 6= 0 for all i

Goppa codes Goppa codes

Generalized Reed-Solomon Codes

GRSk (L, g) :=

{
c ∈ Fn

q : ∃f (X) ∈ Fq[X]<k :
∑
i∈n

ci

∏
j 6=i

(X − Lj) ≡ fg (mod h)
}

for 1 ≤ k ≤ n.

Goppa codes Goppa codes

Alternant Codes: restricting GRS to subfields

I m ∈ N+, some extension degree
I L = (L0, ..., Ln−1) ∈ Fn

qm , pairwise distinct
I g(X) ∈ Fqm [X], g(Li) 6= 0 for all i

Altk ,q(L, g) := GRSk (L, g) ∩ Fn
q

Goppa codes Goppa codes

Classical Goppa codes: special alternant codes

I Alternant code as before, but:
I deg(g(X)) := n − k

GOq(L, g) :=
{

c ∈ Fn
q :

∑
i∈n

ci

∏
j 6=i

(X − Lj) ≡ 0 (mod g)
}

=
{

c ∈ Fn
q :

∑
i∈n

ci

(X − Lj)
≡ 0 (mod g)

}

I g(X) is called Goppa polynomial and,
I L = (L0, ..., Ln−1) its support.

Goppa codes Goppa codes

Syndrome function

Assume q = pm for some prime p (usually p = 2) and
t = deg(g(X)).

Syndrome function

S : Fn
p −→ Fq[X]/(g)

c 7→
∑
i∈n

ci

X − Li
(mod g)

We see that

GOp(L, g) = {c ∈ Fn
p : S(c) ≡ 0 (mod g)}

Goppa codes Goppa codes

Some remarks

Theorem

The Goppa code GOp(L, g), where deg(g(X)) = t < n
I has length n = #L = #{L0, ..., Ln−1}
I dimension k satisfying n −mt ≤ k ≤ n − t
I and minimum distance d ≥ t + 1.

Note that the last property holds for Goppa codes in general.
As we will see, the estimation can be improved in certain cases.

Goppa codes Goppa codes

The canonical parity check matrix for GRS again

The parity check matrix H for a GRS code, which restricts to a
Goppa code, has the following form:

H for GRS code, which restricts to Goppa code

H = VD =


1 1 ... 1
L0 L1 ... Ln−1

L2
0 L2

1 ... L2
n−1

...
...

...
...

Lt−1
0 Lt−1

1 ...Lt−1
n−1


 g(L0)

−1 0 ... 0
0 g(L1)

−1 ... 0
...

...
. . . 0

0 0 0 g(Ln−1)
−1



Goppa codes Goppa codes

Irreducible binary Goppa codes

Usual case: g(X) ∈ Fq[X], irreducible, q = 2m.

Because:
I We have d ≥ 2t + 1 in this case, so we can correct up to t

errors.
I There are efficient decoders for these irreducible binary

Goppa codes (Patterson).
I For general Goppa codes, we have no decoders correcting

more than t/2 errors.

Goppa codes Goppa codes

Separable binary Goppa codes

I Again: g(X) ∈ Fq[X], q = 2m

I But now g(X) is assumed to have no multiple roots:

g(X) = (X − z0)...(X − zt−1) ∈ F2m [X]

I A binary Goppa code whose g(X) has no multiple roots is
called a separable Goppa code.

Goppa codes Goppa codes

A striking property

It turns out that for separable Goppa codes we have:

GO2(L, g) = GO2(L, g2)

I That means: g(X) and g(X)2 generate the same space!

Goppa codes Goppa codes

It’s a kind of magic

Strategy:

Public generator matrix G is based on g(X).

Decoder DG is based on g(X)2.

Remember:

I Then DG can correct up to 2t errors.
I Breaking a system based on G resp. g(X) is not enough!

We will see that in more detail soon.

Goppa codes Goppa codes

Parity check matrix for separable binary Goppa codes

Theorem (Tzeng, Zimmermann, 1975)

I g(X) = (X − z0)...(X − zt−1) ∈ Fqm [X]

I without multiple zeros
I L = {L0, ..., Ln−1 ∈ Fqm : g(Li) 6= 0}
I admits a parity check matrix of the following form:

H(z, L) = (Hij) =


1

z0−L0
1

z0−L1
... 1

z0−Ln−1
1

z1−L0
1

z1−L1
... 1

z1−Ln−1

...
...

...
...

1
zt−1−L0

1
zt−1−L1

... 1
zt−1−Ln−1

 ∈ Ftxn
qm

Goppa codes Goppa codes

Reminder: Cauchy matrices

I z = (z0, ..., zt−1) ∈ Ft , pairwise distinct
I L = (L0, ..., Ln−1) ∈ Fn, pairwise distinct
I z ∩ L = ∅

C(z, L) = (Cij) =


1

z0−L0
1

z0−L1
... 1

z0−Ln−1
1

z1−L0
1

z1−L1
... 1

z1−Ln−1

...
...

...
...

1
zt−1−L0

1
zt−1−L1

... 1
zt−1−Ln−1

 ∈ Ftxn

Goppa codes Goppa codes

H is a Cauchy matrix!

A binary separable Goppa code allows a compact
representation, but:

I Code structure is apparent.
I Usual hiding tricks destroy the Cauchy structure.
I Compact representation doesn’t seem to be suitable: What

about mG with insufficient memory ?

Goppa codes Goppa codes

Let’s summarize

I Our goal: reduce the public key sizes of McEliece.
I We tried with binary separable Goppa codes.

I They have a striking property: GO2(L, g) = GO2(L, g2)

I They admit a parity check matrix in Cauchy form, but it’s
not obvious how to perform mG efficiently.

I Looks like a dead end, but we will see how to use it soon.

The (quasi-) dyadic world

Part IV

The (quasi-) dyadic world

The (quasi-) dyadic world

The (quasi-) dyadic world

I Dyadic matrices are highly structured.
I mG highly efficient in case G is dyadic.

I We will see below how to connect dyadic to Cauchy
matrices.

The (quasi-) dyadic world

Dyadic matrices

Signature h := (h0, ..., hn−1) = (A, B, C, D, E , F , G, H)

Highly regular, always 2nx2n

∆(h) := (hi⊕j) :=

A B C D E F G H
B A D C F E H G
C D A B G H E F
D C B A H G F E
E F G H A B C D
F E H G B A D C
G H E F C D A B
H G F E D C B A

Dyadic matrices are symmetric, even point-symmetric.

The (quasi-) dyadic world

Sylvester-Hadamard matrices

Let F be a field with char(F) 6= 2, r = 2k .
I The Sylvester-Hadamard matrix Hk ∈ Fr x r is recursively

defined as:

H0 = [1]

Hk =
[

Hk−1 Hk−1
Hk−1 −Hk−1

]
, k > 0

H−1
0 = [1]

H−1
k =

1
2

[
H−1

k−1 H−1
k−1

H−1
k−1 −H−1

k−1

]
, k > 0

The (quasi-) dyadic world

Sylvester-Hadamard matrices: examples

To give some examples:

H0 =
[
+1

]
H1 =

[
+1 +1
+1 −1

]

H2 =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1


etc.

The (quasi-) dyadic world

Some properties

Let F be a field with char(F) 6= 2.
Let h ∈ Fr , M ∈ Fr x r , dyadic, where r = 2k .

I H−1
k MHk is diagonal .

I H−1
k ∆(h)Hk = diag(hHk)

The (quasi-) dyadic world

Dyadic convolution of two vectors

Let u, v ∈ Fr , r = 2k , char(F) 6= 2. The (unique) w ∈ Fr with

∆(u)∆(v) = ∆(w)

is called the dyadic convolution of u and v.

diag(uHk)diag(vHk) = (H−1
k ∆(u)Hk)(H−1

k ∆(v)Hk)

= H−1
k ∆(w)Hk

= diag(wHk︸︷︷︸
=:z

)

=⇒ w = zH−1
k = 2−kzHk

The (quasi-) dyadic world

Dyadic convolution: what for?

Let m a message, G = ∆(g) a dyadic generator matrix.

I Compute m̂← mHk .
I Compute ĝ← gHk .
I Compute ĉ← m̂. ∗ ĝ (Hadamard product : ĉi = m̂i ĝi ∀ i)
I Compute c← ĉHk .
I Finally c← 2−kc

For mG only the first row of G is needed.

mHk can be done efficiently by the so-called Fast
Walsh-Hadamard transform (FWHT).

The (quasi-) dyadic world

The Fast Walsh-Hadamard transform (FWHT)

Let r = 2k with k = 3.

 x0
x1
...

x7

 [
H2 H2
H2 −H2

]
︸ ︷︷ ︸

H3

=


0@ x0

x1
x2
x3

1AH2+

0@ x4
x5
x6
x7

1AH20@ x0
x1
x2
x3

1AH2−

0@ x4
x5
x6
x7

1AH2

 =


0B@ x1,0

x1,1
x1,2
x1,3

1CAH2

0B@ x1,4
x1,5
x1,6
x1,7

1CAH2


where

x1,i = xi + xi+4
x1,i+4 = xi − xi+4

for i ∈ {0, 1, 2, 3}. Recurse. Complexity: O(r log(r)).

The (quasi-) dyadic world

FWHT visualized

x0

x1

x2

x3

x4

x5

x6

x7

+

+

+

+

-

-

-

-

+

+

-

-

+

+

-

-

+

-

+

-

+

-

+

-

The (quasi-) dyadic world

Let’s summarize

Dyadic matrices: The pros
I Very compact representation: the first row (= signature) is

enough.
I Efficient mG even in compact representation.

Dyadic matrices: The cons
I We still don’t how to base a crypto system on them.
I We always made the assumption char(F) 6= 2. But in

cryptography, we would like to have char(F) = 2.

QD

Part V

QD

QD

QD

By Rafael Misoczki and Paulo S.L.M. Barreto.

Idea
Connect binary separable Goppa codes and dyadic matrices.

That means: look for dyadic Cauchy matrices.

QD

Can we have the cake and eat it, too?

Theorem (P. Barreto)

A dyadic Cauchy matrix is only possible over fields Fq, q = 2m.
In this case, H = (Hij) can be generated by any suitable h ∈ Fn

q
satisfying

1
hi⊕j

=
1
hi

+
1
hj

+
1
h0

zi =
1
hi

+ ω

Lj =
1
hj

+
1
h0

+ ω

Hij = hi⊕j =
1

zi ⊕ Lj

and ω ∈ Fq just arbitrary.

QD

Putting the pieces together

Solving the equations above gives us:

I Separable Goppa codes for security.
I Compact McEliece keys.
I Efficiency via FWHT.

Any drawbacks? Yes!
I The theorem above requires char(F) = 2 !
I Cryptosystems cannot securely defined by parity-check

matrices in Cauchy form.

We will see now how to address these points.

QD

Oh no: char(F) = 2!

I FWHT & dyadic convolution⇒ char(F) 6= 2
I Dyadic Cauchy matrix⇒ char(F) = 2

Trick by Daniel Bernstein:
I Just lift FWHT to characteristic 0

Remember:

F2m ' (Z/2Z)[X]/P(X)

for some irreducible P(X) of degree m.

QD

The trick

I F2m ' (Z/2Z)[X]/P(X) Z[X]

In our case
I F2 ' (Z/2Z) Z

Do FWHT now in Z and reduce the end result modulo 2.

I Remember multiplying two binary matrices for the first
time? Chances are good you applied the trick.

I Drawback of the trick: arithmetic in Z⇒ more memory.

QD

The trick: an example

Usually in F2 with only AND and XOR:[1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 0 1 0 1
0 0 1 1 1

]
∗

[1 1 1 0 0
1 0 1 1 1
1 1 1 0 0
1 1 0 0 1
1 1 1 1 0

]
=

[1 0 0 0 0
1 1 0 0 1
0 1 1 0 0
1 1 1 1 0
1 1 0 1 1

]

Viewed in Z: [1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 0 1 0 1
0 0 1 1 1

]
∗

[1 1 1 0 0
1 0 1 1 1
1 1 1 0 0
1 1 0 0 1
1 1 1 1 0

]
=

[5 4 4 2 2
3 3 2 0 1
4 3 3 2 2
3 3 3 1 0
3 3 2 1 1

]
︸ ︷︷ ︸
reduce mod 2

QD

Quasi-dyadic matrices

I Fully dyadic parity-check matrices not an option.
I Next better level: quasi-dyadic matrices.

Still quite regular
Not necessarily square, consisting of dyadic submatrices of the
same dimensions: quasi-dyadic.

A B C D E F G H
B A D C F E H G
I J L M N P Q R
J I M L P N R Q

QD

QD: Assumptions

Choose the following data:

I p = 2s for some s
I q = pd = 2m for some d with m = ds
I A code length n
I A design number of correctable errors t with n = lt for

some l > d

QD

QD: Select

I Let N = kt for some k
I N � n
I N ≤ q/2

I QD generates a fully dyadic N x N parity-check matrix H
for a binary Goppa code GOq(L, g)

I QD selects a submatrix Ĥ ∈ Ft x N
q

QD

QD: Select and permute

Ĥ :=
[
B0 | . . . | BN/t−1

]
∈ Ft x N

q

I Each Bi ∈ Ft x t
q and dyadic

I Select randomly l distinct blocks Bi0 , . . . , Bil−
∈ Ft x t

q

I Select l dyadic permutations Π j0 , . . . ,Π jl− ∈ Ft x t
2

Ĥ ′ :=
[
Bi0Π

i0 | . . . | Bil−
Π il−

]
∈ (Ft x t

q)l

QD

QD: Select, permute and scale

I Aside: dyadic permutation

A dyadic matrix Π i ∈ ∆({0, 1}n), whose signature is the ith row
of the identity matrix.

I Build Ĥ ′Σ and co-trace it.

I Co-tracing Ĥ ′Σ means to map it to binary.
I But note: Ĥ ′Σ is quasi-dyadic, and that structure shall be

maintained.

QD

QD: Co-Trace

Example:

I Let u0 = (1, 1, 0, 1), u1 = (0, 1, 0, 1) ∈ F24

I T =

[
u0 u1
u1 u0

]
∈ F2x2

24 and dyadic

QD

QD: Co-Trace continued

I Usual trace construction would be wrong:

T =

[
u0 u1
u1 u0

]
=

[
(1, 1, 0, 1) (0, 1, 0, 1)
(0, 1, 0, 1) (1, 1, 0, 1)

]
=



1 0
1 1
0 0
1 1
0 1
1 1
0 0
1 1



I Quasi-dyadic structure is lost.

QD

QD: Co-Trace continued

I Interleave instead:

(1, 1, 0, 1) = u0 u1 = (0, 1, 0, 1)

1 1
1 1
0 0
0 0
1 1
1 1
0 1
1 0

QD

QD: Final step

I Let H ′ := T ′
d(Ĥ ′Σ) denote the co-traced Ĥ ′Σ

I H ′ ∈ (Ft x t
p)d x l

I Finally, let H denote H ′ in systematic form.

I The parity-check matrix H defines code of length n and
dimension k = n − dt over Fp

I It is still quasi-dyadic with t x t dyadic submatrices.

I It can be stored in an area a factor t smaller than a general
matrix.

QD

QD: Some remarks

The QD construction has some drawbacks:

I Complicated.
I Highly dependent on chosen parameters.
I N � n

All those points will be addressed later with the FQD
construction.

Decoding Goppa codes as alternant codes

Part VI

Decoding Goppa codes as alternant codes

Decoding Goppa codes as alternant codes

Decoding Goppa codes as alternant codes

I Goppa codes are special alternant codes.
I Therefore, alternant decoders can decode Goppa codes.

Decoding Goppa codes as alternant codes

Decoding Goppa codes: The setup

I r = deg(g(X)), even
I received codeword: u ∈ Fn

2

I u = c + e
I error positions: 1 ≤ i0, . . . , it−1 ≤ n, where t ≤ r/2

i0 i1 i2 it−1. . .

e

c

u

Decoding Goppa codes as alternant codes

Some definitions

Error locator polynomial:

σ(X) =
t−1∏
j=0

(1− Lij X) ∈ F2m [X]

I Property: σ(Lij) = 0 ⇐⇒ eji 6= 0

Error evaluator polynomial:

ω(X) =
t−1∑
k=0

g(Lik)
−1

t−1∏
j=0
j 6=k

(1− Lij) ∈ F2m [X]

Decoding Goppa codes as alternant codes

The syndrome

I Find the Li , which are the roots of σ(X).
I Because the Li are pairwise distinct, they give the error

locations.

uHT = eHT =
[
0 . . . ei0 . . . eit−1 . . . 0

]
HT =

[
S0 . . . Sr−1

]
Syndrome

S(X) :=
r−1∑
k=0

SkX k

Decoding Goppa codes as alternant codes

The key equation

I σ(X) and ω(X) are related by the so-called key equation:

Theorem

ω(X) = σ(X)S(X) mod X r

Solving the key equation gives σ(X). It is usually done by the
extended Euclidian algorithm.

Decoding Goppa codes as alternant codes

Reminder: Extended Euclidian Algorithm

I Let f (X), h(X) ∈ F[X] with deg(h(X)) ≤ deg(f (X))

I Let r−1(X) := f (X) and r0 := h(X)

r−1(X) = q1(X)r0(X) + r1(X) deg(r1) < deg(r0)

. . .
...

...
rk−2(X) = qk (X)rk−1(X) + rk (X) deg(rk) < deg(rk−1)

. . .
...

...
rs−1(X) = qs+1(X)rs(X)

Decoding Goppa codes as alternant codes

Euclidian Algorithm continued

Theorem

rk (X) = ak (X)f (X) + bk (X)h(X) (k ≥ −1)

ak (X) = −qk (X)ak−1(X) + ak−2(X) (k ≥ 1)
bk (X) = −qk (X)bk−1(X) + bk−2(X) (k ≥ 1)

where
a−1(X) = 1 , a0(X) = 0
b−1(X) = 1 , b0(X) = 0

Decoding Goppa codes as alternant codes

Applying the Euclidian Algorithm

Apply the algorithm until deg(rk) < r/2 and deg(rk−1) ≥ r/2.

Theorem

I σ(X) = bk (0)−1bk (X)

I ω(X) = bk (0)−1rk (X)

Decoding Goppa codes as alternant codes

Let’s summarize

I Step 1: Find the syndrome polynomial S(X) =
r−1∑
k=0

SkX k

I Step 2: Solve the key equation ω(X) = σ(X)S(X) mod X r

I Step 3: Find the Lij with σ(Lij) = 0

I Step 4: Correct the received vector u

Decoding Goppa codes as alternant codes

Separable binary Goppa codes again

I GO2(L, g) = GO2(L, g2)

I The canonical parity-check matrix H0 based on g(X)2 is
this:

H0 = VD =



1 1 ... 1
L0 L1 ... Ln−1

L2
0 L2

1 ... L2
n−1

...
...

...
...

Lt−1
0 Lt−1

1 ...Lt−1
n−1

Lt
0 Lt

1 ...Lt
n−1

...
...

...
...

L2t−1
0 L2t−1

1 ...L2t−1
n−1



 g(L0)
−2 0 ... 0

0 g(L1)
−2 ... 0

...
...

. . . 0
0 0 0 g(Ln−1)

−2



Decoding Goppa codes as alternant codes

The magic again

I GO2(L, g) = GO2(L, g2)

That means:

I H0 is related to any other parity-check matrix H by an
equation of the form:

H0 = SH

Note:
I An alternant decoder based on H0 can correct up to

2 ∗ deg(g(X)) errors.
I An alternant decoder based on H only up to deg(g(X))

errors.

Decoding Goppa codes as alternant codes

The strategy again

I GO2(L, g) = GO2(L, g2)

Public parity-check matrix H is based on g(X)

Decoder DG is based on g(X)2 resp. on H0

Decoding Goppa codes as alternant codes

Adapting the decoder

I H0 = SH for some regular matrix S

Once we have S, we work with SH instead of H:

u(SH)T = e(SH)T =
[
0 . . . ei0 . . . eit−1 . . . 0

]
(SH)T =

[
S′

0 . . . S′
r−1

]
I The decoder can correct now up to 2r errors without any

change.

Decoding Goppa codes as alternant codes

Under attack

I GO2(L, g) = GO2(L, g2)

I Faugère et al. launched an attack against QD (2010)
I The attack failed!
I Their alternant decoder could only correct t/2 errors.

Note:
I The attack might work, if the private decoder were based

on H and not on H0 !

Decoding Goppa codes as alternant codes

Warning

You might ask how a generalized Cauchy matrix for g(X)2

might look like.

C(z, L) = (Cij) =



1
z0−L0

1
z0−L1

... 1
z0−Ln−1

1
(z0−L0)2

1
(z0−L1)2

... 1
(z0−Ln−1)2

1
z1−L0

1
z1−L1

... 1
z1−Ln−1

1
(z1−L0)2

1
(z1−L1)2

... 1
(z1−Ln−1)2

...
...

...
...

1
zt−1−L0

1
zt−1−L1

... 1
zt−1−Ln−1

1
(zt−1−L0)2

1
(zt−1−L1)2

... 1
(zt−1−Ln−1)2


∈ F2txn

Do not base H on that. The attack might work!

Flexible QD

Part VII

Flexible QD

Flexible QD

Flexible QD (FQD)

QD generates quasi-dyadic matrices in Cauchy form, but has
restrictions:
I It generates a fully dyadic N x N matrix, with N � n
I If N = 2m − t this is not good in terms of CFS.

Goal:
I Improve QD: make n = 2m − t possible.

Flexible QD

FQD: Step 1

I Generate a m x m random binary nonsingular matrix M

δ0

δ1
...

δlog2(u)−1
δlog2(u)

......

δm−1

Flexible QD

FQD: Step 2

I Generate a ux u dyadic matrix using the upper part of M

zi0 =

log2(u)−1⊕
b=0

i0[b]δb (0 ≤ i0 < u)

I i0[b] denotes the (b+1)-th bit of i in binary form
I δb denotes the (b+1)-th row from the top of M

(0 ≤ b < log2(u)− 1)

Flexible QD

FQD: Step 3

I Choose distinct ∆′
i1 and ∆j1 from a linear combination of

the bottom m − log2(u) rows of M
I Shift now the previous ux u dyadic matrix by ∆′

i1 and ∆j1 :

zi1u+i0 = zi0 ⊕∆′
i1 (1 ≤ i1 < dt/ue)

Lj1u+j0 = zj0 ⊕∆j1 (0 ≤ j1 < dn/ue)

The next slide will give an idea what is going on . . .

Flexible QD

FQD: Step 4

z0 z1 ... zu−1 ... z0⊕∆j1
z1⊕∆j1

... zu−1⊕∆j1
...

z1 z0 ... zu−2 ... z1⊕∆j1
z0⊕∆j1

... zu−2⊕∆j1
...

z3 z2 ... zu−3 ... z3⊕∆j1
z2⊕∆j1

... zu−3⊕∆j1
...

...
...

... ...
...

...
zu−1 zu−2 ... z0 ... zu−1⊕∆j1

zu−2⊕∆j1
... z0⊕∆j1

...

...
...

... ...
...

... ...
... ...

z0⊕∆i1
z1⊕∆i1

... zu−1⊕∆i1
...

z1⊕∆i1
z0⊕∆i1

zu−2⊕∆i1
...

z3⊕∆i1
z2⊕∆i1

... zu−3⊕∆i1
... ...

... ...
... ...

...
...

...
... ...

zu−1⊕∆i1
zu−2⊕∆i1

... z0⊕∆i1
...

...
...

...
...

... ...
... ...

Flexible QD

FQD: Step 5

Note that z0 = 0, so we have:

z0 z1 ... zu−1 L0 L1 ... Lu−1 Lu ... Ln−1
z1 z0 ... zu−2 L1 L0 ... Lu−2 Lu+1 ... Ln−2
z3 z2 ... zu−3 L2 L3 ... Lu−3 ...

...
...

...
...

... ...
...

zu−1 zu−2 ... z0 Lu−1 Lu−2 ... L0

...
...

...
...

... ...
... ...

z0⊕∆i1
z1⊕∆i1

... zu−1⊕∆i1
z1⊕∆i1

z0⊕∆i1
zu−2⊕∆i1

z3⊕∆i1
z2⊕∆i1

... zu−3⊕∆i1
...

... ...
...

...
...

...
...

...
zu−1⊕∆i1

zu−2⊕∆i1
... z0⊕∆i1

...
...

...
... ...

... ...
...

...

Flexible QD

FQD: Step 6

Having seen those slides, maybe you believe that the final
matrix H = (hij) is quasi-dyadic then:

H = (hij) = (
1

zi ⊕ Lj
) =


1

z0⊕L0
1

z0⊕L1
1

z0⊕L2
... 1

z0⊕Ln−1
1

z1⊕L0
1

z1⊕L1
1

z1⊕L2
... 1

z1⊕Ln−1
1

z2⊕L0
1

z2⊕L1
1

z2⊕L2
... 1

z2⊕Ln−1

...
...

...
...

...
1

zt−1⊕L0
1

zt−1⊕L1
1

zt−1⊕L2
... 1

zt−1⊕Ln−1



If not, the next slide contains a sketch of the calculations.

Flexible QD

FQD: Sketch of proof

I Using z0 = 0; zi ⊕ zj = zi⊕j ; ∆i1 ⊕∆j1 = ∆i1⊕j1 ; we have:

1
hij

= zi1u + i0︸ ︷︷ ︸
i

⊕ Lj1u + j0︸ ︷︷ ︸
j

= (zi0 ⊕∆i1)⊕ (zj0 ⊕∆j1) =

= (zi0 ⊕ zj0)⊕ (∆i1 ⊕∆j1) = zi0⊕j0 ⊕∆i1⊕j1 =

= L(i1⊕j1)u+(i0⊕j0) = L(i1u + i0)︸ ︷︷ ︸
i

⊕ (j1u + j0)︸ ︷︷ ︸
j

=

= z0 ⊕ Li⊕j =
1

hi⊕j

Flexible QD

FQD: Remarks

I t ≤ u ⇒ zi1u+i0 can be ignored

I dt/ue u > t ⇒ remove dt/ue u − t rows

I dn/ue u > n⇒ remove dn/ue u − n colums

I Size: t x n

I Now like in QD: co-tracing and systematic form.

HyMES

Part VIII

HyMES

HyMES

HyMES (Hybrid McEliece Scheme)

HyMES is a hybrid implemenation of the McEliece scheme by
Bhaskar Biswas and Nicolas Sendrier. It has two modifications
compared to the original McEliece scheme:

Higher information rate by putting some data into the error
pattern (similar to Niederreiter).

Reduced public key size by using a generator matrix in echelon
form.

HyMES

HyMES with QD/FQD

We use HyMES at the moment as our basic platform, but we
are about to include some modifications.

I Compact McEliece keys with based on QD/FDQ.

Future improvements might be:
I Documentation in a ”literate programming” style.
I Assembler routines for speed.
I Ranking/Unranking algorithm.

Part IX

Anything else?

Summary

I Compact McEliece keys are possible with binary separable
Goppa codes.

I These codes allow for a compact representation in form of
quasi-dyadic parity-check matrices.

I The compact representation of the parity-check matrices
can be used ’as-is’.

I At the moment, there is no attack known against McEliece
based on quasi-dyadic codes.

I Special thanks to Paulo Barreto for a lot of helpful mails.

Mission accomplished?

Well, there are people who also believed it ...

. . . but at the moment things are looking good!

Questions?

Material used and further reading

I Paulo S.L.M Barreto
The fast Walsh-Hadamard transform (Draft)

I Paulo S.L.M Barreto
Post-Quantum Cryptography

I Rafael Misoczki and Paulo S.L.M. Barreto
Compact McEliece Keys from Goppa Codes

I Kazukuni Kobara
Flexible Quasi-Dyadic Code-Based Public-Key Encryption
and Signature

I Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and
Jean-Pierre Tillich
Algebraic Cryptanalysis of McEliece Variants with
Compact Keys

I Steven Roman, Coding and Information Theory
I F.J. MacWilliams, N.J.A. Sloane

The Theory of Error-correcting Codes

I Robert J. McEliece, The Theory of Information and Coding,
Encyclopedia of Mathematics and its Applications

I K.K. TZENG, K. Zimmermann
On Extending Goppa Codes to Cyclic Codes

I Dana Randall
Efficient Generation of Random Nonsingular Matrices

	Outline
	
	
	
	
	
	
	
	
	

	McEliece cryptosystem
	Before we begin
	McEliece cryptosystem (1978)
	The ingredients
	The recipe
	The Dilemma

	Asking for trouble
	Don't make the adversary happy
	Compact keys are only useful in compact form
	What about performance?
	Mission impossible?

	Goppa codes
	Goppa codes
	Goppa codes: what was that again?

	Irreducible binary Goppa codes
	Separable binary Goppa codes
	A striking property
	It's a kind of magic
	H is a Cauchy matrix!
	Let's summarize

	The (quasi-) dyadic world
	The (quasi-) dyadic world
	Dyadic matrices
	Sylvester-Hadamard matrices
	Sylvester-Hadamard matrices: examples
	Some properties
	The Fast Walsh-Hadamard transform (FWHT)
	FWHT visualized
	Let's summarize

	QD
	QD
	Can we have the cake and eat it, too?
	Putting the pieces together
	Oh no: char(F) = 2!
	Quasi-dyadic matrices
	QD: Some remarks

	Decoding Goppa codes as alternant codes
	Decoding Goppa codes as alternant codes
	
	Some definitions
	The syndrome
	The key equation
	Let's summarize
	Separable binary Goppa codes again
	The magic again
	The strategy again
	Adapting the decoder
	Under attack
	Warning

	Flexible QD
	Flexible QD
	FQD: Step 1
	FQD: Step 2
	FQD: Step 3
	FQD: Step 4
	FQD: Step 5
	FQD: Step 6
	FQD: Sketch of proof
	FQD: Remarks

	HyMES
	HyMES
	HyMES with QD/FQD

	Anything else?
	Summary
	Mission accomplished?
	Questions?
	Material used and further reading
	

